WO2004090311A1 - Verfahren zum betrieb einer brennkraftmaschine mit selbstzündung - Google Patents

Verfahren zum betrieb einer brennkraftmaschine mit selbstzündung Download PDF

Info

Publication number
WO2004090311A1
WO2004090311A1 PCT/EP2004/001518 EP2004001518W WO2004090311A1 WO 2004090311 A1 WO2004090311 A1 WO 2004090311A1 EP 2004001518 W EP2004001518 W EP 2004001518W WO 2004090311 A1 WO2004090311 A1 WO 2004090311A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
combustion
gas temperature
exhaust gas
average gas
Prior art date
Application number
PCT/EP2004/001518
Other languages
English (en)
French (fr)
Inventor
Uwe Gärtner
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to US10/552,140 priority Critical patent/US20070157599A1/en
Priority to EP04711992A priority patent/EP1611334B1/de
Priority to JP2006504431A priority patent/JP2006522888A/ja
Publication of WO2004090311A1 publication Critical patent/WO2004090311A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/025Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure

Definitions

  • the invention relates to a method for operating an internal combustion engine with auto-ignition according to the preamble of claim 1.
  • the aim of developing new diesel internal combustion engines is to minimize the formation of exhaust gas emissions, especially nitrogen oxide emissions.
  • Exhaust gas recirculation is often used as a means of reducing emissions, with an exhaust gas recirculation rate being set depending on the load point.
  • a further reduction in nitrogen oxide emissions can be achieved by means of an SCR catalytic converter in which the addition or metering of a reducing agent, e.g. Ammonia, proportional to the nitrogen oxide production in the internal combustion engine.
  • a reducing agent e.g. Ammonia
  • the required safety devices only permit limited sales of such an SCR catalytic converter, since the raw nitrogen oxide emissions of the internal combustion engine can only be determined from known map data. Sensors for the direct measurement of nitrogen oxide or ammonia concentrations in the exhaust gas are still in the research stage, although the sensors currently available are still unreliable.
  • DE 197 34 494 C1 discloses a method for operating an internal combustion engine, in which a recirculation rate of the exhaust gas is calculated on the basis of a double measurement of the oxygen concentration in the exhaust gas or in the charge air. In addition to the high measurement effort, this method only determines the recirculation rate of the exhaust gas.
  • a method is known from EP 554 766 B1 in which a metering device for an SCR catalytic converter is controlled. The knowledge of the raw nitrogen oxide emissions required for this is provided by using map data which describe the engine emission in relation to engine parameters comparatively imprecisely. In order to avoid ammonia breakthrough after the catalytic converter, large safety clearances must be installed due to the roughly known nitrogen oxide raw emission, so that a low conversion in the catalytic converter of up to about 70% is achieved.
  • a method for determining the nitrogen oxide content in exhaust gases from internal combustion engines is known from DE 100 43 383 C2, in which the air mass supplied to the internal combustion engine is detected, the center of gravity of the combustion being determined from at least one current measured value of the engine operation.
  • the raw NOx emissions are calculated from the value for the position of the center of gravity of the combustion and the values of the recorded fuel quantity and air mass.
  • the parallel determination of air mass, fuel mass and recirculated exhaust gas mass is associated with considerable effort.
  • the focus of combustion describes, based on the first law of thermodynamics, the state in the combustion chamber in which 50% of the fuel energy introduced has been converted.
  • the position of the center of gravity is the corresponding crank angle position, i.e. a crank angle position of the piston at which 50% of the amount of fuel participating in the combustion has been converted to heat.
  • the invention is therefore based on the object of providing a method for determining or minimizing nitrogen oxide emissions. This object is achieved according to the invention by a method having the features of claim 1, claim 2 or claim 3.
  • the method according to the invention is characterized in that an average gas temperature in the cylinder is determined during combustion in the combustion chamber, so that a gradient of the average gas temperature is calculated, and from a value of the gradient of the average gas temperature and / or from a position of the gradient average gas temperature in the combustion chamber, a raw nitrogen oxide emission from the internal combustion engine is determined.
  • the raw nitrogen oxide emission (NOx emission) of the self-igniting internal combustion engine is directly related to the gradient of the average gas temperature in the cylinder. Accordingly, the engine parameters are set in such a way that a course of the gradient results in the combustion, in which reduced NOx emissions are formed.
  • the method according to the invention is characterized in that an average gas temperature in the cylinder is determined during combustion in the combustion chamber, so that a raw nitrogen oxide emission is obtained from a maximum value of the average gas temperature in the combustion chamber and / or from a position of the maximum value of the average gas temperature the internal combustion engine is determined.
  • the raw nitrogen oxide emission (NOx emission) of the self-igniting internal combustion engine is directly related to the maximum value of the average gas temperature in the cylinder. Accordingly, the engine parameters are set such that a certain maximum value is set during combustion or a predetermined maximum value is not exceeded. As a result, the NOx emissions can be determined in a simplified manner, in which the measurement outlay is reduced.
  • the method according to the invention is further characterized in that an average gas temperature in the cylinder is determined in the combustion chamber, and a raw nitrogen oxide emission of the internal combustion engine is determined from a value of an average gas temperature when the inlet valve closes and / or a value of a compression end temperature in the combustion chamber.
  • the raw NOx emission formed by the self-igniting internal combustion engine is directly related to the value of the mean gas temperature, which is determined before the start of combustion, at the time of closing the intake valve and / or at the end of the compression. In this way, an exact, simplified determination of the NOx emissions is achieved, so that the measurement effort is also reduced.
  • the average gas temperature is determined in a defined crank angle range.
  • a crank angle range is preferably selected in which the average gas temperature in the cylinder is almost linear. In this way, an exact determination of the NOx emissions is achieved, since an evaluation in a narrow crank angle range is reliable and less complex. The measuring outlay can thus be reduced.
  • an amount of a reducing agent for the downstream exhaust gas aftertreatment system is determined from the determined raw nitrogen oxide emission. Accordingly, the exhaust gas aftertreatment is optimized and, for example, a metered quantity of an SCR catalytic converter is varied.
  • the metered amount of fuel is injected into the combustion chamber in this way. injected that a predetermined gradient of the average gas temperature in the combustion chamber and / or a predetermined position of the maximum value of the average gas temperature in the combustion chamber is set.
  • the mean gas temperature can thus be changed such that, according to the invention, the formation of the NOx emissions takes place at a minimum level or is minimized as far as possible.
  • a predetermined increase in the gas temperature per unit of time or a predetermined position of the maximum value is set. Accordingly, a predetermined maximum temperature value of the mean gas temperature cannot be exceeded, at which the formation of the NOx emissions increases.
  • the metered amount of fuel is injected into the combustion chamber in such a way that a focus of the combustion is at a specific crank angle position. In this way, increased NOx formation can be avoided.
  • an exhaust gas recirculation quantity for setting a defined oxygen concentration in the combustion chamber is set as a function of a focus of the combustion.
  • the required exhaust gas recirculation rate is calculated from a determined raw NOx emission from the internal combustion engine and the exhaust gas recirculation is regulated until a defined oxygen concentration in the combustion chamber is obtained.
  • a reduction in the oxygen concentration required for a nitrogen oxide reduction is calculated from the calculated raw nitrogen oxide emission, so that a device for exhaust gas recirculation is set such that after mixing combustion air with recirculated exhaust gas a defined suction
  • the first concentration of a cylinder charge occurs before or in the combustion chamber.
  • an oxygen concentration of the combustion air is measured before entering the combustion chamber by means of an oxygen sensor, a defined oxygen concentration of the combustion air before or in the combustion chamber being set as a function of the measured concentration by means of the exhaust gas recirculation device.
  • an oxygen concentration of the exhaust gases is measured by means of an oxygen sensor after the exhaust gases have left the combustion chamber, an oxygen concentration of the combustion air before entering the combustion chamber being calculated from this signal, an exhaust gas recirculation rate and a measured quantity of combustion air is, and depending on the calculated concentration by means of the device for exhaust gas recirculation a defined oxygen concentration of the combustion air is set before or in the combustion chamber.
  • FIG. 1 shows a cross section through a cylinder of a direct-injection internal combustion engine with auto-ignition
  • FIG. 2 shows a schematic representation of an average gas temperature of an internal combustion engine according to FIG. 1 as a function of a crank angle
  • FIG. 3 shows a schematic diagram of a gradient of the average gas temperature of the internal combustion engine according to FIG. 1 as a function of NOx emission
  • FIG. 4 shows a schematic representation of the average gas temperature when an inlet valve of the internal combustion engine according to FIG. 1 closes as a function of the NO emission formation
  • FIG. 5 shows a schematic representation of the average gas temperature at the end of a compression stroke of the internal combustion engine according to FIG. 1 as a function of the NOx emission formation
  • FIG. 6 shows a schematic representation of the maxima of an average gas temperature in the combustion chamber as a function of an instantaneous raw NOx emission of an internal combustion engine according to FIG. 1
  • 7 shows a schematic illustration of the course of a NOx reduction rate as a function of an exhaust gas recirculation rate
  • FIG. 8 shows a schematic representation of the course of a NOx reduction rate as a function of an oxygen concentration of the combustion air of an internal combustion engine according to FIG. 1.
  • a cylinder block 1 of a self-igniting internal combustion engine with direct injection is shown in cross section.
  • a piston 12 is displaceably guided in a cylinder 2, the top side and a cylinder head 13 of which define a combustion chamber 11.
  • An intake valve 14 and an exhaust valve 17 are arranged in the cylinder head 13, the necessary combustion air being supplied to the combustion chamber 11 through an intake pipe 15 through the intake valve 14.
  • the respective air mass is preferably detected by an air mass meter 16 which is connected to an engine control device 6 via a line 22.
  • Combustion gases pass through the exhaust valve 17 into an exhaust gas line 18, which leads to an exhaust gas aftertreatment device, not shown in the drawing.
  • This has an SCR catalytic converter, in particular to effectively reduce NOx emissions.
  • an exhaust gas recirculation line 19 branched off from the exhaust gas line 18 serves to return combustion gases into the intake pipe 15.
  • this exhaust gas recirculation line 19 there is a flow meter 20 for recording the recirculated exhaust gas flow and for setting the recirculated exhaust gas quantity. The detected amount of the recirculated exhaust gas is transmitted to the engine control device 6 via a line 21.
  • a pressure sensor 3 is arranged in the combustion chamber 11 in the cylinder head 13, with which a pressure present in the combustion chamber is transmitted to the engine control device 6 via a connecting line 4.
  • a fuel injection valve 25 is also arranged in the cylinder head 13, which is connected to an injection pump 23 via an injection line 26.
  • a measuring device 24 for detecting the amount of fuel is provided between the injection pump 23 and the fuel injection valve 25. This fuel measuring device 24 is connected to the engine control device 6 via an electrical line 27.
  • the injection pump 23 is also connected to the engine control device through a control line 28.
  • An oxygen concentration of the combustion air fed into the combustion chamber 11 is preferably detected by means of an oxygen sensor 29, which is preferably arranged in the intake pipe in front of the inlet valve 14 and is connected to the engine control device 6 via a line 30.
  • an oxygen sensor 29a is arranged in the exhaust gas line 18 or in the exhaust gas recirculation line 19.
  • the method according to the invention aims to minimize the formation of NOx emissions during operation of the internal combustion engine or to optimize exhaust gas aftertreatment.
  • a load-dependent fuel quantity is introduced into the combustion chamber 11 by means of the fuel injection valve 25.
  • a course of the mean gas temperature in the combustion chamber is determined, from which a gradient d ⁇ / dphi of the gas temperature is formed in a defined crank angle window according to FIG. 3.
  • this is directly related to the nitrogen oxide emission formation of the internal combustion engine.
  • a relatively narrow crank angle range is evaluates in which the average gas temperature in the cylinder is almost linear. Such a range can be selected according to FIG.
  • FIG. 3 illustrates this state of affairs using the example of a change in the start of injection of the fuel in the early direction, ie the fuel is injected earlier into the combustion chamber, so that an increase in the NOx emission is brought about with a higher temperature gradient. If the fuel injection is carried out in such a way that the temperature gradient achieved becomes smaller, then a decrease in the NOx emission according to FIG. 2 is expected.
  • the raw nitrogen oxide emission of the internal combustion engine can thus be determined either from a value and / or from the course of the gradient of the average gas temperature or from a maximum value of the average gas temperature in the combustion chamber 11.
  • an average gas temperature T E s can be used to determine the NOx emission, which is determined at the time the intake valve closes.
  • an average gas temperature T KE which is determined at the end of the compression phase of the internal combustion engine, can also be taken into account for determining the NOx emission according to FIG. 5. According to the invention, there were very good correlations with engine nitrogen oxide emission. Both signals can thus be used for additional determination of the NOx emission or as a plausibility check.
  • an evaluation of the maxima of the average gas temperature in the combustion chamber is used to determine the NOx Emission used, which also shows an excellent correlation to the instantaneous nitrogen oxide emission of the internal combustion engine.
  • FIG. 6 for example, an early adjustment of the combustion via the start of injection causes an increase in the NOx emission.
  • a relative NOx reduction can be achieved by exhaust gas recirculation. Accordingly, the relative NOx reduction is directly related to the oxygen concentration of the cylinder charge.
  • the oxygen concentration of the cylinder charge is used as a measurement or control variable. Accordingly, a defined oxygen concentration of the combustion air in the combustion chamber 11 is then set. This is measured according to FIG. 8 or used as a manipulated variable.
  • the present method is particularly suitable for diesel internal combustion engines in which a device for recirculating exhaust gas and / or a metering device for reducing agents for exhaust gas aftertreatment are provided in a downstream catalytic converter.
  • the raw NOx emission of the diesel engine is calculated from the course of the gradient of the average gas temperature in a defined crank angle window, the amount of the reducing agent for the downstream exhaust gas aftertreatment system then being determined therefrom.
  • the crude NOx emission from the maximum value of the average gas temperature in the cylinder can also be checked for plausibility.
  • a necessary NOx reduction rate is then calculated from the calculated raw NOx emission, with which an exhaust gas recirculation is set. Accordingly, after Mixing the combustion air with the recirculated exhaust gas sets a defined oxygen concentration in front of or in the combustion chamber 11.
  • the target value of the oxygen concentration can preferably be stored as a constant value in the engine map data.
  • the fuel injection can be carried out in such a way that combustion takes place at a specific position of the center of gravity.
  • this specific center of gravity of the combustion target center of gravity stored in the engine control device 6, there is consumption-optimized operation of the internal combustion engine, in which low NOx emission formation likewise takes place.
  • the efficiency of the self-igniting internal combustion engine is also directly related to the position of the center of combustion. Therefore, the engine parameters, in particular the fuel injection parameters such as injection timing, injection duration and injection timing, are set such that the optimum position of the center of gravity is present for the respective combustion or each combustion.
  • the optimal position of the combustion or the target center of gravity of the combustion can be e.g. for the respective internal combustion engine be determined on the test bench. This target value is then stored in the engine control device 6 for the respective internal combustion engine.
  • the setting of the center of gravity or the adaptation of the current value to the target value can be achieved by varying the start of auto-ignition and / or by varying the fuel injection. This enables a targeted and quick control of the internal combustion engine performed respective load point, so that the internal combustion engine is operated with a high degree of efficiency while simultaneously reducing the NOx emission.
  • a pressure profile in the combustion chamber 11 is preferably detected during a work cycle and passed on to the engine control device 6.
  • the current center of gravity of the combustion can be determined from the recorded pressure curve.
  • the position of the center of gravity changes with respect to the crank angle when the combustion process changes.
  • an efficiency of the internal combustion engine is determined with the help of the engine control device 6, which is directly related to the position of the center of gravity of the combustion.
  • the focus of the combustion can be calculated from the indexing of the cylinder pressure in combination with a measurement of the piston position in the combustion chamber using the first law of thermodynamics.
  • the raw NOx emission of the self-igniting internal combustion engine is then determined with the aid of the determined data, so that the mode of operation or setting of the exhaust gas aftertreatment device, not shown in FIG. 1, is optimized.
  • a determination of the raw NOx emission of the internal combustion engine for example to optimize a downstream exhaust gas aftertreatment device, is carried out precisely and is carried out in a rapid manner. If combustion is regulated accordingly, the formation of NOx emissions during combustion can be minimized accordingly.
  • the ascertained raw NOx emission of the internal combustion engine is used to achieve the required NOx reduction and from this the required oxygen concentration according to FIG. tion of the charge mass or the combustion air determined.
  • the exhaust gas recirculation quantity is accordingly regulated in such a way that a defined oxygen concentration is established in the inlet duct 15 or in the combustion chamber 11.
  • a target value of an oxygen concentration is preferably stored in the engine control device 6 as a constant value or in characteristic maps. This reduces the NOx emission formed in the combustion chamber and optimizes the exhaust gas aftertreatment provided for it, so that, for example, the addition of an amount of NH3 can be carried out optimally in a downstream SCR catalytic converter with the aid of the present invention.
  • an oxygen concentration of the combustion air is measured by means of the oxygen sensor 29 before it enters the combustion chamber.
  • the device for exhaust gas recirculation 20 is then regulated in such a way that a certain amount of exhaust gas enters the intake manifold 15. This sets a defined oxygen concentration in the combustion air upstream or in the combustion chamber.
  • the oxygen sensor is arranged in the exhaust gas line 18, an oxygen concentration of the exhaust gases can alternatively be measured by means of the oxygen sensor 29a after the exhaust gases have emerged from the combustion chamber. From this signal, an exhaust gas recirculation rate and a measured amount of combustion air, the oxygen concentration of the combustion air is then calculated before entering the combustion chamber.
  • the device for exhaust gas recirculation 20 is then regulated in such a way that a certain amount of exhaust gas reaches the intake manifold 15, so that a defined oxygen concentration in the combustion air is set before or in the combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Die Erfindung betrifft eine Verfahren zum Betrieb einer selbstzündenden Brennkraftmaschine, bei dem während einer Verbrennung im Brennraum eine mittlere Gastemperatur im Zylinder bestimmt wird, so dass ein Gradient der mittleren Gastemperatur errechnet wird. Hierbei wird dann entweder aus einem Wert des Gradienten der mittleren Gastemperatur und/oder aus einem Maximalwert der mittleren Gastemperatur im Zylinder eine Stickoxid­Rohemission der Brennkraftmaschine ermittelt. Demnach werden die Motorparameter derart eingestellt, dass sich bei der Verbrennung ein Verlauf der mittleren Gastemperatur ergibt, bei dem weniger NOx-Emissionen gebildet werden.

Description

Verfahren zum Betrieb einer Brennkraftmaschine mit Selbstzündung
Die Erfindung betrifft ein Verfahren zum Betrieb einer Brennkraftmaschine mit Selbstzündung nach dem Oberbegriff des Anspruchs 1.
Ziel der Entwicklung von neuen Dieselbrennkraftmaschinen ist es, die Bildung von Abgasemissionen, insbesondere die Stickoxid-Emissionen zu minimieren. Dabei wird oft eine Abgasrückführung als Mittel zur Emissionssenkung verwendet, wobei eine Abgasrückführrate lastpunktabhängig eingestellt wird. Eine weitere Senkung der Stickoxid-Emissionen kann mittels eines SCR-Katalysators erzielt werden, in dem die Zugabe bzw. die Dosierung eines Reduktionsmittels, z.B. Ammoniak, proportional zu der Stickoxidentstehung in der Brennkraftmaschine vorgenommen wird. Die erforderlichen Sicherheitseinrichtungen lassen nur begrenzte Umsätze eines solchen SCR-Katalysators zu, da die Stickoxid-Rohemissionen der Brennkraftmaschine nur aus bekannten Kennfeld-Daten ermittelt werden können. Sensoren zur direkten Messung der Stickoxid- oder Ammoniakkonzentrationen im Abgas befinden sich noch im Forschungsstadium, wobei die derzeit verfügbaren Sensoren noch unzuverlässig sind.
Aus der DE 197 34 494 Cl ist ein Verfahren zum Betrieb einer Brennkraftmaschine bekannt, bei dem eine Rückführrate des Abgases auf Basis einer zweifachen Messung der Sauerstoffkon- zentration im Abgas bzw. in der Ladeluft errechnet wird. Neben dem hohen messtechnischen Aufwand wird bei dieser Methode lediglich die Rückführrate des Abgases bestimmt. Aus der EP 554 766 Bl ist ein Verfahren bekannt, bei dem eine Dosiereinrichtung für einen SCR-Katalysator gesteuert wird. Die hierzu erforderliche Kenntnis der Stickoxid-Rohemissionen erfolgt durch die Heranziehung von Kennfeld-Daten, die die motorische Emission in Abhängigkeit von motorischen Parametern vergleichsweise ungenau beschreiben. Zur Vermeidung von Ammoniak-Durchbruch nach Katalysator müssen aufgrund der nur näherungsweise bekannten Stickoxid-Rohemission große Sicherheitsabstände eingebaut werden, so dass eine niedrige Konvertierung im Katalysator bis etwa 70% erzielt wird.
Aus der DE 100 43 383 C2 ist ein Verfahren zur Bestimmung des Stickoxidgehalts in Abgasen von Brennkra tmaschinen bekannt, bei dem die der Brennkraftmaschine zugeführte Luftmasse er- fasst wird, wobei aus mindestens einem aktuellen Messwert des Motorbetriebs eine Bestimmung des Schwerpunkts der Verbrennung erfolgt. Aus dem Wert für die Lage des Schwerpunkts der Verbrennung sowie den Werten der erfassten Kraftstoffmenge und Luftmasse werden die NOx-Rohemissionen berechnet. Die parallele Bestimmung von Luftmasse, Kraftstoffmasse und rückgeführte Abgasmasse ist mit erheblichem Aufwand verbunden.
Der Schwerpunkt der Verbrennung beschreibt auf Basis des ersten Hauptsatzes der Thermodynamik jenen Zustand im Brennraum, bei dem 50% der eingebrachten Kraftstoffenergie umgewandelt wurde. Die Lage des Schwerpunkts ist die zugehörige Kurbelwinkelposition, d.h. eine Kurbelwinkelposition des Kolbens, bei der 50% der an der Verbrennung teilnehmenden Kraftstoffmenge in Wärme umgesetzt wurde.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Bestimmung bzw. zur Minimierung von Stickoxid-Emissionen bereitzustellen. Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1, des Anspruchs 2 oder des Anspruchs 3 gelöst .
Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass während einer Verbrennung im Brennraum eine mittlere Gastemperatur im Zylinder bestimmt wird, so dass ein Gradient der mittleren Gastemperatur errechnet wird, und aus einem Wert des Gradienten der mittleren Gastemperatur und/oder aus einer Lage des Gradienten der mittleren Gastemperatur im Brennraum eine Stickoxid-Rohemission der Brennkraftmaschine ermittelt wird. Gemäß der vorliegenden Erfindung steht die gebildete Stickoxid-Rohemission (NOx-Emission) der selbstzündenden Brennkraftmaschine in direktem Zusammenhang mit dem Gradienten der mittleren Gastemperatur im Zylinder. Dementsprechend werden die Motorparameter derart eingestellt, dass sich bei der Verbrennung ein Verlauf des Gradienten ergibt, bei dem verringerte NOx-Emissionen gebildet werden.
Weiterhin zeichnet sich das erfindungsgemäße Verfahren dadurch aus, dass während einer Verbrennung im Brennraum eine mittlere Gastemperatur im Zylinder bestimmt wird, so dass aus einem Maximalwert der mittleren Gastemperatur im Brennraum und/oder aus einer Lage des Maximalwertes der mittleren Gas- temperatur eine Stickoxid-Rohemission der Brennkraftmaschine ermittelt wird. Gemäß der vorliegenden Erfindung steht die gebildete Stickoxid-Rohemission (NOx-Emission) der selbstzündenden Brennkraftmaschine in direktem Zusammenhang mit dem Maximalwert der mittleren Gastemperatur im Zylinder. Dementsprechend werden die Motorparameter derart eingestellt, dass sich bei der Verbrennung ein bestimmter Maximalwert eingestellt wird bzw. ein vorgegebener Maximalwert nicht überschritten wird. Dadurch kann eine vereinfachte Bestimmung der NOx-Emissionen vorgenommen werden, bei der der messtechnische Aufwand reduziert wird. Das erfindungsgemäße Verfahren zeichnet sich des Weiteren dadurch aus, dass im Brennraum eine mittlere Gastemperatur im Zylinder bestimmt wird, und aus einem Wert einer mittleren Gastemperatur beim Schließen des Einlassventils und/oder einem Wert einer Kompressionsendtemperatur im Brennraum eine Stickoxid-Rohemission der Brennkraftmaschine ermittelt wird. Gemäß der vorliegenden Erfindung steht die gebildete NOx- Rohemission der selbstzündenden Brennkraftmaschine in direktem Zusammenhang mit dem Wert der mittleren Gastemperatur, die vor dem Einsetzten der Verbrennung bestimmt wird, zum Zeitpunkt des Schließens des Einlassventils und/oder beim Ende der Kompression. Hierdurch wird eine exakte vereinfachte Ermittlung der NOx-Emissionen erzielt, so dass der messtechnische Aufwand ebenfalls reduziert wird.
Gemäß einer Ausgestaltung der Erfindung wird die mittlere Gastemperatur in einem definierten Kurbelwinkelbereich bestimmt. Vorzugsweise wird ein Kurbelwinkelbereich gewählt, in dem die mittlere Gastemperatur im Zylinder nahezu linear verläuft. Hierdurch wird eine exakte Ermittlung der NOx- Emissionen erzielt, da eine Auswertung in einem schmalen Kurbelwinkelbereich zuverlässig und weniger aufwendig ist. Somit kann der messtechnische Aufwand reduziert werden.
In einer weiteren Ausgestaltung der Erfindung wird aus der ermittelten Stickoxid-Rohemission eine Menge eines Reduktionsmittels für das nachgeschaltete Abgasnachbehandlungssystem bestimmt. Demnach wird die Abgasnachbehandlung optimiert und beispielsweise eine Dosiermenge eines SCR-Katalysators variiert .
Gemäß einer weiteren Ausgestaltung der Erfindung wird die zugemessene Kraftstoffmenge in den Brennraum derart einge- spritzt, dass ein vorgegebener Gradient der mittleren Gastemperatur im Brennraum und/oder eine vorgegebene Lage des Maximalwertes der mittleren Gastemperatur im Brennraum eingestellt wird. Somit lässt sich die mittlere Gastemperatur derart verändern, dass erfindungsgemäß die Bildung der NOx- Emissionen auf einem minimalen Niveau stattfindet bzw. möglichst minimiert wird. Hierbei wird ein vorgegebener Anstieg der Gastemperatur pro Zeiteinheit bzw. eine vorgegebene Lage des Maximalwertes eingestellt . Demnach kann ein vorgegebener maximaler Temperaturwert der mittleren Gastemperatur nicht ü- berschritten werden, bei dem die Bildung der NOx-Emissionen ansteigt .
Gemäß einer weiteren Ausgestaltung der Erfindung wird die zugemessene Kraftstoffmenge in den Brennraum derart eingespritzt wird, dass ein Schwerpunkt der Verbrennung bei einer bestimmten Kurbelwinkelposition liegt. Hierbei kann eine erhöhte NOx-Bildung vermieden werden.
Gemäß einer weiteren Ausgestaltung der Erfindung wird eine Abgasrückführmenge zur Einstellung einer definierten Sauer- stoffkonzentration im Brennraum in Abhängigkeit von einem Schwerpunkt der Verbrennung eingestellt. Hierbei wird aus einer ermittelten NOx-Rohemission der Brennkraftmaschine die notwendige Abgasrückführrate errechnet und die Abgasrückführung solange geregelt, bis sich eine definierte Sauerstoff- konzentration im Brennraum ergibt .
In einer Ausgestaltung des erfindungsgemäßen Verfahrens wird aus der errechneten Stickoxid-Rohemission eine für eine Stickoxid-Reduktion benötigte Absenkung der Sauerstoffkonzentration errechnet, so dass eine Vorrichtung zur Abgasrückführung derart eingestellt wird, dass nach Mischung von Verbrennungsluft mit rückgeführtem Abgas eine definierte Sau- ersto f-Konzentration einer Zylinderladung vor oder im Brennraum erfolgt. Dadurch wird eine gezielte und schnelle Regelung der Brennkraftmaschine beim jeweiligen Lastpunkt erzielt, so dass eine reduzierte NOx-Rohemissionsbildung erzielt wird. Vorzugsweise werden Sollwerte der Sauerstoffkonzentration in einem Kennfeld der Brennkraftmaschine in der Motorsteuereinrichtung hinterlegt .
Gemäß einer weiteren Ausgestaltung der Erfindung wird mittels eines Sauerstoffsensors eine Sauerstoff-Konzentration der Verbrennungsluft vor dem Eintritt in den Brennraum gemessen, wobei in Abhängigkeit von der gemessenen Konzentration mittels der Vorrichtung zur Abgasrückführung eine definierte Sauerstoff-Konzentration der Verbrennungsluft vor oder im Brennraum eingestellt wird. Durch die Verwendung des Sauerstoffsensors wird eine gezielte und schnelle Regelung der Brennkraftmaschine zur Senkung der NOx-Rohemissionsbildung beim jeweiligen Lastpunkt erzielt.
In einer Ausgestaltung des erfindungsgemäßen Verfahrens wird mittels eines Sauerstoffsensors eine Sauerstoff-Konzentration der Abgase nach Austritt der Abgase aus dem Brennraum gemessen, wobei ' aus diesem Signal, einer Abgasrückführungsrate und einer gemessenen Verbrennungsluftmenge eine Sauerstoff- Konzentration der Verbrennungsluft vor dem Eintritt in den Brennraum errechnet wird, und in Abhängigkeit von der errechneten Konzentration mittels der Vorrichtung zur Abgasrückführung eine definierte Sauerstoff-Konzentration der Verbrennungsluft vor oder im Brennraum eingestellt wird. Dadurch wird durch die Verwendung des Sauerstoffsensors im Abgaskrümmer eine gezielte und schnelle Regelung der Brennkraftmaschine zur Senkung der NOx-Rohemissionsbildung beim jeweiligen Lastpunkt unter Berücksichtigung der letzten Verbrennung erzielt . Weitere Merkmale und Merkmalskombinationen ergeben sich aus der Beschreibung. Konkrete Ausführungsbeispiele der Erfindung sind anhand der Zeichnungen vereinfacht dargestellt und in der nachfolgenden Zeichnung näher erläutert. Es zeigen:
Fig. 1 einen Querschnitt durch einen Zylinder einer direkteinspritzenden Brennkraftmaschine mit Selbstzündung,
Fig. 2 eine schematische Darstellung einer mittleren Gastemperatur einer Brennkraftmaschine nach Fig. 1 in Abhängigkeit von einem Kurbelwinkel,
Fig. 3 ein schematisches Diagramm eines Gradienten der mittleren Gastemperatur der Brennkraftmaschine nach Fig. 1 in Abhängigkeit von einer NOx-Emission,
Fig. 4 eine schematische Darstellung der mittleren Gastemperatur beim Schließen eines Einlassventils der Brennkraftmaschine nach Fig. 1 in Abhängigkeit von der NO -Emissionsbildung,
Fig. 5 eine schematische Darstellung der mittleren Gastemperatur am Ende eines Kompressionstakts der Brennkraftmaschine nach Fig. 1 in Abhängigkeit von der NOx-Emissionsbildung,
Fig. 6 eine schematische Darstellung der Maxima einer mittleren Gastemperatur im Brennraum in Abhängigkeit von einer momentanen NOx-Rohemission einer Brennkraftmaschine gemäß Fig. 1, Fig. 7 eine schematische Darstellung des Verlaufs einer NOx-Reduktionsrate in Abhängigkeit von einer Abgasrückführungsrate, und
Fig. 8 eine schematische Darstellung des Verlaufs einer NOx-Reduktionsrate in Abhängigkeit von einer Sauer- sto fkonzentration der Verbrennungsluft einer Brennkraftmaschine gemäß Fig. 1.
In Fig. 1 ist ein Zylinderblock 1 einer selbstzündenden Brennkraftmaschine mit Direkteinspritzung im Querschnitt dargestellt. In einem Zylinder 2 ist ein Kolben 12 verschiebbar geführt, mit dessen Oberseite und einem Zylinderkopf 13 ein Brennraum 11 begrenzt ist. Ein Einlassventil 14 und ein Auslassventil 17 sind im Zylinderkopf 13 angeordnet, wobei durch das Einlassventil 14 dem Brennraum 11 die notwendige Verbrennungsluft über ein Saugrohr 15 zugeführt wird. Vorzugsweise wird die jeweilige Luftmasse durch einen Luftmassenmesser 16 erfasst, der über eine Leitung 22 mit einer Motorsteuereinrichtung 6 verbunden ist.
Durch das Auslassventil 17 gelangen Verbrennungsgase in eine Abgasleitung 18, die zu einer in der Zeichnung nicht dargestellten Abgasnachbehandlungseinrichtung führt. Diese weist insbesondere zur effektiven Senkung der NOx-Emissionen einen SCR-Katalysator auf. Weiterhin dient eine aus der Abgasleitung 18 abgezweigte Abgasrückführleitung 19 dazu, Verbrennungsgase in das Saugrohr 15 zurückzuführen. In dieser Abgasrückführleitung 19 befindet sich ein Durchflussmesser 20 zur Erfassung des rückgeführten Abgasdurchflusses und zur Einstellung der rückgeführten Abgasmenge. Die erfasste Menge des rückgeführten Abgases wird über eine Leitung 21 an die Motorsteuereinrichtung 6 übertragen. Des Weiteren ist im Zylinderkopf 13 ein Drucksensor 3 im Brennraum 11 angeordnet, mit dem ein im Brennraum vorliegender Druck über eine Verbindungsleitung 4 an die Motorsteuereinrichtung 6 übertragen wird. Ein Kraftstoffeinspritzventil 25 ist weiterhin im Zylinderkopf 13 angeordnet, welches über eine Einspritzleitung 26 mit einer Einspritzpumpe 23 verbunden ist. Zwischen der Einspritzpumpe 23 und dem Kraftstoff- einspritzventil 25 ist eine Messvorrichtung 24 zur Kraft- stoffmengenerfassung vorgesehen. Diese Kraftstoffmesseinrich- tung 24 ist über eine elektrische Leitung 27 mit der Motorsteuereinrichtung 6 verbunden. Die Einspritzpumpe 23 ist ebenfalls mit der Motorsteuereinrichtung durch eine Steuerleitung 28 verbunden.
Vorzugsweise wird eine Sauerstoffkonzentration der in den Brennraum 11 zugeführten Verbrennungsluft mittels eines Sauerstoffsensors 29 erfasst, der vorzugsweise im Saugrohr vor dem Einlassventil 14 angeordnet ist und über eine Leitung 30 mit der Motorsteuereinrichtung 6 verbunden ist. Alternativ wird ein Sauerstoffsensor 29a in der Abgasleitung 18 oder in der Abgasrückführleitung 19 angeordnet.
Das erfindungsgemäße Verfahren zielt darauf ab, die Bildung der NOx-Emissionen beim Betrieb der Brennkraftmaschine zu minimieren bzw. die Abgasnachbehandlung zu optimieren. Erfindungsgemäß wird mittels des Kraftstoffeinspritzventils 25 eine lastabhängige Kraftstoffmenge in den Brennraum 11 eingebracht. Während der Verbrennung wird ein Verlauf der mittleren Gastemperatur im Brennraum ermittelt, aus dem ein Gradient dτ/dphi der Gastemperatur in einem definierten Kurbel- winkel-Fenster gemäß Fig. 3 gebildet wird. Dieser steht im Sinne der Erfindung in direktem Zusammenhang mit der Stickoxid-Emissionsbildung der Brennkraftmaschine. Vorzugsweise wird dabei ein relativ schmaler Kurbelwinkel-Bereich ausge- wertet, in dem die mittlere Gastemperatur im Zylinder nahezu linear verläuft. Ein solcher Bereich kann gemäß Fig. 2 z.B. zwischen 0°KW und 30°KW nach dem oberen Totpunkt gewählt werden. Je nach Steigung dieser Geraden in [°K]/[°KW] wird eine augenblickliche Stickoxid-Emission der Brennkraftmaschine ermittelt . Die mittlere Gastemperatur wird üblicherweise aus dem Druckverlauf der Verbrennung bestimmt.
Fig. 3 veranschaulicht diesen Sachverhalt am Beispiel einer Veränderung des Einspritzbeginnes des Kraftstoffs in Richtung früh, d.h. der Kraftstoff wird früher in den Brennraum eingespritzt, so dass mit einem höher erzielten Temperaturgradienten eine Erhöhung der NOx-Emission bewirkt wird. Wird die Kraftstoffeinspritzung derart bewerkstelligt, dass der erzielte Temperaturgradient kleiner wird, dann wird eine Abnahme der NOx-Emission gemäß Fig. 2 erwartet. Somit kann entweder aus einem Wert und/oder aus dem Verlauf des Gradienten der mittleren Gastemperatur oder aus einem Maximalwert der mittleren Gastemperatur im Brennraum 11 die Stickoxid- Rohemission der Brennkraftmaschine ermittelt werden. Alternativ kann gemäß Fig. 4 und Fig. 2 eine mittlere Gastemperatur TEs zur Bestimmung der NOx-Emission herangezogen werden, welche zum Zeitpunkt des Schließens des Einlassventils ermittelt wird. Weiterhin kann zusätzlich eine mittlere Gastemperatur TKE, welche beim Ende der Kompressionsphase der Brennkraftmaschine ermittelt wird, ebenso zur Bestimmung der NOx-Emission gemäß Fig. 5 berücksichtigt werden. Erfindungsgemäß ergaben sich dabei sehr gute Korrelationen zur motorischen Stickoxid- Emission. Somit können beide Signale zur zusätzlichen Bestimmung der NOx-Emission bzw. als eine Plausibilitätskontrolle verwendet werden.
Optional oder alternativ wird eine Auswertung der Maxima der mittleren Gastemperatur im Brennraum zur Bestimmung der NOx- Emission verwendet, welche ebenfalls eine ausgezeichnete Korrelation zur momentanen Stickoxid-Emission der Brennkraftmaschine feststellen lässt. Gemäß Fig. 6 bewirkt z.B. durch eine Frühverstellung der Verbrennung über den Einspritzbeginn eine Zunahme der NOx-Emission.
In der Regel kann eine relative NOx-Reduktion durch eine Abgasrückführung bewerkstelligt werden. Demnach steht die relative NOx-Reduktion in direktem Zusammenhang mit der Sauerstoff-Konzentration der Zylinderladung. Je nach Lastpunkt der Brennkraftmaschine ergeben sich gemäß Fig. 7 beim heutigen Stand der Technik aus den gleichen Abgasrückführraten unterschiedliche prozentuale Stickoxid-Absenkungen. Im Gegensatz hierzu wird erfindungsgemäß die Sauerstoffkonzentration der Zylinderladung als eine Mess- bzw. Regelgröße verwendet. Demnach wird dann eine definierte Sauerstoff-Konzentration der Verbrennungsluft im Brennraum 11 eingestellt. Diese wird gemäß Fig. 8 gemessen bzw. als eine Stell- und Messgröße benutzt .
Das vorliegende Verfahren eignet sich insbesondere für Diesel-Brennkraftmaschinen, bei denen eine Vorrichtung zur Rückführung von Abgas und/oder eine Dosiervorrichtung für Reduktionsmittel zur Abgasnachbehandlung in einem nachgeschalteten Katalysator vorgesehen sind. Die NOx-Rohemission des Dieselmotors wird aus dem Verlauf des Gradienten der mittleren Gas- temperatur in einem definierten Kurbelwinkelfenstern errechnet, wobei dann daraus die Menge des Reduktionsmittels für das nachgeschaltete Abgasnachbehandlungssystem bestimmt wird. Dabei kann zusätzlich die NOx-Rohemission aus dem Maximalwert der mittleren Gastemperatur im Zylinder auf Plausibilität ü- berprüft werden. Aus der errechneten NOx-Rohemission wird dann eine notwendige NOx-Reduktionsrate errechnet, mit der eine Abgasrückführung eingestellt wird. Demnach wird nach Vermischung der Verbrennungsluft mit dem rückgeführten Abgas eine definierte Sauerstoff-Konzentration vor oder auch im Brennraum 11 eingestellt. Der Sollwert der Sauerstoff- Konzentration kann vorzugsweise als Konstantwert in den Motorkennfeld-Daten hinterlegt werden.
Da weiterhin die Lage des Schwerpunkts der Verbrennung den Verlauf der mittleren Gastemperatur während der Verbrennung beeinflusst, kann die Kraftstoffeinspitzung derart vorgenommen werden, dass eine Verbrennung bei einer bestimmten Lage des Schwerpunkts stattfindet. Bei dieser bestimmten und in Motorsteuereinsrichtung 6 abgelegten Schwerpunktsläge der Verbrennung (Soll-Schwerpunkt) liegt ein verbrauchsoptimierter Betrieb der Brennkraftmaschine vor, bei dem ebenfalls eine niedrige NOx-Emissionsbildung stattfindet.
Gemäß der vorliegenden Erfindung steht ebenfalls der Wirkungsgrad der selbstzündenden Brennkraftmaschine in direktem Zusammenhang mit der Lage des Verbrennungsschwerpunkts. Daher werden die Motorparameter, insbesondere die Kraftstoffein- spritzparameter wie Einspritzzeitpunkt, Einspritzdauer sowie Einspritztaktung derart eingestellt, dass bei der jeweiligen Verbrennung bzw. bei jeder Verbrennung die optimale Lage des Schwerpunkts vorliegt. Die optimale Lage der Verbrennung bzw. der Soll-Schwerpunkt der Verbrennung kann für die jeweilige Brennkraftmaschine z.B. am Prüfstand ermittelt werden. Dieser Soll-Wert wird dann für die jeweilige Brennkraftmaschine in der Motorsteuereinrichtung 6 abgelegt .
Die Einstellung der Schwerpunktsläge bzw. die Anpassung des aktuellen Werts an den Soll-Wert kann mittels einer Variation des Beginns der Selbstzündung und/oder mittels der Variation der Kraftstoffeinspritzung erzielt werden. Dadurch wird eine gezielte und schnelle Regelung der Brennkraftmaschine beim jeweiligen Lastpunkt durchgeführt, so dass die Brennkraftmaschine mit einem hohen Wirkungsgrad bei gleichzeitiger Senkung der NOx-Emission betrieben wird.
Mit Hilfe des im Brennraum 11 vorgesehenen Drucksensors 3 wird vorzugsweise ein Druckverlauf im Brennraum 11 während eines Arbeitsspiels erfasst und an die Motorsteuereinrichtung 6 weitergeleitet. Aus dem erfassten Druckverlauf kann die aktuelle Schwerpunktslage der Verbrennung bestimmt werden. Die Lage des Schwerpunkts ändert sich bezüglich des Kurbelwinkels bei Änderung des Verbrennungsverlaufes. Mit Hilfe des erfassten Druckverlaufes und der zugemessenen Kraftstoffmenge pro Arbeitspiel wird ein Wirkungsgrad der Brennkraftmaschine mit Hilfe der Motorsteuereinrichtung 6 bestimmt, der in einem direkten Zusammenhang mit der Lage des Schwerpunkts der Verbrennung steht . Hierbei kann der Schwerpunkt der Verbrennung aus der Indizierung des Zylinderdruckes in Kombination mit einer Messung der Kolbenposition im Brennraum über den ersten Hauptsatz der Thermodynamik berechnet werden. Gemäß der vorliegenden Erfindung wird dann mit Hilfe der ermittelten Daten die NOx-Rohemission der selbstzündenden Brennkraftmaschine bestimmt, so dass die Betriebsweise bzw. Einstellung der in Fig. 1 nicht dargestellten Abgasnachbehandlungseinrichtung optimiert wird. Somit wird eine Bestimmung der NOx- Rohemission der Brennkraftmaschine beispielsweise zur Optimierung einer nachgeschalteten Abgasnachbehandlungseinrichtung präzise vorgenommen und auf einem schnellen Wege durchgeführt . Bei entsprechender Regelung der Verbrennung kann demgemäss die Bildung der NOx-Emissionen während der Verbrennung minimiert werden.
Die ermittelte NOx-Rohemission der Brennkraftmaschine wird für eine angestrebte notwendige NOx-Reduktion herangezogen und daraus gemäß Fig. 8 die erforderlich Sauerstoffkonzentra- tion der Ladungsmasse bzw. der Verbrennungsluft bestimmt. Die Abgasrückführmenge wird demnach derart geregelt, dass sich eine definierte Sauerstoffkonzentration im Einlasskanal 15 o- der im Brennraum 11 einstellt. Dabei wird ein Sollwert einer Sauerstoffkonzentration vorzugsweise in der Motorsteuereinrichtung 6 als ein Konstantwert bzw. in Kennfeldern hinterlegt. Somit wird eine im Brennraum gebildete NOx-Emission reduziert und die dafür vorgesehene Abgasnachbehandlung optimiert, so dass in einem nachgeschalteten SCR-Katalysator z.B. die Zudosierung einer NH3 Menge mit Hilfe der vorliegenden Erfindung optimal vorgenommen werden kann.
Erfindungsgemäß wird mittels des Sauerstoffsensors 29 eine Sauerstoff-Konzentration der Verbrennungsluft vor dem Eintritt in den Brennraum gemessen. In Abhängigkeit von der gemessenen Konzentration wird die Vorrichtung zur Abgasrückführung 20 dann derart geregelt, dass eine bestimmte Abgasmenge in das Saugrohr 15 gelangt . Hierdurch wird eine definierte Sauerstoff-Konzentration in der Verbrennungsluft vor oder im Brennraum eingestellt . Bei einer Anordnung des Sauerstoffsensors in der Abgasleitung 18 kann alternativ mittels des Sauerstoffsensors 29a eine Sauerstoff-Konzentration der Abgase nach Austritt der Abgase aus dem Brennraum gemessen werden. Aus diesem Signal, einer Abgasrückführungsrate und einer gemessenen Verbrennungsluftmenge wird dann die Sauerstoff- Konzentration der Verbrennungsluft vor dem Eintritt in den Brennraum errechnet. In Abhängigkeit von der errechneten Konzentration wird die Vorrichtung zur Abgasrückführung 20 dann derart geregelt, dass eine bestimmte Abgasmenge in das Saugrohr 15 gelangt, so dass eine definierte Sauerstoff- Konzentration in der Verbrennungsluft vor oder im Brennraum eingestellt wird.

Claims

DaimlerChrysler AGPatentansprüche
1. Verfahren zum Betrieb einer selbstzündenden Brennkraftmaschine mit einem Zylinder, in dem ein Brennraum zwischen einem Kolben und einem Zylinderkopf begrenzt ist, einer Motorsteuereinrichtung, einem Einlassventil, einem Auslassventil, einer Kraftstoffzuführeinrichtung und ein nachgeschaltetes Abgasnachbehandlungssystem, bei dem über das Einlassventil dem Brennraum Verbrennungs- luft zugeführt wird, während eines Arbeitsspiels eine Kraftstoffmenge betriebspunktabhängig zugemessen wird, d a d u r c h g e k e n n z e i c h n e t , dass während einer Verbrennung im Brennraum eine mittlere Gastemperatur im Zylinder bestimmt wird, so dass ein Gradient der mittleren Gastemperatur errechnet wird, und aus einem Wert des Gradienten der mittleren Gastemperatur und/oder aus einer Lage des Gradienten der mittleren Gastemperatur im Brennraum eine Stickoxid-Rohemission der Brennkraftmaschine ermittelt wird.
2. Verfahren zum Betrieb einer selbstzündenden Brennkraftmaschine mit einem Zylinder, in dem ein Brennraum zwischen einem Kolben und einem Zylinderkopf begrenzt ist, einer MotorSteuereinrichtung, einem Einlassventil, einem Auslassventil, einer Kraftstoffzufuhreinrichtung und ein nachgeschaltetes AbgasnachbehandlungsSystem, bei dem über das Einlassventil dem Brennraum Verbrennungsluft zugeführt wird, während eines Arbeitsspiels eine Kraftstoffmenge betriebspunktabhängig zugemessen wird, d a d u r c h g e k e n n z e i c h n e t , dass während einer Verbrennung im Brennraum eine mittlere Gastemperatur im Zylinder bestimmt wird, so dass aus einem Maximalwert der mittleren Gastemperatur im Brennraum und/oder aus einer Lage des Maximalwertes der mittleren Gastemperatur eine Stickoxid-Rohemission der Brennkraftmaschine ermittelt wird.
Verfahren zum Betrieb einer selbstzündenden Brennkraftmaschine mit einem Zylinder, in dem ein Brennraum zwischen einem Kolben und einem Zylinderkopf begrenzt ist, einer Motorsteuereinrichtung, einem Einlassventil, einem Auslassventil, einer Kraftstoffzufuhreinrichtung und ein nachgeschaltetes AbgasnachbehandlungsSystem, bei dem über das Einlassventil dem Brennraum Verbrennungsluft zugeführt wird, während eines Arbeitsspiels eine Kraftstoffmenge betriebspunktabhängig zugemessen wird, d a d u r c h g e k e n n z e i c h n e t , dass im Brennraum eine mittlere Gastemperatur im Zylinder bestimmt wird, aus einem Wert einer mittleren Gastemperatur beim Schließen des Einlassventils und/oder einem Wert einer Kompressionsendtemperatur im Brennraum eine Stickoxid-Rohemission der Brennkraftmaschine ermittelt wird.
Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , die mittlere Gastemperatur in einem definierten Kurbel- winkelbereich bestimmt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , dass aus der ermittelten Stickoxid-Rohemission eine Menge eines Reduktionsmittels für das nachgeschaltete Abgasnachbehandlungssystem bestimmt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass die zugemessene Kraftstoffmenge in den Brennraum derart eingespritzt wird, dass ein vorgegebener Gradient der mittleren Gastemperatur im Brennraum und/oder eine vorgegebene Lage des Maximalwertes der mittleren Gastemperatur im Brennraum eingestellt wird.
7. Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass die zugemessene Kraftstoffmenge in den Brennraum derart eingespritzt wird, dass ein Schwerpunkt der Verbrennung bei einer bestimmten Kurbelwinkelposition liegt .
8. Verfahren nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , dass eine Abgasrückführmenge zur Einstellung einer definierten Sauerstoffkonzentration im Brennraum in Abhängigkeit von einem Schwerpunkt der Verbrennung eingestellt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t , dass aus der errechneten Stickoxid-Rohemission eine für eine Stickoxid-Reduktion benötigte Absenkung der Sauer- stoffkonzentration errechnet wird, so dass eine Vorrich- tung zur Abgasrückführung derart eingestellt wird, dass nach Mischung von Verbrennungsluft mit rückgeführtem Abgas eine definierte Sauerstoff-Konzentration einer Zylinderladung vor oder im Brennraum erfolgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , dass mittels eines Sauerstoffsensors eine Sauerstoff- Konzentration der Verbrennungsluft vor dem Eintritt in den Brennraum gemessen wird, und in Abhängigkeit von der gemessenen Konzentration mittels der Vorrichtung zur Abgasrückführung eine definierte Sauerstoff-Konzentration der Verbrennungsluft vor oder im Brennraum eingestellt wird.
11. Verfahren nach einem der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , dass mitteis eines Sauerstoffsensors eine Sauerstoff- Konzentration der Abgase nach Austritt der Abgase aus dem Brennraum gemessen wird, und aus diesem Signal, einer Abgasrückführungsrate und einer gemessenen Verbrennungsluftmenge eine Sauerstoff-Konzentration der Verbrennungsluft vor dem Eintritt in den Brennraum errechnet wird, und in Abhängigkeit von der errechneten Konzentration mittels der Vorrichtung zur Abgasrückführung eine definierte Sauerstoff-Konzentration der Verbrennungsluft vor oder im Brennraum eingestellt wird.
PCT/EP2004/001518 2003-04-09 2004-02-18 Verfahren zum betrieb einer brennkraftmaschine mit selbstzündung WO2004090311A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/552,140 US20070157599A1 (en) 2003-04-09 2004-02-18 Method for operating a compression-ignition internal combustion engine
EP04711992A EP1611334B1 (de) 2003-04-09 2004-02-18 Verfahren zum betrieb einer brennkraftmaschine mit selbstzündung
JP2006504431A JP2006522888A (ja) 2003-04-09 2004-02-18 自己着火式内燃機関を運転するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10316112A DE10316112A1 (de) 2003-04-09 2003-04-09 Verfahren zum Betrieb einer Brennkraftmaschine mit Selbstzündung
DE10316112.0 2003-04-09

Publications (1)

Publication Number Publication Date
WO2004090311A1 true WO2004090311A1 (de) 2004-10-21

Family

ID=33038937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/001518 WO2004090311A1 (de) 2003-04-09 2004-02-18 Verfahren zum betrieb einer brennkraftmaschine mit selbstzündung

Country Status (5)

Country Link
US (1) US20070157599A1 (de)
EP (1) EP1611334B1 (de)
JP (1) JP2006522888A (de)
DE (1) DE10316112A1 (de)
WO (1) WO2004090311A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008080843A1 (de) * 2006-12-27 2008-07-10 Continental Automotive Gmbh Verfahren und vorrichtung zum steuern einer brennkraftmaschine
FR2999648A1 (fr) * 2012-12-18 2014-06-20 Continental Automotive France Procede de determination de la concentration en oxydes d'azote a la sortie d'un moteur a combustion interne

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20050601A1 (it) * 2005-04-11 2006-10-12 Iveco Spa Metodo e sistema di controllo per un motore dotato di impianto scr
DE102005058820B4 (de) * 2005-12-09 2016-11-17 Daimler Ag Verfahren zur Regelung einer Brennkraftmaschine, insbesondere einer selbstzündenden Brennkraftmaschine
DE102007019649A1 (de) 2007-04-26 2008-10-30 Daimler Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE102008004214B4 (de) * 2008-01-14 2017-07-13 Robert Bosch Gmbh Verfahren zur Bestimmung der NOx-Emission einer Brennkraftmaschine mit Abgasrückführung
DE102008004360A1 (de) * 2008-01-15 2009-07-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Steuern eines selbstzündenden Verbrennungsmotors
DE102009021793B4 (de) 2009-05-18 2020-08-06 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zum Bestimmen der Stickoxidemission im Brennraum eines Dieselmotors
DE102010046491B4 (de) 2010-09-24 2022-05-05 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zum Bestimmen einer Schadstoffemission im Brennraum eines Dieselmotors
US10508606B2 (en) * 2014-10-22 2019-12-17 Ge Global Sourcing Llc Method and systems for airflow control
DE102015216303B3 (de) * 2015-08-26 2016-09-29 Ford Global Technologies, Llc Korrektur einer eingespritzten Brennstoffmenge
KR102110626B1 (ko) * 2015-12-18 2020-05-14 한국조선해양 주식회사 이원 연료 엔진의 저부하 운전 시스템 및 이를 이용한 저부하 운전 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288056A2 (de) * 1987-04-21 1988-10-26 Hitachi, Ltd. Steuervorrichtung für Motoren mit innerer Verbrennung
DE4406743C1 (de) * 1994-03-02 1995-02-16 Man Nutzfahrzeuge Ag Verfahren zur Minimierung der Stichoxidbildung bei luftverdichtenden, aufgeladenen Brennkraftmaschinen
EP0554766B1 (de) 1992-02-05 1996-03-27 BASF Aktiengesellschaft Verfahren zur Stickoxidminderung in Abgasen durch gesteuerte NH3-Zugabe
DE19734494C1 (de) 1997-08-08 1998-10-08 Daimler Benz Ag Verfahren zum Betrieb einer Brennkraftmaschine
DE19754354C1 (de) * 1997-12-08 1999-07-01 Man B & W Diesel Ag Diesel-Gasmotor
DE10043383C2 (de) 2000-09-02 2002-06-20 Daimler Chrysler Ag Verfahren zur Bestimmung des Stickoxidgehalts in sauerstoffhaltigen Abgasen von Brennkraftmaschinen
US20020112469A1 (en) * 2000-12-25 2002-08-22 Mitsubishi Denki Kabushiki Kaisha Device for controlling an internal combustion engine
FR2830276A1 (fr) * 2001-10-02 2003-04-04 Daimler Chrysler Ag Procede de determination de la teneur en oxyde d'azote dans les gaz d'echappement de moteur a combustion interne

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4621603A (en) * 1985-10-29 1986-11-11 General Motors Corporation Engine combustion control with fuel balancing by pressure ratio management
KR920004491B1 (ko) * 1987-05-21 1992-06-05 미쓰비시전기 주식회사 기관제어장치
DE19741820B4 (de) * 1997-09-23 2009-02-12 Robert Bosch Gmbh Verfahren zur Auswertung des Brennraumdruckverlaufs
US6662795B2 (en) * 2001-08-20 2003-12-16 Caterpillar Inc Method and apparatus configured to maintain a desired engine emissions level
US6425372B1 (en) * 2001-08-30 2002-07-30 Caterpillar Inc. Method of controlling generation of nitrogen oxides in an internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288056A2 (de) * 1987-04-21 1988-10-26 Hitachi, Ltd. Steuervorrichtung für Motoren mit innerer Verbrennung
EP0554766B1 (de) 1992-02-05 1996-03-27 BASF Aktiengesellschaft Verfahren zur Stickoxidminderung in Abgasen durch gesteuerte NH3-Zugabe
DE4406743C1 (de) * 1994-03-02 1995-02-16 Man Nutzfahrzeuge Ag Verfahren zur Minimierung der Stichoxidbildung bei luftverdichtenden, aufgeladenen Brennkraftmaschinen
DE19734494C1 (de) 1997-08-08 1998-10-08 Daimler Benz Ag Verfahren zum Betrieb einer Brennkraftmaschine
DE19754354C1 (de) * 1997-12-08 1999-07-01 Man B & W Diesel Ag Diesel-Gasmotor
DE10043383C2 (de) 2000-09-02 2002-06-20 Daimler Chrysler Ag Verfahren zur Bestimmung des Stickoxidgehalts in sauerstoffhaltigen Abgasen von Brennkraftmaschinen
US20020112469A1 (en) * 2000-12-25 2002-08-22 Mitsubishi Denki Kabushiki Kaisha Device for controlling an internal combustion engine
FR2830276A1 (fr) * 2001-10-02 2003-04-04 Daimler Chrysler Ag Procede de determination de la teneur en oxyde d'azote dans les gaz d'echappement de moteur a combustion interne

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008080843A1 (de) * 2006-12-27 2008-07-10 Continental Automotive Gmbh Verfahren und vorrichtung zum steuern einer brennkraftmaschine
FR2999648A1 (fr) * 2012-12-18 2014-06-20 Continental Automotive France Procede de determination de la concentration en oxydes d'azote a la sortie d'un moteur a combustion interne

Also Published As

Publication number Publication date
JP2006522888A (ja) 2006-10-05
DE10316112A1 (de) 2004-10-28
EP1611334A1 (de) 2006-01-04
EP1611334B1 (de) 2008-05-14
US20070157599A1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
DE112009002347B3 (de) Ausgangssignalkalibriervorrichtung und Ausgangssignalkalibrierverfahren für einen NOx-Sensor
DE102012105625B4 (de) System und Verfahren zum Steuern von NOx
EP2226482B1 (de) Verfahren zur Anpassung der Dosiermenge eines Reduktionsmittels zur selektiven katalytischen Reduktion
EP1524417B1 (de) Verbrennungsmotor mit Abgasturbolader und Sekundärlufteinblasung, sowie Diagnose und Regelung der Sekundärlufteinblasung
EP1362167B1 (de) Verfahren und vorrichtung zur steuerung eines abgasnachbehandlungssystems
DE602004013243T2 (de) Vorrichtung zur Steuerung eines Motors
DE19506980C2 (de) Regelungsverfahren für die Kraftstoffeinspritzung einer Verbrennungskraftmaschine, welche mit einem Katalysator zur Reduzierung von NO¶x¶ versehen ist, und eine Vorrichtung zur Durchführung dieses Regelungsverfahrens
DE102004014453A1 (de) Abgasreinigungssystem und Abgasreinigungsverfahren
DE102006015503A1 (de) Einspritzverfahren und zugehörige Verbrennungskraftmaschine
DE102010026969A1 (de) Verfahren, Systeme und Sensor zum Detektieren von Feuchte
EP1611334B1 (de) Verfahren zum betrieb einer brennkraftmaschine mit selbstzündung
DE102011086531A1 (de) Verfahren zum Diagnostizieren von Kraftstoffeinspritzeinrichtungen
DE10001133B4 (de) Vorrichtung zum Steuern des Luft-Kraftstoffverhältnisses bei einer Verbrennungskraftmaschine
DE102006022321A1 (de) System und Verfahren zum Reduzieren von NOx-Emissionen bei einer einen Dieselmotor aufweisenden Vorrichtung
DE10155929A1 (de) Steuersystem für einen Abgaszustrom zu einem NOx-Katalysator
WO2007128593A1 (de) Verfahren und vorrichtung zur diagnose der wirksamkeit eines abgaskatalysators
EP1611335B1 (de) Verfahren zum betrieb einer brennkraftmaschine mit selbstzündung
DE102008026706A1 (de) Abgasreinigungssteuervorrichtung und -steuerverfahren für eine Brennkraftmaschine
WO2009143858A1 (de) Verfahren zur regelung eines einspritzvorgangs einer verbrennungskraftmaschine, steuergerät für eine verbrennungskraftmaschine und eine verbrennungskraftmaschine
WO2003078816A1 (de) VERFAHREN UND EINRICHTUNG ZUR ÜBERWACHUNG UND REGELUNG DES BETRIEBES EINER BRENNKRAFTMASCHINE MIT REDUZIERTER NOx-EMISSION
DE102008002128A1 (de) Steuerungsvorrichtung für eine Brennkraftmaschine
EP1431557A2 (de) Verfahren zur Zylindergleichstellung
EP1247008B1 (de) Verfahren zum betreiben eines dreiwegekatalysators einer brennkraftmaschine
DE102007057142A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1365234A2 (de) Verfahren zur Korrektur des NOx-Signals eines NOx-Sensors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004711992

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006504431

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004711992

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007157599

Country of ref document: US

Ref document number: 10552140

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10552140

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004711992

Country of ref document: EP