WO2004090090A1 - 細胞走化性検出装置 - Google Patents

細胞走化性検出装置 Download PDF

Info

Publication number
WO2004090090A1
WO2004090090A1 PCT/JP2004/005088 JP2004005088W WO2004090090A1 WO 2004090090 A1 WO2004090090 A1 WO 2004090090A1 JP 2004005088 W JP2004005088 W JP 2004005088W WO 2004090090 A1 WO2004090090 A1 WO 2004090090A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
cell
liquid
sample
well
Prior art date
Application number
PCT/JP2004/005088
Other languages
English (en)
French (fr)
Inventor
Shiro Kanegasaki
Original Assignee
Effector Cell Institute Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Effector Cell Institute Inc. filed Critical Effector Cell Institute Inc.
Priority to CA002512919A priority Critical patent/CA2512919A1/en
Priority to US10/542,189 priority patent/US7807451B2/en
Priority to JP2005505320A priority patent/JPWO2004090090A1/ja
Priority to EP04726631A priority patent/EP1612261A4/en
Publication of WO2004090090A1 publication Critical patent/WO2004090090A1/ja
Priority to HK06107880A priority patent/HK1087730A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/16Microfluidic devices; Capillary tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/04Closures and closing means
    • B01L2300/046Function or devices integrated in the closure
    • B01L2300/049Valves integrated in closure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0822Slides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1484Optical investigation techniques, e.g. flow cytometry microstructural devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N2015/1486Counting the particles

Definitions

  • the present invention relates to a cell chemotaxis detection device. More specifically, it is a device that can detect chemotaxis of cells using a small amount of cells, which can easily adjust the position of cells inside a small well, and has a chemotactic factor and the like.
  • the present invention relates to a cell chemotaxis detection device having a structure capable of stably maintaining a concentration gradient formed in a flow channel by a sample sample. Background art
  • the present inventors have proposed a device capable of detecting chemotaxis of cells using a small amount of cells.
  • a cell chemotaxis detection device that detects whether or not cells move toward a well containing a sample through a flow channel has been proposed as described below.
  • the device for detecting chemotaxis of cells is of a scale that can be observed or detected at the level of individual cells, and if it is possible to measure about 10 to 100 cells, However, rare cells can be easily tested, and the reaction of cells can be quantitatively analyzed and examined.
  • the well forms a communication pipe through the flow path.
  • the cells in the well be in the same state with respect to the flow path at the time of start, that is, be arranged in a line.
  • the present inventors first inject or aspirate a sample into a well equipped with a tube for injecting or sucking out a sample such as cells or chemotactic factors by using a micropit or the like. To mitigate sudden changes in pressure in the well and to prevent accidental movement of the sample in the well, it was proposed to provide a tube in communication with the tube for injecting or sucking out the sample.
  • a plurality of wells are in communication with each other via a part that is resistant to fluid, and that each well has a tube for injecting and sucking out a sample, and, if necessary,
  • a plurality of tubes share a space for storing liquid at the upper end.
  • a sex detection device was proposed (WO 02/46356). By adopting a structure in which the upper ends of all tubes provided in each well share a space in which liquid can be stored, it is possible to prevent liquid movement during sample injection and thereafter. Things.
  • this device allows the position of the injected cells in the well to be moved, and the cells to be aligned with the start line at one end of the flow path. Equipped with means for precise control.
  • cell chemotaxis provided with a means for connecting a well for storing cells and specimens by a flow path and closing an inlet for cells and specimens provided in the wells as necessary. Detector known
  • An object of the present invention is to further improve such a device, and to provide a structure for more accurately detecting the chemotaxis of a small amount of cells by using a small amount of cells. Control for adjusting the position of the cells after the injection is more easily performed, and the unexpected movement of the cells set at the predetermined position and the injected sample sample in the well is ensured. It is an object of the present invention to provide a cell chemotaxis detection device that is more stably maintained because the concentration gradient due to the diffusion of a sample specimen is stably maintained, and is more suitable for automation of operation and control.
  • Related literature 1 Japanese Patent Application Laid-Open No. 200-02-1599287
  • the present invention provides (1) a structure in which two wells are in communication with each other via a channel, and each well is provided with an opening for injecting a cell or a specimen sample.
  • Means for moving the liquid to adjust the position of the floating cells and means for stopping the movement after the liquid is injected or aspirated and discharged are provided, and either one of the cell injection side and the sample sample injection side or A cell chemotaxis detection device equipped with a means for closing both openings is provided.
  • a pulsation pump or a syringe can be cited as a preferable example of an apparatus having both a means for moving the liquid and a means for stopping the movement after the injection or suction and discharge of the liquid.
  • the means for closing the opening include any one of a flexible hermetic stopper, a slide-type opening / closing device, a valve, and a valve, or a combination thereof.
  • the two wells are composed of a substrate provided via a bank and a glass substrate in close contact with the substrate, and the bank has a resistance to the passage of floating cells between the glass substrate and the glass substrate.
  • a cell chemotaxis detection device that forms a flow channel having the same can be exemplified.
  • an opening for moving the liquid is provided between the substrate or the substrate and the glass substrate, and the liquid is moved into the opening by injecting or sucking and discharging the liquid.
  • a means / device for stopping the movement is provided, and provided on the substrate
  • One of the wells is provided with a cell inlet, and the other well is provided with a sample inlet, and a means Z for closing one or both of the inlets is provided.
  • the bank provided on the substrate forms a flow path having resistance to the passage of the floating cells between the glass substrate and the glass substrate, and a terrace can be provided on the top of the bank.
  • a gap corresponding to the diameter of the cell or its deformability can be formed between the cell and the cell.
  • a barrier is provided on the upper terrace of the bank, the barrier comprising one or more grooves having a width corresponding to the diameter of the cell or its deformability.
  • a gap can be formed according to the diameter of the cell or its deformability.
  • two rows of barriers constituting the groove may be formed on the terrace.
  • a plurality of terraces may be formed on a bank provided in the flow path to form gaps having different depths with the glass substrate.
  • An example is a structure in which the substrate is formed as a single body and at least one side is transparent.
  • the present invention includes an integrated cell chemotaxis detection device comprising an integrated unit obtained by integrating a plurality of units of the same or plural types, using the above-described cell chemotaxis detection device as a unit unit, An integrated cell chemotaxis detection device comprising the integrated unit as a unit unit and a plurality of units of the same type or a plurality of types integrated therein.
  • Figure 1 is a conceptual diagram showing an example of a cell chemotaxis detection device that collects cells on the bank edge by transporting liquid from the cell injection port side.
  • Arrow full device Indicates the direction in which the liquid is moving.
  • FIG. 2 is a conceptual diagram in the case of using a syringe instead of the pulsating pump of FIG.
  • FIG. 3 is a conceptual diagram showing an example in which a valve is employed as a closing means. Arrows indicate the direction of movement of the liquid filling the device.
  • Fig. 4 is a conceptual diagram when a slide type opening / closing device is adopted as the closing means.
  • Fig. 5 is a conceptual diagram of the structure that opens and closes the specimen sample inlet in addition to the structure of Fig. 4.
  • Figure 6 is a conceptual diagram when a flexible plug is used as the closing means.
  • FIG. 7 is a conceptual diagram showing an example of a cell chemotaxis detection device of a type in which cells are collected on the bank edge by suction and discharge of a liquid from a sample sample inlet side. Arrows indicate the direction of movement of the liquid filling the device.
  • FIG. 8 is a conceptual diagram of a structure for circulating liquid in the type of FIG. Arrows indicate the direction of movement of the liquid filling the device.
  • FIG. 9 is a conceptual diagram of a structure for closing a cell inlet in the type of FIG. (1) and (3) are cross-sectional views, and (2) and (4) are top views, respectively. Arrows indicate the direction of movement of the liquid filling the device.
  • Figure 10 is a conceptual diagram of the structure that blocks both the cell inlet and the sample inlet.
  • Fig. 11 is a conceptual diagram when multiple unit units of the type shown in Fig. 6 are integrated.
  • Figure 12 is a conceptual diagram when multiple unit units of the type shown in Figure 10 are integrated.
  • FIG. 13 is a cross-sectional view showing an example of a bank and a channel structure.
  • FIG. 14 shows an example in which a barrier and a groove are provided in the flow channel.
  • Figure 15 shows an example in which two rows of barriers are formed on both sides of a terrace provided on the bank. (1) is a top view and (2) is a sectional view. Explanation of reference numerals
  • the cell chemotaxis detection device comprises two wells which are mutually resistant in a flow path having resistance to the passage of cells. After the cell suspension is placed in one of the wells, the cells are lined up at one end of the flow path, and the sample is placed in the other well. This is a device that can observe the state of passing through the flow channel toward the well where the sample is stored, or count the number of cells passing through or passing through.
  • the above-mentioned flow path having resistance to the passage of cells cannot pass in a form (usually spherical) that cells can take in a non-adsorbed state, but has a flat form due to the deformability of cells. It is a cell passage with a gap that can pass when it changes to.
  • the deformability of a cell means that when the cell has elasticity, it easily changes its shape due to its elasticity and takes a form such as a flat shape or a string shape. This means that the radius of the shape (spherical shape) that passes through narrow grooves and gaps.
  • the cell chemotaxis detection device is characterized in that, in addition to the above basic structure, a means for injecting or sucking and discharging a liquid to adjust the position of cells in the well and a liquid injection. Or a means to stop the movement of liquid after suction and discharge, and after injecting cells into the well, inject cells Means for closing the opening of one or both of the entrance side and the specimen sample injection side.
  • the liquid level of the well constituting the communication tube does not move through the flow path, and the liquid in the flow path does not move. There is no movement. That is, even if vibration is applied to the device, the concentration gradient of the sample formed in the unexpected movement channel of the cells is prevented from fluctuating.
  • a means to stop the movement of the liquid after injection or aspiration is necessary to completely close the opening.
  • the substrate 1 is provided with a protruding embankment 2, and the passage of cells between the embankment 2 and the glass substrate 10 is performed.
  • a flow path 9 having resistance to is formed.
  • the cell suspension is sent from the cell injection port 5 to the cell storage well 3 through the injection pipe 8 by the liquid injection means (pulsation pump indicated by 7 in FIG. 1).
  • the cells collect at the end of the channel 9 having resistance to the passage of the cells by the flow of the liquid, and the excess liquid is discharged from the specimen sample inlet 6 (see 12 in (2)).
  • the cells that have reached the end of the flow path 9 block the flow of the liquid, so that the flow passes through a place without cells.
  • the injection speed of the cell suspension does not need to be particularly strictly set.For example, in the case of neutrophils and eosinophils, when the flow path gap is 5 m, it is about 30 to 40 / im / sec. Moving speed is preferred.
  • the cell inlet is closed. Thereafter, the chemotactic factor is injected from the sample inlet 6. At this time, Since the cell inlet is closed, liquid backflow is prevented, the arrangement of cells gathering at the end of the channel 9 is not disturbed, and unexpected movement of the liquid in the channel occurs. Not even.
  • the cells sense the concentration gradient of the sample, such as a chemotactic factor, which is stably formed in the channel 9 and deform to pass through the channel 9 in order to move to the sample sample storage well. .
  • concentration gradient of the sample such as a chemotactic factor
  • the pulsation pump used as the liquid injection means there can be mentioned a device for transporting a small amount of liquid through a liquid transportation pipe by utilizing pulsation caused by changing air pressure. It can quantitatively transport liquids in the order of 1 l to 1/10 Hi and can close the transport pipe.
  • MSL Active Microfluidic Chip Control Hardware (trade name) manufactured by Fluidigm Corporation (South San Francisco, CA) is known.
  • a device using vibration of a piezoelectric element is also known as a liquid transport means using pulsation. Any of these can be used as the liquid injection means of the present invention. It should be noted that since a device using the vibration of the piezoelectric element cannot close the pipe after the fluid is transported, it is necessary to separately provide a closing means.
  • liquid injection means various means other than the pulsation pump can be employed.
  • a syringe as shown in FIG. 2 at 13 can be employed.
  • a stepping motor also called a pulse motor
  • liquid can be transported quantitatively.
  • the stoppage of the liquid transport stops the inlet 5 as it is, and does not cause the liquid to flow backward, which is a preferable means.
  • the injection port is blocked by a valve. You can also. (1) is an example in which a valve 16 is provided in the injection pipe 8, and (2) is an example in which a valve 16 is provided between the cell suspension storage tank 15 and the injection pipe 8.
  • 1 in FIG. 3 is a liquid injection means such as a pulsating pump or a syringe.
  • a valve having a function similar to that of a knob may be used. For example, a liquid flow may be stopped by crushing a pipe made of a flexible and elastic material with pressure.
  • a slide opening and closing device as shown in FIG. (1) shows a state in which the cell inlet 5 is open to inject cells.
  • the slide-type opening / closing device 17 is slid to close the cell inlet 5.
  • the injected cells are carried to the end of the flow channel 9 by the liquid injection means 14 on the flow of a liquid (for example, a buffer solution) transported through the injection pipe 8.
  • the injection pipe 8 is closed after the movement of the cells, and the means is appropriately selected from the above-mentioned means and employed.
  • the opening / closing operation of the slide-type opening / closing device 17 can be easily performed by, for example, a stepping motor that can control the number of rotations.
  • FIG. 5 is a modified example of the structure of FIG. 4.
  • the slide opening / closing device 17 When the slide opening / closing device 17 is in a state where the cell inlet 5 is open, the specimen sample inlet 6 is closed (1), and the cell inlet is closed. The sample sample inlet 6 opens when 5 is closed.
  • An example of the structure is shown.
  • FIG. 6 shows an example in which the cell inlet 5 is closed with a flexible stopper 19.
  • the cell injection port 5 is sealed with a highly elastic film silicon rubber, polyurethane, polyethylene, raw rubber, etc. (Fig. 6 (1)).
  • Cell injection Is performed using a cell injector 20 that penetrates the stopper 19 (FIG. 6 (2)). After injecting the cell, when the injector 20 is pulled out, the through hole is closed by the elasticity of the stopper 19 and the cells 12 are collected at the end of the channel 9 by the liquid transported from the liquid inlet 18 (see FIG. 3)).
  • a valve that normally closes lightly, but can easily penetrate the injector can be used instead of a hermetic plug, a valve that normally closes lightly, but can easily penetrate the injector can be used.
  • the cells can be removed by aspirating and discharging the liquid from the side of sample sample storage well 4 opposite cell storage well 3 across bank 2. It is also possible to adopt a structure in which 12 is collected at the end of the channel 9 of the cell storage well 3.
  • FIG. 7 shows a case in which the liquid is sucked by the syringe 13, it can be replaced by another means having a similar function, for example, a pulsating pump or the like.
  • the device of the present invention may be of a type that circulates a liquid (medium of a cell suspension).
  • Figures 8 (1) to (4) show the conceptual diagrams.
  • Fig. 8 (1) shows the case where the injection tube 8 is provided in the cell storage well 3 and the suction / discharge pipe 21 is provided in the sample storage well 4, and the sample injection port 6 is closed with a flexible hermetic plug 19. Is shown.
  • the circulation of the liquid is performed by means for moving the liquid in one direction, for example, a pulsating pump 7, as shown in (4).
  • (1) and (2) show the state in which cells are injected from the cell injection port 5, and (3) and (4) move the liquid in the direction of the arrow. It shows a state of gathering at the end.
  • the factor is injected from the sample inlet 6 through the stopper 19.
  • the sample sample inlet 6 can be closed by means other than sealing, such as a slide-type opening / closing device, a valve, or a valve.
  • FIG. 9 illustrates a case where the cell inlet 5 is closed instead of the structure of FIG. Blockage of cell inlet 5 is achieved by using a flexible stopper 19 as shown in Figure 9. This can be done with a sliding switchgear, pulp, valve, etc.
  • FIG. 10 shows another modified example of the apparatus of the present invention, and is a conceptual diagram when both the cell inlet 5 and the sample inlet 6 are closed.
  • FIG. 10 illustrates a case where each of the inlets 5 and 6 is closed with a flexible stopper 19, and cells and factors are injected through each stopper.
  • a liquid transport means having a means for causing the liquid to move is provided, and the liquid is moved from the cell storage well 3 to the specimen sample storage well 4 by interlocking with them.
  • means for closing the injection port means other than a tight plug, for example, a slide type opening / closing device or the like can be adopted.
  • the substrate and the glass substrate can be configured as an integrated unit, and at least one surface can be light-transmitting, that is, transparent.
  • the present invention also includes a device in which a plurality of such devices are integrated using the above-described device as a unit.
  • a unit in which the cell injection port 5 is closed can be connected by an injection pipe 8 to assemble a device for simultaneously collecting cells existing in the cell storage well on the bank edge.
  • the specimen sample inlet and the pipe closing means can be appropriately selected and employed from various means.
  • Fig. 12 is a conceptual diagram when units of the type in Fig. 10 are integrated.
  • the plug 19 in the figure can be replaced by other means. With this device Thus, the effects of various sample samples on one type of cell can be examined at a time.
  • the positions of the cell inlet 5 and the sample inlet 6 may be reversed. By doing so, it is possible to examine the responses of various cells to one type of sample at a time.
  • the present invention includes an apparatus of a type in which a plurality of integration units are integrated and an apparatus of a type in which a plurality of types of integration units are integrated.
  • such an apparatus can be reduced in size as a whole, processing of a sample can be performed in a very small amount, and processing of a large number of specimens can be performed simultaneously by integrating a large number of units. It becomes possible. Furthermore, it is easy to program control of the liquid suction / injection amount, which is suitable for assembling automation equipment.
  • the bank 2 and the wells 3 and 4 are preferably integrally formed on the substrate 1.
  • An optically polished glass substrate 10 is pressed onto the lower surface of the substrate 1.
  • the substrate 1 and the glass substrate 10 may be joined by heat treatment.
  • Columns 3 and 4 are for storing specimens such as cell suspensions, chemotactic factor-containing solutions, and inhibitors-containing solutions.
  • the volume is not particularly limited, and contains the minimum required volume. If possible. For example, a depth of about 0.05 to 0.1 mm and a width and length of about 1.2 mm are sufficient. 3) Channel
  • the flow path 9 is composed of a bank 2 (a protruding portion on the substrate 1) separating the well 3 and the well 4 at both ends, and a glass substrate 10.
  • a flat terrace 23 is provided on the underside of the bank.
  • the size of the bank 2 is not particularly limited.
  • the height that is, the distance from the glass substrate 10 to the terrace 23 is about 0.003 to 0.03 mm, and the length in the direction toward the opposing well is 0.1. It is sufficient that the length is about 0.5 mm and the length in the direction orthogonal to the direction toward the opposing well is about 1.2 mm. Needless to say, these sizes can be appropriately changed depending on the purpose, such as a difference between target cells.
  • the distance between the terrace 23 and the glass substrate 10 can be appropriately set according to the cells to be handled, and is usually selected from 3 to 30 im.
  • the terraces 23 can be formed in a multi-stage manner so that cells can easily gather at the end of the flow channel 9.
  • a plurality of barriers 24 as illustrated in FIGS. 14A and 14B are provided on the lower surface (terrace 23) of the bank 2 to form a groove 25 through which cells pass.
  • (1) is a cross-sectional view of the bank 2 provided with the barrier 24, and (2) is a top view showing the terrace 23, the barrier 24, and the groove 25.
  • the cross section of the groove 25 formed by the barrier 24 may have any shape such as a V-shaped cross section, a concave cross section, or a semicircular cross section. Can be.
  • the width and depth of the groove 25 are set so as to be the width according to the diameter of the cell or its deformability.
  • FIG. 14 (3) is a sectional view showing a case where the groove 25 has a V-shape.
  • the width of the groove 25 is usually selected from 3 to 50 / im, and a suitable width is selected according to the type of the cell. Neutrophils, eosinophils, basophils, monocytes, macrophages, T cells, B cells, etc. are selected from 3 to 20 ⁇ m, for example, 4, 8 or 10 zm, and are present in cancer cells and tissues In the case of cells that do, a width of 8 to 20 mm is selected.
  • the number of the grooves 25 is determined by the width of the barrier 24 and the width of the grooves 25 with respect to the width of the flow path 9. For example, when the width of the channel 9 is l mm, the width of the barrier 24 is 10 m, and the width of the groove 25 is 5 m, the number of the grooves 25 is 66 at the maximum.
  • FIG. 15 (1) is a top view and (2) is a cross-sectional view.
  • the material of the substrate 1 is preferably a material that can be easily microprocessed and is relatively inactive against cells.
  • a silicon single crystal can be used.
  • the barriers 24 and the grooves 25 are easily formed by applying photolithography etching used in the manufacture of integrated circuits to the silicon single crystal, for example, ⁇ etching ⁇ dry etching. Since wells 3 and 4 are relatively large compared to barriers 24 and grooves 25, they can be manufactured by applying various known machining techniques. For example, sand torus G. Dry etching can be applied.
  • a fine structure in the flow path can be constructed.
  • polydimethylsiloxane PDMS
  • PDMS polydimethylsiloxane
  • it is preferable to perform a treatment for imparting hydrophilicity to the surface for example, a treatment for forming a hydrophilic thin film on the surface.Also, in order to facilitate observation of cells, at least a terrace is used.
  • the surface containing 23 is mirror-finished by silver deposition or the like. Note that the bank 2 and the wells 3 and 4 may be separately manufactured and combined.
  • the glass substrate 10 forms a space for accommodating a liquid by being pressed against the substrate 1 and enables observation of cells passing through the flow path, and is optically transparent and It maintains planarity and provides a surface to which cells adhere.
  • Plastics such as transparent acrylic can be used in addition to glass as long as they are suitable for such purpose.
  • the thickness is not particularly limited as long as no distortion occurs when the substrate is pressed against the substrate. ⁇ 2 mm is sufficient.
  • the substrate 1 When the substrate 1 is made of a silicon wafer, it can be integrated by pressing with the glass substrate 10, but both can be joined and integrated by heat treatment of 200 to 400. However, in that case, it is necessary to select a material so that the thermal expansion coefficient and the thermal shrinkage rate of the substrate 1 and the glass substrate 10 match.
  • the injection pipe 8 and the suction / discharge pipe 21 are preferably made of a flexible material. It must be something that can be done.
  • PDMS polyethylene, vinyl chloride and the like can be mentioned.
  • a plurality of units can be arranged or integrated on a single substrate to provide an apparatus for simultaneously processing a large number of samples. It is also possible to arrange units of the same type in parallel or to arrange different types of units.
  • the sequence can take various combinations depending on the purpose. For example, when one unit of a unit formed by two jewels communicating via a flow path has a long side of 2.9 mm and a short side of 1.2 mm, it is a rectangle having a width of 16 mm and a length of 10 mm. On a single substrate 1, a total of 14 pieces of 7 columns ⁇ 2 rows can be arranged at 0.8 mm intervals.
  • one or one glass substrate 10 can be used so as to cover the entire unit.
  • the detection means used in the present invention may be any means capable of detecting cells moving in the flow path 9 or cells after the movement, and includes means for recording the detection result as necessary.
  • Any known means for detecting and recording cells can be used, for example, a microscope, a combination of a microscope and a video camera.
  • a structure in which a CCD camera is attached to the objective lens can also be adopted.
  • the detection means is usually set below the flow path 9 of the unit as shown in FIG. 1 and others. However, in an automatic device in which a large number of units are integrated, the detection unit is provided at a predetermined position.
  • each unit moves sequentially to detect and record. Detection is performed by the detector scanning the flow passages of each unit aligned on a straight line.
  • the number of detectors 11 to be scanned may be one or plural. By doing so, it is possible to handle a large number of integrated units with a relatively small number of detection devices.
  • Detection and counting of cells passing through the flow channel 9 can be performed by directly capturing the cells with a microscope.However, according to a conventional method, the cells are marked in advance with luminescence and fluorescent substances, and the luminescence and fluorescence are measured. By capturing, it can be easily detected and counted.
  • the device of the present invention can easily be automatically controlled. For example, to inject sample samples such as cells and factors, use an autopipette that can control movement and discharge of liquid with a computer, use a pulsatile pump and a syringe driven by a stepping motor for liquid transport, and use a slide to open and close the inlet.
  • the operation sequence and the amount of operation are controlled by a computer program. If a sealing stopper is used to open and close the inlet, control of the opening and closing operation is not required.
  • the pit used in the integrated device is preferably of the type having a multi-channel syringe.
  • the position of the injected cell in the well is determined.
  • the cells can be adjusted to collect cells at one end of the flow path and line them up in a row, and that state can be maintained, and the concentration gradient due to the diffusion of the sample, such as a chemotactic factor, in the flow path can be stably maintained. Therefore, a quantitative result that faithfully reflects the action of the chemotactic factor or inhibitor and the properties of the cell can be obtained.
  • the size of the device can be reduced. If the device is applied to a cell chemotaxis detection or chemotactic cell separation device, the amount of cells to be used can be reduced to a Boyden chamber that has been conventionally used. In comparison, it is possible to make it 1/500 to 1/1000. That is, in the device of the present invention, a biological sample itself such as whole blood can be used as a sample. Thus, when whole blood is used as a sample, when detecting neutrophil chemotaxis is 0.11 or less. Of eosinophils, monocytes or basophils can be measured with about 1 l of blood.
  • the unit unit of the apparatus according to the present invention can be minute, it is easy to integrate a large number of units, and an apparatus capable of simultaneously processing a large number of samples can be assembled. In such a case, it is easy to provide a device in which liquid injection and detection are automated.
  • nits When a large number of nits are integrated, different types of nits are combined and integrated, allowing simultaneous detection and separation for different purposes. And the efficiency of processing can be increased. For example, in the case of a cell chemotaxis detection device, when searching for various chemotactic factors or inhibitors thereof for the same type of cells, or when different cells chemotaxis for the same chemotactic factor. This makes it possible to perform the search all at once when examining the feasibility. that's all

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

技術分野
本発明は、 細胞走化性検出装置に関わる。 より詳しくは、 微量の細胞 を用いて細胞の走化性を検出できる装置であって、 微小なゥエルの内部 で細胞の位置の設定を容易に調節することができ、 且つ、 走化性因子等 の検体試料が流路において形成する濃度勾配を安定に保持することがで きる構造を備えた細胞走化性検出装置に関わる。 背景技術
本発明者等は、 微量の細胞を用いて細胞の走化性を検出できる装置で あって、 ゥエルの一つに細胞懸濁液を、 他方のゥエルに検体試料を夫々 入れ、 ゥエル間に設けた流路を通って、 細胞が検体試料の収納されてい るゥエルに向かって移動するか否かを検出する細胞走化性検出装置につ いて、 後述するような幾つかの提案をして来た。 細胞の走化性を検出す るための装置が、 1個ずつの細胞のレベルで観察乃至検出できるスケ一 ルのものであり、 10 乃至 100個程度の数で細胞の測定が可能であれば、 希少な細胞の検査をも容易に行うことができると共に、 細胞の反応を定 量的に分析し検討することも可能となるという利点がある。 しかし、 流 路を通じて相互に連通するゥエルの夫々に細胞注入口や検体試料注入口 が設けられている構造においては、 流路を介してゥエルが相互に連通管 を形成するために、 特に流路における液の移動が起こり易い。 即ち、 細 胞等の試料をゥエルに注入する際に、 注入による昇圧の影響が生じやす く、 そのために細胞や検体試料が不測の移動を起こしやすい。 また、 注 入後においてゥエルが完全に水平に維持されていない場合や振動などに より液面に微細な動きが生じた場合も、 流路における液体の移動が増幅 され、 細胞や検体試料の移動が起こり易い。 細胞や検体試料の不測の移 動は、 検体が走化性因子であるのか否かの判定を混乱させる原因となる。 よって、 細胞が検体試料の拡散濃度勾配を感知して検体試料を収納する ゥエルに向かって移動することを正確に検出するためには、 流路を含め、 ゥエル内の液の不測の移動を厳密に防止することが必要である。 更に、 細胞の走化性をより正確に把握するためには、 ゥエル内の細胞がスター 卜時に流路に対して同一の状態、 即ち、 一列に並んでいることが好まし い。
本発明者等は先に、 マイクロピぺッ卜等により細胞や走化性因子等 の試料を注入し又は吸出するための管を備えているゥエルに試料を注入 し又は吸出する際において、 ゥエル内における圧力の急激な変化を緩和 させ、 ゥエル内における試料の不測の移動を防ぐために、 試料を注入し 又は吸出するための管と連通する関係にある管を備えることを提案した
(特開 2 0 0 2— 1 5 9 2 8 7号) D これは、 連通管を通して、 試料を 注入し又は吸出する際の圧力を分散させる構造を採用している。
更に本発明者等は、 複数のゥエルが流体に対して抵抗性を有する部 分を介して相互に連通しており、 且つ夫々のゥエルが試料を注入 ·吸出 するための管及び、 必要に応じ、 注入 ·吸出時の圧力の変化を緩和する ための管を備えている構造において、 それ等複数の管が上端部において 液体を収納できる空間を共有している微量試料処理装置、 例えば細胞走 化性検出装置を提案した (WO 02/46356) 。 各ゥエルに設けられてい る総ての管の上端部が液体を収納できる空間を共有する構造を採用する ことにより、 試料注入時やその後の液の移動を防止することを可能とす るものである。 更に、 この装置では、 注入された細胞のゥエル内におけ る位置を移動させ、 細胞を流路の一端のスタートラインに並べることも 可能であり、 そのために、 ゥエル内の液体の注入 *排出を精密に制御す る手段を備えている。
しかし、 ゥエル内に注入した細胞を流路の一端のスタートラインに 並べるためにはゥエル内の液体を移動させる必要があるが、 そのために 微妙なコントロールが必要であり、 また、 その後の流路における液の移 動を防止するために、 再び液を管の上端部の空間に戻す必要がある等、 複雑で厳密に制御された操作が必要であった。
本発明者等の上記提案以外にも、 細胞や検体を収納するゥエルを流 路でつなぎ、 ゥエルに設けられている細胞や検体の注入口を必要に応じ 閉塞させる手段を備えた細胞走化性検出装置が知 られている
(USP5744366) 。 しかし、 これはゥエル内において細胞の位置を調節 することができないため、 スタート時における細胞の条件を整えること ができない。
本発明は、 かかる装置を更に改良し、 微量の細胞を用いて、 その走 化性をより正確に検出するための構造を提供することを目的とするもの で、 細胞や検体の注入を容易に行うことができ、 注入後の細胞の位置の 調整のための制御がより簡単に行われ、 且つ、 ゥエル内において所定の 位置に設定された細胞や注入された検体試料の不測の移動が確実に防止 されるため試料検体の拡散による濃度勾配が安定に維持され、 更には、 操作 ·制御の自動化に一層適した細胞走化性検出装置を提供することを 目的とする。 関連文献 1 . 特開 2 0 0 2— 1 5 9 2 8 7号
2 . WO 02/46356
3 . USP5744366
発明の開示
本発明は、 (1 ) 二つのゥエルが流路を介して相互に連通しており、 夫々のゥエルには細胞又は検体試料を注入するための開口部が設けられ ている構造において、 ゥエル内で浮遊細胞の位置を調節するために液体 を移動させる手段及び液体の注入又は吸引排出後にその移動を停止させ る手段を備えており、 且つ、 細胞注入側及び検体試料注入側の何れか一 方又は双方の開口部を閉塞する手段を備えている細胞走化性検出装置で める。
ここで、 ( 2 ) 液体を移動させる手段及び液体の注入又は吸引排出 後にその移動を停止させる手段を共に備えている装置の好ましい例とし て、 脈動ポンプ又はシリンジを挙げることができる。
また、 ( 3 ) 該開口部を閉塞する手段の好ましい例としては、 柔軟 な密栓、 スライド式開閉装置、 弁、 バルブの何れかまたはそれ等の組合 せを挙げることができる。 本発明の一態様として、 二つのゥエルが土手を介して設けられてい る基板とそれに密着するガラス基板とから構成され、 土手がガラス基板 との間で、 浮遊細胞の通過に対して抵抗性を有する流路を形成する細胞 走化性検出装置を挙げることができる。 ここで、 該基板又は該基板と該 ガラス基板との間に液体を移動させるための開口部が設けられており、 該開口部に、 液体を注入又は吸引排出することにより移動させ、 その後 液体の移動を停止させる手段/装置が設けられ、 且つ、 基板に設けられ たゥエルの何れか一方に細胞注入口を、 他方のゥエルに検体試料注入口 が設けられ、 それ等注入口の何れか一方又は双方を閉鎖する手段 Z装置 が設けられている。
ここで、 基板に設けられた土手はガラス基板との間で浮遊細胞の通 過に対して抵抗性を有する流路を形成し、 土手の上部にテラスを設ける ことができ、 該テラスとガラス基板との間で細胞の径又はその変形能に 合わせた隙間を形成させることができる。 或いは、 流路において、 土手 の上部のテラスに細胞の径又はその変形能に合わせた幅の溝を 1乃至複 数本構成する障壁を設け、 必要に応じ、 該障壁もガラス基板との間で細 胞の径又はその変形能に合わせた隙間を形成することができる。 更には、 流路において、 溝を構成する障壁の列がテラス上の 2 箇所に形成され ていても良い。 また、 流路に設けられた土手に、 ガラス基板との間で異 なる深さの隙間を形成するべく、 テラスが多段に形成されていてもょレ 本発明の他の態様として、 基板およびガラス基板が一体のものとし て構成されており、 少なくとも一方の片面が透明である構造を挙げるこ とができる。
本発明は、 上記した細胞走化性検出装置を単位ユニットとして、 その 同一又は複数種のュニットを複数個集積させてなる集積ュニットよりな る集積型細胞走化性検出装置を含み、 更には、 該集積ユニッ トを単位ュ ニットとして、 その同一又は複数種のュニットを複数個集積させてなる 集積型細胞走化性検出装置を含む。 図面の簡単な説明
図 1は、 細胞注入口側からの液体の輸送により細胞を土手端に集め るタイプの細胞走化性検出装置の一例を示す概念図。 矢印は、 装置を満 たす液体の移動する方向を示す。
図 2は、 図 1 の脈動ポンプに代えて、 シリンジを用いる場合の概 念図。
図 3は、 閉塞手段としてバルブを採用した場合の例を示す概念図。 矢印は、 装置を満たす液体の移動する方向を示す。
図 4は、 閉塞手段としてスライド式開閉装置を採用した場合の概念 図。
図 5は、 図 4の構造に加えて、 検体試料注入口の開閉も行う構造 の概念図。
図 6は、 閉塞手段として柔軟な密栓を採用した場合の概念図。
図 7は、 検体試料注入口側からの液体の吸引排出により細胞を土 手端に集めるタイプの細胞走化性検出装置の一例を示す概念図。 矢印は、 装置を満たす液体の移動する方向を示す。
図 8は、 図 7のタイプにおいて、 液体を循環させる構造の概念図。 矢印は装置を満たす液体の移動する方向を示す。
図 9は、 図 8のタイプにおいて、 細胞注入口を閉塞する構造の概 念図。 ( 1 ) 及び (3 ) は断面図であり、 (2 ) 及び (4 ) は夫々の上 面図である。 矢印は装置を満たす液体の移動する方向を示す。
図 10 は、 細胞注入口及び検体試料注入口の双方を閉塞する構造の 概念図。
図 11 は、 図 6のタイプの単位ユニッ トを複数集積させた場合の概 念図。
図 12 は、 図 10 のタイプの単位ュニッ トを複数集積させた場合の 概念図。
図 13は、 土手及び流路の構造の一例を示す断面図。 図 14は、 流路に障壁と溝を設けた場合の一例を示す。 図 15は、 土手に設けられたテラスの両側に障壁の列を 2箇所に形 成した例を示す。 ( 1 ) は上面図、 ( 2 ) は断面図である。 符号の説明
1 :基板
2 :土手
3 :細胞収納ゥエル
4 :検体試料収納ゥエル
5 :細胞注入口
6 :検体試料注入口
7 :脈動ポンプ
8 :注入パイプ
9 :細胞の通過に対して抵抗性を有する流路
1 0 : ガラス基板
1 1 :検出器
1 2 :細胞
1 3 : シリンジ
1 4 :液体注入手段 .
1 5 :細胞懸濁液貯蔵槽
1 6 :バルブ
1 7 :スライド式開閉装置
1 8 :液体注入口
1 9 : 柔軟な密栓
2 0 :細胞注入器 2 1 :吸引排出パイプ
2 2 :検体試料注入器
2 3 : テラス
2 4 :障壁
2 5 :流路を挟んで相対するゥエルに向かう方向の溝
2 6 :画面の位置決めのための印 発明を実施するための最良の形態 本発明に関わる細胞走化性検出装置は、 二つのゥエルが細胞の通過 に対して抵抗性を有する流路で相互に連通しており、 ゥエルの一つに細 胞懸濁液を入れた後、 細胞を流路の一端に並べ、 他方のゥエルに検体試 料を入れ、 検体試料の濃度勾配を感知した細胞が検体試料が収納されて いるゥエルに向かつて流路を通過する状態を観察し、 或いは通過中又は 通過した細胞数を計数することができる装置である。
上記に云う、 細胞の通過に対して抵抗性を有する流路とは、 非吸着状 態で細胞がとりうる形態 (通常は球形)では通過できないが、 細胞が有す る変形能により形態が扁平に変化した時に通過できる隙間を有する細胞 の通路である。 ここに、 細胞の変形能とは、 細胞が弾力性を有するもの であるとき、 その弾力性のために容易に形を変え、 扁平状やひも状など の形態をとり、 通常、 細胞が自由空間でとる形状 (球状) において有す る径ょりも狭い間隔の溝や隙間を通り抜けることを言う。
本発明に関わる細胞走化性検出装置の特徴とするところは、 上記の 基本的構造に加えて、 ゥエル内において細胞の位置を調節するために液 体を注入又は吸引排出する手段及び液体の注入又は吸引排出後に液体の 移動を停止させる手段を備え、 且つ、 ゥエル内への細胞注入後、 細胞注 入側及び検体試料注入側の何れか一方又は双方の開口部を閉塞する手段 を備えていることである。 液体を注入又は吸引排出することにより細胞 を移動させる手段を備えることにより、 細胞を流路の一端のスター卜ラ インに並べることが容易になる。 また、 細胞注入側及び検体試料注入側 の何れか一方又は双方の開口部を閉塞することにより、 流路を介して連 通管を構成するゥエルの液面の移動はなくなり、 流路における液の移動 もなくなる。 即ち、 装置に振動が加えられても細胞の不測の移動ゃ流路 に形成される検体試料の濃度勾配が変動することが抑止される。 液体の 注入又は吸引排出後にその移動を停止させる手段は開口部の閉塞を完全 に行うために必要である。
この構造を、 図 1 ( 1 ) 及び (2 ) の概念図により説明すれば、 基 板 1には突起状の土手 2が設けられており、 土手 2とガラス基板 10 と の間で細胞の通過に対して抵抗性を有する流路 9が形成されている。 ま ず、 細胞懸濁液は液体注入手段(図 1では、 7で示す脈動ポンプ)により 注入パイプ 8を経て細胞注入口 5から細胞収納ゥエル 3に送り込まれる。 細胞は、 液体の流れにより細胞の通過に対して抵抗性を有する流路 9の 端に集り、 余分な液体は検体試料注入口 6から排出される((2 )の 12 参 照)。 流路 9の端に来た細胞は液の流れを遮るため、 流れは細胞のない 箇所を通る。 その結果、 別の細胞がこの空間を埋めることになり、 かく して細胞は流路 9の端に列になって並ぶことになる。 細胞懸濁液の注入 速度は、 特に厳密に設定する必要はないが、 例えば、 好中球や好酸球の 場合は流路の隙間が 5 mの場合、 30〜40 /i m /秒程度の移動速度が 好ましい。 次いで,脈動ポンプ 7による液体の輸送を停止すると共に注 入パイプ 8を閉塞させることにより、 細胞注入口が閉塞されることにな る。 その後、 検体試料注入口 6から走化性因子を注入する。 この時、 細 胞注入口が閉塞されているため、 液体の逆流が防止され、 流路 9の端に 集っている細胞の並びが乱されることがなく、 また、 流路における液の 不測の移動が起きることもない。 かくして、 細胞は、 流路 9に安定に形 成された走化性因子等の検体試料の濃度勾配を感知して、 検体試料収納 ゥエル側に移動するべく、 変形して流路 9を通過する。 その通過の状態 をガラス基板 10を通して検出器 11で観察する。
液体注入手段として用いる脈動ポンプの一例としては、 空気圧を変 化させることによる脈動を利用して、 液体輸送パイプを通して少量の液 体を輸送する装置を挙げることができる。 これは、 1 l乃至 10分の 1 H i のオーダーで液体を定量的に輸送することが可能であり、 また、 輸 送 パ イ プ を 閉 塞す る こ と が で き る 。 例 え ば、 Fluidigm Corporation(South San Francisco, CA)製の MSL Active Microfluidic Chip Control Hardware (商品名)が知られている。 この他にも、 脈動を 利用する液体輸送手段として、 上記の他に、 圧電素子の振動を利用する 装置も知られている。 本発明の液体注入手段としては、 これらの何れも 使用できる。 なお、 圧電素子の振動を利用する装置は流体輸送後、 パイ プを閉塞することができないため、 閉塞手段を別途設けることが必要で ある。
液体注入手段として、 脈動ポンプ以外にも種々の手段を採用すること が出来、 例えば、 図 2の 13 に示すようなシリンジを採用することもで きる。 シリンジは、 ステッピングモーター(パルスモーターとも呼ばれ る)で駆動させることにより、 定量的に液体を輸送することができる。 また、 シリンジを用いると、 液体の輸送停止がそのまま注入口 5の閉塞 となり、 液体の逆流を生じさせないため、 好ましい手段であると云える。 例えば図 3 ( 1 ) 、 ( 2 ) に示すように、 注入口の閉塞をバルブで行 うことも出来る。 ( 1 ) では、 注入パイプ 8にバルブ 16 を設けた場合 の例示であり、 (2 ) は細胞懸濁液貯蔵槽 15 と注入パイプ 8の間にバ ルブ 16 を設けた場合の例示である。 なお.. 図 3における 1 は、 脈動 ポンプ、 シリンジ等の液体注入手段である。 バルブ 16 の代わりに、 ノ ルブと同様な機能を有するものを使用することもでき、 例えば、 柔軟で 弾力性のある材質で作られたパイプを圧力で潰すことにより液流を止め ても良い。
基板に設けられた細胞注入口又は検体試料注入口を閉塞する手段は 種々有る。 例えば、 図 4の 17 に示すようなスライド式開閉装置を採用 することもできる。 ( 1 ) は細胞を注入するために細胞注入口 5が開い ている状態を示す。 細胞注入口 5から細胞を注入後、 (2 ) に示すよう に、 スライ ド式開閉装置 17 をスライ ドさせて細胞注入口 5を閉塞する。 次いで、 注入された細胞は液体注入手段 14 により注入パイプ 8を通つ て輸送される液体(例えば、 緩衝液)の流れに乗って流路 9の端まで運ば れる。 細胞の移動後に注入パイプ 8の閉塞を行うが、 その手段は上記し た手段から適宜選択して採用される。 スライ ド式開閉装置 17 の開閉操 作は、 例えば回転数を制御できるステツビングモーター等により容易に 行うことができる。
図 5は、 図 4の構造の変形例であり、 スライド式開閉装置 17が、 細 胞注入口 5を開いた状態にあるときは検体試料注入口 6を閉じており ( 1 ) 、 細胞注入口 5を閉じたとき検体試料注入口 6が開く (2 ) 構造 の例を示している。
図 6は細胞注入口 5の閉塞を柔軟な密栓 19 で行う場合の例示である。 例えば、 弾力性に富んだ膜状のシリコンゴム、 ポリウレタン、 ポリェチ レン、 生ゴム等で細胞注入口 5を密栓する (図 6 ( 1 ) ) 。 細胞の注入 は、 密栓 19 を貫通する細胞注入器 20 で行う (図 6 ( 2 ) ) 。 細胞注 入後、 注入器 20 を引き抜くと密栓 19 はその弾力性により貫通口が閉 塞され、 細胞 12 は液体注入口 18 から輸送される液体により流路 9の 端に集る (図 6 ( 3 ) ) 。 なお、 密栓の代わりに、 通常は軽く閉じてい るが、 注入器が容易に貫通できる弁等も採用することができる。
図 1〜 6の構造に代えて、 例えば図 7に示すように、 土手 2を隔てて 細胞収納ゥエル 3 と逆の位置にある検体試料収納ゥエル 4の側から液 体を吸引排出することにより細胞 12 を細胞収納ゥエル 3の流路 9の端 に集める構造とすることもできる。 なお、 図 7では液体の吸引をシリン ジ 13 で行う場合を示しているが、 同様な機能を有する他の手段、 例え ば脈動ポンプなどでで置き換えることもできる。
本発明の装置は液体 (細胞懸濁液の媒体) を循環させるタイプにする こともできる。 図 8 ( 1 ) 〜 (4 ) にその概念図を示す。 図 8 ( 1 ) は、 細胞収納ゥエル 3に注入管 8が、 検体試料収納ゥエル 4に吸引排出パイ プ 21 がそれぞれ設けられ、 検体試料注入口 6が柔軟な密栓 19 で閉塞 されている場合を示している。 液体の循環は (4 ) に示すように、 液体 を一方向に移動させる手段、 例えば脈動ポンプ 7で行われる。 ( 1 ) 及 び (2 ) は細胞注入口 5から細胞を注入した状態を示しており、 (3 ) 及び (4 ) は液体を矢印の方向に移動させ、 その結果、 細胞が流路 9の 端に集まる状態を示している。 この場合、 因子は、 検体試料注入口 6か ら、 密栓 19 を貫通して注入される。 なお、 検体試料注入口 6の閉塞は、 密栓以外の手段、 例えばスライド式開閉装置、 バルブ、 弁等で行うこと もできる。
図 9は、 図 8の構造に代えて、 細胞注入口 5を閉塞させる場合を例示 している。 細胞注入口 5の閉塞は、 図 9に示すように柔軟な密栓 19 で 行うこともできるが、 スライ ド式開閉装置、 パルプ、 弁等で行うことも できる。
図 1 0は、 本発明の装置の他の変形例を示すもので 細胞注入口 5及 び検体試料注入口 6の双方が閉塞されている場合の概念図である。 図 1 0では、 夫々の注入口 5、 6は柔軟な密栓 19 で閉塞されている場合を 例示しており、 細胞及び因子は各密栓を貫通して注入される。 細胞を流 路 9の端に集めるためには、 例えば、 図示するように、 細胞収納ゥエル 3側及び検体試料収納ゥエル 4側の双方に例えばシリンジ 13 のような、 液体輸送後に液体の移動を停止させる手段を備えている液体輸送手段を 設け、 それ等の連動により液体を細胞収納ゥエル 3側から検体試料収納 ゥエル 4側に移動させる。 注入口の閉塞手段として、 密栓以外の手段、 例えばスライド式開閉装置等を採用し得ることは云うまでもない。
以上述べてきた本発明の装置において、 基板とガラス基板を一体化し たものとして構成することができ、 少なくとも一方の片面が光透過性、 即ち、 透明である構造をとることができる。
本発明は、 以上説明した装置を単位ユニットとして、 それ等の複数を 集積させた装置をも含む。 例えば、 図 11 にその概念図を示すように、 細胞注入口 5を閉塞させたユニットを注入パイプ 8 でつなぎ、 細胞収 納ゥエルに存在する細胞を同時に土手端に集める装置を組立てることが できる。 図 11 の場合、 細胞注入口 5側の閉塞を確実に行うために夫々 のュニット毎に注入パイプ 8をバルブ 16 等により閉塞することが好ま しい。 検体試料注入口及びパイプの閉塞手段は、 今まで述べてきたよう に、 種々な手段から適宜選択して採用することができる。
図 12 は、 図 10 のタイプのュニットを集積させた場合の概念図であ る。 図の密栓 19 は他の手段で置き換えることができる。 この装置によ り、 一種類の細胞につき、 種々の検体試料の影響を一度に調べることが できる。 なお、 図 12 の装置において、 細胞注入口 5と検体試料注入口 6の位置を逆にしても良い。 かくすることにより、 一種類の検体試料に 対して種々の細胞の反応を一度に調べることができる。
更に本発明は、 複数の集積ユニットを集積させたタイプ、 複数種の集 積ュニットを集積させたタイプの装置をも含む。
本発明によれば、 かかる装置の全体を小型化することが可能であり、 試料の処理を微量で行うことができ、 しかも各ュニッ トを多数集積させ ることにより、 多数検体の処理を同時に行うことが可能となる。 更に、 液体の吸引 ·注入量のプログラム制御が容易であり、 自動化装置の組み 立てに適している。
以下に、 本発明の装置の部分について具体例を挙げて説明するが、 こ れ等は説明のための例示であり、 本発明の技術思想に基づいて適宜変更 することは可能であり、 本発明はこれらに限定されるものではない。
1 ) ュニッ卜の構造
図 1その他の図に例示するように、 土手 2及びゥエル 3、 4は基板 1上に一体的に構築されることが好ましい。 基板 1の下面には光学研磨 したガラス基板 10 を圧着させる。 なお、 基板 1とガラス基板 10 は熱 処理により接合してもよい。
2 ) ゥエル
ゥエル 3, 4は、 細胞懸濁液又は走化性因子含有溶液、 同阻害剤含有 溶液等の検体試料を収納するもので、 容積は、 特に制限は無く、 必要最 小限の液量を収納できればよい。 例えば、 深さ 0.05〜0.1m m程度、 幅、 長さ各 1.2mm程度あれば充分である。 3 ) 流路
流路 9 (図 1参照)の構造の一例を図 13により説明すれば次の通りで ある。 流路 9は、 両端のゥエル 3とゥエル 4を隔てる土手 2 (基板 1に おける突出部) 及びガラス基板 10 により構成される。 土手の下面に、 平面であるテラス 23 が設けられる。 土手 2のサイズは、 特に限定され るものではないが、 例えば、 高さ、 即ちガラス基板 10 からテラス 23 までの距離は 0.003〜0.03 mm程度、 相対するゥエルに向かう方向にお ける長さとして 0.1〜0.5 mm 程度、 相対するゥエルに向かう方向に直 交する方向における長さとして 1.2 mm程度あればよい。 なお、 これら のサイズが、 対象とする細胞の相違など、 目的に応じて適宜変更できる ことは云うまでもない。
なお、 テラス 23 とガラス基板 10 との距離は、 取扱う細胞に応じて 適宜設定することができ、 通常 3〜30 i m から選ばれる。 好中球、 好 酸球、 好塩基球、 単球 ·マクロファージ、 T細胞、 B細胞等の場合は 3 ~ 8 ^ m、 例えば 4、 5、 又は 8 / mから選ばれ、 がん細胞や組織に存 在する細胞の場合は 6〜20 i mから選ばれる。
ここで、 細胞が流路 9の端に集まり易くするために、 テラス 23 を多 段式に形成することもできる。
好ましい態様の一つとして、 土手 2の下面(テラス 23)に、 図 14 ( 1 ) 、 ( 2 ) に例示されるような複数の障壁 24 を設け、 細胞が通過 する溝 25 を形成させる。 ここで、 ( 1 ) は障壁 24 を設けた土手 2の 断面図であり、 (2 ) はテラス 23と障壁 24及び溝 25を示す上面図で ある。
テラス 23 に障壁 24を設ける場合、 障壁 24 により構成される溝 25 の断面は、 V字型断面、 凹型断面、 半円型断面等、 任意の形状とするこ とができる。 溝 25 の幅及び深さは、 細胞の径又はその変形能に合わせ た幅であるように設定される。
なお、 図 14 ( 3 ) は溝 25が V字型をしている場合を示す断面図である。 溝 25の幅は通常 3〜50 /i mから選ばれ、 細胞の種類に合わせて好適 な幅が選ばれる。 好中球、 好酸球、 好塩基球、 単球 ·マクロファージ、 T細胞、 B細胞等の場合は 3〜20 ^ m、 例えば 4、 8 又は 10 z mから 選ばれ、 がん細胞や組織に存在する細胞の場合は 8〜20 ΠΙの幅が選 ばれる。 溝 25の数は、 流路 9の幅に対する障壁 24の幅と溝 25の幅で 決定される。 例えば、 流路 9 の幅 l mm、 障壁 24 の幅 10 ;^ m、 溝 25 の幅 5 mの場合、 溝 25の数は最大で 66本となる。
土手 2に設けられたテラス 23の両側に 障壁 24の列を 2箇所に形 成することもできき(図 15(1)、 (2)参照)、 かかる構造とすることにより、 溝を通過した後の細胞の観察 ·計数が容易に行われる。 また、 中央のテ ラス 23 の適当な箇所にマーク 2 6を設けることにより、 カメラや顕微 鏡の位置決めが容易になる(図 15 における 2 6 )。 なお、 中央のテラス の大きさは、 顕微鏡の視野でカバーできる大きさであることが望ましレ 図 15において、 (1 )は上面図、 (2 )は断面図である。
4 ) ゥエルと流路の作製
基板 1の材質としては、 微細加工が容易で、 細胞に対し比較的不活 性な材質であることが好ましく、 例えば、 シリコン単結晶を挙げること ができる。 障壁 24及び溝 25 は、 このシリコン単結晶に集積回路の製 作で使用されるフォ卜リソグラフィゃエッチング、 例えばゥエツトエツ チングゃドライエッチング等を適用することにより容易に工作される。 ゥエル 3、 4は障壁 24 や溝 25 に比べれば比較的大きいので様々な既 知の工作技術を適用して作製することができる。 例えば、 サンド卜ラス ト法ゃドライエッチング法を適用することができる。
シリコン単結晶以外にも、 硬質ガラス、 硬質プラスチック、 金属等 も流路における微細な構造が構築可能であれば使用できる。 例えば、 ポ リジメチルシロキサン (PDMS) は微細構造の形成に適したプラスチッ クの例である。 プラスチックを使用する場合は、 表面に親水性を付与す るための処理、 例えば、 表面に親水性薄膜を形成させる処理を行うこと が好ましく、 また、 細胞の観察を容易にするために、 少なくともテラス 23 を含む表面に銀蒸着等による鏡面加工を行うことが好ましい。 なお、 土手 2とゥエル 3, 4を夫々別に作製し、 組合わせてもよい。
5 ) ガラス基板
ガラス基板 10は、 図 1他に例示するように、 基板 1 に圧着して液体 を収納する空間を構成し、 且つ流路を通過する細胞の観察を可能とする もので、 光学的に透明且つ平面性を保持し、 細胞が接着する面を提供す るものである。 かかる目的に適うものであれば、 ガラス以外にも、 透明 アクリル等のプラスチックも使用できる。 厚さは、 基板に圧着させる際 にゆがみが生じない限り特に限定されるものではないが、 0.:!〜 2 m m あれば充分である。 なお、 細胞の構成要素を蛍光標識して観察する場合 は、 ガラス基板 10が薄い方が好ましい。
基板 1がシリコンウェハーで構成されている場合、 そのガラス基板 10 との圧着により一体化できるが、 両者は 2 0 0〜4 0 0 の熱処理 によって接合一体化できる。 但し、 その場合、 基板 1 とガラス基板 10 の熱膨張率及び熱収縮率が一致するように材質を選ぶことが必要である
6 ) パイプ
注入パイプ 8、 吸引排出パイプ 21 は、 一般的には柔軟な材質である ことが好ましく、 特に脈動ポンプ 7を用いる場合は微細な動きに対応で きるものであることが必要である。 例えば、 PDMS、 ポリエチレン、 塩 化ビニル等を挙げることができる。
7 ) 多数のュニットの配列
流路を介して連通した二つのゥエルを 1ュニッ 卜として、 複数のュ ニッ トを 1 枚の基板上に配置乃至集積して多数検体を同時に処理する 装置とすることができる。 同じタイプのュニッ 卜を並列に配置し、 又は、 異種のユニッ トを配列することも可能である。 配列は、 目的に応じて 種々の組み合わせを採ることができる。 例えば、 2 つのゥエルが流路を 介して連通してなるュニットの 1ュニットの大きさを長辺が 2.9mm、 短辺が 1.2mmとするとき、 幅が 16mm、 長さが 10mmの長方形であ る一枚の基板 1上に、 0.8mmの間隔で 7列 X 2行の計 14個を配置する ことができる。
また、 上記の多数ュニッ トの集積を更に集積させたることもでき、 互いに異なったタイプのュニッ卜の集積であることもできる。
これら、 多数のユニットを集積させる場合において、 ガラス基板 10 は、 ユニッ ト全体をカバーするように 1 個又は 1 枚とすることができ る。
8 ) 検出手段
本発明において用いられる検出手段は、 流路 9を移動する細胞又は移 動した後の細胞を検出できる手段であればよく、 必要に応じ検出結果を 記録するための手段を含む。 細胞を検出 ·記録するために知られている 手段であれば何れも使用可能であり、 例えば、 顕微鏡、 顕微鏡とビデオ カメラの組合せ等である。 対物レンズに C C Dカメラを取り付けた構造 を採用することもできる。 集積ユニットの検出においては、 対物レンズ が各ュニッ 卜の流路を順次スキャンする構造を採用することが好ましレ 検出手段は、 通常は、 図 1他に示すように、 ユニッ トの流路 9の下方 に設定されるが、 多数ユニットを集積させた自動装置においては、 所定 の位置に設置された検出部に各ュニットの列が順次移動し、 検出 ·記録 を行う構造を採ることもできる。 検出は、 直線上に並んでいる各ュニッ 卜の流路を検出器がスキヤンすることにより行われる。 スキャンする検 出器 11は 1個でも良いし、 複数個でもよい。 かくすることにより、 比 較的少ない数の検出装置で多数の集積ュニッ 卜に対応することが可能と なる。
流路 9を通過する細胞の検出 ·計数は、 細胞を直接顕微鏡で捉え ることにより行うことができるが、 常法に従い、 予め細胞を発光 ·蛍光 物質でマーキングしておき、 その発光 ·蛍光を捕捉することにより容易 に検出 ·計数することもできる。
9 ) 自動制御機構
本発明の装置は、 容易に自動制御とすることができる。 例えば、 細胞、 因子等の検体試料の注入には移動及び液体の排出をコンピューターで制 御できるオートピペットを、 液体輸送手段に脈動ポンプゃステッピング モーターで駆動されるシリンジを、 注入口の開閉にスライ ド式開閉装置 を夫々用い、 それ等の作動順序及び作動量をコンピュータープログラム で制御する。 注入口の開閉にスライド式開閉装置の代わりに密栓を用い る場合は、 開閉操作の制御は不要となる。
集積型装置おいて使用されるピぺットは、 マルチチャネルシリンジを 有するタイプのものが好ましい。
産業上の利用可能性
本発明の構造によれば、 注入された細胞のゥエル内における位置を 調整して細胞を流路の一端に集めて一列に並ばせると共に、 その状態を 保持することができ、 且つ、 流路における走化性因子等の検体試料の拡 散による濃度勾配を安定に保持することができるため、 走化性因子又は 阻害剤の作用と細胞の性質を忠実に反映させた、 定量的な結果を得るこ とができる。
更に、 本発明の構造を採用することにより、 装置に不測の振動が加 えられた時でも、 細胞の列及び検体試料の濃度勾配の乱れを抑制し、 細 胞の運動を正確に捉えることができる。
本発明の構造によれば、 装置の小型化を図ることができ、 細胞走化 性検出又は走化細胞分離装置に適用すれば、 使用する細胞の量を、 従来 使用されてきたボイデンチャンバーに比べ、 500分の 1乃至 1000分の 1とすることが可能である。 即ち、 本発明の装置においては、 試料とし て全血のような生体試料そのものを用いることができ、 かくして全血を 試料としたとき、 好中球の走化性を検出する場合は 0.1 1 以下の血液 でよく、 好酸球、 単球又は好塩基球では 1 l 程度の血液で測定可能で ある。
本発明の構造によれば、 細胞のゥエル内における位置の調節に際し、 微妙な調整が可能であるところから装置の自動化が容易に行えるという メリッ 卜がある。
本発明に関わる装置の単位ュニットは微小なものとすることができる ため、 多数のユニットを集積させることが容易であり、 多数検体の同時 処理が可能な装置を組み立てることができる。 また、 その場合、 液体の 注入及び検出が自動化された装置とすることが容易である。
多数のュニッ卜を集積させるに当たり、 異なったタイプのュニッ トを 組み合わせて集積させることにより、 目的を異にする検出 ·分離を同時 に行うことができ、 処理の効率を上げることが可能となる。 例えば、 細 胞走化性検出装置の場合、 同一種の細胞に対して種々の走化性因子また はその阻害剤の検索を行うとき, 或いは、 同一の走化性因子について異 なる細胞の走化性を調べるとき等においてその検索を一度に行うことが 可能となる。 以上

Claims

請求の範囲
1 . 二つのゥエルが細胞の通過に対して抵抗性を有する流路を介して相 互に連通しており、 夫々のゥエルには細胞又は検体試料を注入するため の開口部が設けられている構造において、 ( 1 ) 液体を移動させる手段 及び液体の注入又は吸引排出後にその移動を停止させる手段を備えてい ること、 及び ( 2 ) 細胞注入側及び検体試料注入側の何れか一方又は双 方の開口部を閉塞する手段を備えていることを特徴とする細胞走化性検 出装置。
2 . 液体の移動及び移動を停止させる手段が、 脈動ポンプ又はシリンジ から選ばれることを特徴とする請求項 1記載の細胞走化性検出装置。
3 . 開口部を閉塞する手段が、 柔軟な密栓、 スライ ド式開閉装置、 弁、 バルブの何れか又はそれ等の組み合わせから選ばれることを特徴とする 請求項 1記載の細胞走化性検出装置。
PCT/JP2004/005088 2003-04-09 2004-04-08 細胞走化性検出装置 WO2004090090A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002512919A CA2512919A1 (en) 2003-04-09 2004-04-08 Apparatus for detecting cell chemotaxis
US10/542,189 US7807451B2 (en) 2003-04-09 2004-04-08 Apparatus for detecting cell chemotaxis
JP2005505320A JPWO2004090090A1 (ja) 2003-04-09 2004-04-08 細胞走化性検出装置
EP04726631A EP1612261A4 (en) 2003-04-09 2004-04-08 DEVICE FOR DETECTING THE CHEMOTAXIS OF CELLS
HK06107880A HK1087730A1 (en) 2003-04-09 2006-07-14 Apparatus for detecting cell chemotaxis

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-105197 2003-04-09
JP2003105197 2003-04-09

Publications (1)

Publication Number Publication Date
WO2004090090A1 true WO2004090090A1 (ja) 2004-10-21

Family

ID=33156873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005088 WO2004090090A1 (ja) 2003-04-09 2004-04-08 細胞走化性検出装置

Country Status (9)

Country Link
US (1) US7807451B2 (ja)
EP (1) EP1612261A4 (ja)
JP (1) JPWO2004090090A1 (ja)
KR (1) KR100795292B1 (ja)
CN (1) CN100340653C (ja)
CA (1) CA2512919A1 (ja)
HK (1) HK1087730A1 (ja)
TW (1) TW200506364A (ja)
WO (1) WO2004090090A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100537A1 (en) * 2004-04-13 2005-10-27 Agency For Science, Technology And Research Device and method for studying cell migration and deformation
KR100709284B1 (ko) * 2005-12-29 2007-04-19 전자부품연구원 주화성 측정장치
JPWO2006095424A1 (ja) * 2005-03-10 2008-08-14 富士通株式会社 ポンプユニット、シリンジユニット、粒子送出方法、および細胞送出方法
JP2010252746A (ja) * 2009-04-28 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> 細菌分析装置
JP2010252745A (ja) * 2009-04-28 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> 細菌分析装置
JP2010252744A (ja) * 2009-04-28 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> 細菌分析装置
EP2255881A1 (de) * 2005-07-05 2010-12-01 ibidi GmbH Mikrofluid-Vorrichtung und Verfahren zur Erzeugung diffusiv aufgebauter Gradienten

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007036611B4 (de) * 2007-08-02 2015-10-08 Deutsche Diabetes-Forschungsgesellschaft E.V. Verfahren und Vorrichtung zur Kultivierung lebender Zellen
WO2010016916A2 (en) * 2008-08-07 2010-02-11 The University Of North Carolina At Chapel Hill Method of creating removable barriers in microfabricated fluidic devices
EP2198879A1 (en) * 2008-12-11 2010-06-23 Institut Curie CD74 modulator agent for regulating dendritic cell migration and device for studying the motility capacity of a cell
KR101126547B1 (ko) 2009-12-01 2012-03-22 한국생산기술연구원 세포 주화성 검사용 마이크로 플루이딕 칩 및 제조방법
CN102676368A (zh) * 2011-03-14 2012-09-19 同济大学 一种研究细菌驱动机理的装置
CN103959037A (zh) * 2011-10-25 2014-07-30 皇家飞利浦有限公司 从血液或其他介质中过滤颗粒
GB201204848D0 (en) * 2012-03-20 2012-05-02 Biocolor Ltd Cell migration assay
TWI463011B (zh) * 2012-08-10 2014-12-01 Nat Univ Tsing Hua 細胞自組裝陣列晶片及其製作方法
CN103361263B (zh) * 2013-07-11 2015-05-20 北京大学 一种细胞趋化分析芯片、装置、使用方法和制作方法
CN106124388B (zh) * 2016-06-12 2020-02-11 中国科学院电子学研究所 毛细管进样系统及进样方法、单细胞电学特性检测系统
TWI741658B (zh) * 2018-01-24 2021-10-01 美商伊路米納有限公司 流體緩衝
WO2020089235A1 (en) * 2018-10-29 2020-05-07 ETH Zürich Assay for screening of recombinant cells and microbes
KR102112416B1 (ko) * 2018-11-06 2020-05-18 국제뇌교육종합대학원대학교 산학협력단 나노 소포체 추출용 미세유체 칩
US20220212474A1 (en) * 2019-04-25 2022-07-07 Kyocera Corporation Flow path device, cartridge, and measurement system
CN110987814B (zh) * 2019-12-06 2020-11-10 合肥恒星科技开发有限公司 一种样品测试卡及其加样方法
EP4437101A1 (en) * 2021-11-24 2024-10-02 Purigen Biosystems, Inc. Fluidic device with capillary barrier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994016098A1 (en) * 1993-01-15 1994-07-21 Neuro Probe, Inc. Multiple-site chemotactic test apparatus and method
US5744366A (en) * 1992-05-01 1998-04-28 Trustees Of The University Of Pennsylvania Mesoscale devices and methods for analysis of motile cells
JP2002159287A (ja) * 2000-09-12 2002-06-04 Effector Cell Institute Inc 細胞走化性検出及び走化細胞分離装置
WO2002046355A1 (fr) * 2000-12-07 2002-06-13 Effector Cell Institute Unite cupulaire pour detecter la chimiotaxie cellulaire et separer les cellules chimiotactiques

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888770A (en) 1971-10-21 1975-06-10 Shlomo Avital Plural-sample filter device
US3929583A (en) 1975-08-14 1975-12-30 Canadian Patents Dev Apparatus for enumerating microorganisms
US4317726A (en) 1981-02-12 1982-03-02 The United States Of America As Represented By The Secretary Of The Army Microbial filter assembly
IL68507A (en) 1982-05-10 1986-01-31 Univ Bar Ilan System and methods for cell selection
US4514495A (en) 1982-05-18 1985-04-30 Spiral Systems Instruments, Inc. Method for testing microbial interaction with growth affecting substances
US4493815A (en) 1983-07-28 1985-01-15 Bio-Rad Laboratories, Inc. Supporting and filtering biochemical test plate assembly
US4714674A (en) 1985-02-28 1987-12-22 Genentech, Inc. Chemotactic assay for immunogenicity
US4833382A (en) 1986-06-06 1989-05-23 Gibbs David L Method and apparatus for use in microscope investigations
JP2559760B2 (ja) 1987-08-31 1996-12-04 株式会社日立製作所 細胞搬送方法
JP2685544B2 (ja) 1988-11-11 1997-12-03 株式会社日立製作所 血液フィルタおよび血液検査方法並びに血液検査装置
US4912057A (en) 1989-06-13 1990-03-27 Cancer Diagnostics, Inc. Cell chamber for chemotaxis assay
JP2532707B2 (ja) 1990-03-08 1996-09-11 佑二 菊池 血液回路及びこれを用いた血液測定装置及び血液測定方法
US5302515A (en) 1992-08-20 1994-04-12 Neuro Probe, Inc. Chemotactic test apparatus and method
JP2685119B2 (ja) 1994-07-15 1997-12-03 浜松ホトニクス株式会社 細胞分画方法及び細胞分画装置
US5595712A (en) 1994-07-25 1997-01-21 E. I. Du Pont De Nemours And Company Chemical mixing and reaction apparatus
AU734957B2 (en) * 1997-05-16 2001-06-28 Alberta Research Council Inc. Microfluidic system and methods of use
JP3089285B2 (ja) 1997-12-02 2000-09-18 農林水産省食品総合研究所長 積層マイクロチャネルアレイ装置並びに同装置を用いた濾過・分級方法及びエマルションの製造方法
WO2000007007A1 (en) 1998-07-28 2000-02-10 Biometric Imaging, Inc. Device and method for cell motility assay
US6329164B1 (en) 1999-03-18 2001-12-11 Neuro Probe, Incorporated Method for using a cell activity assay apparatus
DE19917848C2 (de) * 1999-04-15 2002-11-14 Inst Molekulare Biotechnologie Nanoaktorische Vorrichtung und deren Verwendung
GB9925904D0 (en) 1999-11-03 1999-12-29 Univ Belfast Cell migration and chemotaxis chamber
EP1336097A4 (en) 2000-10-13 2006-02-01 Fluidigm Corp SAMPLE INJECTION SYSTEM USING A MICROFLUIDIC DEVICE, FOR ANALYSIS DEVICES
WO2002042766A2 (en) 2000-10-26 2002-05-30 University Of Connecticut A system and method for investigating the effect of chemical and other factors on cell movement
JP3738899B2 (ja) 2000-12-07 2006-01-25 株式会社 エフェクター細胞研究所 微量試料処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744366A (en) * 1992-05-01 1998-04-28 Trustees Of The University Of Pennsylvania Mesoscale devices and methods for analysis of motile cells
WO1994016098A1 (en) * 1993-01-15 1994-07-21 Neuro Probe, Inc. Multiple-site chemotactic test apparatus and method
JP2002159287A (ja) * 2000-09-12 2002-06-04 Effector Cell Institute Inc 細胞走化性検出及び走化細胞分離装置
WO2002046355A1 (fr) * 2000-12-07 2002-06-13 Effector Cell Institute Unite cupulaire pour detecter la chimiotaxie cellulaire et separer les cellules chimiotactiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1612261A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100537A1 (en) * 2004-04-13 2005-10-27 Agency For Science, Technology And Research Device and method for studying cell migration and deformation
JPWO2006095424A1 (ja) * 2005-03-10 2008-08-14 富士通株式会社 ポンプユニット、シリンジユニット、粒子送出方法、および細胞送出方法
JP4599397B2 (ja) * 2005-03-10 2010-12-15 富士通株式会社 ポンプユニット、シリンジユニット、粒子送出方法、および細胞送出方法
EP2255881A1 (de) * 2005-07-05 2010-12-01 ibidi GmbH Mikrofluid-Vorrichtung und Verfahren zur Erzeugung diffusiv aufgebauter Gradienten
US8679737B2 (en) 2005-07-05 2014-03-25 Ibidi Gmbh Microfluid device and method of producing diffusively built gradients
KR100709284B1 (ko) * 2005-12-29 2007-04-19 전자부품연구원 주화성 측정장치
JP2010252746A (ja) * 2009-04-28 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> 細菌分析装置
JP2010252745A (ja) * 2009-04-28 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> 細菌分析装置
JP2010252744A (ja) * 2009-04-28 2010-11-11 Nippon Telegr & Teleph Corp <Ntt> 細菌分析装置

Also Published As

Publication number Publication date
KR100795292B1 (ko) 2008-01-15
US20060121600A1 (en) 2006-06-08
CN100340653C (zh) 2007-10-03
HK1087730A1 (en) 2006-10-20
TWI318686B (ja) 2009-12-21
EP1612261A1 (en) 2006-01-04
JPWO2004090090A1 (ja) 2006-07-06
CA2512919A1 (en) 2004-10-21
CN1751117A (zh) 2006-03-22
TW200506364A (en) 2005-02-16
US7807451B2 (en) 2010-10-05
EP1612261A4 (en) 2009-08-05
KR20060009231A (ko) 2006-01-31

Similar Documents

Publication Publication Date Title
WO2004090090A1 (ja) 細胞走化性検出装置
JP3738899B2 (ja) 微量試料処理装置
KR100445131B1 (ko) 세포 주화성 검출 및 주화 세포 분리를 위한 웰 유닛
US20170136459A1 (en) Biologic fluid analysis cartridge
US20090081773A1 (en) Microfluidic apparatus for manipulating imaging and analyzing cells of a cytological specimen
US20210403977A1 (en) Microfluidic testing system with cell capture/analysis regions for processing in a parallel and serial manner
CN112703056B (zh) 用于颗粒浓缩的微流体装置
JP2002159287A (ja) 細胞走化性検出及び走化細胞分離装置
JP2019525159A (ja) 生体試料のための多層式ディスポーザブルカートリッジ
JP3735353B2 (ja) 調整が容易な細胞走化性検出装置
KR101048858B1 (ko) 개방형 그루브 채널 칩
US20230383239A1 (en) Microscale cell filter
US20190275522A1 (en) Microscale cell filter
CN217940221U (zh) 微流控芯片及检测液路系统
CN113661235B (zh) 盒组件
BR112020017352B1 (pt) Sistema para análisar uma pluralidade de amostras de líquido compreendendo partículas, método de detecção de partículas em uma amostra de líquido e recipiente de amostra para uso com um ou mais detectores e/ou câmaras de detecção

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2512919

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057012879

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006121600

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10542189

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005505320

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004726631

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048043618

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004726631

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057012879

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10542189

Country of ref document: US