WO2004101457A1 - 光ファイバ用ガラス母材の製造方法 - Google Patents

光ファイバ用ガラス母材の製造方法 Download PDF

Info

Publication number
WO2004101457A1
WO2004101457A1 PCT/JP2004/006631 JP2004006631W WO2004101457A1 WO 2004101457 A1 WO2004101457 A1 WO 2004101457A1 JP 2004006631 W JP2004006631 W JP 2004006631W WO 2004101457 A1 WO2004101457 A1 WO 2004101457A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
preform
optical fiber
producing
core
Prior art date
Application number
PCT/JP2004/006631
Other languages
English (en)
French (fr)
Inventor
Hiroshi Machida
Tadakatsu Shimada
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2004101457A1 publication Critical patent/WO2004101457A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing a glass preform for optical fibers, which sinters a porous preform for optical fibers produced by an OVD method and turns it into a transparent glass.
  • a glass preform for optical fibers As a method of manufacturing a glass preform for optical fibers (hereinafter, simply referred to as a glass preform), glass fine particles produced by supplying a glass material to an oxyhydrogen flame parner around a glass rod serving as a core are known. There is known a method of forming a porous preform for optical fiber (hereinafter simply referred to as a porous preform) by depositing the porous preform and sintering the transparent preform at a high temperature to form a vitreous glass.
  • a porous preform for optical fiber
  • a glass particle generation parner is placed perpendicular to the core glass rod, commonly called the external CVD method (OVD method), and the parner is reciprocated along the glass rod.
  • OTD method external CVD method
  • a method of moving and depositing glass particles is adopted.
  • heat treatment is performed at a high temperature in an atmosphere of halogen gas, and then, in an atmosphere of only He, 0 and He, below the transparent vitrification temperature.
  • Patent Document 2 A method of processing at the above high temperature is generally known (see Patent Document 2).
  • Patent Documents 4 and 5 In order to solve the problem of air bubbles remaining in the glass base material, there is a method of performing vitrification under a vacuum as shown in Patent Documents 4 and 5.
  • Patent Document 1 Patent Publication No. 2612949
  • Patent Document 2 JP-A-61-270232
  • Patent Document 3 Japanese Patent Application Laid-Open No. 05-319848
  • Patent Document 4 JP-A-56-63833
  • Patent Document 5 JP-A-63-201025
  • the present inventors have prepared a porous base material by depositing glass particles around a core glass rod having a core and a part of a clad by an OVD method, and prepared the porous base material in a chlorine gas-containing atmosphere. After the heat treatment, a transparent vitrification treatment was performed under vacuum or reduced pressure to produce a glass base material. As shown in FIG. 1, the refractive index distribution was uneven in the radial direction.
  • FIG. 2 is an enlarged view of the refractive index distribution near the boundary of the core glass rod of FIG. 1, and the outer layer has an inner layer with a higher refractive index, particularly the refractive index near the boundary is lower. Is allowed. An optical fiber obtained by drawing such a glass base material has poor dispersion characteristics.
  • an object of the present invention is to reduce the difference in refractive index between a glass rod for a core (starting rod) having a core and a part of a clad by an OVD method and a glass layer deposited thereon. Smaller and diameter An object of the present invention is to provide a method for producing a glass base material having a uniform refractive index distribution in the direction. Means for solving the problem
  • the method for producing a glass preform of the present invention includes a method for producing a glass preform for an optical fiber by sintering a porous preform for an optical fiber produced by the OVD method and turning it into a transparent glass. After the porous preform is heat-treated in an atmosphere containing a dehydrating gas, cooled for at least 10 hours, the dehydrating gas is replaced with an inert gas, and then the glass is transparently vitrified under vacuum or reduced pressure. I have.
  • the replacement of the dehydration gas with the inert gas may be performed after the porous base material is heat-treated in an atmosphere containing the dehydration gas, preferably after cooling for at least 24 hours.
  • a core glass rod having a core and a part of a clad is used as a starting rod, and the start positions of the reciprocating motion are sequentially determined by a plurality of parners arranged at regular intervals along the glass rod. Glass particles are deposited while moving.
  • the sintering furnace has a furnace tube made of quartz glass, and it is preferable that the length of the heating and soaking region be equal to or longer than the length of the porous base material.
  • the vitrification performed after the heat treatment is preferably performed in a different sintering furnace.
  • the glass base material of the present invention is manufactured by the above-described manufacturing method.
  • This glass base material preferably has a uniform refractive index when it is made transparent.
  • This glass preform is formed by depositing glass fine particles around a core glass rod having a core and a part of a clad, and has a refractive index substantially equal to that of the core glass rod when it is made transparent. More preferably,
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, after a heat treatment step of dehydrating and drying the porous base material in an atmosphere containing a dehydrating gas such as chlorine gas, the inert gas was removed from the inert gas.
  • the timing of the replacement was found to be extremely important.
  • the introduction of the inert gas is performed after the porous base material has been cooled for at least 10 hours, and preferably after cooling for at least 24 hours.
  • the present inventors have found that the difference in the refractive index near the boundary with the glass layer deposited thereon becomes small, and that a glass base material having a uniform refractive index distribution in the radial direction can be obtained, and the present invention has been completed.
  • the temperature of the sintering furnace is lowered immediately after the heat treatment, and an inert gas is introduced into the furnace simultaneously with the start of the temperature reduction. At this time, even if the temperature in the furnace is lowered, the inside of the porous preform is not sufficiently cooled and the temperature is high. The reverse reaction occurs, and the bonded Si'C1 is replaced with Si • ⁇ H again.
  • the residual amount of C1 having an effect of increasing the refractive index in the glass decreases, and the refractive index decreases. Since the temperature of the central portion of the porous base material is hardly lowered, a portion having a low refractive index in the radial direction is generated in the inside where the C1 re-displacement phenomenon easily occurs.
  • the porous base material is a force obtained by depositing glass particles around a starting rod by the OVD method.
  • the starting rod uses a glass rod for a core having a core and a part of a clad.
  • the porous mother body is extremely efficiently and at a high speed. Materials can be manufactured.
  • the furnace tube disposed in the sintering furnace is preferably made of quartz glass because it is less affected by contamination.
  • the heating unit performs processing while moving the heating region or the porous base material in which the conventional heating region is short, by setting the length of the heating soaking region to be equal to or longer than the length of the porous base material. Heat treatment can be performed in a shorter time than in the zone heating method.
  • ten deposition parners are arranged at 150mm intervals along a core glass rod with an outer diameter of 50mm, which has a core and a part of a clad, and reciprocate. While moving the starting position sequentially, the glass particles are deposited, and the outer diameter is 300 mm,
  • a 1500 mm porous base material was produced.
  • the porous preform 1 is inserted into a heat treatment furnace 3 having a quartz furnace tube 2 having a total length of 4 m and an inner diameter of 400 mm ⁇ , and is suspended by being held by the holding section 6, with chlorine gas 2 Nl / min, nitrogen gas 24 Nl.
  • the heater 5 was used to raise the temperature in the furnace from room temperature to 1000 ° C over 2 hours. After that, the furnace temperature was maintained at 1000 ° C and heat treatment was performed for 15 hours. 24 hours after the start of natural cooling, the supply of chlorine gas, which had been supplying the above amount, was stopped. Then, an inert gas was introduced into the furnace tube.
  • the dehydrated and dried porous base material was transferred to a different sintering furnace and subjected to a transparent vitrification process under reduced pressure to produce a glass base material having an outer diameter of 150 mm. After stretching and reducing the diameter of the glass base material to an outer diameter of 60 mm, the refractive index distribution in the radial direction was measured.
  • a porous preform of the same size was prepared in the same manner as in Example 1, and this porous preform was inserted into a heat treatment furnace 3 having a quartz furnace tube 2 having a total length of 4 m and an inner diameter of 400 mm ⁇ , and chlorine gas 2 Nl
  • the temperature inside the furnace was raised from room temperature to 1000 ° C. over 2 hours while introducing / N1 and nitrogen gas 24Nl / min from the gas supply pipe 4 provided at the lower part of the furnace tube 2. Thereafter, heat treatment was performed for 15 hours while maintaining the furnace temperature at 1000 ° C. Immediately after the heating, the supply of chlorine gas was stopped, and the atmosphere in the furnace tube was replaced with an inert gas.
  • the heat-treated porous base material was transferred to a different sintering furnace and subjected to a transparent vitrification process under reduced pressure to produce a glass base material having an outer diameter of 150 mm. After stretching and shrinking the glass base material to an outer diameter of 60 mm ⁇ , the refractive index distribution in the radial direction was measured.
  • the measurement results are as shown in FIGS. 1 and 2, and a change in the refractive index distribution in the radial direction was observed. In particular, there was a tendency that the refractive index was higher on the outer side and lower on the inner side. Further, there was a difference in the refractive index near the boundary with the starting rod.
  • a porous preform of the same size was prepared in the same manner as in Example 1, and this porous preform was inserted into a heat treatment furnace 3 having a quartz furnace core tube 2 with a total length of 4 m and an inner diameter of 400 mm ⁇ , and chlorine gas 2 Nl
  • the temperature inside the furnace was raised from room temperature to 1000 ° C. over 2 hours while introducing / N1 and nitrogen gas 24Nl / min from the gas supply pipe 4 provided at the lower part of the furnace tube 2. After that, the furnace temperature was maintained at 1000 ° C and heat treatment was performed for 15 hours.
  • the heat-treated porous base material was transferred to a different sintering furnace, and reduced pressure was applied to a transparent vitrification process to produce a glass base material having an outer diameter of 150 mm. After stretching and reducing the diameter of the glass base material to an outer diameter of 60 mm ⁇ , the refractive index distribution in the radial direction was measured.
  • the refractive index difference is not recognized near the boundary between the starting rod and the glass layer deposited thereon, and the variation in the refractive index in the radial direction is extremely small and the refractive index difference in the glass base material is small.
  • a glass base material having an extremely small amount of H groups can be obtained. This glass preform can be used for manufacturing optical fibers.
  • FIG. 1 is a schematic cross-sectional view showing a radial refractive index distribution of a glass base material manufactured by a conventional method.
  • FIG. 2 is an enlarged view showing a refractive index distribution near a boundary of a core glass rod of FIG. 1.
  • FIG. 3 is a schematic sectional view showing a sintering furnace used in an example of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a radial refractive index distribution of a glass base material obtained in an example of the present invention.

Abstract

 OVD法によりクラッドの一部を有するコア用ガラス棒(出発棒)とその上に堆積されるガラス層との屈折率の差を小さくし、径方向における屈折率分布の均一なガラス母材の製造方法を提供する。  OVD法により作製された光ファイバ用多孔質母材を焼結し、透明ガラス化して光ファイバ用ガラス母材を製造する方法において、該多孔質母材を脱水ガス含有雰囲気下にて熱処理後、少なくとも10時間冷却した後、脱水ガスを不活性ガスで置換し、次いで、真空又は減圧下で透明ガラス化することを特徴としている。また、脱水ガスの不活性ガスによる置換の時期は、多孔質母材を脱水ガス含有雰囲気下にて熱処理後、少なくとも24時間冷却した後に行うのが好ましい。

Description

明 細 書
光ファイバ用ガラス母材の製造方法
技術分野
[0001] 本発明は、 OVD法により作製された光ファイバ用多孔質母材を焼結し、透明ガラス 化する光ファイバ用ガラス母材の製造方法に関する。
背景技術
[0002] 光ファイバ用ガラス母材 (以下、単にガラス母材と称する)の製造方法としては、コア となるガラス棒の周囲に、酸水素火炎パーナにガラス原料を供給して生じたガラス微 粒子を堆積させて光ファイバ用多孔質母材 (以下、単に多孔質母材と称する)を形成 し、この多孔質母材を高温下で焼結 ·透明ガラス化する方法が知られている。
多孔質母材の製造に当っては、一般に外付け CVD法(OVD法)と呼ばれる、コアと なるガラス棒に対して垂直にガラス微粒子発生用パーナを配置し、ガラス棒に沿って パーナを往復移動させてガラス微粒子を堆積させる方法が採用されている。
[0003] 近年、ガラス母材の大型化に伴い、多孔質母材に対しても大型化とその生産性向 上の要求が高まってきており、実際に幾つかの方法が提案されている。例えば、大型 のガラス母材を高速で生産する方法として、同一設計の複数のパーナをガラス棒に 沿って等間隔に配置し、パーナの往復運動の開始位置を順次移動させてガラス微 粒子を堆積する方法が挙げられる(特許文献 1参照)。この方法は、従来より堆積速 度を飛躍的に増大させることができる。
[0004] また、多孔質母材中には、堆積時に使用される酸水素火炎によって生じた多量の 水分や OH基が存在する。
多孔質母材中の水分や OH基を除去する方法としては、ハロゲンィ匕ガスの雰囲気 下、高温で熱処理した後、 Heと 0及び Heのみの雰囲気下で、透明ガラス化温度以
2
上の高温で処理する方法が一般に知られている(特許文献 2参照)。
[0005] その他、合成されたシリカ多孔質母材中の OH基の除去方法として、 OH基除去処 理終了後、降温させる際に、炉の温度が 500°C以下になるまで、脱 OH基作用を有す るガスを含む雰囲気中に、シリカ多孔質母材を維持し続け、その後、 Heガスを 70%以 上含むガスを導入しながら、 1400— 1600°Cの温度領域で透明ガラス化処理を行うこ とで、外表面から OH基の除去を行う方法がある(特許文献 3参照)。
[0006] しかし、近年のガラス母材の大型化に伴う多孔質母材の大型化により、透明ガラス 化工程の終了後にガラス母材中に残留する気泡の問題が、大きく取り上げられるよう になってきている。
[0007] 大型の多孔質母材を特許文献 2, 3による方法で透明ガラス化を行うと、気泡が発 生するおそれがある。ガラス母材中に気泡が存在すると、光ファイバの線引き中、光 ファイバの破断の原因となるため、ガラス母材中の気泡は、可能な限り無くすことが望 ましい。
上記したガラス母材中に残留する気泡の問題を解決するために、特許文献 4, 5に 示されているような、真空下にて透明ガラス化処理する方法がある。
[0008] 特許文献 1:特許公報第 2612949号
特許文献 2:特開昭 61 - 270232号公報
特許文献 3:特開平 05 - 319848号公報
特許文献 4:特開昭 56— 63833号公報
特許文献 5:特開昭 63 - 201025号公報
発明の開示
発明が解決しょうとする課題
[0009] そこで本発明者等は、 OVD法により、コアとクラッドの一部を有するコア用ガラス棒 の周囲にガラス微粒子を堆積させて多孔質母材を作製し、塩素ガス含有雰囲気下に て熱処理した後、真空又は減圧下で透明ガラス化処理を行い、ガラス母材を製造し たところ、図 1に示すように、径方向に屈折率分布が不均一となっていた。
[0010] 図 2は、図 1のコア用ガラス棒の境界付近の屈折率分布を拡大して示しており、外 層は屈折率が高ぐ内層、特に境界付近の屈折率は低くなつているのが認められる。 このようなガラス母材を線引きして得られる光ファイバは、分散特性の悪いものとなる
[0011] 本発明の課題は、上記問題に鑑み、 OVD法によりコアとクラッドの一部を有するコ ァ用ガラス棒(出発棒)とその上に堆積されるガラス層との屈折率の差を小さくし、径 方向における屈折率分布の均一なガラス母材の製造方法を提供することである。 課題を解決するための手段
[0012] 本発明のガラス母材の製造方法は、 OVD法により作製された光ファイバ用多孔質 母材を焼結し、透明ガラス化して光ファイバ用ガラス母材を製造する方法にぉレ、て、 該多孔質母材を脱水ガス含有雰囲気下にて熱処理後、少なくとも 10時間冷却した後 、脱水ガスを不活性ガスで置換し、次いで、真空又は減圧下で透明ガラス化すること を特徴としている。
[0013] また、脱水ガスの不活性ガスによる置換の時期は、多孔質母材を脱水ガス含有雰 囲気下にて熱処理後、好ましくは少なくとも 24時間冷却した後に行うとよい。
多孔質母材は、出発棒としてコアとクラッドの一部を有するコア用ガラス棒を使用し 、該ガラス棒に沿って一定間隔に配置された複数のパーナにより、その往復運動の 開始位置を順次移動させながらガラス微粒子を堆積させたものである。
[0014] 焼結炉は、石英ガラス製の炉心管を有し、その加熱均熱領域の長さを多孔質母材 の長さ以上とするのが好ましい。また、熱処理後に行われる透明ガラス化は、異なる 焼結炉で行うのが好ましい。
本発明のガラス母材は、上記した製造方法により製造されたものである。このガラス 母材は、透明ガラス化した場合の屈折率が均一であることが好ましい。このガラス母 材は、コアとクラッドの一部を有するコア用ガラス棒の周囲にガラス微粒子を堆積させ て形成され、透明ガラス化した場合の屈折率が、コア用ガラス棒の屈折率と略同一で あることがさらに好ましい。
[0015] なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなぐ これらの特徴群のサブコンビネーションもまた、発明となりうる。
発明の効果
[0016] 本発明によれば、 OVD法により作製した多孔質母材であっても、出発棒とその上に 堆積されたガラス層との境界付近において、屈折率差は認められず、径方向への屈 折率の変動は極めて小さぐかつガラス母材中の OH基量の極めて少ないガラス母材 が得られる。このガラス母材を線引きすることで、光学特性の優れた光ファイバが得ら れる。 発明を実施するための最良の形態
[0017] 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請 求の範囲にかかる発明を限定するものではなぐまた実施形態の中で説明されてい る特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
[0018] 本発明者等は、上記課題を達成するため鋭意検討した結果、多孔質母材を塩素ガ ス等の脱水ガス含有雰囲気下で脱水 ·乾燥する熱処理工程後、脱水ガスを不活性ガ スで置換する時期が、極めて重要であることを導き出した。特に、不活性ガスの導入 を多孔質母材が少なくとも 10時間冷却した後に、好ましくは少なくとも 24時間冷却し た後に行い、その後、真空又は減圧下にて透明ガラス化処理することで、出発棒とそ の上に堆積されるガラス層との境界付近での屈折率の差が小さくなり、径方向に屈折 率分布の均一なガラス母材が得られることを見出し、本発明を完成した。
[0019] 通常、多孔質母材中に存在する OH基の化学的処理に対して、下記(1)式の反応 が考えられている。
Si- OH + Cl→Si- Cl + HCl+ l/20 (1)
2 2
しかし、上記反応には、下記(2)式の逆反応を生じる可能性がある。
Si- Cl + HCl+ 1/20→Si- OH + Cl (2)
2 2
[0020] 従来の方法では、熱処理後直ちに焼結炉の温度を低下させ、この温度低下の開始 と同時に炉内に不活性ガスが導入されている。このとき、炉内の温度が低下しても、 多孔質母材の内部は十分冷却されておらず、温度が高い状態にあるため、直ちに不 活性ガスが導入されると、上記(2)式の逆反応が起こり、結合していた Si' C1が再度 Si •〇Hに置換される。
[0021] その結果、屈折率を上昇させる効果を有する C1のガラス中での残存量が低下し、屈 折率が低下する。多孔質母材は、その中心部の温度が下がりにくいため、内部で C1 の再置換現象が起こり易ぐ径方向に屈折率の低い部分を生じる。
したがって、径方向に屈折率の差が生じるのを防ぐためには、多孔質母材の内部 が十分冷却されるまで、少なくとも 10時間経過するまでは、好ましくは少なくとも 24時 間経過するまで、逆反応を防止するために脱水ガスを炉内に導入し続ける必要があ る。なお、この冷却時間は、 自然冷却、強制冷却のいずれであってもよい。 [0022] 多孔質母材は、 OVD法により出発棒の周囲にガラス微粒子を堆積させて得られる 力 この出発棒には、コアとクラッドの一部を有するコア用ガラス棒を使用し、このガラ ス棒に沿って一定間隔に複数のパーナを配置し、パーナを往復運動させ、かつ往復 運動の開始位置を順次移動させながらガラス微粒子を堆積させることで、極めて効 率よく高速度で多孔質母材を製造することができる。
[0023] 焼結炉内に配設される炉心管は、汚染の影響が少ない点で石英ガラス製とするの が良い。加熱部は、その加熱均熱領域の長さが多孔質母材の長さ以上となるように することで、従来の加熱領域が短ぐ加熱領域又は多孔質母材を移動させながら処 理するゾーン加熱方式と比べて、短時間での熱処理が可能となる。
[0024] 熱処理後の透明ガラス化を真空又は減圧下で行うことにより、ガラス母材中に残存 する気泡を極めて少なくできる。また、透明ガラス化を異なる焼結炉を使用して行うこ とで、熱処理用の炉は、常に石英の失透温度以下で連続して使用されることになり、 ライフが長くなり、かつ稼働率が向上する。
以下、実施例を挙げて説明するが、本発明はこれらに限定されず、様々な態様が 可能である。
実施例
[0025] (実施例 1)
〇VD法により、コアとクラッドの一部を有する外径 50mm φのコア用ガラス棒に沿つ て、 10本の堆積用パーナを 150mm間隔で配置して往復運動を行レ、、往復運動の開 始位置を順次移動させながらガラス微粒子を堆積させ、外径 300mm φ、直胴部
1500mmの多孔質母材を作製した。
[0026] この多孔質母材の熱処理に、図 3に示す熱処理炉を使用した。
先ず、多孔質母材 1を全長 4m、内径 400mm φの石英製炉心管 2を有する熱処理炉 3内に挿入して、保持部 6により保持して吊り下げ、塩素ガス 2Nl/min、窒素ガス 24Nl/minを炉心管 2の下部に設けたガス供給管 4から導入しながら、ヒーター 5により 炉内の温度を常温から 1000°Cまで 2時間かけて上昇させた。その後、炉内温度を 1000°Cに維持して 15時間熱処理した後、加熱を止め自然冷却した。 自然冷却開始 後 24時間経過したところで、上記した量の供給を続けていた塩素ガスの供給を停止 し、炉心管内に不活性ガスを導入した。
[0027] その後、熱処理を終え脱水'乾燥した多孔質母材を異なる焼結炉に移し、減圧下 で透明ガラス化処理を行い、外径 150mm φのガラス母材を作製した。このガラス母材 を外径 60mm φに延伸 ·縮径した後、径方向への屈折率分布を測定した。
[0028] 測定結果は図 4に示した通りであり、径方向に極めて均一な屈折率分布が得られ、 出発棒とその上に堆積されたガラス層との間に屈折率差は認められなかった。さらに 、ガラス母材中の OH基を測定したところ、ガラス母材中の全ての領域で、測定検出 下限の 0.05ppm以下であった。
[0029] (比較例 1)
実施例 1と同様にして同サイズの多孔質母材を作製し、この多孔質母材を全長 4m 、内径 400mm φの石英製炉心管 2を有する熱処理炉 3内に挿入し、塩素ガス 2 Nl/min,窒素ガス 24Nl/minを炉心管 2の下部に設けたガス供給管 4から導入しながら 、炉内の温度を常温から 1000°Cまで 2時間かけて上昇させた。その後、炉内温度を 1000°Cに維持して 15時間熱処理した。加熱終了後、直ちに塩素ガスの供給を止め、 不活性ガスで炉心管内の雰囲気を置換した。
[0030] その後、熱処理を終えた多孔質母材を異なる焼結炉に移し、減圧して透明ガラス 化処理を行い、外径 150mm φのガラス母材を作製した。このガラス母材を外径 60mm Φに延伸 ·縮怪した後、径方向への屈折率分布を測定した。
測定結果は図 1, 2に示した通りであり、径方向に屈折率分布の変動が認められた 。特に外側では屈折率が高ぐ内側にいくにつれ屈折率が低くなる傾向が見られた。 さらに、出発棒との境界付近でも屈折率に差を生じていた。
[0031] (比較例 2)
実施例 1と同様にして同サイズの多孔質母材を作製し、この多孔質母材を全長 4m 、内径 400mm φの石英製炉心管 2を有する熱処理炉 3内に挿入し、塩素ガス 2 Nl/min,窒素ガス 24Nl/minを炉心管 2の下部に設けたガス供給管 4から導入しながら 、炉内の温度を常温から 1000°Cまで 2時間かけて上昇させた。その後、炉内温度を 1000°Cに維持して 15時間熱処理した後、加熱を止め自然冷却した。
なお、ヒーターによる加熱終了後も引続き塩素ガス 2Nl/min、窒素ガス 24Nl/minを 導入し続け、処理終了後 8時間経過した後、塩素ガスの供給を止め、不活性ガスで 炉心管内の雰囲気を置換した。
[0032] その後、熱処理を終えた多孔質母材を異なる焼結炉に移し、減圧して透明ガラス 化処理を行い、外径 150mm φのガラス母材を作製した。このガラス母材を外径 60mm Φに延伸 ·縮径した後、径方向への屈折率分布を測定した。
比較例 1の結果に比べると若干改善されているものの、径方向に屈折率の変動が 見られた。
[0033] 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実 施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または 改良をカ卩えることが可能であることが当業者に明らかである。その様な変更または改 良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載 から明らかである。
産業上の利用可能性
[0034] 本発明は、出発棒とその上に堆積されたガラス層との境界付近において、屈折率 差は認められず、径方向への屈折率の変動は極めて小さぐかつガラス母材中の 〇H基量の極めて少ないガラス母材が得られる。このガラス母材は、光ファイバの製造 に利用することができる。
図面の簡単な説明
[0035] [図 1]従来の方法で製造されたガラス母材の径方向の屈折率分布を示す概略断面図 である。
[図 2]図 1のコア用ガラス棒の境界付近の屈折率分布を拡大して示した図である。
[図 3]本発明の実施例で使用した焼結炉を示す概略断面図である。
[図 4]本発明の実施例で得られたガラス母材の径方向の屈折率分布を示す概略断 面図である。
符号の説明
[0036] 1.……多孔質母材、
2.……炉心管、
3.……焼結炉、 4. ……ガス供給管、
5.……加熱部、
6.……支持部。

Claims

請求の範囲
[1] OVD法により作製された光ファイバ用多孔質母材を焼結し、透明ガラス化して光ファ ィバ用ガラス母材を製造する方法において、該多孔質母材を脱水ガス含有雰囲気 下にて熱処理後、少なくとも 10時間冷却した後、脱水ガスを不活性ガスで置換し、次 いで、真空又は減圧下で透明ガラス化することを特徴とする光ファイバ用ガラス母材 の製造方法。
[2] 多孔質母材を脱水ガス含有雰囲気下にて熱処理後、少なくとも 24時間冷却した後、 脱水ガスを不活性ガスで置換する請求項 1に記載の光ファイバ用ガラス母材の製造 方法。
[3] 光ファイバ用多孔質母材が、コアとクラッドの一部を有するコア用ガラス棒の周囲にガ ラス微粒子を堆積させて形成されたものである請求項 1又は 2に記載の光ファイバ用 ガラス母材の製造方法。
[4] 光ファイバ用多孔質母材が、コア用ガラス棒に沿って一定間隔に配置された複数の パーナにより、その往復運動の開始位置を順次移動させながらガラス微粒子を堆積 させたものである請求項 1乃至 3のいずれかに記載の光ファイバ用ガラス母材の製造 方法。
[5] 焼結炉が、石英ガラス製の炉心管を有し、その加熱均熱領域の長さが光ファイバ用 多孔質母材の長さ以上である請求項 1乃至 4のいずれかに記載の光ファイバ用ガラ ス母材の製造方法。
[6] 熱処理後に行われる透明ガラス化が、異なる焼結炉でなされる請求項 1乃至 5のい ずれかに記載の光ファイバ用ガラス母材の製造方法。
[7] 請求項 1乃至 6のいずれかに記載の光ファイバ用ガラス母材の製造方法により製造さ れたものであることを特徴とする光ファイバ用ガラス母材。
[8] 透明ガラス化した場合の屈折率が均一である請求項 7に記載の光ファイバ用ガラス 母材。
[9] コアとクラッドの一部を有するコア用ガラス棒の周囲にガラス微粒子を堆積させて形 成され、透明ガラス化した場合の屈折率が、前記コア用ガラス棒の屈折率と略同一で ある請求項 7に記載の光ファイバ用ガラス母材。
PCT/JP2004/006631 2003-05-19 2004-05-17 光ファイバ用ガラス母材の製造方法 WO2004101457A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-140749 2003-05-19
JP2003140749A JP2004345869A (ja) 2003-05-19 2003-05-19 光ファイバ用ガラス母材の製造方法

Publications (1)

Publication Number Publication Date
WO2004101457A1 true WO2004101457A1 (ja) 2004-11-25

Family

ID=33447410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006631 WO2004101457A1 (ja) 2003-05-19 2004-05-17 光ファイバ用ガラス母材の製造方法

Country Status (3)

Country Link
JP (1) JP2004345869A (ja)
TW (1) TW200500310A (ja)
WO (1) WO2004101457A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501850B2 (ja) * 2005-12-07 2010-07-14 住友電気工業株式会社 ガラス体製造方法
JPWO2019107557A1 (ja) 2017-12-01 2020-11-19 古河電気工業株式会社 ガラス体の製造装置、ガラス体の製造方法、スート搬送機構、及びスート加熱機構
WO2023112967A1 (ja) * 2021-12-14 2023-06-22 住友電気工業株式会社 ガラス母材の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319848A (ja) * 1992-05-18 1993-12-03 Tosoh Corp 石英ガラスの製造方法
JPH11292557A (ja) * 1998-04-13 1999-10-26 Sumitomo Electric Ind Ltd 光ファイバ多孔質母材の透明化方法
JP2003137584A (ja) * 2001-11-01 2003-05-14 Furukawa Electric Co Ltd:The 光ファイバ母材の熱処理装置および方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05319848A (ja) * 1992-05-18 1993-12-03 Tosoh Corp 石英ガラスの製造方法
JPH11292557A (ja) * 1998-04-13 1999-10-26 Sumitomo Electric Ind Ltd 光ファイバ多孔質母材の透明化方法
JP2003137584A (ja) * 2001-11-01 2003-05-14 Furukawa Electric Co Ltd:The 光ファイバ母材の熱処理装置および方法

Also Published As

Publication number Publication date
TW200500310A (en) 2005-01-01
JP2004345869A (ja) 2004-12-09

Similar Documents

Publication Publication Date Title
KR101725359B1 (ko) 석영 유리 실린더의 제조 방법 및 그 제조 방법을 수행하기 위한 지지체
US10807901B2 (en) Method for producing an optical blank from synthetic quartz glass
US8393179B2 (en) Method for producing a semifinished product from synthetic quartz glass
JPS5844619B2 (ja) 光フアイバ母材の製造法
JP4399357B2 (ja) 合成により製造された石英ガラスからなるジャケット管およびジャケット管を使用して製造される光ファイバー
JP2005507358A (ja) 石英ガラスから成る管を製造する方法、多孔質石英ガラスから成る管状中間製品、及びその使用
CN111116036B (zh) 制造用于光纤的玻璃预制件的方法
CN111615499B (zh) 光纤母材的制造方法、光纤母材以及光纤的制造方法、光纤
JP4514748B2 (ja) 保持デバイスを使っての合成石英ガラスの中空シリンダーの製造方法とこの方法を実施するために適切な保持デバイス
WO2004101457A1 (ja) 光ファイバ用ガラス母材の製造方法
KR100521958B1 (ko) 수정화학기상증착법에 있어서 이중토치를 이용한 광섬유모재의 제조 방법 및 장치
US20090260400A1 (en) Method for Producing a Tubular Semifinished Product From Fluorine-Doped Quartz Glass
KR20040017024A (ko) 탈수 및 탈염소공정을 포함하는 수정화학기상증착공법을 이용한 광섬유 프리폼 제조방법 및 이 방법에 의해 제조된 광섬유
JP2012507468A (ja) 光学的構成要素を製造するための方法およびシリンダ状の半製品
JP5533205B2 (ja) ガラス母材製造方法
JP4804796B2 (ja) 光ファイバ用母材の製造方法
EP3971145B1 (en) Manufacturing method of glass base material for optical fiber
JPH0478567B2 (ja)
JP2005320197A (ja) 光ファイバ母材の製造装置、光ファイバ母材の製造方法
JP4230073B2 (ja) アルミニウム添加ガラス母材の製造方法
JP4071348B2 (ja) 光ファイバ母材の脱水処理方法
JP3748910B2 (ja) ガラス母材の加熱処理方法
JP2003171136A (ja) 光ファイバ用多孔質材およびその製造方法、光ファイバ母材およびその製造方法
JP2002249342A (ja) ガラス体およびその製造方法
JP2004307281A (ja) フッ素添加石英ガラス物品の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP