WO2004085120A1 - ロボットシミュレーション装置、および、シミュレーションプログラム - Google Patents

ロボットシミュレーション装置、および、シミュレーションプログラム Download PDF

Info

Publication number
WO2004085120A1
WO2004085120A1 PCT/JP2003/003583 JP0303583W WO2004085120A1 WO 2004085120 A1 WO2004085120 A1 WO 2004085120A1 JP 0303583 W JP0303583 W JP 0303583W WO 2004085120 A1 WO2004085120 A1 WO 2004085120A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
simulation
simulation device
moving
robot simulation
Prior art date
Application number
PCT/JP2003/003583
Other languages
English (en)
French (fr)
Inventor
Hirofumi Hosokawa
Seiichi Fujii
Original Assignee
Rorze Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rorze Corporation filed Critical Rorze Corporation
Priority to CN038262231A priority Critical patent/CN1758990B/zh
Priority to US10/550,285 priority patent/US7606633B2/en
Priority to KR1020057015833A priority patent/KR100929445B1/ko
Priority to JP2004569923A priority patent/JP4441409B2/ja
Priority to PCT/JP2003/003583 priority patent/WO2004085120A1/ja
Priority to AU2003221083A priority patent/AU2003221083A1/en
Publication of WO2004085120A1 publication Critical patent/WO2004085120A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • B25J9/1666Avoiding collision or forbidden zones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/455Emulation; Interpretation; Software simulation, e.g. virtualisation or emulation of application or operating system execution engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1671Programme controls characterised by programming, planning systems for manipulators characterised by simulation, either to verify existing program or to create and verify new program, CAD/CAM oriented, graphic oriented programming systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40317For collision avoidance and detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a computer simulation device and a program for verifying in advance whether or not there is interference with a surrounding environment when a transported object is transported by a mouth pot such as a transporter.
  • a thin plate such as a semiconductor, a liquid crystal display, a plasma display, an organic electroluminescent display, an inorganic electroluminescent display, a field emitting display, or a substrate thereof
  • the present invention relates to a device that simulates the movement trajectory of a robot and a thin plate when being transferred by a SCARA robot as a robot, and outputs a program for teaching a transfer operation to a real robot.
  • Japanese Patent Application Laid-Open No. 05-2244734 discloses a simulation apparatus that displays a robot at a predetermined position and orientation on a screen that displays the working environment of the robot. . This device is suitable for simulation in a given environment.
  • Japanese Patent Application Laid-Open No. 07-141016 discloses a simulation device for creating optimum teaching data for a playpack robot.
  • Japanese Patent Application Laid-Open No. H11-2599112 discloses an apparatus for checking interference with an environment accompanying movement of a robot or the like.
  • it is difficult to select and design an appropriate work space, mouth pot dimensions, etc. because a large computer is used and the interference state cannot be seen on the screen.
  • a robot with a suitable size can be selected when the dimensions of the work space are given in a small personal computer, and when the dimensions and functions of the robot are given, It is an object of the present invention to provide a simulation device capable of selecting a suitable work space size and other specifications. Disclosure of the invention
  • an input unit a display unit, a central computer, an arithmetic program unit, and an output unit for a teaching program, for transporting an object in a work area where obstacles are provided.
  • An operation simulation apparatus comprising the following means for simulating whether or not a robot to perform work in the work area without interference.
  • a two-dimensional display unit having coordinate axes; (2) means for drawing the obstacle and the work area on the display unit; means for drawing a moving robot; means for drawing an object to be conveyed by the robot;
  • the above-mentioned simulation device is a simple operation on the display screen of a small personal computer, and determines whether or not a predetermined robot can perform a predetermined task properly without interfering with an obstacle in a given work space. This has the effect that it can be confirmed visually.
  • a means for measuring a moving time of an object to be transferred and a robot on the display screen A robot simulation device comprising:
  • a third aspect of the present invention is a robot simulation apparatus, further comprising means for calculating and displaying a transfer speed between the transferred object and a movable portion of the robot.
  • a fourth aspect of the present invention is the robot simulation device, wherein the two-dimensional display unit is a horizontal plane or a vertical plane of a work area.
  • a fifth aspect of the present invention is the robot simulation apparatus, wherein the obstacle and the transport area are displayed in a polygon and / or a circle.
  • the obstacle and the transport area can be displayed in a simple polygon or circle, so that not only the operation is simple, but also the interference area can be easily detected.
  • the polygon may be in the range of a triangle to a hexagon, and may be any planar figure as long as each side does not intersect. Its size can be arbitrarily selected.
  • a circle can be drawn by specifying the center position and radius. Also, this A predetermined area can be formed by combining these polygons and circles.
  • a sixth aspect of the present invention is the robot simulation apparatus, further comprising means for calculating a movement trajectory of the transferred object by designating a starting position and a destination position of the robot.
  • This device can automatically calculate the movement trajectory of the conveyed object by setting the position of the robot with respect to the set origin, so that the optimal position and work area of the robot can be easily determined.
  • a means for calculating a moving order and a moving trajectory of the transferred object by designating a starting position of the transferred object and a plurality of destination positions as moving destinations.
  • This device is a robot simulation device that features c. This device allows the user to visually observe a series of movement trajectories of the transferred object on the screen. Settings can be made easier.
  • An eighth aspect of the present invention is the robot simulation apparatus, further comprising: means for calculating and displaying an area where the object cannot be transported by designating a limit of a movable portion of the robot. is there.
  • a ninth aspect of the present invention is directed to a ninth aspect of the present invention, wherein the simulation device has an output unit that outputs and displays at least the teaching data on the work area, the robot dimensions, the transport path, and the transport speed obtained as a result of the simulation.
  • a robot simulation apparatus characterized in that:
  • a tenth aspect of the present invention is the robot simulation device, further comprising: teaching the operation of the movable part of the robot to the robot.
  • An eleventh aspect of the present invention is the robot simulation device, wherein the robot is a SCARA-type mouth pot, and the object is a thin plate.
  • a SCARA robot in which a robot arm moves in a plane is a commonly used robot, and has an effect that it can be used for transporting, for example, a semiconductor substrate (wafer), a glass substrate for a flat panel display, and the like.
  • a twelfth aspect of the present invention is a program characterized by causing a real robot to execute a task based on simulation data generated by the robot simulation apparatus described above.
  • the above program is a program that displays the simulation work confirmed by the robot simulation apparatus on a screen and causes the real robot to perform the work, and has an effect that the real robot can perform the confirmed work.
  • FIG. 1 is a schematic diagram showing the overall configuration of the simulation of the present invention.
  • FIG. 2 is a diagram showing elements displayed by the display unit of the simulation device of the present invention.
  • FIG. 3 is a diagram showing a typical example of a display screen displayed on the display unit of the present invention.
  • FIG. 4 is a list of main software elements included in the simulation device of the present invention.
  • FIG. 5 is a diagram showing a work area setting step in the simulation step.
  • FIG. 6 is a diagram showing a process of setting an obstacle in the simulation process. You.
  • FIG. 7 is a diagram illustrating a process of creating a movement route of the transferred object in the simulation process.
  • FIG. 8 is a diagram showing a specific example of the simulation step.
  • FIG. 9 is a diagram showing a command for operating the real robot based on the result of the simulation.
  • FIG. 1 shows an apparatus configuration of a simulation apparatus 100 of the present invention.
  • a central computer 6 for example, a personal computer having Windows 2000 as an OS or a large computer can be used.
  • the simulation device of the present invention calculates by inputting the size and shape data of the movable part of the robot, but it may be a dedicated simulation device in which these data are input in advance for each robot model.
  • An operating system such as Windows, Macintosh, and Linux can be used as the operating system (OS).
  • OS Windows 2000 or higher and Mac OS version 8.5 or higher.
  • a programming language used in the simulation device of the present invention a known language such as an assembly language, a COBOL language, a compiler language, a C language, or a visual basic can be used.
  • the C language is preferred because it is familiar with Windows and Mac OS.
  • the computer is connected to a display unit 4 for displaying calculation results and a calculation program file unit 8 for performing simulation.
  • the arithmetic program file section 8 may be used as an independent and separate file, or may be used by being built in the recording section 64.
  • the central computer 6 is connected to a teaching program output unit 10 that outputs data for instructing the actual robot on the calculation result.
  • the output teaching program is used in the workstation 12 via an appropriate recording medium, and can cause the real robot 14 to perform a predetermined operation.
  • the teaching program can also be sent directly to the workstation 12.
  • the elements of the display unit 4 are shown as a list in FIG. 2 and as a concrete display screen in FIG.
  • the main screen elements are the moving path of the conveyed goods, the equipment layout, and the robot keys.
  • a list window 4 a tool par 45 for inputting various commands, a menu par 42, a pop-up menu (not shown), an execution stop button 48, various editing program instruction buttons 47 are displayed.
  • FIG. 3 will be described more specifically.
  • a plane work area 40-1 is set in the XY coordinates as a transfer room.
  • the robot 40-3 is placed.
  • This robot is a 4-axis SCARA robot.
  • three wafer force sets 40-2 for accommodating wafers as obstacles will be provided, and two intermediate boxes 40-4 for moving wafers to the processing chamber will be provided.
  • the lower side is connected to the wafer processing chamber via the load lock chamber 40-4.
  • C The 4-axis robot is supported by an arm (also called a finger) 40-30. Equipped with a positioning device 40-5 to correct the center position and direction of 0-3.
  • the working area 40-1 and the robot arm etc. are all given positions (X, Y) on the XY coordinate axes.
  • the work space (horizontal space 40-1), robot fingers, and the type of robot are set by selecting the command corresponding to the tool par 45 as described above. Next, a path 4 4 1 2 to be simulated is selected.
  • the moving speed (zm / sec), rotation direction, rotation method, standby method, and the like of each of the 4-axis joint and the wafer center position are set in the information window 46.
  • the move execution and stop buttons 48 are buttons for executing various commands.
  • Various command groups 47 for editing the simulation are arranged below the simulation window 40.
  • Darid is a button for displaying a coordinate grid on the simulation window.
  • the time chart button measures the time that the finger of robot 1 moves.
  • the execution stop button 48 includes continuous movement of the robot arm 48-1 (left end), frame feed 48-2 (second from left), interference area display 48-8-3 (third from left), etc. Command is displayed.
  • the message window 48 is provided with a simulation execution and stop button.
  • the moving speed at the pre-set points (V 0 to V 9 not shown) of the finger is displayed in real time. Since the line connecting each via point has an angle, it is automatically corrected by an arc so that the finger moves smoothly. From the speed display in graph window 43, the step-out state in the robot motion I can judge. In addition, the moving time of the finger and the maximum value of the speed are also displayed. These movement distances and movement speeds are calculated as the fluctuations of the position (X, Y) at the given XY coordinates. Further, FIG. 4 enumerates important functional elements of the simulation program described in FIG.
  • coordinate grid (grid) display function mouth pot display function, finger display function, time display function, route creation function, obstacle area (area) creation function, screen enlargement / reduction, movement function, coordinate axis It has settings, rotation, copy function, vertex distance setting function, numerical value input function, origin input function, etc.
  • FIG. 5 illustrates the steps for setting the work area (area) of the robot in the simulation window 40. This process can be used as a process for designing a transfer chamber for transferring wafers.
  • the creation start step (S1) click the create button in the menu part 42. Then, proceed to the new creation step (S2), select a work area on the list window 44 (S3), and click the start and end points of the rectangle with the mouse on the simulation window 40 (S4, S5). Fill out the working area. In the case of a circle, draw the center point and radius with the mouse. At this time, the dimensions of the actual work space are automatically entered at a preset scale. If not, press the right button of the mouse to open the pop-up menu ( Figure (Not shown) to repeat (S6, S7). If appropriate, exit from the pop-up menu (S8), save and record (S9), and end the work area setting (S10).
  • This work area is defined as the position (X, Y) of the XY coordinates.
  • the steps for setting the obstacle area are shown in FIG.
  • the position of the wafer box 40-2 placed around the pre-chamber 40-1, which is the working area, is determined, and the position of the load lock chamber 40-4 for wafer processing is determined. This is the decision step.
  • FIG. 7 illustrates a process of creating the transfer route of FIG.
  • the process of creating a route for a transferred object will be described. Click the "Create” button on the menu bar, select “Create new” (S30), click on the route created in Listundo 44 (S31), and then click on the start point of the route in the Simulation window 40 And finger (S32). Furthermore, the waypoint of the transported object is clicked and specified (S34), and the process is repeated as necessary (S35).
  • frame feed has the advantage that the state of interference can be observed in detail, and the specifications of the robot can be changed if necessary.
  • the continuous motion simulation has the advantage of observing the whole, for example, observing the moving speed of the finger.
  • the data may be output directly to the control unit of the real robot, or may be output to a recording medium so that the real robot can be operated by the medium.
  • Fig. 9 shows the details of the program that operates the real robot.
  • the robot movement path information such as the work area, movement path, position and its change in the XY coordinates of the robot, and the position change speed (movement speed) created by the simulation are created as commands 1 to 3 and the real robot is thereby created. Activate.
  • Command 1 generates the coordinate points of the entire route that connects the via-coordinates and the via points of the robot with straight lines and circular arcs.
  • Command 2 generates the moving speed (starting acceleration, acceleration during acceleration, maximum speed, deceleration acceleration, deceleration end speed) of the robot arm (finger) on which the wafer is placed.
  • Command 3 generates information on the rotation motion section and rotation angle of the robot arm (finger) that supports the wafer.
  • Such information is usually output to a recording medium used in the workstation 12 shown in FIG. In some cases, it can be sent directly to the robot.
  • the interference information is calculated on a plane (X-Y coordinate), but the same calculation can be performed on the X-Z coordinate and YZ coordinate. Can be calculated.
  • the robot simulation apparatus can simulate in advance the desired motion and work of the robot under given conditions of the work space and the mouthboat, so that the desired work conditions can be set.
  • a simulation device using an inexpensive personal computer can be used, and equipment investment can be reduced.
  • simulation of the working space and appropriate robot design is possible.
  • the program generated by this simulation it is possible to perform the desired work of the real robot, and particularly, the design and manufacturing work of the semiconductor manufacturing equipment becomes easy.
  • the two-dimensional display on the display screen corresponds to the plan view, elevation view, and side view of the design drawing, it is easy to design and modify robot placement devices such as transfer rooms.
  • the coordinate memory of this simulation device controls up to Teaching can be done.
  • this teaching work is created by a computer and does not require direct teaching of the robot arm at the manufacturing site, it is possible to prevent personal injury due to runaway of the robot.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

ロボットシミュレーション装置、 および、 シミュレーションプログラム 技術分野 明
本発明は、 搬送機等の口ポットで田被搬送物を搬送する際、 周辺環境との干渉 の有無を予め検証するためのコンピュータシミュレーション装置およびそのた めのプログラムに関する。
さらに詳しくは、 被搬送物として、 半導体、 液晶表示機、 プラズマディスプ レイ、 有機エレク ト口ルミネッセンス表示機、 無機エレク ト口ルミネッセンス 表示機、 フィールドエミッティング表示機等やその基板など薄板状物を、 ロボ ットとしてスカラ型ロボットで搬送する際のロボットおよび薄板状物の移動軌 跡をシミュレーションし、 実ロボットに搬送作業を教示するプログラムを出力 する装置に関する。 背景技術
ロボットのシミュレーション装置として、 特開平 0 5— 2 2 4 7 3 4号公報 はロボットの作業環境を表示する画面に、 ロボットを所定の位置と姿勢で重ね て表示するシミュレーシヨン装置が開示されている。 この装置は予め与えられ ている環境におけるシミュレーションに適している。 特開平 0 7— 1 4 1 0 1 6号公報では、 プレイパックロボットの最適教示デ ータを作成するシミュレーシヨン装置を開示する。 また、 特開平 1 1— 2 5 9 1 1 2号公報は、 ロボット等の移動に伴う環境との干渉をチェックする装置を 開示する。 しかし、 従来のシミュレーション装置では、 大型コンピュータを使用し、 し かも干渉状態を画面上で目視できないため、 適正な作業空間、 口ポットの寸法 等を簡単に選択 ·設計することが困難である。
そこで、 本発明では、 小形のパーソナルコンピュータで、 作業空間の寸法等 が与えられている場合には適合する寸法のロボットを選択でき、 他方、 ロボッ トの寸法、 機能が与えられている場合には、 適合する作業空間の寸法、 その他 の諸元を選択できる、 シミュレーション装置を提供することを課題とする。 発明の開示
発明の第 1に態様は、 入力部と、 表示部と、 中央コンピュータと、 演算プロ グラム部および教示プログラムの出力部とを備え、 障害物が配設された作業領 域内で被搬送物を搬送するロボットが前記作業領域内で干渉なく作業をするか どうかをシミュレーシヨンするための下記の手段を備えたことを特徴とする動 作シミュレーション装置。
( 1 ) 座標軸を有する二次元表示部と、 ( 2 ) 前記表示部に、 前記障害物と前記作業領域を描画する手段と、 移動する ロボットを描画する手段と、 該ロボットにより搬送される被搬送物を描画する 手段と、
( 3 ) 前記被搬送物体の中心点の移動径由点を指定して経由点を補間する手段 と、
( 4 ) 前記被搬送物が前記作業領域内で移動する移動軌跡を表示する手段と、 ( 5 ) 前記移動軌跡が前記障害物とが干渉する領域を表示する手段。
上記シミュレーション装置は、 小形のパーソナルコンピュータの表示画面 上で、 簡単な操作で、 与えられた作業空間で、 予め選択したロボットが干渉物 に干渉せず、 所定の作業を適正に実行できるかどうかを目視で確認することが できる効果がある。 発明の第 2の態様は、 更に、 前記表示画面上に、 被搬送物とロボットの移動 時間を計測する手段と、 前記被搬送物と前記ロボットの可動部との移動軌跡を 動画で表示する手段と、 を備えたことを特徴とするロボットシミュレーシヨン 装置である。
この装置では、 ロボットの移動軌跡を 2次元画面で動画として確認すること ができるため、 望ましい作業空間、 又は望ましいロボットの諸元を選択できる 効果がある。 発明の第 3の態様は、 更に、 前記被搬送物体と前記ロボットの可動部の搬送 速度を算出し、 表示する手段を有することを特徴とするロボットシミュレーシ ョン装置である。
この装置では、 被搬送物の搬送時間を計測し、 その搬送速度及びロボットの 移動速度を計測できるので、 ロボットの脱調が発生するかどうかを容易に判断 でき、 ロボットの諸元を変更することが可能である。 発明の第 4の態様は、 前記二次元表示部が、 作業領域の水平面または垂直面 であることを特徴とするロボットシミュレーション装置である。
この装置で、 まず作業領域の平面図 (X— Y軸平面) におけるロボットの干渉 領域を表示し、 更に、 垂直面 (X— Z軸平面、 Y— Z軸平面) のおける干渉領域 を表示し、 画面上で目視しながら設計図と対比することができる効果がある。 発明の第 5の態様は、 前記障害物と前記搬送領域は、 多角形及び 又は円形 で表示されることを特徴とするロボットシミュレーション装置である。
この装置では、 障害物と搬送領域を簡単な多角形又は円形で表示することが できるので、 操作が簡単であるばかりでなく、 容易に干渉領域を検出できる効 果がある。 上記多角形とは、 3角形から 6 4角形の範囲とすることができ、 各 辺が交差しない限り如何なる平面図形であってもよい。 その大きさは任意に選 択できる。 円形は中心位置と半径を指定することにより作図できる。 また、 こ れらの多角形と円形を組み合わせて所定の領域を形成することができる。 発明の第 6の態様は、 更に、 前記ロボットの出発位置と目的位置とを指定す ることによって前記被搬送物の移動軌跡を算出する手段を有することを特徴と するロボットシミュレーション装置である。
本装置は、 設定した原点に対するロボットの位置を設定することにより、 搬 送物の移動軌跡を自動的に算出することができるので、 ロボットの最適位置、 作業領域を簡単に決定することができる効果がある。 発明の第 7の態様は、 更に、 前記被搬送物の出発位置と移動先である複数の 目的位置とを指定することによって前記被搬送物の移動順 および移動軌跡を 算出する手段を有することを特徴とするロボットシミュレーシヨン装置である c この装置は、 被搬送物の一連の移動軌跡を画面上で目視することができるの で、 ロボット、 各種の基板処理装置等の適正な配置、 作業領域の設定を容易に することができる。 発明の第 8の態様は、 更に、 前記ロボットの可動部分の限界を指定すること により、 前記被搬送物の搬送不可能な領域を算出し表示する手段を有すること を特徴とするロボットシミュレーション装置である。
この装置により、 必要により作業領域を変更することができる効果がある。 ロボットの可動部分の限界とは、 例えばアームの関節部、 胴体の回転部に設け られたメカニカルストッパ、 平行リンク駆動アームの可動範囲の制約、 ベルト とプーリによる駆動における可動範囲の制約等である。 発明の第 9の態様は、 前記シミュレーション装置が、 シミュレーションの結 果得られた少なくとも、 作業領域、 ロボッ トの寸法、 搬送経路、 搬送速度に関 する教示データを出力し、 表示する出力部を有することを特徴とするロボット シミュレーション装置である。
上記装置は、 実作業を行なう以前においてロボットを運転させる教示データ を画面として出力するので、 このデータの適否を判断することができる。 発明の第 1 0の態様は、 更に、 前記ロボットの可動部の動作を前記ロボット に教示することを特徴とするロボットシミュレーション装置である。
この装置は、 干渉領域が無いことを目視により確認したロボットの可動部、 特にロボットのアームの適正な運動を作成することができるので、 その結果を 実ロボットに予め教示することができる。 発明の第 1 1の態様は、 前記ロボットが、 スカラ型口ポットであり、 前記被 搬送物が薄板状体であることを特徴とするロボットシミュレーシヨン装置であ る。 ロボットアームが平面運動するスカラロボットは、 一般的に利用されている ロボットであるため、 例えば、 半導体基板 (ウェハ)、 フラットパネルディスプ レイ用のガラス基板等の搬送に利用できる効果がある。 発明の第 1 2の態様は、 上記記載のロボットシミュレーション装置で生成し たシミュレーシヨンデータに基づき、 実ロボットに作業を実行させることを特 徴とするプログラムである。
上記プログラムは、 上記ロボットシミュレーション装置で確認したシミュレ ーシヨン作業を画面上に表示し、 更に、 実ロボットに作業を実行させるプログ ラムであり、実ロボットに確認した作業を行なわせることができる効果がある。 図面の簡単な説明
図 1は、 本発明のシミュレーシヨンの全体構成を示す略図である。
図 2は、 本発明のシミュレーション装置の表示部が表示する要素を示す図で ある。
図 3は、 本発明の表示部で表示する表示画面の代表例を示す図である。
図 4は、 本発明のシミュレーション装置が備える主要なソフトウエア要素の リス トである。
図 5は、シミュレーション工程における作業領域の設定工程を示す図である。 図 6は、 シミュレーション工程における障害物を設定する工程を示す図であ る。
図 7は、 シミュレーション工程における被搬送物の移動経路の作成工程を示 す図である。
図 8は、 シミュレーション工程の具体例を示す図である。
図 9は、 シミュレーションの結果により実ロボットを作動させるコマンドを 示す図である, 発明の実施の形態
以下、 図面を参照して、 本発明を説明するが、 本発明は以下の実施態様の限 定されるものでなく、 相似する環境においてロボットの運動を教示できるもの である。 以下においては、 移載室内に配設した口ポットが、 移載室の周囲に配 設したウェハカセットからウェハを取り出し、 処理室に接続するロードロック 室へ搬送し、 処理後のウェハをウェハカセットに戻す作業をおこなう場合にお けるロボットの作業をシミュレーシヨンする装置を例にして説明する。 図 1に、 本発明のシミュレーション装置 1 0 0の装置構成を示す。 作業領域 の設定、 ロボットの諸元 (寸法、 形状等)、 作業条件等の入力を行なう入力部 2 と、制御部 6 0、演算部 6 2、記録部 6 4を含む中央コンピュータ 6を備える。 中央コンピュータ 6として、 例えばゥンィドウズ (Windows) 2 0 0 0を OS として備えるパーソナルコンピュータでも大型コンピュータも利用できる。 本発明のシミュレーション装置はロボットの可動部分のサイズ、 形状データ を入力して演算するが、 予めロボットの機種ごとにこれらのデータを入力して おく専用シミュレーション装置とすることもできる。
OS (Operating System) として、 ゥンィドウズ、 マッキントッシュ、 リナ ックスなどの OS を用いることができる。 好ましくは、 ゥンィドウズ 2 0 0 0 以上、 マック O Sバージョン 8 . 5以上である。 本発明のシミュレーション装 置で使用するプログラム言語はアセンブリ言語、 C O B O L言語、 コンパイラ 言語、 C言語、 ビジュアルベーシック等公知の言語を利用できる。 特に、 C言 語がゥンィドウズ、 マック O Sとのなじみがよく、 好ましい。 このコンピュータには、 演算結果を表示する表示部 4と、 シミュレーション を行なう演算プログラムファイル部 8が接続されている。 演算プログラムファ ィル部 8は、 独立した別個のファイルとしても、 また、 記録部 6 4に内蔵して 使用してもよい。 更に、 中央コンピュータ 6には、 実ロボットに演算結果を教 示するデータを出力する教示プログラム出力部 1 0が接続されている。
出力された教示プログラムは、 適当な記録媒体を介してワークステーション 1 2において使用され、 実ロボット 1 4に所定の作業を行なわせることができ る。 教示プログラムは直接ワークステーション 1 2に送ることもできる。
表示部 4の要素は、 図 2にリストとして示し、 図 3に具体的表示画面として 示す。 主たる画面要素は、 搬送物の移動経路、 装置レイアウト、 ロボットのァ ーム寸法等を入力するロボットの移動シミュレーションゥンィ ドウ 4 0、 演算 する内容 (ィべベント) を表示するメッセイジゥンィ ドウ 4 1、 速度情報ゥン ィドウ 4 6、 ウェハ搬送軌跡プログラム名をリストアップするリストゥンイ ド ゥ 4 4、 各種のコマンドを入力するツールパー 4 5、 メニユウパー 4 2、 図示 しないポップアップメニュー、 実行停止ボタン 4 8、 各種編集プログラム指示 ボタン 4 7等が表示されている。 図 3についてより具体的に説明する。 シミュレーションゥンィ ドウ 4 0に、 まず移載室として X— Y軸座標で平面の作業領域 4 0 - 1を設定する。次いで、 ロボット 4 0 — 3を配置する。 このロボットは 4軸のスカラロボットである。 また、障害物としてウェハを収容する 3個のウェハ力ッセト 4 0 - 2を配設し、 また、 ウェハを処理室へ移動するための 2個の中間ボックス 4 0 - 4を配設す る。
図 3で下側はロードロック室 4 0 — 4を介してウェハ処理室に連結している c なお、 4軸のロボットがアーム (フィンガともいう) 4 0 - 3 0で支持したゥ ェハ 4 0 - 3の中心位置と方向を修正するための位置決め装置 4 0 - 5を備え る。 作業領域 4 0— 1、 ロボットのアーム等には総て X— Y座標軸における位 置 (X、 Y) が与えられている。 ロボットのアーム (フィンガ) が移動する場合 には、 その位置 (X、 Y) が定義される。 上記、 作業空間 (ここでは水平面空間 4 0— 1 )、 ロボットフィンガ、 ロボッ トの種類等はツールパー 4 5に対応するコマンドを選択して設定する。 次に、 シミュレーションすべき経路 4 4一 2を選択する。例えば、 SIM— E7Mを選択 すれば、カセット 1 Mから 7 Mへウェハを移動する経路を選択することになる。 次いで、 4軸関節及びウェハ中心位置の各の移動速度( z m/秒)、回転向き、 回転方法、 待機方法等を、 情報ゥンィドウ 4 6において設定する。 移動の実行 と停止のボタン 4 8は各種のコマンドを実行するためのボタンである。 シミュ レーションの編集を行なうための各種コマンド群 4 7はシミュレーションクン ィドウ 4 0の下側に配置されている。 例えばダリッドはシミュレーションゥン ィドゥに座標格子を表示するためのボタンである。
タイムチャートボタンはロボッ 1、のフィンガが移動する時間を計測する。 実 行停止ボタン 4 8には、 ロボットアームの連続移動 4 8— 1 (左端)、 コマ送り 4 8 - 2 (左から 2番目)、 干渉領域表示 4 8— 3 (左から 3番目) 等のコマン ドが表示されている。 メッセィジゥンィドウ 4 8はシミュレーションの実行、 停止ボタン等を備えている。
シミュレーションが実行されると、 予め設定したフィンガの経由点 (図示し ない V 0〜V 9 ) における移動速度がリアルタイムで表示される。各経由点を結 ぶ線は角度があるのでフィンガが滑らかに運動するように円弧で自動修正され る。 グラフゥンィドウ 4 3の速度表示からロボットの運動における脱調状態が 判断できる。 その他、 フィンガの移動時間、 速度の最大値等も表示される。 こ れらの移動距離、 移動速度は与えられている X— Y座標における位置 (X,Y) の 変動として計算される。 更に、 図 4には図 3で説明したシミュレーシヨンプログラムの機能要素の重 要なものを列挙してある。 即ち、 座標格子 (グッリ ド) 表示機能、 口ポット表 示機能、 フィンガ表示機能、 時間表示機能、 経路作成機能、 障害物領域 (エリ ァ) 作成機能、 画面の拡大、 縮小、 移動機能、 座標軸の設定、 移動回転、 コピ 一機能、 頂点間距離設定機能、 数値入力機能、 原点入力機能等が備えられてい る。
以下において、 上記機能を使用し、 口ポットの作業をシミュレーションする ステップを説明する。 図 5には、 ロボッ トの作業領域 (エリア) をシミュレ一 シヨンゥンィドウ 4 0内に設定するステップを説明する。 この工程はウェハを 搬送する移載室を設計する工程として利用できるものである。
作成開始ステップ (S1)は、 メニューパー 4 2の作成ボタンをクリックする。 そして、 新規作成ステップ (S2)に進み、 リストゥンイドゥ 4 4で作業領域を選 択し (S3)、 シミュレーションゥンィ ドウ画面 4 0で 4角形の始点と終点をマウ スでクリックし (S4、 S5)、 作業領域を記入する。 円の場合には中心点と半径を マウスで描画する。 この際、 予め設定した縮尺で、 実作業空間の寸法は自動入 力される。不適当であれば、マウス右ポタンを押し、 ポップアップメニュー (図 示しない) で繰り返す (S6、 S7)。 適当であれば上記ポップアップメニューで終 了 (S8)し、 保存,記録 (S9) し、 作業領域設定を終了する (S10)。 この作業 領域 (エリア) は、 X— Y座標の位置 (X,Y) として定義される。 以下における 工程でもその点は同じである。 次に、 障害物領域設定を行なうステップを図 6に示す。 この工程は、 作業領 域であるプレチャンバ 4 0— 1の周囲に配置するウェハボックス 4 0— 2の位 置を决定し、 また、 ウェハ処理のためのロードロック室 4 0 — 4の位置を決定 するためのステップである。
まず、 スタートでは、 メニューバー 4 2の作成ボタンをクリックし、 新規作 成を選択し (S20)、 障害物の形状 (四角、 円) を選択し、 図 5と同様に所定の 寸法で作成する (S21)。ついで、障害物の配置位置の始点と終点を設定する (S22、 S23)。
設定が適当かどうかを判断し、 必要があれば繰り返す (S24、 S25) 0 適当で あれば終了し (S26)、 保存 ·記録し (S27)、 終了する (S28)0 次に、 被搬送物の搬送経路を作成する工程を図 7に説明する。 被搬送物の 経路作成工程を説明する。 メニューバ^"の作成ボタンをクリックし、 新規作成 (S30) を選択し、 リストゥンイ ドゥ 4 4に表れた経路作成をクリック (S31) し、 次いで経路開始点をシミュレーシヨンゥゥンィ ドウ 4 0でクリックして指 定し (S32)する。 更に、 被搬送物の経由点をクリックして指定し (S34)、 必要 により繰り返す (S35)。 適正な経由点を指定するとマウスの右ボタンをクリツ クして表示されたポップアップメニューで終了し (S36)、 丸めた経由点を表示 し (S37)、 自動的に保存 ·記録し (S38)、 終了する。 以上で、 被搬送物の移動 経路の作成を終了し、 シミュレーシヨンの準備が終了する。 図 8において、 シミュレーションの工程を説明する。 スタートは、 リストウ ンィドウ 4 4の経路を選択し (S 3 9 )、 ロボットアームが短い距離をステップ 的に移動するコマ送り (S40) の場合には実行停止ボタンのコマ送りボタン 4 8— 2をクリックする。 続いてコマ送りシミュレーション (S41)を選択した場 合には、 実行停止ボタン 4 8のステップを繰り返す (S42)。 更に、 念のため連 続動作の選択するかどうかを判断し (S43)、 連続動作をする場合には、 ボタン 4 8— 1をクリックし、 ロボットアームとアーム上のウェハ 4 0 - 3を既に設 定した軌道に沿って移動して作業環境との干渉の有無を判断する (S46)。 干渉領域がある場合には、 その領域を、 例えば赤色で図 3のシミュレーショ ンゥンィドウ 4 0に表示し (S47)、 データとして保存 ·記録する。 干渉領域が 無い場合にも同じ工程を行なう。 干渉領域があるかどうかは、 作業領域、 障害 物、 ロボットアームのそれぞれの X— Y座標における位置 (X,Y) を表示画面に 表示することにより目視することができる。 上記工程において、 コマ送りをしない場合には、 連続動作シミュレーション
(S44) も行なうことができる。 その後、 更にコマ送り (S45)を選択すること ができる。 コマ送りでは、 干渉の状態を詳細に観察でき、 必要によりロボット の諸元を変更することができる利点がある。 連続動作シミュレーションでは、 全体的に観察し、 例えばフィンガの移動速度を観察することができる利点があ る。
次に、 上記シミュレーションにより干渉が無く、 しかもロボットの運動が、 例えば脱調等も無く円滑に行なわれることが確認された場合には、 データによ り実ロボットを作動させるプログラムとして出力する。 この場合、 実ロボット の制御部に直接出力してもよく、 また一且記録媒体に出力して、 この媒体によ り実ロボットを作動させることもできる。 図 9において、 実ロボットを作動させるプログラムの内容を具体的に示す。 シミュレーションで作成した作業領域、 移動経路、 ロボットの X-Y座標に位 置およびその変化、 位置の変化速度 (移動速度) 等のロボットの移動経路情報 をコマンド 1から 3として作成し、 これにより実ロボットを作動させる。
コマンド 1はロボットの移動経由座標と経由点を直線と円弧で接続した全経 路の座標点を生成する。
コマンド 2は、 ウェハを载置したロボットアーム (フィンガ) の移動速度(起 動加速度、加速時加速度、最高速度、減速加速度、減速終了速度) を生成する。 コマンド 3は、 ウェハを支持するロボットアーム (フィンガ) の回転運動の 区間、 回転角度の情報を生成する。
これらの情報を通常、 図 1に示すワークステーション 1 2で使用する記録媒 体に出力する。 場合により直接ロボットに送ることも可能である。 上記実施例 においては、 平面 (X—Y座標) 上での干渉情報を計算した結果であるが、 同様 な計算は X— Z座標、 Y—Z座標においても実施できるので、 これらの面におけ る干渉状態を計算することができる。 産業上の利用分野
本発明に係るロボットシミュレーション装置は、 与えられた作業空間、 口ボ ッ卜の条件においては、 ロボットの望ましい運動、 作業を予めシミュレーショ ンできるので、 望ましい作業条件を設定することができる。
加えて、 安価なパーソナルコンピュータを利用したシミュレーションゥ装置 を利用でき、 設備投資を低減できる。
更に、 作業空間と適切なロボットの設計がシミュレーシヨンにより可能であ る。 本シミュレーションにより生成したプログラムで実ロボッ卜の望ましい作 業をさせることが可能となり、 特に半導体製造装置の設計、 製造作業が容易と なる。 特に、 表示画面に二次元表示するため、 設計図の平面図、 立面図、 側面 図と対応するため、 移載室など、 ロボットの配置装置の設計、 修正が容易であ る。 本シミュレーション装置の座標メモリは、 μ mまで制御するので精度の高 い教示をすることができる。また、 この教示作業は、 コンピュータで作成され、 製造現場でロボットのアームを直接教示することを要しないため、 ロボットの 暴走による人身事故を防止することができる。

Claims

請 求 の 範 囲
1 . 入力部と、 表示部と、 中央コンピュータと、 演算プログラム部おょぴ教 示プログラムの出力部とを備え、 障害物が配設された作業領域内で被搬送物を 搬送するロボットが前記作業領域内で干渉なく作業をするかどうかをシミュレ ーシヨンするための下記の手段を備えたことを特徴とするロボットシミュレ一 ション装置。
( 1 ) 座標軸を有する二次元表示部と、
( 2 ) 前記表示部に、 前記障害物と前記作業領域を描画する手段と、 移動する ロボットを描画する手段と、 該ロボットにより搬送される被搬送物を描画する 手段と、
( 3 ) 前記被搬送物体の中心点の移動径由点を指定して経由点を補間する手段 と、
( 4 ) 前記被搬送物を前記作業領域内で移動させ、 その移動軌跡を表示する手 段と、
( 5 ) 前記移動軌跡が前記障害物とが干渉する領域を表示する手段。
2 . 更に、 前記表示画面上に、 前記被搬送物とロボットの移動時間を計測す る手段と、 前記被搬送物と前記ロボットの可動部との移動軌跡を動画で表示す る手段と、 を備えたことを特徴とする請求項 1記載のロボットシミュレーショ
3 . 更に、 前記被搬送物体とロボットの可動部の移動速度を算出し、 表示す る手段を有することを特徴とする請求項 1または 2に記載されたロボットシミ ユレ—シヨン装置。
4 . 前記二次元表示部が、 作業領域の水平面及び または垂直面を表示する ことを特徴とする請求項 1から 3のいずれかに記載されたロボットシミュレー ション装置。
5 . 前記障害物と前記搬送領域は、 多角形及び Z又は円形で表示されること を特徴とする請求項 1から 4のいずれかに記載のロボットシミュレーシヨン装
6 . 更に、 前記ロボッ トの出発位置と目的位置とを指定することによって前 記被搬送物の移動軌跡を算出する手段を有することを特徴とする請求項 1から 5のいずれかに記載されたロボッ トシミュレーション装置。
7 . 更に、. 前記被搬送物の出発位置と前記物体の移動先である複数の目的位 置とを指定することによって前記被搬送物の移動順路および移動軌跡を算出す る手段を有することを特徴とする請求項 1から 6のいずれかに記載のロボット シミュレーション装置。
8 . 更に、 前記ロボットの可動部分の限界を指定することにより、 前記被搬 送物の搬送不可能な領域とを算出し表示する手段を有することを特徴とする請 求項 1から 7のいずれかに記載のロボッ トシミュレーション装置。
9 . 更に、 シミュレーションの結果得られたデータから、 少なくとも、 ロボ ットの寸法、 搬送経路、 搬送速度に関する教示データを出力する出力部を有す ることを特徴とする請求項 1から 8のいずれかに記載されたロボットシミュレ ーション装置。
1 0 . 更に、 前記ロボットの可動部の動作を前記口ポットに教示することを 特徴とする請求項 1から 9のいずれかに記載のロボッ トシミュレーション装置。
1 1 . 前記ロボットが、 スカラ型ロボットであり、 前記被搬送物が薄板状体 であることを特徴とする請求項 1から 1 0のいずれかに記載されたロポットシ ミュレーシヨン装置。
1 2 . 請求項 1から 1 1のいずれかに記載のロボットシミュレーシヨン装置 で生成したシミュレーシヨンデータに基づき、 前記表示部の画面上に表示し、 Rび/又は実口ボットに作業を実行させることを特徴とするプログラム。
PCT/JP2003/003583 2003-03-25 2003-03-25 ロボットシミュレーション装置、および、シミュレーションプログラム WO2004085120A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN038262231A CN1758990B (zh) 2003-03-25 2003-03-25 自动机械仿真装置
US10/550,285 US7606633B2 (en) 2003-03-25 2003-03-25 Robot simulation device, and robot simulation program
KR1020057015833A KR100929445B1 (ko) 2003-03-25 2003-03-25 로봇 시뮬레이션장치 및 로봇 시뮬레이션 프로그램을 포함하는 기록매체
JP2004569923A JP4441409B2 (ja) 2003-03-25 2003-03-25 ロボットシミュレーション装置、および、シミュレーションプログラム
PCT/JP2003/003583 WO2004085120A1 (ja) 2003-03-25 2003-03-25 ロボットシミュレーション装置、および、シミュレーションプログラム
AU2003221083A AU2003221083A1 (en) 2003-03-25 2003-03-25 Robot simulation device, and robot simulation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/003583 WO2004085120A1 (ja) 2003-03-25 2003-03-25 ロボットシミュレーション装置、および、シミュレーションプログラム

Publications (1)

Publication Number Publication Date
WO2004085120A1 true WO2004085120A1 (ja) 2004-10-07

Family

ID=33045126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003583 WO2004085120A1 (ja) 2003-03-25 2003-03-25 ロボットシミュレーション装置、および、シミュレーションプログラム

Country Status (6)

Country Link
US (1) US7606633B2 (ja)
JP (1) JP4441409B2 (ja)
KR (1) KR100929445B1 (ja)
CN (1) CN1758990B (ja)
AU (1) AU2003221083A1 (ja)
WO (1) WO2004085120A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089218A (ja) * 2008-10-09 2010-04-22 Seiko Epson Corp 産業用ロボットの位置教示装置、動作プログラム作成装置、産業用ロボットの位置教示方法およびプログラム
JP2010089186A (ja) * 2008-10-06 2010-04-22 Denso Wave Inc ロボットのアーム回動範囲変更制御装置
JP2012035348A (ja) * 2010-08-04 2012-02-23 Spring:Kk プログラム作成支援システム、及び、そのコンピュータプログラム
WO2014080652A1 (ja) * 2012-11-22 2014-05-30 大日本スクリーン製造株式会社 把持機構の軌道生成装置、把持機構の軌道生成方法、把持機構の軌道生成プログラム、記録媒体、ロボットプログラム作成装置
DE102017124502A1 (de) 2016-10-27 2018-05-03 Fanuc Corporation Simulationsvorrichung und Simulationsverfahren, die eine Betriebssimulation eines Robotersystems ausführen, und Aufzeichnungsmedium, das ein Computerprogramm aufzeichnet
JP2019067153A (ja) * 2017-09-29 2019-04-25 ブラザー工業株式会社 演算装置、工作システム、演算方法及びコンピュータプログラム
US10434650B2 (en) 2017-07-11 2019-10-08 Fanuc Corporation Programming device which generates operation program and method for generating program
CN113296505A (zh) * 2021-05-19 2021-08-24 华南理工大学 一种基于速变los的无人船多模式路径跟踪控制方法

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070282480A1 (en) * 2003-11-10 2007-12-06 Pannese Patrick D Methods and systems for controlling a semiconductor fabrication process
JP4238256B2 (ja) * 2006-06-06 2009-03-18 ファナック株式会社 ロボットシミュレーション装置
JP2007334678A (ja) * 2006-06-15 2007-12-27 Fanuc Ltd ロボットシミュレーション装置
KR100738052B1 (ko) * 2006-12-26 2007-07-12 주식회사 이디 지능형 로봇 제어 시뮬레이션 시스템
JP5008480B2 (ja) * 2007-06-28 2012-08-22 キヤノン株式会社 設計支援プログラム
KR100956839B1 (ko) * 2008-02-28 2010-05-11 홍익대학교 산학협력단 다관절 로봇 시뮬레이션 제어프로그램 개발 장치
JP2010092330A (ja) * 2008-10-09 2010-04-22 Seiko Epson Corp 動作シーケンス作成装置、動作シーケンス作成装置の制御方法およびプログラム
TW201031507A (en) * 2009-02-25 2010-09-01 Micro Star Int Co Ltd Control apparatus of a multi-axial joint and control method thereof
JP5639341B2 (ja) * 2009-03-18 2014-12-10 川崎重工業株式会社 シミュレーションシステム及びプログラム
KR101050720B1 (ko) * 2009-08-06 2011-07-20 주식회사 유디엠텍 쓰리디 지그 모델링 자동화 방법 및 이를 실행할 수 있는 프로그램이 저장된 기록매체
JP2011048621A (ja) * 2009-08-27 2011-03-10 Honda Motor Co Ltd ロボットのオフライン教示方法
KR101700660B1 (ko) * 2010-04-14 2017-01-31 주식회사 로보스타 반송 로봇의 교시방법
US9314921B2 (en) 2011-03-17 2016-04-19 Sarcos Lc Robotic lift device with human interface operation
CN103492133B (zh) * 2011-04-19 2016-04-13 Abb研究有限公司 具有运动冗余臂的工业机器人和用于控制该机器人的方法
US9789603B2 (en) 2011-04-29 2017-10-17 Sarcos Lc Teleoperated robotic system
US8942846B2 (en) * 2011-04-29 2015-01-27 Raytheon Company System and method for controlling a teleoperated robotic agile lift system
US8977398B2 (en) 2011-04-29 2015-03-10 Sarcos Lc Multi-degree of freedom torso support for a robotic agile lift system
US8977388B2 (en) 2011-04-29 2015-03-10 Sarcos Lc Platform perturbation compensation
CN103213125B (zh) * 2011-11-04 2016-05-18 范努克机器人技术美国有限公司 具有3d显示的机器人教学装置
US9616580B2 (en) 2012-05-14 2017-04-11 Sarcos Lc End effector for a robotic arm
JP5426719B2 (ja) 2012-05-18 2014-02-26 ファナック株式会社 ロボットシステムの動作シミュレーション装置
CN104635506B (zh) * 2013-11-07 2017-06-30 中国科学院沈阳自动化研究所 一种半导体生产线搬运系统设备仿真方法
JP6127925B2 (ja) * 2013-11-11 2017-05-17 株式会社安川電機 ロボットシミュレーション装置、ロボットシミュレーション方法、およびロボットシミュレーションプログラム
US10078712B2 (en) * 2014-01-14 2018-09-18 Energid Technologies Corporation Digital proxy simulation of robotic hardware
US10766133B2 (en) 2014-05-06 2020-09-08 Sarcos Lc Legged robotic device utilizing modifiable linkage mechanism
JP6350037B2 (ja) * 2014-06-30 2018-07-04 株式会社安川電機 ロボットシミュレータおよびロボットシミュレータのファイル生成方法
US9283678B2 (en) * 2014-07-16 2016-03-15 Google Inc. Virtual safety cages for robotic devices
TWI668174B (zh) * 2015-05-27 2019-08-11 日商精工愛普生股份有限公司 電子零件搬送裝置及電子零件檢查裝置
US10114379B2 (en) * 2015-06-01 2018-10-30 Dpix, Llc Point to point material transport vehicle improvements for glass substrate
US10515834B2 (en) 2015-10-12 2019-12-24 Lam Research Corporation Multi-station tool with wafer transfer microclimate systems
US10562191B2 (en) * 2015-12-29 2020-02-18 Robomotive Laboratories LLC Method of controlling devices with sensation of applied force
JP6370821B2 (ja) * 2016-02-12 2018-08-08 ファナック株式会社 ロボットプログラムの教示を行うロボットプログラミング装置
EP3220223B1 (de) * 2016-03-16 2021-07-14 Siemens Aktiengesellschaft Verfahren zur bearbeitung eines werkstücks in einer werkzeugmaschine mit optimierter bearbeitungszeit
US10821614B2 (en) 2016-11-11 2020-11-03 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US10765537B2 (en) 2016-11-11 2020-09-08 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators for use within a robotic system
US10828767B2 (en) 2016-11-11 2020-11-10 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators with internal valve arrangements
US10919161B2 (en) 2016-11-11 2021-02-16 Sarcos Corp. Clutched joint modules for a robotic system
CN106393081B (zh) * 2016-11-21 2018-10-30 深圳市小二极客科技有限公司 人机交互的机械手控制方法、终端及系统
JP6765291B2 (ja) * 2016-12-16 2020-10-07 コマツ産機株式会社 シミュレーション装置、シミュレーション方法およびシミュレーションプログラム
JP7069456B2 (ja) 2017-03-17 2022-05-18 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン マルチポリシー意思決定を導くための有益な結果を構築するための方法および装置
US11331803B2 (en) * 2017-04-17 2022-05-17 Siemens Aktiengesellschaft Mixed reality assisted spatial programming of robotic systems
JP6514273B2 (ja) * 2017-06-19 2019-05-15 ファナック株式会社 速度を表示するロボットシステム
JP7087316B2 (ja) * 2017-09-27 2022-06-21 オムロン株式会社 情報処理装置、情報処理方法およびプログラム
US10843330B2 (en) 2017-12-07 2020-11-24 Sarcos Corp. Resistance-based joint constraint for a master robotic system
US11331809B2 (en) 2017-12-18 2022-05-17 Sarcos Corp. Dynamically controlled robotic stiffening element
US10676022B2 (en) 2017-12-27 2020-06-09 X Development Llc Visually indicating vehicle caution regions
EP3824404A4 (en) 2018-07-20 2022-04-27 May Mobility, Inc. MULTI-PERSPECTIVE SYSTEM AND BEHAVIORAL POLICY SELECTION PROCESS BY AN AUTONOMOUS AGENT
US11351675B2 (en) 2018-12-31 2022-06-07 Sarcos Corp. Robotic end-effector having dynamic stiffening elements for conforming object interaction
US10906191B2 (en) 2018-12-31 2021-02-02 Sarcos Corp. Hybrid robotic end effector
US11241801B2 (en) 2018-12-31 2022-02-08 Sarcos Corp. Robotic end effector with dorsally supported actuation mechanism
JP2023533225A (ja) 2020-07-01 2023-08-02 メイ モビリティー,インコーポレイテッド 自律走行車ポリシーを動的にキュレーションする方法及びシステム
US11833676B2 (en) 2020-12-07 2023-12-05 Sarcos Corp. Combining sensor output data to prevent unsafe operation of an exoskeleton
JP2023553980A (ja) 2020-12-14 2023-12-26 メイ モビリティー,インコーポレイテッド 自律車両安全プラットフォームシステム及び方法
JP2024500672A (ja) 2020-12-17 2024-01-10 メイ モビリティー,インコーポレイテッド 自律エージェントの環境表現を動的に更新するための方法およびシステム
CN112847339A (zh) * 2020-12-25 2021-05-28 珠海新天地科技有限公司 一种机器人模拟装置
US11794345B2 (en) 2020-12-31 2023-10-24 Sarcos Corp. Unified robotic vehicle systems and methods of control
EP4314708A1 (en) 2021-04-02 2024-02-07 May Mobility, Inc. Method and system for operating an autonomous agent with incomplete environmental information
US11565717B2 (en) 2021-06-02 2023-01-31 May Mobility, Inc. Method and system for remote assistance of an autonomous agent
CN113626313B (zh) * 2021-07-15 2024-01-09 厦门立林科技有限公司 一种基于人工操作仿真的自动化测试系统
US12012123B2 (en) 2021-12-01 2024-06-18 May Mobility, Inc. Method and system for impact-based operation of an autonomous agent
US11814072B2 (en) 2022-02-14 2023-11-14 May Mobility, Inc. Method and system for conditional operation of an autonomous agent
US11826907B1 (en) 2022-08-17 2023-11-28 Sarcos Corp. Robotic joint system with length adapter
US11717956B1 (en) 2022-08-29 2023-08-08 Sarcos Corp. Robotic joint system with integrated safety
US11897132B1 (en) 2022-11-17 2024-02-13 Sarcos Corp. Systems and methods for redundant network communication in a robot
US11924023B1 (en) 2022-11-17 2024-03-05 Sarcos Corp. Systems and methods for redundant network communication in a robot
WO2024129832A1 (en) 2022-12-13 2024-06-20 May Mobility, Inc. Method and system for assessing and mitigating risks encounterable by an autonomous vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192808A (ja) * 1987-10-02 1989-04-12 Fanuc Ltd ロボット動作シュミレーション方式
JPH05131385A (ja) * 1991-11-08 1993-05-28 Toyota Motor Corp 組立作業用教示点作成装置
JPH05233052A (ja) * 1992-02-20 1993-09-10 Tokico Ltd ロボットの教示装置
JPH0778017A (ja) * 1993-06-30 1995-03-20 Kobe Steel Ltd 動作物体間の干渉チェック方法及びその装置
JPH08194512A (ja) * 1995-01-20 1996-07-30 Tokico Ltd ロボットの制御装置
JPH10260714A (ja) * 1997-03-21 1998-09-29 Nissan Motor Co Ltd ロボット干渉域設定プログラム作成方法
JP2000094131A (ja) * 1998-09-25 2000-04-04 Kobe Steel Ltd 溶接姿勢教示方法及びその装置
JP2002299405A (ja) * 2001-03-29 2002-10-11 Dainippon Screen Mfg Co Ltd 基板搬送装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127718A (ja) * 1991-11-08 1993-05-25 Fujitsu Ltd マニピユレータの手先軌道自動生成装置
JPH05224734A (ja) 1992-02-14 1993-09-03 Toyota Motor Corp ロボットのシミュレーション装置
US5629594A (en) * 1992-12-02 1997-05-13 Cybernet Systems Corporation Force feedback system
JPH07141016A (ja) 1993-11-18 1995-06-02 Nissan Motor Co Ltd ロボットの移動経路シミュレーション装置
US6028593A (en) * 1995-12-01 2000-02-22 Immersion Corporation Method and apparatus for providing simulated physical interactions within computer generated environments
JP3300625B2 (ja) * 1997-01-27 2002-07-08 ファナック株式会社 ロボットの制御方式
US6281651B1 (en) * 1997-11-03 2001-08-28 Immersion Corporation Haptic pointing devices
JP3042840B2 (ja) 1998-03-11 2000-05-22 川崎重工業株式会社 ロボットの干渉チェック装置
JPH11300670A (ja) * 1998-04-21 1999-11-02 Fanuc Ltd 物品ピックアップ装置
DE19857436A1 (de) * 1998-12-12 2000-06-21 Kuka Roboter Gmbh Verfahren zum Behandeln des Spannungsabfalls in der Steuerung eines Roboters und zum Wiederanfahren eines Roboters nach Spannungsabfall
JP4759810B2 (ja) * 1999-05-10 2011-08-31 ソニー株式会社 画像処理装置及びロボット装置並びに画像処理方法
DE60013763T2 (de) * 2000-03-14 2005-01-27 Siemens Ag Routenplanungssystem
US6853964B1 (en) * 2000-06-30 2005-02-08 Alyn Rockwood System for encoding and manipulating models of objects
JP3673725B2 (ja) 2001-04-05 2005-07-20 ファナック株式会社 ロボット用情報処理システム
US7206627B2 (en) * 2002-03-06 2007-04-17 Z-Kat, Inc. System and method for intra-operative haptic planning of a medical procedure
CN1846181A (zh) * 2003-06-20 2006-10-11 美国发那科机器人有限公司 多个机械手的跟踪和镜像微动
JP3601793B1 (ja) * 2003-11-05 2004-12-15 任天堂株式会社 移動時間算出プログラム及び情報記録媒体
US7046765B2 (en) * 2004-03-31 2006-05-16 Accuray, Inc. Radiosurgery x-ray system with collision avoidance subsystem

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192808A (ja) * 1987-10-02 1989-04-12 Fanuc Ltd ロボット動作シュミレーション方式
JPH05131385A (ja) * 1991-11-08 1993-05-28 Toyota Motor Corp 組立作業用教示点作成装置
JPH05233052A (ja) * 1992-02-20 1993-09-10 Tokico Ltd ロボットの教示装置
JPH0778017A (ja) * 1993-06-30 1995-03-20 Kobe Steel Ltd 動作物体間の干渉チェック方法及びその装置
JPH08194512A (ja) * 1995-01-20 1996-07-30 Tokico Ltd ロボットの制御装置
JPH10260714A (ja) * 1997-03-21 1998-09-29 Nissan Motor Co Ltd ロボット干渉域設定プログラム作成方法
JP2000094131A (ja) * 1998-09-25 2000-04-04 Kobe Steel Ltd 溶接姿勢教示方法及びその装置
JP2002299405A (ja) * 2001-03-29 2002-10-11 Dainippon Screen Mfg Co Ltd 基板搬送装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089186A (ja) * 2008-10-06 2010-04-22 Denso Wave Inc ロボットのアーム回動範囲変更制御装置
JP2010089218A (ja) * 2008-10-09 2010-04-22 Seiko Epson Corp 産業用ロボットの位置教示装置、動作プログラム作成装置、産業用ロボットの位置教示方法およびプログラム
JP2012035348A (ja) * 2010-08-04 2012-02-23 Spring:Kk プログラム作成支援システム、及び、そのコンピュータプログラム
WO2014080652A1 (ja) * 2012-11-22 2014-05-30 大日本スクリーン製造株式会社 把持機構の軌道生成装置、把持機構の軌道生成方法、把持機構の軌道生成プログラム、記録媒体、ロボットプログラム作成装置
DE102017124502B4 (de) * 2016-10-27 2020-10-01 Fanuc Corporation Simulationsvorrichung und Simulationsverfahren, die eine Betriebssimulation eines Robotersystems ausführen, und Aufzeichnungsmedium, das ein Computerprogramm aufzeichnet
JP2018069367A (ja) * 2016-10-27 2018-05-10 ファナック株式会社 ロボットシステムの動作のシミュレーションを行うシミュレーション装置、シミュレーション方法、およびコンピュータプログラムを記録する記録媒体
US10534876B2 (en) 2016-10-27 2020-01-14 Fanuc Corporation Simulation device and simulation method that carry out simulation of operation of robot system, and recording medium that records computer program
DE102017124502A1 (de) 2016-10-27 2018-05-03 Fanuc Corporation Simulationsvorrichung und Simulationsverfahren, die eine Betriebssimulation eines Robotersystems ausführen, und Aufzeichnungsmedium, das ein Computerprogramm aufzeichnet
US10434650B2 (en) 2017-07-11 2019-10-08 Fanuc Corporation Programming device which generates operation program and method for generating program
DE102018116245B4 (de) 2017-07-11 2021-08-26 Fanuc Corporation Programmiervorrichtung, die ein Betriebsprogramm erstellt, sowie Verfahren zur Programmerstellung
JP2019067153A (ja) * 2017-09-29 2019-04-25 ブラザー工業株式会社 演算装置、工作システム、演算方法及びコンピュータプログラム
JP6992381B2 (ja) 2017-09-29 2022-01-13 ブラザー工業株式会社 演算装置、工作システム、演算方法及びコンピュータプログラム
CN113296505A (zh) * 2021-05-19 2021-08-24 华南理工大学 一种基于速变los的无人船多模式路径跟踪控制方法

Also Published As

Publication number Publication date
US7606633B2 (en) 2009-10-20
KR100929445B1 (ko) 2009-12-03
KR20050116801A (ko) 2005-12-13
US20060184275A1 (en) 2006-08-17
JPWO2004085120A1 (ja) 2006-06-29
AU2003221083A1 (en) 2004-10-18
CN1758990A (zh) 2006-04-12
CN1758990B (zh) 2010-08-18
JP4441409B2 (ja) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4441409B2 (ja) ロボットシミュレーション装置、および、シミュレーションプログラム
US11331803B2 (en) Mixed reality assisted spatial programming of robotic systems
US11007646B2 (en) Programming assistance apparatus, robot system, and method for generating program
JP3819883B2 (ja) ロボットプログラム位置修正装置
US7945349B2 (en) Method and a system for facilitating calibration of an off-line programmed robot cell
JP6311421B2 (ja) ティーチングシステム、ロボットシステムおよびティーチング方法
US10635082B2 (en) Robot motion program generating method and robot motion program generating apparatus
JP6683671B2 (ja) ジョグ座標系を設定するロボットの制御装置
EP1842631B1 (en) Apparatus and method for automatic path generation for an industrial robot
US20150151431A1 (en) Robot simulator, robot teaching device, and robot teaching method
JP2003117863A (ja) ロボットシミュレーション装置
KR20140104914A (ko) 티칭 시스템 및 티칭 방법
KR20170024769A (ko) 로봇 제어 장치
US20200009724A1 (en) Robot program generation apparatus
JP2010218036A (ja) ロボットオフラインプログラミング装置
JP2019188545A (ja) ロボット制御装置
CN109789552B (zh) 工件处理系统
JP2015116631A (ja) 制御装置、ロボット、制御方法及びロボットシステム
US20240256229A1 (en) Program creation device
US20210162582A1 (en) Teaching Apparatus, Robot System, And Teaching Program
JP7232704B2 (ja) ロボットプログラム評価装置、ロボットプログラム評価方法及びロボットプログラム評価プログラム
JP2003127078A (ja) 作業ロボットの教示装置および教示方法。
US20210187746A1 (en) Task planning accounting for occlusion of sensor observations
KR20240059952A (ko) 통신 인터페이스로 구성된 모듈 기반 로봇의 제어시스템
JP2023115704A (ja) ロボット教示システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004569923

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057015833

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006184275

Country of ref document: US

Ref document number: 10550285

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038262231

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057015833

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10550285

Country of ref document: US