WO2004086770A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2004086770A1
WO2004086770A1 PCT/JP2004/003353 JP2004003353W WO2004086770A1 WO 2004086770 A1 WO2004086770 A1 WO 2004086770A1 JP 2004003353 W JP2004003353 W JP 2004003353W WO 2004086770 A1 WO2004086770 A1 WO 2004086770A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
correction
specific color
video signal
reference data
Prior art date
Application number
PCT/JP2004/003353
Other languages
English (en)
French (fr)
Inventor
Kiyotaka Nakabayashi
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to EP04720222A priority Critical patent/EP1617681A4/en
Priority to US10/550,306 priority patent/US20070120984A1/en
Publication of WO2004086770A1 publication Critical patent/WO2004086770A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/643Hue control means, e.g. flesh tone control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/48Picture signal generators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6083Colour correction or control controlled by factors external to the apparatus
    • H04N1/6086Colour correction or control controlled by factors external to the apparatus by scene illuminant, i.e. conditions at the time of picture capture, e.g. flash, optical filter used, evening, cloud, daylight, artificial lighting, white point measurement, colour temperature
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/62Retouching, i.e. modification of isolated colours only or in isolated picture areas only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/62Retouching, i.e. modification of isolated colours only or in isolated picture areas only
    • H04N1/628Memory colours, e.g. skin or sky
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/44Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array
    • H04N25/447Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by partially reading an SSIS array by preserving the colour pattern with or without loss of information

Definitions

  • the present invention relates to an imaging device. More specifically, the present invention relates to an imaging device capable of correcting a specific color in a video signal to a predetermined color such as a memory color.
  • various settings such as focus and white balance are automatically performed by selecting a shooting mode (for example, sea, night view, portrait, landscape, etc.) according to the scene to be shot.
  • a shooting mode for example, sea, night view, portrait, landscape, etc.
  • a device such as a digital camera that can correct a predetermined color suitable for a scene in which an image is captured.
  • an image processing device that corrects a specific color to a color that is most beautifully stored by humans and that is so-called a memory color has been devised. ing.
  • a memory color For example, Japanese Patent Publication No. 2000-1292390 (pages 3-5, FIG. 5).
  • the user when shooting a landscape including a blue sky, when viewing the captured image, the user often recalls a blue color that is more vivid than the color of the blue sky actually seen, It corrects the blue (specific color) of the captured video so that it becomes the stored color blue, and reproduces the video in the colors (memory colors, etc.) exactly as imagined.
  • FIG. 7 is an example of a block diagram showing a schematic configuration of a main part for performing color correction processing in a conventional imaging device.
  • the imaging device 100A includes an imaging lens unit 101A, Image sensor 102 A, S / H (Sample / Hold) circuit 103 A, AGC (Automatic Gain Conontro 1) circuit 104 A, A / D (A na 1 og / D igita 1) Conversion circuit 105 A, specific color extraction circuit 106 A, WB (white balance) circuit 107 A, gamma correction circuit 108 A, signal processing circuit 109 A, color difference signal It has a correction circuit 110 A, a shooting mode selection circuit 120 A, a color correction value setting circuit 130 A, and the like.
  • each part of the device is operated by the photographing mode selecting circuit 120A.
  • Various settings such as focus and white balance are automatically performed according to the shooting mode selected in (ST 10).
  • color correction value setting circuit 130 A table data of color correction values for correcting a specific color to a memory color is set, and from this table data according to the selected shooting mode Select the color correction value of the specific color to be set, and set the selected color correction value in the color difference signal correction circuit 110A (ST11, ST12).
  • the specific color extraction circuit 106 A extracts a video signal of a specific color from the video signal sent from the AZD conversion circuit 105 A, and a white balance suitable for the extracted video signal of the specific color. Is calculated and sent to the WB (white balance) circuit 107A (ST13).
  • the WB (white balance) circuit 107 A determines the color temperature of the video signal (R [red] / G [green] ZB [blue]) sent from the AZD conversion circuit 105 A, and determines the specific color.
  • the gamma correction circuit 108 corrects the white balance of the video signal (R [red] ZG [green] ZB [blue]) based on the white balance control amount sent from the extraction circuit 106 A. A, and the gamma correction circuit 108 A corrects the gradation of this video signal and sends it to the signal processing circuit 109 A (ST 14, ST 15).
  • the signal processing circuit 109A converts the digital video signal (R [red] ZG [green] ZB [blue]) sent from the gamma correction circuit 108A into a luminance signal Y and a color difference signal [B-Y ], Converts it into a color difference signal [R-Y], outputs a luminance signal Y, and sends the converted color difference signal [B-Y] and color difference signal [R-Y] to the color difference signal correction circuit 11 OA. (ST 16).
  • the color difference signal correction circuit 110A is based on the color correction value set by the color correction value setting circuit 130A, and the color difference signal [B-Y] sent from the signal processing circuit 109A. And a specific color in the color difference signal [R-Y] is corrected to a predetermined storage color, and the color-corrected color difference signal [B-Y] "and the color difference signal [R-Y]" are output to the next stage circuit (ST 17 and ST 18).
  • the color correction value setting circuit 13 OA selects the color correction value for correcting the specific color corresponding to the shooting mode to the memory color ⁇ 1 from the table data. And set to the color difference signal correction circuit 110.
  • the parameter values (coefficient values) of the correction amounts G ain B and G ain R in the gain direction and the correction amounts Hu e B and Hu e R in the hue direction for the specific color. ) Is given as a color correction matrix.
  • the color correction value (color correction matrix) as shown in Fig. 9B is obtained.
  • Such color correction values are set in the color difference signal correction circuit 11 OA.
  • the color difference signal [B—Y] sent from the signal processing circuit 109 A The color correction processing is performed by linearly converting the color difference signal [R ⁇ Y] with a color correction value (color correction matrix).
  • the specific color (b, r) included in the color difference signal [B_Y] and the color difference signal [R-Y] is set to a predetermined memory color ⁇ 1 (b ⁇ r "), the color difference signal [B- Y]” and the color difference signal [R- Y] "are output.
  • a specific color of the video signal is color-corrected to a predetermined memory color according to the shooting mode, and the video is reproduced in a color (memory color, etc.) as the image.
  • a color correction value color correction amount
  • a color correction amount for correcting a specific color is fixedly selected and set.
  • some colors are not always corrected to a preferable color. Therefore, there is a problem to be solved in providing an imaging apparatus capable of changing a correction amount when correcting a specific color of a video signal according to a shooting situation or a video to be shot. Disclosure of the invention
  • an imaging device has the following configuration.
  • Shooting mode information including information of a specific color determined according to predetermined shooting conditions is set, and shooting is performed to select desired shooting mode information from the set shooting mode information.
  • a mode selection unit a specific color extraction unit that extracts a video signal of a specific color from the video signal based on the shooting mode information selected by the shooting mode selection unit, and a specific color extraction unit that extracts the video signal.
  • Color difference detection means for detecting the color difference of the specific color from the video signal of the specific color; and correction reference data stored as a reference for correcting the specific color to a predetermined color.
  • An overnight storage unit and selects the correction reference data of the corresponding specific color from the correction reference data storage unit based on the shooting mode information selected by the shooting mode selection means.
  • Color difference detection Means for calculating a color correction value for correcting the specific color to a predetermined color based on the color difference data of the specific color detected by the means, and calculation by the color correction value calculating means
  • Color correction processing means for correcting a specific color of the video signal to a predetermined color based on the obtained color correction value.
  • Shooting mode information including information of a specific color defined according to predetermined shooting conditions is set, and shooting is performed to select desired shooting mode information from the set shooting mode information.
  • Mode selecting means specific color extracting means for extracting a video signal of a specific color from video signals based on the shooting mode information selected by the shooting mode selecting means, and extracting by the specific color extracting means.
  • Color difference detection means for detecting the color difference data of the specific color from the output video signal of the specific color; and correction reference data stored as correction reference data for correcting the specific color to a predetermined color.
  • An image pickup apparatus comprising: a luminance correction unit configured to correct a luminance level of a signal.
  • the luminance correction means calculates a ratio of the video signal of the specific color in the video signal, and calculates the luminance of the video signal of the specific color in accordance with the calculated ratio.
  • the function described in (5) is provided with a function of correcting the power level.
  • the correction reference data is stored in a correction reference data storage unit that stores correction reference data serving as a reference for correcting the specific color to a predetermined color.
  • the color correction reference data is selected, and a color correction value for correcting the specific color to a predetermined color is calculated based on the selected correction reference data and the color difference data of the specific color detected in the color difference detection step.
  • a video signal of a specific color is extracted from the video signal based on the selected shooting mode information, color difference data is detected from the extracted video signal of the specific color, and the detected color difference is detected.
  • a color correction value for correcting the specific color to a predetermined color is calculated based on the data and the correction reference data of the specific color, and the specific color of the video signal is determined based on the calculated color correction value. Since the color is corrected, the specific color can be corrected with the correction amount according to the shooting conditions and the video to be shot.
  • the luminance level of the video signal is corrected according to the luminance level of the video signal of the specific color.
  • the ratio of the video signal of the specific color in the video signal is calculated, and the luminance level of the specific color is calculated according to the calculated ratio. Since the correction is performed, the luminance of the specific color can be corrected according to the shooting conditions and the video to be shot.
  • FIG. 1 is a block diagram schematically showing a configuration of a main part for performing a color correction process in an imaging apparatus according to the present invention.
  • FIG. 2 is a flowchart showing a process of a color correction process by the imaging device of FIG.
  • FIG. 3 is an explanatory diagram schematically showing how the extraction range of a specific color is changed according to the luminance level of a video signal in the imaging device of FIG.
  • FIG. 4 is an explanatory diagram for explaining a look-up table included in the imaging device of FIG.
  • FIG. 5 is an explanatory diagram for explaining color point correction in the imaging device of FIG. 1.
  • FIG. 6 is an explanatory diagram for describing hue correction in the imaging device of FIG. 1.
  • FIG. 7 is a block diagram schematically showing a configuration of a main part for performing color correction processing in a conventional imaging apparatus.
  • FIG. 8 is a flowchart showing a process of a color correction process by the imaging device of FIG.
  • 9A to 9D are explanatory diagrams schematically showing a state of the color correction processing by the imaging device in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a schematic configuration of a main part for performing a color signal correction process in an imaging device, and includes an imaging lens unit 101, an imaging device 102, an SZH (Sam1e / H o 1 d) circuit 103, AGC (Automatic Gain Control) circuit 104, AZD (An a 1 og / D igita 1) conversion circuit 105, specific color extraction circuit 110 6, WB (white balance) circuit 107, gamma correction circuit 108, signal processing circuit 109, color difference signal correction circuit 110, brightness correction circuit 111, shooting mode selection circuit 122 0, a color correction value setting circuit 130, a specific color signal processing unit 140, and the like.
  • the imaging lens unit 101 captures light from a subject and sends it to the imaging device 102.
  • the image sensor 102 includes a plurality of pixels (for example, CCD (Charge Couled Device)) that convert light into electric signals.
  • Each pixel converts light from a subject passing through the imaging lens unit 101 into an electric signal, and sends the signal to the SZH circuit 103 as an analog video signal.
  • CCD Charge Couled Device
  • the SZH circuit 103 samples the analog video signal sent from the image sensor 102, sends it to the AGC circuit 104, and terminates the processing of the sampled value by the A.ZD conversion circuit 105. After this processing is completed, the next sampling value is sent to the AGC circuit 104.
  • the AGC circuit 104 amplifies the analog video signal sampled by the SZH circuit 103 and sends it to the AZD conversion circuit 105.
  • the 80 conversion circuit 105 converts the analog video signal amplified by the AGC circuit 104 into a digital video signal (R [red] ZG [green] ZB [blue]) and converts it to a specific color extraction circuit. Transmit to 106 and WB circuit 107.
  • the specific color extraction circuit 106 receives the video signal (R [red] ZG [green]) sent from the AZD conversion circuit 105 based on the shooting mode information from the shooting mode selection circuit 120 described later. ZB [blue]), extract the video signal of a specific color to be subjected to color correction (hereinafter referred to as a specific color signal (Rs [red] ZGs [green] / Bs [blue])) and white balance , And sends the extracted specific color signal (Rs [red] ZGs [green] ZBs [blue]) to the WB circuit of the specific color signal processing unit 140 1 4 Send to 1.
  • the specific color extraction circuit 106 determines the extraction range of the specific color according to the luminance level of the video signal (R [red] ZG [green] / B [blue]). Then, the video signal of the specific color is detected.
  • the WB (white balance) circuit 107 converts the image sent from the AZD conversion circuit 105 according to the control amount calculated by the specific color extraction circuit 106.
  • the white balance of the signal (R [red] / G [green] ZB [blue]) is corrected and sent to the gamma correction circuit 108.
  • the gamma correction circuit 108 corrects the gradation of the video signal (R [red] ZG [green] / B [blue]) sent from the WB circuit 107, that is, performs gamma correction.
  • the signal is sent to the signal processing circuit 109.
  • the signal processing circuit 109 converts the video signal (R [red] ZG [green] ZB [blue]) sent from the gamma correction circuit 108 into a luminance signal Y, a color difference signal [B-Y], and a color difference signal. Convert to [R—Y]. Then, the converted color difference signal [B ⁇ Y] and the color difference signal [R ⁇ Y] are sent to the color difference signal correction circuit 110, and the converted brightness signal Y is sent to the brightness correction circuit 111.
  • the color difference signal correction circuit 110 receives the color difference signal [B ⁇ Y] and the color difference signal sent from the signal processing circuit 109 based on the color correction value calculated by the color correction value setting circuit 130 described later.
  • the color correction processing of the signal [RY] is performed, and the corrected color difference signal [BY] and the corrected color difference signal [RY] that have been subjected to the color correction processing are sent to the next stage circuit.
  • the luminance correction circuit 111 is based on the imaging mode information from the imaging mode selection circuit 120 and the luminance signal Ys of the specific color converted by the signal processing circuit 144 of the specific color signal processing unit 140. Then, the luminance level of the luminance signal Y sent from the signal processing circuit 109 is corrected, and the corrected luminance signal Y "is sent to the next-stage circuit.
  • the brightness correction circuit 1 1 1 uses the captured video signal (R [red] ZG
  • the shooting mode selection circuit 120 a plurality of shooting modes are set in advance according to shooting conditions and scenes (eg, sea, night view, portrait, landscape, etc.), and a desired shooting mode is selected. be able to.
  • the photographing mode information corresponding to the selected photographing mode is transmitted to each part of the device, such as the specific color extraction circuit 106, the color correction value setting circuit 130, and the luminance correction circuit 111. Send out.
  • the shooting mode information includes information on specific colors to be subjected to color correction determined according to the shooting mode, information necessary for automatically performing various settings such as focus and white balance, and the like. ing.
  • the shooting mode selection circuit 120 can automatically select the appropriate shooting mode according to the shooting environment, such as the surrounding brightness and the light source status, and switches between automatic selection and manual selection. You can also do so.
  • the color correction value setting circuit 130 has a look-up table in which correction reference data serving as a reference when calculating a color correction value for correcting a specific color to a predetermined color is stored.
  • correction reference data for example, data of a correction amount serving as a reference for correcting a specific color to a color that is most beautifully perceived by humans (hereinafter referred to as a memory color) is set.
  • a specific color to be corrected is determined based on the shooting mode information from the shooting mode selection circuit 120, and correction reference data for correcting the determined specific color is read from a look-up table.
  • correction reference data for correcting the determined specific color is read from a look-up table.
  • a color correction value necessary for correcting to a predetermined color is determined. The calculated value is sent to the color difference signal correction circuit 110.
  • the correction reference data of the lookup table can be changed.
  • a device that can acquire data from a recording medium such as a memory card
  • another correction reference data recorded on a recording medium such as a memory card
  • the device can read and change data, or if the device can be connected to a communication network, Since it can be changed to the correction reference data obtained via the communication network, it is also possible to change the correction reference data to have the color and hue according to the user's preference, or to customize the data for each user.
  • the specific color signal processing section 140 includes a white balance (WB) circuit 141, a gamma correction circuit 144, a signal processing circuit 144, a color difference signal processing circuit 144, and the like.
  • WB white balance
  • the WB (white balance) circuit 144 of the specific color signal processing unit 140 is a specific color signal (Rs [red] / Gs) extracted by the specific color extraction circuit 106.
  • the gamma correction circuit 144 of the specific color signal processing unit 140 corrects the gradation of the specific color signal (Rs [red] ZGs [green] / Bs [blue]) sent from the WB circuit 141 That is, the signal is subjected to so-called gamma correction and sent to the signal processing circuit 144.
  • the signal processing circuit 144 of the specific color signal processing unit 140 converts the specific color signal (Rs [red] ZGs [green] / Bs [blue]) gamma-corrected by the gamma correction circuit 144 into a luminance signal Ys And the color difference signal [Bs-Ys] and the color difference signal [Rs-Ys], and sends the converted color difference signal [Bs-Ys] and the color difference signal [Rs-Ys] to the color difference signal processing circuit 144. Then, the converted luminance signal Ys is sent to the luminance correction circuit 111.
  • the color difference signal processing circuit 144 of the specific color signal processing section 140 converts color difference data from the color difference signal [Bs-Ys] and the color difference signal [Rs-Ys] sent from the signal processing circuit 144.
  • the detected color difference data is sent to the color correction value setting circuit 130.
  • the process of the color correction process in the imaging device 100 having such a configuration will be described with reference to FIG. First, when the photographer selects a desired shooting mode via the shooting mode selection circuit 120, or when the shooting mode is automatically selected according to the shooting environment, the shooting corresponding to the selected shooting mode is performed. Mode information is sent to each part of the device (specific color extraction circuit 106, color correction value setting circuit 130, brightness correction circuit 111, etc.), and various settings such as focus and white balance are automatically performed ( ST 100).
  • a specific color signal (Rs [red] ZGs [green] ZBs [blue]) is extracted from [red] / G [green] ZB [blue]), the control amount of white balance is calculated, and the WB (white balance) circuit 1 And the extracted specific color signals (Rs [red], ZGs [green] ZBs [blue]) are sent to the WB (white balance) circuit 144 of the specific color signal processing unit 140 (ST 1 1 0, ST 120).
  • the WB circuit 107 determines the color temperature of the video signal (R [red] / G [green] ZB [blue]) sent from the A / D conversion circuit 105, and determines the specific color. Based on the white balance control amount calculated in 106, the white balance of the video signal (R [red] ZG [green] ZB [blue]) is corrected and sent to the gamma correction circuit 108 ( ST 130).
  • the gamma correction circuit 108 corrects (gamma-corrects) the gradation of the video signal (R [red] / G [green] ZB [blue]) whose white balance has been corrected, and sends it to the signal processing circuit 109. (ST 1 31). ,
  • the signal processing circuit 109 converts the gamma-corrected video signal (R [red] ./ G [green] / B [blue]) into a luminance signal Y, a color difference signal [B-Y], and a color difference signal [R-Y And sends the converted luminance signal Y to the luminance correction circuit 111 and sends the converted chrominance signal [B-Y] and chrominance signal [R-Y] to the chrominance signal correction circuit 110 ( ST 132).
  • the specific color signal (Rs [red] / Gs [green] / Bs
  • the color temperature of [blue]) is determined, the white balance of the specific color signal (Rs [red] ZGs [green] ZBs [blue]) is corrected and sent to the gamma correction circuit 142 (ST 140).
  • the gamma correction circuit 142 of the specific color signal processing unit 140 converts the white balance corrected specific color signal (Rs [red] ZGs [green] ZBs
  • the [blue]) gradation is corrected (gamma correction) and sent to the signal processing circuit 143 (ST 141).
  • the signal processing circuit 143 of the specific color signal processing unit 140 converts the gamma corrected specific color signal (Rs [red] ZGs [green] ZBs [blue]) into a luminance signal Ys and a color difference signal [Bs_Ys]. ], A color difference signal [R s-Y s], a luminance signal Y s is sent to a luminance correction circuit 111, and a color difference signal [B s-Y s] a color difference signal [R s-Y s] Is sent to the color difference signal processing circuit 144 (ST 142). Next, in the color difference signal processing circuit 144 of the specific color signal processing unit 140, the color difference signal [Bs-Ys] and the color difference signal sent from the signal processing circuit 143 are sent.
  • the color difference data of the specific color is detected from [Rs-Ys], and the detected color difference data is sent to the color correction value setting circuit 130 (ST 143).
  • the color correction value setting circuit 130 determines a specific color to be corrected based on the shooting mode information, and sets a correction reference data for correcting the specific color determined from the look-up table. read out.
  • the video signal of the specific color to be color corrected is corrected to a predetermined color (such as a memory color). Is calculated, and the calculated color correction value is sent to the color difference signal correction circuit 110 (ST144).
  • the color difference signal correction circuit 11 The color correction processing of the specific color is performed by 0 and the luminance correction circuit 1 1 1.
  • the color difference signal [B ⁇ Y] and the color difference signal [B ⁇ Y] sent from the signal processing circuit 109 are based on the color correction value set by the color correction value setting circuit 130.
  • R-Y and outputs the color-corrected color-difference signal [B-Y] "and color-difference signal [R-Y]" to the next stage circuit (ST150, ST160).
  • the luminance correction circuit 111 performs signal processing based on the imaging mode information from the imaging mode selection circuit 120 and the luminance signal Ys converted by the signal processing circuit 143 of the specific color signal processing unit 140.
  • the luminance level of the luminance signal Y sent from the circuit 109 is corrected, and the corrected luminance signal Y "is output to the next circuit (ST150, ST160).
  • the color correction processing of the specific color in FIG. 2 will be described more specifically.
  • the video signal (R [red] ZG [green] ZB
  • a video signal of a specific color that is, a specific color signal (Rs [red] Z Gs [green] ZBs [blue]) is extracted from [blue]).
  • the specific color extraction circuit 106 changes the extraction range of the specific color according to the luminance level of the video signal (R [red] / G [green] ZB [blue]) as shown in FIG. To extract a video signal of a specific color.
  • the specific color signal (Rs [red] / Gs [green] ZBs [blue]) extracted by the specific color extraction circuit 106 is combined with the WB circuit 141 of the specific color signal processing unit 140 and the gamma correction.
  • the circuit 1442 corrects the white balance and gradation, and the signal processing circuit 144 converts them into a luminance signal Ys, a color difference signal [Bs-Ys], and a color difference signal [Rs_Ys]. Is done.
  • the color difference signal processing circuit 144 of the specific color signal processing unit 140 the color difference signal [B s ⁇ Y s] and the color difference signal sent from the signal processing circuit 144 are sent.
  • the color difference data is detected from [R s —Y s], and the detected color difference data is sent to the color correction value setting circuit 130.
  • the color correction value setting circuit 130 determines the specific color to be corrected based on the shooting mode information from the shooting mode selection circuit 120, and corrects the corresponding specific color from the lookup table. Read the reference data.
  • the look-up table will be described with reference to FIG.
  • the position (or range) where a certain color (memory color, etc.) exists on the color difference plane is determined, and the predetermined color (memory color, etc.) exists
  • a color existing in a predetermined range (hereinafter referred to as a correction target range) based on the position (or range) is a color to be corrected, that is, a specific color.
  • This correction target range is equally divided into regions of a predetermined size. For example, in the color difference plane as shown in Fig. 4 (a), the range to be corrected is divided into 5 parts (0 to 4) both vertically and horizontally, and the position corresponding to each divided intersection (the position of "M” in the figure) ),
  • the color correction reference data sets the reference value of the correction amount for the color existing in the above, that is, the correction value for correcting the specific color to the memory color as the color correction matrix “M00” to “M44”.
  • the color correction matrices “M00” to “M44” constituting the color correction reference data have gains in the color difference signal [B_Y] and the color difference signal [R ⁇ Y], respectively.
  • Four parameter values (coefficient values) are provided, namely, Gain B and Gain R as the correction amounts in the direction, and Hue B and Hu e R as the correction amounts in the hue direction.
  • the color correction matrix is as shown in Fig. (C).
  • a look-up table stores correction reference data for various specific colors as table data in a memory or the like in advance.
  • the color correction value setting circuit 130 sets a specific color to a predetermined color based on the correction reference data of the specific color read from the lookup table and the color difference data sent from the color difference signal processing circuit 144. Calculate the color correction value for correcting the color (memory color, etc.). Specifically, the parameter value of each color correction matrix in the read correction reference data is recalculated according to the color difference data, and the data in which the calculated parameter value is set in the color correction matrix is the color correction value.
  • a correction method differs depending on characteristics of a specific color to be corrected.
  • the color point correction means that a color to be corrected (a specific color) is corrected to a certain point (hereinafter referred to as a color point) in a color difference plane, for example, when correcting the color of a photographed blue sky to a blue sky color as a memory color. This is to correct the color in the direction converging to the memory color corresponding to.
  • FIG. 5 is a diagram schematically showing color correction values of color point correction.
  • the correction reference data consisting of the color correction matrices “M00” to “M44” is set for the correction target range shown in FIG. 5 (a)
  • the color starts from the outermost position of the correction target range.
  • the correction amount is gradually increased toward the point X0, and a color correction value is calculated such that the correction amount is gradually reduced from the position where the correction amount is the maximum toward the color point X0.
  • the color corresponding to the center position of the correction target range is at the same position as the color point X0, that is, since the color is the same color, a parameter value is set so that the color correction is not performed.
  • the parameter value is set so that the color is not corrected.
  • FIG. 5 (b) shows an example of the color correction values calculated based on the correction reference data including the color correction matrices “M00” to “M44” and the color difference data. Except for M13 ”,“ M21 ”,“ M31 to M33 ”, ⁇ 23], the so-called unit matrix (parameter values in Fig. 4 (b) are set to G ain B ⁇ “ l.0 ”, G ain R ⁇ “ 1.0 ”, Hu e B ⁇ “ 0.0 ”, Hu e R ⁇ “ 0.0 ”). Thus, the color correction of the color corresponding to the center position and the outermost position of the correction target range is not performed.
  • Hue correction is used to correct the color (specific color) to be corrected to a color within a predetermined hue range on a color difference plane, for example, when correcting the skin color of a photographed person to the skin color of a memory color. Is what you do.
  • FIG. 6 is a diagram schematically showing correction values of hue correction. For example, if correction reference data consisting of the color correction matrices “M00” to “M44” is set for the correction target range shown in FIG. The correction amount is gradually increased toward the hue range W, and the color correction value is calculated so that the correction amount gradually decreases toward the hue range W from a predetermined position where the maximum correction amount is obtained.
  • the color corresponding to the hue range W of the correction target range is set to a parameter value so that color correction is not performed, and the color corresponding to the outermost position of the correction target range changes color when corrected.
  • Parameter value is set so that color correction is not performed because the image is often unnatural.
  • FIG. 6 (b) shows an example of the color correction values calculated based on the correction reference data including the color correction matrices “M00” to “M44” and the color difference data. Except for “M21”, “M31”, “M32”, “M12”, “M13”, and “M23”, so-called unit matrix (parameter values in Fig. 4 (b) are set to Gai nB ⁇ “1. 0 ”, Gain R ⁇ “ 1.0 ”, Hu e B ⁇ “ 0.0 ”, Hu e R ⁇ “ 0.0 ”) to set the hue range W and Color correction of the color corresponding to the outermost position is not performed. In this way, the color correction value setting circuit 130 calculates the color correction value according to the characteristic of the specific color to be corrected, and sends the calculated color correction value to the color difference signal correction circuit 110. .
  • the color difference signal correction circuit 110 converts the color difference signal [B ⁇ Y] and the color difference signal [R ⁇ Y] sent from the signal processing circuit 109 into color correction values based on the following Expression 1. Color correction is performed by performing a linear conversion using the color correction value calculated by the setting circuit 130.
  • the color correction matrix (parameter value of the color correction matrix) surrounding the position is used. Then, the correction amount is calculated, and color correction is performed based on the calculated correction amount.
  • the color correction reference data—evening color correction matrix is based on the parameter values of “M02”, “M12”, “M03” and “M13”. To calculate the correction amount, and perform the color correction based on the calculated correction amount.
  • the luminance correction circuit 111 based on the imaging mode information from the imaging mode selection circuit 120 and the luminance signal Ys converted by the signal processing circuit 143 of the specific color signal processing unit 140, Luminance signal Y from signal processing circuit 109 And outputs the corrected luminance signal Y "to the next stage circuit.
  • the luminance correction circuit 1 1 1 calculates the ratio of a specific color in the entire captured video signal (R [red] ZG [green] / B [blue]) (the entire image frame), and according to the calculated ratio. It is also possible to change the correction amount of the luminance level of a specific color by using the following method.
  • the correction amount of the luminance level of the skin color is increased, and the correction amount of the luminance level of the flesh color is reduced when the ratio is smaller than a predetermined ratio.
  • the color-corrected specific color can be corrected so as to be a more preferable color.
  • a video signal of a specific color to be corrected is extracted from a captured video signal, a color correction amount is calculated based on the extracted specific color video signal, and correction is performed based on the calculated correction amount.
  • the target color is corrected, and the brightness level of the video signal captured is corrected according to the brightness level of the extracted video signal of the specific color. This provides an excellent effect that the color can be corrected to a preferable color (for example, a memory color) by a correction amount corresponding to a video.
  • the captured video signal can be identified. This provides an excellent effect that the color can be corrected to a luminance that provides a preferable color according to the shooting situation and the shot video.
  • Another advantage is that by making the extraction range of the specific color variable according to the luminance level of the captured video signal, the accuracy of extracting the video signal of the specific color to be corrected is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)
  • Color Television Image Signal Generators (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Processing (AREA)

Description

W
明細
技術分野
本発明は、 撮像装置に関する。 詳しくは、 映像信号における特定色を 記憶色など所定の色に補正することができる撮像装置に関する。 背景技術
従来技術において、 撮影する場面に応じた撮影モード (例えば、 海、 夜景、 ポートレート、 風景など) を選択することで、 ピントやホワイト バランスなどの各種設定を自動的に行い、 映像信号における特定色を撮 影する場面に適した所定の色に補正することができるデジタルカメラな どの装置がある。 '
また、 このような映像信号における特定色を補正できる装置において、 特定の色を人間が潜在的に記憶している最も美しいと感じる色、 いわゆ る記憶色に補正する画像処理装置などが考案されている。 (例えば、 特 開 2 0 0 1— 2 9 2 3 9 0号公報 (第 3— 5頁、 第 5図) 参照。 ) 。 このような装置では、 例えば、 青空を含んだ風景を撮影した場合、 撮 影した映像を見るときには、 実際に見た青空の色よりも鮮やかな色彩の 青色を想起することが多いため、 実際に撮影した映像の青色 (特定色) を記憶色の青色になるように補正を行い、 イメージ通りの色 (記憶色な ど) で映像を再現している。
ここで、 撮影した映像信号の特定色を記憶色に補正するときの色補正 処理動作の概要について説明する。 第 7図は、 従来技術の撮像装置において、 色補正処理を行うための主 要部の概略構成を示したプロック図の一例であり、 撮像装置 1 0 O Aは, 撮像レンズ部 1 0 1 A、 撮像素子 1 0 2 A、 S/H (S amp l e /H o l d) 回路 1 0 3 A、 AGC (Au t oma t i c G a i n C o n t r o 1 ) 回路 1 0 4A、 A/D (A n a 1 o g/D i g i t a 1 ) 変換回路 1 0 5 A、 特定色抽出回路 1 0 6 A、 WB (ホワイ トバラン ス) 回路 1 0 7 A、 ガンマ補正回路 1 0 8 A、 信号処理回路 1 0 9 A、 色差信号補正回路 1 1 0 A、 撮影モ一ド選択回路 1 2 0 A、 色補正値設 定回路 1 3 0 Aなどを備えている。
このような構成を備えた撮像装置 1 0 0 Aにおける色信号補正処理の 動作概要について第 8図のフローチャートを参照しながら説明する。 まず、 撮影者が撮影モード選択回路 1 2 0 Aを介して所望の撮影モー ド (例えば、 海、 夜景、 ポートレート、 風景など) を選択すると、 装置 各部は、 撮影モード選択回路 1 2 0 Aで選択された撮影モードに応じて、 ピントやホワイ トバランスなどの各種設定が自動的に行われる (S T 1 0) 。
色補正値設定回路 1 3 0 Aでは、 特定色を記憶色に補正するための色 補正値のテーブルデータが設定されており、 選択された撮影モードに応 じて、 このテーブルデータの中から該当する特定色の色補正値を選択し、 選択した色補正値を色差信号補正回路 1 1 0 Aに設定する (S T 1 1、 S T 1 2 ) 。
そして、 撮影を開始すると、 撮像レンズ部 1 0 1 Aで取り込まれた被 写体からの光を撮像素子 1 0 2 Aで電気信号に変換し、 S/H回路 1 0 3 A、 AG C回路 1 0 4 Aを介し、 A/D変換回路 1 0 5 Aによってデ ジタルの映像信号 (R [赤] G [緑] /B [青] ) に変換して特定色 抽出回路 1 0 6 A及び WB (ホワイトバランス) 回路 1 0 7 Aに送出す
Φ
特定色抽出回路 1 0 6 Aでは、 AZD変換回路 1 0 5 Aから送られて くる映像信号の中から特定色の映像信号を抽出し、 抽出した特定色の映 像信号に適したホワイ トバランスの制御量を算出して W B (ホワイトバ ランス) 回路 1 0 7 Aへ送出する (S T 1 3 ) 。
WB (ホワイトバランス) 回路 1 0 7 Aは、 AZD変換回路 1 0 5 A から送られてくる映像信号 (R [赤] /G [緑] ZB [青] ) の色温度 を判定し、 特定色抽出回路 1 0 6 Aから送られてくるホワイトバランス の制御量に基づいて映像信号 (R [赤] ZG [緑] ZB [青] ) のホヮ ィ トパランスを補正してガンマ補正回路 1 0 8 Aに送出し、 ガンマ補正 回路 1 0 8 Aは、 この映像信号の階調を補正して信号処理回路 1 0 9 A に送出する (S T 1 4、 S T 1 5) 。
信号処理回路 1 0 9 Aでは、 ガンマ補正回路 1 0 8 Aから送られてく るデジタル映像信号 (R [赤] ZG [緑] ZB [青] ) を輝度信号 Y及 び色差信号 [B— Y] 、 色差信号 [R— Y] に変換し、 輝度信号 Yを出 力すると共に、 変換した色差信号 [B— Y] 、 色差信号 [R— Y] を色 差信号補正回路 1 1 O Aに送る (S T 1 6) 。
色差信号補正回路 1 1 0 Aは、 色補正値設定回路 1 3 0 Aによって設 定された色補正値に基づき、 信号処理回路 1 0 9 Aから送られてくる色 差信号 [B— Y] 及び色差信号 [R— Y] における特定色を所定の記憶 色に色補正し、 色補正した色差信号 [B— Y] "及び色差信号 [R— Y] "を次段回路へ出力する (S T 1 7、 S T 1 8) 。
例えば、 ある特定色 a を記憶色 1に色補正する場合を例にして説 明する。 撮影モード選択回路 1 2 O Aである撮影モードを選択すると、 色補正 値設定回路 1 3 O Aは、 テーブルデータから撮影モードに応じた特定色 を記憶色 α 1に補正するための色補正値を選択し、 色差信号補正回 路 1 1 0 Αに設定する。
具体的には、 第 9 A図に示すように、 特定色に対するゲイン方向の補 正量 G a i n B、 G a i n R、 色相方向の補正量 Hu e B、 Hu e Rと いうパラメータ値 (係数値) からなる色補正マトリクスとして色補正値 が与えられる。
例えば、 特定色に対してゲイン方向の補正量 G a i n B→ 「 1. 5」 . G a i n R→ 「 l . 0」 、 色相方向の補正量 H u e B→ 「一 0. 5」 、 Hu e R→ 「0. 0」 というパラメ一夕値で与えられた場合、 第 9 B図 に示すような色補正値 (色補正マトリクス) となる。
色差信号補正回路 1 1 O Aは、 このような色補正値が設定されており. 第 9 C図に示すように、 信号処理回路 1 0 9 Aから送られてくる色差信 号 [B— Y] 及び色差信号 [R— Y] を色補正値 (色補正マトリクス) によって線形変換することで色補正処理が行われる。
例えば、 第 9 D図に示すような色差平面において、 色差信号 [B _ Y] 及び色差信号 [R— Y] の中に含まれている特定色 (b、 r ) が所定の記憶色 α 1 (b\ r ") に変換された色差信号 [B— Y] "及 び色差信号 [R— Y] "が出力される。
このようにして撮影モ一ドに応じて映像信号の特定色を所定の記憶色 に色補正してイメージ通りの色 (記憶色など) で映像を再現している。 しかしながら、 従来の撮像装置では、 撮影モードが選択されると、 特 定色を補正するための色補正値 (色補正量) が固定的に選択、 設定され てしまうため、 撮影状況や撮影する映像によっては必ずしも好ましい色 に補正されるとは限らないという問題を有している。 従って、 映像信号の特定色を補正するときの補正量を撮影状況や撮影 する映像に応じて変化させることができる撮像装置を提供することに解 決しなければならない課題を有する。 発明の開示
前記課題を解決するため、 本発明に係る撮像装置は次のような構成に することである。
( 1 ) 所定の撮影条件に応じて定めてある特定色の情報を含んだ撮影 モード情報が設定されており、 この設定してある撮影モード情報の中か ら所望の撮影モード情報を選択する撮影モード選択手段と、 前記撮影モ 一ド選択手段で選択した撮影モード情報に基づいて映像信号の中から特 定色の映像信号を抽出する特定色抽出手段と、 前記特定色抽出手段で抽 出した特定色の映像信号から該特定色の色差デ一夕を検出する色差検出 手段と、 前記特定色を所定の色に補正するための基準となる補正基準デ 一夕が記憶してある補正基準デ一夕記憶手段と、 前記撮影モード選択手 段で選択した撮影モード情報に基づいて前記補正基準データ記憶手段の 中から該当する特定色の補正基準データを選択し、 該選択した補正基準 データと前記色差検出手段で検出した特定色の色差デ一夕に基づいて該 当の特定色を所定の色に補正するための色補正値を算出する色補正値算 出手段と、 前記色補正値算出手段で算出した色補正値に基づいて前記映 像信号の特定色を所定の色に補正する色補正処理手段と、 を備えた撮像
( 2 ) 前記特定色抽出手段は、 前記映像信号の輝度レベルに応じて前 記特定色の映像信号の抽出範囲を変化させる機能を備えていることを特 徵とする ( 1 ) に記載の撮像装置。 ( 3 ) 前記補正基準デ一夕記憶手段は、 記憶している補正基準データ を変更できる機能を備えていることを特徴とする ( 1 ) に記載の撮像装
( 4 ) 前記撮影モード選択手段は、 前記撮影モード情報を撮影環境に 応じて自動的に選択する機能を備えていることを特徴とする ( 1 ) に記 載の撮像装置。
( 5 ) 所定の撮影条件に応じて定めてある特定色の情報を含んだ撮影 モード情報が設定されており、 この設定してある撮影モード情報の中か ら所望の撮影モード情報を選択する撮影モ一ド選択手段と、 前記撮影モ 一ド選択手段で選択した撮影モード情報に基づいて映像信号の中から特 定色の映像信号を抽出する特定色抽出手段と、 前記特定色抽出手段で抽 出した特定色の映像信号から該特定色の色差データを検出する色差検出 手段と、 前記特定色を所定の色に補正するための基準となる補正基準デ 一夕が記憶してある補正基準データ記憶手段と、 前記撮影モード選択手 段で選択した撮影モード情報に基づいて前記補正基準データ記憶手段の 中から該当する特定色の補正基準データを選択し、 該選択した補正基準 データと前記色差検出手段で検出した特定色の色差デ一夕に基づいて該 当の特定色を所定の色に補正するための色補正値を算出する色補正値算 出手段と、 前記色補正値算出手段で算出した色補正値に基づいて前記映 像信号の特定色を所定の色に補正する色補正処理手段と、 前記特定色抽 出手段で抽出した特定色の映像信号における輝度レベルに応じて前記映 像信号の輝度レベルを補正する輝度補正手段と、 を備えていることを特 徵とする撮像装置。
( 6 ) 前記輝度補正手段は、 前記映像信号における前記特定色の映像 信号の割合を算出し、 該算出した割合に応じて該特定色の映像信号の輝 度レベルを補正する機能を備えていることを特徴とする ( 5 ) に記載の
( 7 ) 前記特定色抽出手段は、 前記映像信号の輝度レベルに応じて前 記特定色の映像信号の抽出範囲を変化させる機能を備えていることを特 徴とする (5 ) に記載の撮像装置。
( 8 ) 前記補正基準データ記憶手段は、 記憶している補正基準デ一夕 を変更できる機能を備えていることを特徴とする (5 ) に記載の撮像装 置。
( 9 ) 前記撮影モード選択手段は、 前記撮影モード情報を撮影環境に 応じて自動的に選択する機能を備えていることを特徴とする (5 ) に記 載の撮像装置。
( 1 0 ) 所定の撮影条件に応じて定めてある特定色の情報を含んだ 撮影モード情報が設定してある撮影モード情報の中から所望の撮影モ一 ド情報を選択する撮影モード選択ステップと、
前記撮影モ一ド選択ステップで選択した撮影モード情報に基づいて映 像信号の中から特定色の映像信号を抽出する特定色抽出ステップと、 前記特定色抽出ステツプで抽出した特定色の映像信号から該特定色の 色差データを検出する色差検出ステップと、
前記撮影モード選択ステップで選択した撮影モード情報に基づいて、 前記特定色を所定の色に補正するための基準となる補正基準データが記 憶してある補正基準データ記憶手段の中から該当する特定色の補正基準 データを選択し、 該選択した補正基準データと前記色差検出ステップで 検出した特定色の色差データに基づいて該当の特定色を所定の色に補正 するための色補正値を算出する色補正値算出ステップと、
前記色補正値算出ステップで算出した色補正値に基づいて前記映像信 号の特定色を所定の色に補正する色補正処理ステップと、 を備えた撮像方法。
このような構成の撮像装置において、 選択した撮影モード情報に基づ いて映像信号の中から特定色の映像信号を抽出し、 抽出した特定色の映 像信号から色差データを検出し、 検出した色差データと該当する特定色 の補正基準データとに基づいて該当の特定色を所定の色に補正するため の色補正値を算出し、 算出した色補正値に基づいて映像信号の特定色を 所定の色に補正するので、 撮影状況や撮影する映像に応じた補正量で特 定色を補正することができる。
また、 特定色の映像信号における輝度レベルに応じて映像信号の輝度 レベルを補正する、 又、 映像信号における特定色の映像信号の割合を算 出し、 算出した割合に応じて特定色の輝度レベルを補正するので、 該当 する特定色の輝度を撮影状況や撮影する映像に応じて補正することがで きる。 図面の簡単な説明
第 1図は、 本発明に係る撮像装置において色補正処理するための主要 部の構成を略示的に示したブロック図である。
第 2図は、 第 1図の撮像装置による色補正処理の過程を示したフロー チヤ一卜である。
第 3図は、 第 1図の撮像装置において、 映像信号の輝度レベルに応じ て特定色の抽出範囲を変化させる様子を略示的に示した説明図である。 第 4図は、 第 1図の撮像装置が具備しているルックアツプテーブルを 説明するための説明図である。
第 5図は、 第 1図の撮像装置における色点補正について説明するため の説明図である。 第 6図は、 第 1図の撮像装置における色相補正について説明するため の説明図である。
第 7図は、 従来技術の撮像装置において色補正処理するための主要部 の構成を略示的に示したプロック図である。
第 8図は、 第 7図の撮像装置による色補正処理の過程を示したフロー チヤ一卜である。
第 9 A図乃至第 9 D図は、 第 7図の撮像装置による色補正処理の様子 を略示的に示した説明図である。 発明を実施するための最良の形態
次に、 本発明に係る撮像装置における実施の形態について図面を参照 して説明する。 但し、 図面は専ら解説のためのものであって、 本発明の 技術的範囲を限定するものではない。
第 1図は、 撮像装置において、 色信号補正処理を行うための主要部の 概略構成を示したブロック図であり、 撮像レンズ部 1 0 1、 撮像素子 1 0 2、 SZH (S am 1 e /H o 1 d) 回路 1 0 3、 AG C (Au t oma t i c G a i n C o n t r o l ) 回路 1 0 4、 AZD (An a 1 o g/D i g i t a 1 ) 変換回路 1 0 5、 特定色抽出回路 1 0 6、 WB (ホワイトバランス) 回路 1 0 7、 ガンマ補正回路 1 0 8、 信号処 理回路 1 0 9、 色差信号補正回路 1 1 0、 輝度補正回路 1 1 1、 撮影モ 一ド選択回路 1 2 0、 色補正値設定回路 1 3 0、 特定色信号処理部 1 4 0などを備えている。
撮像レンズ部 1 0 1は、 被写体からの光を取り込んで撮像素子 1 0 2 へ送る。
撮像素子 1 0 2は、 光を電気信号に変換する複数個の画素 (例えば、 C CD (C h a r g e C o u l e d D e v i c e ) など) が配列 されており、 各画素によって撮像レンズ部 1 0 1を通過してくる被写体 からの光を電気信号に変換し、 アナログ映像信号として SZH回路 1 0 3に送出する。
SZH回路 1 0 3は、 撮像素子 1 0 2から送られてくるアナログ映像 信号をサンプリングして AG C回路 1 0 4に送出し、 サンプリングした 値を A.ZD変換回路 1 0 5の処理が終了するまで保持し、 この処理が終 了すると次のサンプリング値を AG C回路 1 0 4に送出する。
AG C回路 1 0 4は、 SZH回路 1 0 3でサンプリングされたアナ口 グ映像信号を増幅して、 AZD変換回路 1 0 5へ送出する。
八 0変換回路 1 0 5は、 AG C回路 1 0 4で増幅されたアナログ映 像信号をデジタルの映像信号 (R [赤] ZG [緑] ZB [青] ) に変換 して特定色抽出回路 1 0 6及び WB回路 1 0 7へ送出する。
特定色抽出回路 1 0 6は、 後述する撮影モード選択回路 1 2 0からの 撮影モード情報に基づいて、 AZD変換回路 1 0 5から送られてくる映 像信号 (R [赤] ZG [緑] ZB [青] ) のなかから、 色補正の対象と する特定色の映像信号 (以下、 特定色信号 (Rs [赤] ZGs [緑] / Bs [青] ) という) を抽出し、 ホワイ トバランスの制御量を算出して WB回路 1 0 7に送出し、 また、 抽出した特定色信号 (Rs [赤] ZG s [緑] ZBs [青] ) を特定色信号処理部 1 4 0の WB回路 1 4 1に 送出する。
なお、 特定色抽出回路 1 0 6は、 特定色の映像信号を抽出するとき、 映像信号 (R [赤] ZG [緑] /B [青] ) の輝度レベルに応じて特定 色の抽出範囲を変更して特定色の映像信号の検出を行う。
WB (ホワイ トバランス) 回路 1 0 7は、 特定色抽出回路 1 0 6で算 出された制御量に従って、 AZD変換回路 1 0 5から送られてくる映像 信号 (R [赤] /G [緑] ZB [青] ) のホワイ トバランスの補正を行 い、 ガンマ補正回路 1 0 8へ送出する。
ガンマ補正回路 1 0 8は、 WB回路 1 0 7から送られてくる映像信号 (R [赤] ZG [緑] /B [青] ) の階調を補正する、 いわゆる、 ガン マ補正を行って信号処理回路 1 0 9へ送出する。
信号処理回路 1 0 9は、 ガンマ補正回路 1 0 8から送られてくる映像 信号 (R [赤] ZG [緑] ZB [青] ) を輝度信号 Y及び色差信号 [B — Y] 、 色差信号 [R— Y] に変換する。 そして、 変換した色差信号 [B -Y] 、 色差信号 [R— Y] を色差信号補正回路 1 1 0に送出し、 また、 変換した輝度信号 Yを輝度補正回路 1 1 1に送出する。
色差信号補正回路 1 1 0は、 後述する色補正値設定回路 1 3 0で算出 した色補正値に基づいて、 信号処理回路 1 0 9から送られてくる色差信 号 [B— Y] 及び色差信号 [R— Y] の色補正処理を行い、 色補正処理 した補正色差信号 [B— Y] "及び補正色差信号 [R— Y] "を次段回 路へ送出する。
輝度補正回路 1 1 1は、 撮影モード選択回路 1 2 0からの撮像モード 情報と、 特定色信号処理部 1 40の信号処理回路 1 4 3で変換された特 定色の輝度信号 Ys とに基づいて、 信号処理回路 1 0 9から送られてく る輝度信号 Yの輝度レベルを補正し、 補正した輝度信号 Y"を次段回路 へ送出する。
また、 輝度補正回路 1 1 1は、 撮影した映像信号 (R [赤] ZG
[緑] ZB [青] ) 全体 (画枠全体) における特定色の割合を算出して、 算出した割合に応じて該当する特定色の輝度レベルを補正する。
撮影モード選択回路 1 2 0は、 予め撮影する条件や場面など (例えば、 海、 夜景、 ポートレート., 風景など) に応じて複数の撮影モードが設定 されており、 所望の撮影モードを選択することができる。 そして、 撮影モードが選択されると、 選択された撮影モードに対応し た撮影モード情報を特定色抽出回路 1 0 6、 色補正値設定回路 1 3 0、 輝度補正回路 1 1 1など装置各部に送出する。
撮影モード情報には、 撮影モ一ドに応じて定められた色補正の対象と なる特定色の情報、 ピントやホワイ トバランスなどの各種設定を自動的 に行うために必要な情報などが含まれている。
なお、 撮影モード選択回路 1 2 0は、 周囲の明るさや光源の状態など 撮影環境に応じて適切な撮影モードを自動的に選択できるようにするこ とも可能であり、 自動選択と手動選択を切り換えるようにすることもで きる。
色補正値設定回路 1 3 0は、 特定色を所定の色に補正するための色補 正値を算出するときの基準となる補正基準データが記憶してあるルック アップテーブルを有している。
補正基準データには、 例えば、 特定色を人間が潜在的に記憶している 最も美しいと感じる色 (以下、 記憶色という) に補正するための基準と なる補正量のデータが設定されている。
そして、 撮影モード選択回路 1 2 0からの撮影モード情報に基づいて 補正対象となる特定色を判別し、 ルックアップテーブルから判別した特 定色を補正するための補正基準データを読み出し、 この補正基準データ と特定色信号処理部 1 4 0の色差信号処理回路 1 4 4から送られてくる 色差データとに基づいて、 所定の色 (記憶色など) に補正するために必 要な色補正値を算出して色差信号補正回路 1 1 0へ送出する。
なお、 ルックァップテーブルの補正基準データは変更可能であり、 例 えば、 メモリカードなどの記録媒体からデータを取得可能な機器の場合, 記録媒体 (メモリカードなど) に記録されている別の補正基準デー夕を 読み出して変更したり、 通信ネットワークと接続可能な機器の場合、 通 信ネットワークを介して取得した補正基準データに変更することができ るので、 ユーザの好みに応じた色や色相となるような補正基準データに 変更したり、 ユーザ別にカスタマイズすることも可能である。
特定色信号処理部 1 4 0は、 WB (ホワイ トバランス) 回路 1 4 1、 ガンマ補正回路 1 4 2、 信号処理回路 1 4 3、 色差信号処理回路 1 4 4などから構成されている。
特定色信号処理部 1 4 0の WB (ホワイトバランス) 回路 1 4 1は、 特定色抽出回路 1 0 6で抽出された特定色信号 (Rs [赤] /Gs
[緑] ZBs [青] ) のホワイトバランスを補正してガンマ補正回路 1 4 2へ送出する。
特定色信号処理部 1 4 0のガンマ補正回路 1 4 2は、 WB回路 1 4 1から送られてくる特定色信号 (Rs [赤] ZGs [緑] /Bs [青] ) の階調を補正する、 いわゆる、 ガンマ補正を行って信号処理回路 1 4 3 へ送出する。
特定色信号処理部 1 4 0の信号処理回路 1 4 3は、 ガンマ補正回路 1 4 2でガンマ補正された特定色信号 (Rs [赤] ZGs [緑] /Bs [青] ) を輝度信号 Ys及び色差信号 [Bs— Ys] 、 色差信号 [Rs - Ys] に変換し、 変換した色差信号 [Bs— Ys] 、 色差信号 [Rs— Y s] を色差信号処理回路 1 4 4に送出するとともに、 変換した輝度信号 Ys を輝度補正回路 1 1 1に送出する。
特定色信号処理部 1 4 0の色差信号処理回路 1 4 4は、 信号処理回路 1 4 3から送られてくる色差信号 [B s— Ys] 及び色差信号 [Rs— Y s] から色差データを検出し、 検出した色差データを色補正値設定回路 1 3 0へ送出する。
このような構成を備えた撮像装置 1 0 0における色補正処理の過程に ついて第 2図を参照しながら説明する。 まず、 撮影者が撮影モード選択回路 1 2 0を介して所望の撮影モード を選択する、 若しくは、 撮影環境に応じて撮影モードが自動的に選択さ れると、 選択された撮影モードに対応した撮影モード情報が装置各部 (特定色抽出回路 1 0 6、 色補正値設定回路 1 3 0、 輝度補正回路 1 1 1など) に送られ、 ピントやホワイトバランスなどの各種設定が自動的 に行われる (S T 1 0 0 ) 。
そして、 撮影が開始されると、 撮像レンズ部 1 0 1を介して入力され る被写体からの光を撮像素子 1 0 2で電気信号に変換し、 SZH回路 1 0 3、 AGC回路 1 0 4を経由して、 AZD変換回路 1 0 5によってデ ジタルの映像信号 (R [赤] /G [緑] /B [青] ) に変換して、 特定 色抽出回路 1 0 6及び WB (ホワイトバランス) 回路 1 0 7に送出する 特定色抽出回路 1 0 6は、 撮影モード選択回路 1 2 0からの撮影モ一 ド情報に基づいて、 AZD変換回路 1 0 5から送られてくる映像信号 (R [赤] /G [緑] ZB [青] ) から特定色信号 (Rs [赤] ZGs [緑] ZBs [青] ) を抽出し、 ホワイトバランスの制御量を算出して WB (ホワイトバランス) 回路 1 0 7に送出するとともに、 抽出した特 定色信号 (Rs [赤], ZGs [緑] ZBs [青] ) を特定色信号処理部 1 4 0の WB (ホワイトバランス) 回路 1 4 1に送出する (S T 1 1 0、 S T 1 2 0 ) 。
ここで、 まず、 映像信号 (R [赤] ZG [緑] /B [青] ) の処理過 程について説明する (第 2図の点線①) 。
WB回路 1 0 7では、 A/D変換回路 1 0 5から送られてくる映像信 号 (R [赤] /G [緑] ZB [青] ) の色温度を判定し、 特定色抽出回 路 1 0 6で算出されたホワイトバランスの制御量に基づいて映像信号 (R [赤] ZG [緑] ZB [青] ) のホワイ トバランスを補正してガン マ補正回路 1 0 8に送出する (S T 1 3 0) 。 ガンマ補正回路 1 08は、 ホワイ 卜バランスが補正された映像信号 (R [赤] /G [緑] ZB [青] ) の階調を補正 (ガンマ補正) して信 号処理回路 109に送出する (S T 1 31 ) 。 ,
そして、 信号処理回路 109は、 ガンマ補正された映像信号 (R [赤]. / G [緑] /B [青] ) を輝度信号 Y及び色差信号 [B— Y] 、 色差信号 [R— Y] に変換し、 変換した輝度信号 Yを輝度補正回路 1 1 1に送出すると共に、 変換した色差信号 [B— Y] 、 色差信号 [R— Y] を色差信号補正回路 1 10に送出する (S T 132 ) 。
一方、 上述した映像信号 (R [赤] ZG [緑] ZB [青] ) の処理と 並行して実行される特定色信号 (Rs [赤] ZGs [緑] ZBs [青] ) の処理過程について説明する (第 2図の点線②) 。
まず、 特定色信号処理部 140の WB回路 141では、 特定色抽出回 路 106で抽出された特定色信号 (Rs [赤] /Gs [緑] /Bs
[青] ) の色温度を判定し、 特定色信号 (Rs [赤] ZGs [緑] ZBs [青] ) のホワイトバランスを補正してガンマ補正回路 142に送出す る (S T 140 ) 。
次に、 特定色信号処理部 140のガンマ補正回路 142は、 ホワイト バランスが補正された特定色信号 (Rs [赤] ZGs [緑] ZBs
[青] ) の階調を補正 (ガンマ補正) して信号処理回路 143に送出す る (S T 141 ) 。
次に、 特定色信号処理部 140の信号処理回路 143は、 ガンマ補正 された特定色信号 (Rs [赤] ZGs [緑] ZBs [青] ) を輝度信号 Y s及び色差信号 [B s _Y s] 、 色差信号 [R s—Y s] に変換し、 輝 度信号 Y sを輝度補正回路 1 1 1に送出すると共に、 色差信号 [B s一 Y s ] 色差信号 [R s—Y s] を色差信号処理回路 144に送出する (S T 142 ) 。 次に、 特定色信号処理部 140の色差信号処理回路 144では、 信号 処理回路 143から送られてくる色差信号 [Bs— Ys] 及び色差信号
[Rs- Ys] から特定色の色差データを検出し、 検出した色差データ を色補正値設定回路 1 30へ送出する (S T 143) 。
次に、 色補正値設定回路 1 3 0では、 撮影モード情報に基づいて補正 対象となる特定色を判別し、 ルック 7ップテ一ブルから判別した特定色 を補正するための補正基準デ一夕を読み出す。
そして、 該当する特定色の補正基準データと色差信号処理回路 144 で検出した色差データとに基づいて、 色補正の対象となる特定色の映像 信号を所定の色 (記憶色など) に補正するための補正値を算出し、 算出 した色補正値を色差信号補正回路 1 1 0に送出する (S T 144) 。 次に、 映像信号 (R [赤] ZG [緑] /B [青] ) 及び特定色信号 (Rs [赤] ZGs [緑] ZBs [青] ) の処理に続いて、 色差信号補正 回路 1 1 0並びに輝度補正回路 1 1 1によって特定色の色補正処理が行 われる。
色差信号補正回路 1 1 0では、 色補正値設定回路 1 3 0によって設定 された色補正値に基づき、 信号処理回路 1 0 9から送られてくる色差信 号 [B— Y] 及び色差信号 [R— Y] の色補正を行い、 色補正した色差 信号 [B— Y] "及び色差信号 [R— Y] "を次段回路へ出力する (S T 1 5 0、 S T 1 6 0) 。
一方、 輝度補正回路 1 1 1では、 撮影モード選択回路 1 2 0からの撮 影モード情報及び特定色信号処理部 1 40の信号処理回路 143で変換 された輝度信号 Y sに基づいて、 信号処理回路 1 0 9から送られてくる 輝度信号 Yの輝度レベルを補正し、 補正した輝度信号 Y"を次段回路へ 出力する (S T 1 5 0、 S T 1 6 0) 。 次に、 第 2図における特定色の色補正処理について、 更に具体的に説 明する。
まず、 特定色抽出回路 1 0 6により、 撮影モード選択回路 1 2 0から の撮影モード情報に基づいて、 映像信号 (R [赤] ZG [緑] ZB
[青] ) の中から特定色の映像信号、 即ち、 特定色信号 (Rs [赤] Z Gs [緑] ZBs [青] ) が抽出される。
このとき、 特定色抽出回路 1 0 6は、 第 3図に示すように、 映像信号 (R [赤] /G [緑] ZB [青] ) の輝度レベルに応じて特定色の抽出 範囲を変更して特定色の映像信号を抽出する。
そして、 特定色抽出回路 1 0 6で抽出された特定色信号 (Rs [赤] /Gs [緑] ZBs [青] ) は、 特定色信号処理部 1 4 0の WB回路 1 4 1及びガンマ補正回路 1 4 2でホワイ トバランス及び階調の補正がな され、 信号処理回路 1 4 3によって、 輝度信号 Y s及び色差信号 [B s -Y s ] 、 色差信号 [R s _Y s ] に変換される。
次に、 特定色信号処理部 1 4 0の色差信号処理回路 1 4 4では、 信号 処理回路 1 4 3から送られてくる色差信号 [B s — Y s ] 及び色差信号
[R s —Y s ] から色差データの検出を行い、 検出した色差データを色 補正値設定回路 1 3 0に送出する。
続いて、 色補正値設定回路 1 3 0では、 撮影モード選択回路 1 2 0か らの撮影モード情報に基づいて、 補正対象となる特定色を判別し、 ルツ クアップテーブルから該当する特定色の補正基準データを読み出す。 ここで、 ルックァップテ一ブルについて第 4図を参照しながら説明す る。
色差平面において、 ある所定の色 (記憶色など) が存在している位置 (又は範囲) は決まっており、 所定の色 (記憶色など) が存在している 位置 (又は範囲) を基準とした所定の範囲 (以下、 補正対象範囲とい う) に存在する色が補正対象となる色、 即ち、 特定色となる。
この補正対象範囲を所定の大きさの領域に等分割する。 例えば、 第 4 図 (a) に示すような色差平面において、 補正対象範囲を縦 ·横ともに 5分割 ( 0〜4) し、 分割した各交点に相当する位置 (図中の 「M」 の 位置) に存在する色に対する補正量、 即ち、 特定色を記憶色へ補正する ときの補正量の基準値を色補正マトリクス 「M00」 〜 「M44」 として 設定したものが色補正基準データである。
この色補正基準データを構成する色補正マトリクス 「M00」 〜 「M 44」 には、 第 4図 (b) に示すように、 それぞれ色差信号 [B _Y] 及び色差信号 [R— Y] におけるゲイン方向の補正量となる G a i n B 及び G a i n Rと、 色相方向の補正量となる H u e B及び Hu e Rとい う 4つのパラメ一夕値 (係数値) が与えられている。
例えば、 ある特定色に対してゲイン方向の補正量 G a i n B→ 「 1. 5」 、 G a i n R→ 「 1. 0」 、 色相方向の補正量 H u e B→ 「— 0.
5」 、 Hu e R— 「0. 0」 というパラメ一夕値で与えられた場合、 第
4図 (c ) に示すような色補正マトリクスとなる。
そして、 第 4図 (d) に示すように、 様々な特定色に対する補正基準 データをテーブルデータとして予めメモリなどに記憶したものがルック アップテーブルである。
色補正値設定回路 1 3 0は、 このルックアップテーブルから読み出し た特定色の補正基準データと色差信号処理回路 1 44から送られてくる 色差デ一夕に基づいて、 該当する特定色を所定の色 (記憶色など) に補 正するための色補正値を算出する。 具体的には、 読み出した補正基準データにおける各色補正マトリクス のパラメータ値を色差データに応じて再計算し、 算出したパラメ一夕値 を色補正マトリクスに設定したデータが色補正値となる。
なお、 色補正値を算出するとき、 補正対象となる特定色の特性によつ て補正の方法が異なる。
まず、 色点補正する場合について説明する。 色点補正とは、 例えば、 撮影した青空の色を記憶色の青空色に補正するときなど、 補正対象とす る色 (特定色) を色差平面における或る 1点 (以下、 色点という) に対 応した記憶色に収束する方向に色補正するものである。
第 5図は、 色点補正の色補正値について略示的に示した図である。 例 えば、 第 5図 (a) に示す補正対象範囲に対し、 色補正マトリクス 「M 00」 〜 「M44」 からなる補正基準データが設定されていた場合、 補正 対象範囲の最外周の位置から色点 X0に向かって徐々に補正量を大きく してゆき、 最大の補正量となる位置から色点 X0に向かって徐々に補正 量を小さくなるような色補正値を算出する。
この場合、 補正対象範囲の中心位置に該当する色は、 色点 X0 と同じ 位置である、 即ち、 同じ色であるため色補正しないようにパラメ一夕値 が設定され、 また、 補正対象範囲の最外周の位置に該当する色は、 補正 すると色の変化が大きくなり、 不自然になることが多いため色補正しな いようにパラメータ値が設定される。
第 5図 (b) は、 色補正マトリクス 「M00」 〜 「M44」 からなる補 正基準データと色差データに基づいて算出した色補正値の一例を示した ものであり、 色補正マトリクス 「M11〜M13」 、 「M21」 、 「 M31〜 M33」 、 ΓΜ23] 以外は、 いわゆる、 単位マトリクス (第 4図 (b) のパラメ一夕値を G a i n B→ 「l . 0」 、 G a i n R→ 「 1. 0」 、 Hu e B→ 「0. 0」 、 Hu e R→ 「 0. 0」 とする) が設定されるこ とで補正対象範囲の中心位置及び最外周の位置に該当する色の色補正は 行われない。
次に、 色相補正する場合について説明する。 色相補正とは、 例えば、 撮影した人物の肌色を記憶色の肌色に補正する場合など、 補正対象とす る色 (特定色) を色差平面における所定の色相範囲の色へ収束する方向 に色補正するものである。
第 6図は、 色相補正の補正値について略示的に示した図である。 例え ば、 第 6図 (a) に示す補正対象範囲に対し、 色補正マトリクス 「M 00」 〜 「M44」 からなる補正基準データが設定されていた場合、 補正 対象範囲の最外周の位置から所定の色相範囲 Wに向かって徐々に補正量 を大きくしてゆき、 最大の補正量となる所定の位置から色相範囲 Wに向 かって徐々に補正量を小さくなるように色補正値を算出する。
この場合、 補正対象範囲の色相範囲 Wに該当する色は、 色補正しない ようにパラメ一夕値が設定され、 また、 補正対象範囲の最外周の位置に 該当する色は、 補正すると色の変化が大きくなり、 不自然になることが 多いため色補正しないようにパラメータ値が設定される。
第 6図 (b) は、 色補正マトリクス 「M00」 〜 「M44」 からなる補 正基準データと色差デ一夕に基づいて算出した色補正値の一例を示した ものであり、 色補正マトリクス 「M21」 、 「M31」 、 「M32」 、 「M 12」 、 「M13」 、 「M23」 以外は、 いわゆる、 単位マトリクス (第 4 図 (b) のパラメ一夕値を G a i nB→ 「 1. 0」 、 G a i n R→ 「 1. 0」 、 Hu e B→ 「0. 0」 、 Hu e R→ 「0. 0」 とする) を設定す ることにより、 補正対象範囲の色相範囲 W及び最外周の位置に該当する 色の色補正が行われない。 このようにして色補正値設定回路 1 3 0により、 補正対象となる特定 色の特性に応じた色補正値が算出され、 算出された色補正値が色差信号 補正回路 1 1 0に送出される。
次に、 色差信号補正回路 1 1 0では、 次に示す数式 1に基づき、 信号 処理回路 1 0 9から送られてくる色差信号 [B— Y] 及び色差信号 [R 一 Y] を色補正値設定回路 1 3 0で算出された色補正値によって線形変 換することにより色補正が行われる。
数式 1
GamB HueR [B-Y]
HueB GainR
Figure imgf000023_0001
[R-Y] つまり、 色差デ一夕に応じて算出した色補正値 (色補正マトリクス) に基づき、 色差信号 [B— Y] 及び色差信号 [R— Y] の色補正を行い、 特定色を所定の色 (記憶色など) に補正する。
このとき、 色差平面において色補正マトリクスが設定されてない位置 (色補正対象範囲の交点以外の位置) に該当する色を補正する場合、 そ の位置を囲む色補正マトリクス (のパラメータ値) に基づいて補正量を 算出し、 算出した補正量に基づいて色補正を行う。
例えば、 第 5図 (a) の位置 xl に該当する色の場合、 色補正基準デ —夕の色補正マトリクス 「M02」 、 「M12」 、 「M03」 、 「M13」 の パラメ一夕値に基づいて補正量を算出し、 算出した補正量に基づいて色 補正を行う。
一方、 輝度補正回路 1 1 1では、 撮影モード選択回路 1 2 0からの撮 影モード情報及び特定色信号処理部 1 4 0の信号処理回路 1 43で変換 された輝度信号 Y sに基づいて、 信号処理回路 1 0 9からの輝度信号 Y の輝度レベルを補正し、 輝度補正した輝度信号 Y"を次段回路へ出力す る。
なお、 輝度補正回路 1 1 1では、 撮影した映像信号 (R [赤] Z G [緑] / B [青] ) 全体 (画枠全体) おける特定色の割合を算出して、 算出した割合に応じて特定色の輝度レベルの補正量を変化させることも 可能である。
例えば、 ポートレートを撮影するための撮影モードにおいて、 人物の 肌色を補正する場合、 特定色である肌色が撮影した映像 (画枠) 全体に 占める割合を判定し、 所定の割合より大きい場合は肌色の輝度レベルの 補正量を大きくし、 所定の割合より小さい場合に肌色の輝度レベルの補 正量を小さくする。
このように、 同じ撮影モ一ドでも撮影状況に応じて特定色の輝度レべ ルの補正量を変えることで、 色補正した特定色を更に好ましい色となる ように補正することができる。
以上説明したように、 撮影した映像信号から補正対象となる特定色の 映像信号を抽出し、 抽出した特定色の映像信号に基づいて色の補正量を 算出し、 算出した補正量に基づいて補正対象となる特定色を補正し、 又, 抽出した特定色の映像信号における輝度レベルに応じて撮影した映像信 号の輝度レベルを補正するので、 撮影した映像信号の特定色を撮影状況 や撮影した映像に応じた補正量によって好ましい色 (例えば、 記憶色) に補正することができるという優れた効果を奏するものである。
また、 撮影した映像信号全体 (画枠全体) において特定色が占める割 合を算出して、 算出した割合に応じて特定色の輝度レベルの補正量を変 えることにより、 撮影した映像信号の特定色を撮影状況や撮影した映像 に応じた好ましい色となるような輝度に補正することができるという優 れた効果を奏するものである。 また、 撮影した映像信号の輝度レベルに応じて特定色の抽出範囲を可 変にすることで、 補正対象となる特定色の映像信号を抽出する精度が向 上するというメリッ卜がある。

Claims

請求の範囲
1 . 所定の撮影条件に応じて定めてある特定色の情報を含んだ撮影モ —ド情報が設定されており、 この設定してある撮影モード情報の中から 所望の撮影モード情報を選択する撮影モード選択手段と、
前記撮影モード選択手段で選択した撮影モード情報に基づいて映像信 号の中から特定色の映像信号を抽出する特定色抽出手段と、
前記特定色抽出手段で抽出した特定色の映像信号から該特定色の色差 データを検出する色差検出手段と、
前記特定色を所定の色に補正するための基準となる補正基準データが 記憶してある補正基準データ記憶手段と、
前記撮影モ一ド選択手段で選択した撮影モ一ド情報に基づいて前記補 正基準データ記憶手段の中から該当する特定色の補正基準データを選択 し、 該選択した補正基準データと前記色差検出手段で検出した特定色の 色差データに基づいて該当の特定色を所定の色に補正するための色補正 値を算出する色補正値算出手段と、
前記色補正値算出手段で算出した色補正値に基づいて前記映像信号の 特定色を所定の色に補正する色補正処理手段と、 を備えた撮像装置。
2 . 前記特定色抽出手段は、 前記映像信号の輝度レベルに応じて前記 特定色の映像信号の抽出範囲を変化させる機能を備えていることを特徴 とする請求の範囲第 1項に記載の撮像装置。
3 . 前記補正基準データ記憶手段は、 記憶している補正基準データを 変更できる機能を備えていることを特徴とする請求の範囲第 1項に記載 の撮像装置。
4 . 前記撮影モード選択手段は、 前記撮影モード情報を撮影環境に応 じて自動的に選択する機能を備えていることを特徴とする請求の範囲第 1項に記載の撮像装置。
5 . 所定の撮影条件に応じて定めてある特定色の情報を含んだ撮影モ ード情報が設定されており、 この設定してある撮影モード情報の中から 所望の撮影モード情報を選択する撮影モード選択手段と、
前記撮影モード選択手段で選択した撮影モ一ド情報に基づいて映像信 号の中から特定色の映像信号を抽出する特定色抽出手段と、
前記特定色抽出手段で抽出した特定色の映像信号から該特定色の色差 データを検出する色差検出手段と、
前記特定色を所定の色に補正するための基準となる補正基準データが 記憶してある補正基準データ記憶手段と、
前記撮影モード選択手段で選択した撮影モード情報.に基づいて前記補 正基準データ記憶手段の中から該当する特定色の補正基準データを選択 し、 該選択した補正基準データと前記色差検出手段で検出した特定色の 色差データに基づいて該当の特定色を所定の色に補正するための色補正 値を算出する色補正値算出手段と、
前記色補正値算出手段で算出した色補正値に基づいて前記映像信号の 特定色を所定の色に補正する色補正処理手段と、
前記特定色抽出手段で抽出した特定色の映像信号における輝度レベル に応じて前記映像信号の輝度レベルを補正する輝度補正手段と、 を備え ていることを特徴とする撮像装置。
6 . 前記輝度補正手段は、 前記映像信号における前記特定色の映像信 号の割合を算出し、 該算出した割合に応じて該特定色の映像信号の輝度 レベルを補正する機能を備えていることを特徴とする請求の範囲第 5項 に記載の撮像装置。
7 . 前記特定色抽出手段は、 前記映像信号の輝度レベルに応じて前記 特定色の映像信号の抽出範囲を変化させる機能を備えていることを特徴 とする請求の範囲第 5項に記載の撮像装置。
8 . 前記補正基準データ記憶手段は、 記憶している補正基準データを 変更できる機能を備えていることを特徴とする請求の範囲第 5項に記載 の撮像装置。
9 . 前記撮影モード選択手段は、 前記撮影モード情報を撮影環境に応 じて自動的に選択する機能を備えていることを特徴とする請求の範囲第 5項に記載の撮像装置。
1 0 . 所定の撮影条件に応じて定めてある特定色の情報を含んだ撮影 モード情報が設定してある撮影モード情報の中から所望の撮影モード情 報を選択する撮影モード選択ステップと、
前記撮影モード選択ステップで選択した撮影モード情報に基づいて映 像信号の中から特定色の映像信号を抽出する特定色抽出ステップと、 前記特定色抽出ステップで抽出した特定色の映像信号から該特定色の 色差データを検出する色差検出ステップと、
前記撮影モード選択ステップで選択した撮影モード情報に基づいて、 . 前記特定色を所定の色に補正するための基準となる補正基準データが記 憶してある補正基準データ記憶手段の中から該当する特定色の補正基準 データを選択し、 該選択した補正基準デ一夕と前記色差検出ステップで 検出した特定色の色差データに基づいて該当の特定色を所定の色に補正 するための色補正値を算出する色補正値算出ステップと、
前記色補正値算出ステップで算出した色補正値に基づいて前記映像信 号の特定色を所定の色に補正する色補正処理ステップと、
を備えた撮像方法。
PCT/JP2004/003353 2003-03-27 2004-03-12 撮像装置 WO2004086770A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04720222A EP1617681A4 (en) 2003-03-27 2004-03-12 PICTURE SETUP
US10/550,306 US20070120984A1 (en) 2003-03-27 2004-03-12 Imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-088060 2003-03-27
JP2003088060A JP3845867B2 (ja) 2003-03-27 2003-03-27 撮像装置及び撮像方法

Publications (1)

Publication Number Publication Date
WO2004086770A1 true WO2004086770A1 (ja) 2004-10-07

Family

ID=33095110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003353 WO2004086770A1 (ja) 2003-03-27 2004-03-12 撮像装置

Country Status (6)

Country Link
US (1) US20070120984A1 (ja)
EP (1) EP1617681A4 (ja)
JP (1) JP3845867B2 (ja)
KR (1) KR20050111620A (ja)
CN (1) CN1765132A (ja)
WO (1) WO2004086770A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4947343B2 (ja) 2006-05-24 2012-06-06 ソニー株式会社 情報処理システム、情報処理装置、情報処理方法、およびプログラム
US7990427B2 (en) * 2006-08-21 2011-08-02 Micron Technology, Inc. Method and apparatus for applying tonal correction to images
JP5034429B2 (ja) * 2006-10-16 2012-09-26 ソニー株式会社 レンズ装置、撮像装置及び収差補正方法
JP4315215B2 (ja) * 2007-05-18 2009-08-19 カシオ計算機株式会社 撮像装置、及び顔検出方法、顔検出制御プログラム
ITMI20091990A1 (it) * 2009-11-12 2011-05-13 Giacomo Langfelder Metodo per adattare un sistema di acquisizione d'immagine ad una scena
US8565523B2 (en) 2011-06-02 2013-10-22 Apple Inc. Image content-based color balancing
US9264689B2 (en) * 2011-08-04 2016-02-16 Semiconductor Components Industries, Llc Systems and methods for color compensation in multi-view video
JP6953297B2 (ja) * 2017-12-08 2021-10-27 キヤノン株式会社 撮像装置及び撮像システム
CN108024105A (zh) * 2017-12-14 2018-05-11 珠海市君天电子科技有限公司 图像色彩调节方法、装置、电子设备及存储介质
US11968444B2 (en) * 2021-12-07 2024-04-23 Canon Kabushiki Kaisha Control apparatus applied to image pickup system, control method therefor, and storage medium storing control program therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678320A (ja) * 1992-08-25 1994-03-18 Matsushita Electric Ind Co Ltd 色調整装置
JPH0767131A (ja) * 1993-08-23 1995-03-10 Mitsubishi Electric Corp 映像信号処理装置
JP2002247413A (ja) * 2001-02-19 2002-08-30 Matsushita Electric Ind Co Ltd 映像ノイズ除去装置
JP2003046797A (ja) * 2001-08-03 2003-02-14 Seiko Epson Corp 画像ファイルの生成

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289295A (en) * 1991-07-04 1994-02-22 Matsushita Electric Industrial Co., Ltd. Color adjustment apparatus
JP3653945B2 (ja) * 1997-08-29 2005-06-02 ソニー株式会社 色抽出装置及び色抽出方法
JP2000165691A (ja) * 1998-11-27 2000-06-16 Matsushita Electric Ind Co Ltd 色変換方法および装置
US6738510B2 (en) * 2000-02-22 2004-05-18 Olympus Optical Co., Ltd. Image processing apparatus
JP4040625B2 (ja) * 2002-09-12 2008-01-30 松下電器産業株式会社 画像処理装置、プリンタ装置、撮影装置、及びテレビ受像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0678320A (ja) * 1992-08-25 1994-03-18 Matsushita Electric Ind Co Ltd 色調整装置
JPH0767131A (ja) * 1993-08-23 1995-03-10 Mitsubishi Electric Corp 映像信号処理装置
JP2002247413A (ja) * 2001-02-19 2002-08-30 Matsushita Electric Ind Co Ltd 映像ノイズ除去装置
JP2003046797A (ja) * 2001-08-03 2003-02-14 Seiko Epson Corp 画像ファイルの生成

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1617681A4 *

Also Published As

Publication number Publication date
US20070120984A1 (en) 2007-05-31
EP1617681A1 (en) 2006-01-18
JP2004297520A (ja) 2004-10-21
CN1765132A (zh) 2006-04-26
KR20050111620A (ko) 2005-11-25
EP1617681A4 (en) 2009-07-08
JP3845867B2 (ja) 2006-11-15

Similar Documents

Publication Publication Date Title
JP5647209B2 (ja) 撮像装置及び撮像方法
JPH09322191A (ja) 画像入力装置
JP5014099B2 (ja) 撮像装置及びその制御方法
JP4235903B2 (ja) 撮像装置
JPH05145931A (ja) ホワイトバランス調整装置
JP2007259344A (ja) 撮像装置および画像処理方法
US8786728B2 (en) Image processing apparatus, image processing method, and storage medium storing image processing program
JP2007067815A (ja) 画像処理装置及び画像処理方法
JP4182735B2 (ja) 顔色補正方法及び顔色補正装置及び撮像機器
JP3804067B2 (ja) 撮像装置及び撮像方法
JP5211926B2 (ja) デジタルカメラおよび画像処理装置並びに画像処理プログラム
WO2004086770A1 (ja) 撮像装置
JP3800102B2 (ja) デジタルカメラ
KR100595251B1 (ko) 디스플레이 장치의 색재현 장치 및 방법
JP4439173B2 (ja) デジタルカメラ及び情報端末
JP5903478B2 (ja) 撮像装置及び撮像方法
JP5803233B2 (ja) 撮像装置および撮像方法
JP6197062B2 (ja) 撮像装置及び撮像方法並びに表示装置及び表示方法
JP4258752B2 (ja) プリンタシステム及びそのホワイトバランス制御方法、並びに電子カメラ及びプリンタ
JP2006203430A (ja) 画像処理装置およびその方法
JPH11168748A (ja) 撮像装置
JP2001203934A (ja) デジタルカメラ
JP2010258854A (ja) ゲイン算出装置
JP2006128979A (ja) 画像処理装置及び画像処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004720222

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007120984

Country of ref document: US

Ref document number: 10550306

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048079925

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057018054

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057018054

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004720222

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10550306

Country of ref document: US