WO2004082171A1 - 無線装置 - Google Patents

無線装置 Download PDF

Info

Publication number
WO2004082171A1
WO2004082171A1 PCT/JP2003/002844 JP0302844W WO2004082171A1 WO 2004082171 A1 WO2004082171 A1 WO 2004082171A1 JP 0302844 W JP0302844 W JP 0302844W WO 2004082171 A1 WO2004082171 A1 WO 2004082171A1
Authority
WO
WIPO (PCT)
Prior art keywords
arrival
angle
elements
wireless device
parallel
Prior art date
Application number
PCT/JP2003/002844
Other languages
English (en)
French (fr)
Inventor
Shuji Kobayakawa
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2004569332A priority Critical patent/JP4116624B2/ja
Priority to PCT/JP2003/002844 priority patent/WO2004082171A1/ja
Publication of WO2004082171A1 publication Critical patent/WO2004082171A1/ja
Priority to US11/059,953 priority patent/US7409227B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/8083Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems determining direction of source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming

Definitions

  • the present invention relates to a radio apparatus that estimates a direction in which a received wave arrives at an antenna, and forms a radio transmission path with the transmitting end of the received wave via the antenna.
  • FIG. 8 is a diagram illustrating a configuration example of a wireless base station device provided with an array antenna.
  • the feed ends of a plurality of N elements 9 ⁇ -1 to 9 O EN which constitute an array antenna 90 and are arranged at a fixed interval d on a virtual straight line are respectively divided filters 9 1 -1 To 91 -N, and the outputs of these duplexers 91-1 to 91 -N are respectively received by the arrival angle estimator 93 and the beam via the receivers 92-1 to 92-N.
  • the output of the beam former 94-E is connected to the input of a demodulator (not shown).
  • the output of the angle-of-arrival estimation unit 93 is connected to the control input of the beam forming unit 94-R and the control input of the beam forming unit 94-T paired with the beam forming unit 94-R.
  • the output of the modulation unit (not shown) is connected to the input of the unit 94-T.
  • the plural N outputs of the beam forming unit 94-T are connected to the first inputs of the signal combining units 95- :! to 95-N, respectively.
  • the “single or multiple basebands” described later are given in parallel to the second to ⁇ ( ⁇ 2) inputs of the signal synthesis units 95 ⁇ 1 to 95 - ⁇ , respectively. Part 95-;! ⁇
  • the outputs of 95-N are connected to the other inputs of the demultiplexers 91 to 91-N via the transmission units 96-96 to 96-N, respectively.
  • the receiving units 92-1 to 92-N each include the element 90 E- :! ⁇ 90 E-N is input via the demultiplexer 91-1 ⁇ 91-N, and these elements 90! N baseband signals S 1 to S N are generated by heterodyne detection (or homodyne detection) of the received wave arriving in parallel to 9090 E-N.
  • the amplitudes of these baseband signals S 1 to S N have a common value (“1” normalized by the nominal value of the value).
  • the wavelength of the above-mentioned received wave is given as a known value ⁇ .
  • the arrival angle estimating unit 93 performs arithmetic operations represented by the following equations (1) to (4), and thereby, among the baseband signals S1 to SN, To obtain the average value ⁇ of the phase difference of the baseband signal obtained through.
  • the arrival angle estimating unit 93 calculates the average value ⁇ obtained in this way and the element 90 E- :!
  • the arrival angle ⁇ A of the received wave described above is determined as an azimuth that is uniquely determined based on the arrangement of 9090 E-N (including the azimuth indicated by the “virtual straight line” described above).
  • the beam forming unit 94-R includes weights e j1 to e i N indicating the phase shift amounts ⁇ 1 to ⁇ N at which the main aperture of the array antenna 90 is formed in the direction of the arrival angle ⁇ A, and did Beamforming is performed in the baseband region by supplying a signal obtained as a product sum of the baseband signals S1 to SN (hereinafter referred to as “baseband signal R”) to the demodulation unit.
  • baseband signal R a signal obtained as a product sum of the baseband signals S1 to SN
  • beam forming section 94-T performs “processing opposite to processing performed by beam forming section 94-R as described above” on “baseband signal T” given from the modulation section described above.
  • baseband signal T given from the modulation section described above.
  • the signal synthesizing units 95-1 to 95 - ⁇ transmit the baseband signals in parallel with the ⁇ ⁇ ⁇ baseband signals, which are generated in parallel by another beam forming unit (not shown)
  • the transmission sections 96-1 to 96-N individually convert these N transmission baseband signals into a desired radio frequency signal, and further include a duplexer 91-1 to 91-N and an element 90 El. Transmit these radio frequency signals in parallel via ⁇ 90 EN.
  • a full-duplex wireless transmission path is formed between the transmitting end of the regular received wave arriving at the array antenna 90 and the beamforming as described above based on the desired directivity. Will be kept high.
  • Patent Document 1
  • Patent Document 2
  • the accuracy of the angle of arrival ⁇ A obtained by the angle-of-arrival estimation unit 93 is higher than the accuracy of the reception unit 92-:!
  • these receivers 9 2-:! -92-N includes, for example, low-noise amplifiers (LNAs) and frequency converters, whose inherent characteristics are non-linear with deviations in their characteristics, and temperature and other environmental conditions. It is equipped with circuits and elements whose phase shift amount and gain can vary greatly with age.
  • LNAs low-noise amplifiers
  • frequency converters whose inherent characteristics are non-linear with deviations in their characteristics, and temperature and other environmental conditions. It is equipped with circuits and elements whose phase shift amount and gain can vary greatly with age.
  • the angle of arrival obtained by the angle-of-arrival estimation unit 93 involves errors and fluctuations, and the transmission quality and the service quality may deteriorate due to these errors and fluctuations.
  • a dedicated branch circuit a synthesizer, a receiver, and the like must be provided as a feedforward circuit, so that the larger the number of elements of the array antenna, the more hardware The scale could increase. Disclosure of the invention
  • an object of the present invention is that the angle of arrival of a received wave can be accurately and stably obtained even if the phase shift amount of each receiving means changes in accordance with environmental conditions and aging.
  • a further object of the present invention is to simplify wiring in a radio frequency region or an intermediate frequency region and to standardize the configuration.
  • Another object of the present invention is to further improve transmission quality.
  • an object of the present invention is to improve the accuracy of the angle of arrival in addition to flexible adaptation to various frames, packets and other structures.
  • an object of the present invention is to prevent a decrease in transmission quality due to insufficient accuracy of the angle of arrival, and to use the provided elements and receiving means effectively for improving transmission quality. On the point.
  • an object of the present invention is to provide a device and a system to which the present invention is applied at low cost, with high accuracy, high performance, and high overall reliability.
  • the above-described object is that two receiving means detect the received waves arriving in parallel to the two elements in parallel alternately at intervals of an integral multiple of the symbol period.
  • the inverse of the difference between the two phases which are given as a function of the spacing and arrangement of the elements and the angle of arrival of the received wave, and which commonly include the difference in the amount of phase shift of one of these two receiving means with respect to the other. This is achieved by a wireless device characterized by calculating its angle of arrival as a function.
  • such a difference does not include the above-described phase shift amounts of the two receiving units irrespective of these phase shift amounts.
  • the above-described object is to determine the difference between the phase shift amounts of the two receiving means over the difference between one of the two phases described above and the value of the above-described function with respect to the angle of arrival obtained as described above. This is achieved by a wireless device characterized in that it compresses.
  • the deviation or fluctuation of the phase shift amount of each of the two receiving means is compressed, so that the range of the difference between the two phases described above is such a deviation or fluctuation of the phase shift amount.
  • the degree of expansion according to minutes is reduced.
  • the above-mentioned object is characterized in that it is composed of a plurality of elements or forms a main rope of an antenna configured to include these elements in the direction of the angle of arrival.
  • Wireless devices are composed of a plurality of elements or forms a main rope of an antenna configured to include these elements in the direction of the angle of arrival.
  • the above-mentioned object is to provide two detecting means in which two receiving means are provided, and selecting means for alternately providing a received wave arriving in parallel with the two elements described above to these detecting means for each of the above-described periods.
  • a wireless device characterized in that it comprises: In such a wireless device, the feed ends of the two elements are not connected to both of the above-mentioned receiving means, but are directly connected to the corresponding individual inputs of the selecting means, and the receiving means is connected to the two detecting means. And means.
  • the above-mentioned object is to recompose two signals output in parallel as detection results by the two receiving means described above into signals individually corresponding to received waves arriving in parallel at the two elements.
  • the above-mentioned object is achieved by a radio apparatus characterized in that a level deviation of a signal individually corresponding to a received wave arriving in parallel with two elements is compressed.
  • a radio apparatus characterized in that a level deviation of a signal individually corresponding to a received wave arriving in parallel with two elements is compressed.
  • the above-mentioned object is achieved by a radio apparatus characterized in that the above-mentioned period is given as “a period during which a slot or a bucket arrives as a known wave”.
  • the difference between the two phases indicating the angle of arrival of the received wave as the inverse function described above was determined as an average value over the number of symbols constituting the slot-to-packet described above.
  • the difference between the phase shift amounts of the two receiving means is commonly included.
  • the above-mentioned purpose is when the number of elements (branches) is a plurality of “3” or more. This is achieved by a wireless device that has been generally used as a configuration that can also be applied.
  • phase shift amount of the two receiving means belonging to each pair described above is independent of these phase shift amounts, as described above. Is not included in the difference.
  • the above-mentioned object is achieved by a radio apparatus characterized in that accuracy is enhanced by averaging the angles of arrival calculated in parallel for each pair of two branches.
  • FIG. 1 is a first principle block diagram of the present invention.
  • FIG. 2 is a second principle block diagram of the present invention.
  • FIG. 3 is a diagram showing the first and third embodiments of the present invention.
  • FIG. 4 is a diagram for explaining the operation of the first embodiment of the present invention.
  • FIG. 5 is a diagram showing the second and fifth embodiments of the present invention.
  • FIG. 6 is a diagram showing a fourth embodiment of the present invention.
  • FIG. 7 is a diagram showing another configuration of the second and fifth embodiments of the present invention.
  • FIG. 8 is a diagram illustrating a configuration example of a wireless base station device provided with an array antenna.
  • FIG. 1 is a first principle block diagram of the present invention.
  • the principle of the first wireless device according to the present invention is as follows.
  • the two receiving means 1 2-1 and 1 2-2 are two elements 1 1-1 and 2 from the common transmitting end 10.
  • the arrival angle calculation means 13 calculates, for each such period, ⁇ in proportion to the interval between the two elements 11-1 and 11-2, the arrangement of these elements 11-1 and 11-2 Given separately as a function of the angle of arrival of the received wave described above, and two The angle of arrival is calculated as the inverse function of the difference between the two phases that commonly include the difference in the amount of phase shift between the receiving means 12-1 and 12-2.
  • Such a difference does not include the phase shift amounts of the two receiving means 12-1, 12-2 described above regardless of these phase shift amounts.
  • the arrival angle of the received wave can be accurately and stably obtained.
  • the principle of the second wireless device according to the present invention is as follows.
  • the calibrating means 14 provides two receiving means 12-1, 1 2-over the difference between one of the two phases and the value of the function for the angle of arrival calculated by the angle of arrival calculating means 13. Compress the difference between the two phase shift amounts.
  • the deviation and variation of the individual phase shift amounts of the two receiving means 12-1, 12-2 are compressed, so that the range of the difference between the two phases described above is such a phase shift amount.
  • the extent to which it expands in accordance with the deviation or fluctuation of is reduced.
  • the principle of the third wireless device according to the present invention is as follows.
  • the beam forming means 15 forms a main lobe of the antenna 11A composed of a plurality of elements or including these elements in the direction of the angle of arrival calculated by the angle of arrival calculation means 13 .
  • a radio transmission path having directivity is formed in the direction indicated by.
  • the principle of the fourth wireless device according to the present invention is as follows.
  • the two receiving means 12-1, 12-2 are composed of two detecting means 12Dl, 12D-2 and selecting means 12S.
  • the selecting means 12S alternately supplies the received waves arriving in parallel to the two elements 11-1 and 11-2 to the two detecting means 12D-1 and 12D-2, respectively, for each period. These detection means 12 Dl and 12 D-2 are given in this way. The received waves are detected in parallel.
  • the feed ends of the two elements 11-1, 11-2 are not connected to both of the receiving means 12-1, 12-2, and the corresponding individual It is directly connected to the input, and the receiving means 12-1 and 12-2 are composed of two detecting means 12D-1 and 12D-2 and selecting means 12S.
  • the wiring in the radio frequency region or the intermediate frequency region is simplified, and the configuration is standardized.
  • the principle of the fifth wireless device according to the present invention is as follows.
  • the branch preserving means 17 converts the signals individually corresponding to the received waves arriving in parallel to the two elements 11-1 and 11-2 into two signals by the two receiving means 12-1 and 12-2.
  • the two signals output in parallel as a result of the detection described above are rearranged.
  • the received waves arriving in parallel to the two elements 11-1 and 11-2 are alternately detected by the two receiving means 12-1 and 12-2 every period described above. Regardless, the two branches that should be formed constantly as a combination of these two elements 11-1, 1 1-2 and the two receiving means 12-1, 12-2 are preserved. You.
  • the angle of arrival can be obtained at low cost and with high precision, and various signal processing and beamforming can be flexibly achieved in accordance with a desired channel arrangement, modulation scheme and multiple access scheme.
  • the principle of the sixth wireless device according to the present invention is as follows.
  • the level deviation compensating means 18 compresses the level deviation of the signal individually corresponding to the received waves arriving in parallel to the two elements 11-1 and 11-2.
  • the principle of the seventh wireless device according to the present invention is as follows.
  • the above-described period is a period during which a slot or bucket known as a received wave arrives.
  • the difference between the two phases indicating the angle of arrival of the received wave as the inverse function described above is
  • the difference between the phase shift amounts of the two receiving means obtained as an average value equal to the number of symbols constituting the slot-to-bucket described above is commonly included.
  • FIG. 2 is a second principle block diagram of the present invention.
  • the principle of the eighth wireless device according to the present invention is as follows.
  • a plurality of n ( ⁇ 2 P) receiving means 1 2-1 to 12-n are a plurality of N elements 1 1-1 to: a single or a plurality of elements in which L 1-N are logically distributed by two For each pair of P, each time an integer multiple of the symbol period of two received waves arriving from the common transmitting end 10 in parallel with the two elements belonging to that pair elapses, these two received waves One and the other are alternately detected in parallel.
  • the arrival angle calculation means 13A calculates, for each of the above-mentioned single or plural P pairs, every time the above-mentioned period elapses, ⁇ in proportion to the interval between the two elements, the arrangement of these two elements and the
  • the two phases which are given separately as a function of the angles of arrival of two received waves and alternately detect these received waves in parallel, include the difference in the amount of phase shift between the two receiving means in common.
  • the angle of arrival is calculated as a function.
  • the angle of arrival of the received wave can be accurately and stably obtained.
  • the principle of the ninth wireless device according to the present invention is as follows.
  • the angle-of-arrival calculation means 13A specifies the angle of arrival as an average of the angles of arrival calculated for each single or multiple P pairs.
  • the accuracy of the angle of arrival increases as the number P of the pairs described above increases.
  • FIG. 3 is a diagram showing the first and third embodiments of the present invention.
  • an arrival angle estimation unit 21 is provided in place of the arrival angle estimation unit 93 shown in FIG. 8, and the duplexer 91- :!
  • a switch 22 is arranged between the stages of the receiving units 92-1 to 92-N and the receiving units 92-1 to 92-N.
  • FIG. 4 is a diagram for explaining the operation of the first embodiment of the present invention.
  • the operation of the first embodiment of the present invention will be described below with reference to FIGS.
  • the operation of the present embodiment is in the following processing procedure performed by the arrival angle estimating unit 21 in cooperation with the switch 22.
  • the switch 22 synchronizes with each symbol of the received wave arriving at the array antenna 90 and alternately outputs the outputs of the duplexers 91-1 to 91-N in the following forms (a) and (b). ) To connect to the inputs of the receivers 92-1 to 92-N.
  • phase difference the phase difference between the elements 90 El to 90 EN arranged adjacently on the virtual straight line described above and “the wavelength of the received wave described above; I” are given as known values, and “ In addition to the difference ⁇ ⁇ 2 to ⁇ ⁇ ⁇ between the individual phase shift amounts of the receiving units 92-2 to 92-N and the receiving unit 92-1, If the angle of arrival ⁇ k ”is defined as an unknown number, in the first phase, the phases of the baseband signals individually obtained at the outputs of the receivers 92-2 to 92-N are With respect to the phase of the baseband signal (hereinafter, referred to as “reference phase 1”) obtained at the output of ⁇ 0 2 to ⁇ ⁇ shown by the following equations ( ⁇ 2) to (f ⁇ ), respectively. ⁇ (hereinafter referred to as “phase difference”).
  • each branch is different from the first phase.
  • Receiving part 92- ! Force S constituted by including! To 92-N in common, these receiving parts 92- :! 99 2-N connected to the element (indicated by one of the symbols “90 ⁇ 1” to “90 ⁇ - ⁇ ”) and the duplexer (“91-1” to “91 - ⁇ ”.
  • the sign of the angle of arrival that indicates the direction in which the received wave effectively arrives, as compared with Figs. 4 (a) and 4 (b). Is inverted.
  • the phases of the baseband signals individually obtained at the outputs of the receiving units 92-2 to 92-N are the phases of the baseband signals obtained at the outputs of the receiving units 92-1 ( Hereinafter, it is referred to as “reference phase 2.”
  • Relative values ⁇ to ⁇ ′ (hereinafter referred to as “phase differences”) expressed by the following equations (f 2 ′) to (f N ′), respectively. ).
  • ⁇ k sin- 1 [( ⁇ 0 ⁇ — ⁇ 0 ⁇ ') ⁇ / 4 ( ⁇ — 1) ⁇ d] ⁇ ⁇ ⁇ (FN)
  • AoA estimating unit 2 1 is synchronized with the sweep rate pitch 22 of the aforementioned "first phase” and the "second phase” the phase difference ⁇ 0 2 ⁇ ⁇ ⁇ described above in a, 8 theta 2 ' To ⁇ Because, the retardation ⁇ ⁇ 2 ⁇ ⁇ ⁇ ⁇ , obtained by performing arithmetic operations to be assigned to the above equation ⁇ ⁇ 2 ' ⁇ ⁇ ⁇ ( F 2) ⁇ (FN) (N- 1) pieces of By averaging the angle of arrival 6 k , the angle of arrival 0 K is determined with high accuracy.
  • Such an angle of arrival ⁇ k is determined by the receiving section 9 2-:!
  • a switch 22 is added to the preceding stage of 99 2 -N, and the angle-of-arrival estimating unit 21 performs the above-described processing in cooperation with the switch 22 to obtain the above equations (F 2) to (FN As shown in), it can be obtained without depending on any phase shift amount of the receiving section 9 2-:! to 9 2 -N.
  • beam forming section 94-T forms the main lobe of array antenna 90 in the direction indicated by the angle of arrival determined in this way.
  • a wireless transmission path having good transmission quality is stably formed without significantly hindering the requirements regarding power consumption and overall reliability, and the service quality is maintained at a high level.
  • a full-duplex wireless transmission path having directivity is formed between a terminal and a terminal in a wireless base station of a mobile communication system via an array antenna.
  • the present invention is not limited to such a radio base station, and may be applied to, for example, a measurement system or a monitoring system that simply obtains or monitors the direction in which a received wave arrives.
  • the reception waves input to the reception units 9 2-:! to 9 2 -N are alternately selected by the switch 22. .
  • the present invention is not limited to such a configuration.
  • the switch 22 may include the receiving unit 9 2-;! 9 9 2 -N are provided in a distributed manner, and it is also possible for these receiving sections 92-1 to 92 -N to select received waves to be individually captured.
  • FIG. 5 is a diagram showing the second and fifth embodiments of the present invention.
  • This embodiment includes the following elements as shown in FIG.
  • the features of the present embodiment are the following processing procedure performed by the phase difference estimating unit 33, the multipliers 3 1 -1 to 3 1 -N and the selector 3 2 associated with the phase difference estimating unit 3 Operation.
  • the phase difference estimating unit 33 gives an initial value “1” to all of the multipliers 3 1 -1 to 3 1 -N.
  • the selector 32 connects the first output of the arrival angle estimating unit 21 to the control input of the beam forming unit 94 -R ⁇ ⁇ 94 -T at a given time at a predetermined period and frequency.
  • the arrival angle estimating unit 21 and the beam forming units 94-R and 94-T are linked in the same manner as in the above-described first embodiment.
  • the phase difference estimating unit 33 performs the following processing.
  • the arrival angle 0 k is obtained based on the same procedure as that performed by the arrival angle estimation unit 21 in the first embodiment described above.
  • the roots of the simultaneous equations in which the angle of arrival 0 k is substituted for the pair of the above equations (f 2) (f 2 ') or the pairs of the above equations (f N) and (f) are described above.
  • the multipliers 3 1-1 to 3 1 -N have “weights at which these differences ⁇ ⁇ 2 to ⁇ ⁇ ⁇ ⁇ are compressed” give.
  • the beamformers 94-R and 94-T are converted into the angle of arrival 0 k thus obtained into the “angle of arrival 0 k obtained by the angle-of-arrival estimator 21 ”. Give instead.
  • the deviations and fluctuations of the individual phase shift amounts of the receiving sections 9 2-;! to 9 2 -N are calculated by the phase difference estimating section 33 and the multiplier 3 1-:! Maintained at a minimum value in conjunction with ⁇ 31-N.
  • the value range of each value referred to as a calculation target in the process of calculation to be performed by the arrival angle estimation unit 21 does not include any of the above-described deviations and fluctuations of the phase shift amount. Since it is kept small compared to the case where it is not performed, the power consumption is reduced in addition to the reduction of the calculation time, the responsiveness and other performances are improved, and the overall reliability is maintained at a high level.
  • a new weight is obtained by the phase difference estimator 33 for each of the calibration periods described above, and the arrival angle estimator 21 includes multipliers 3 1 -1 to 3 1 -N beamformer 9 4 -R depending on their weight Ru given, it has given arrival angle theta k to 9 4 -T.
  • the present invention is not limited to such a configuration. For example, if it is allowed to delay a steady-state response immediately after starting, the arrival angle estimation unit 21 Is not provided, and the phase difference estimating unit 33 can also serve as the arrival angle estimating unit 21.
  • phase difference estimation unit 3 3 after the phase difference estimating unit 33 and the multipliers 31-1 to 31 -N correct the difference in the phase shift amounts of the receiving units 92-1 to 92 -N, is the phase difference estimation unit 3 3 is resting, the AoA estimating unit 2 1 instead of the phase difference estimating unit 3 3 are seeking arrival angle theta k.
  • the present invention is not limited to such a configuration.
  • the phase difference estimating unit 33 replaces the arrival angle estimating unit 21 with the arrival angle ⁇ . k may be determined.
  • phase difference estimating unit 33 gives new weights to the multipliers 31-1 to 31-N without synchronizing with the received wave.
  • a new weight is multiplied in synchronization with a received wave or a frame, slot or other transmission unit or symbol unit given as the received wave.
  • Containers 31-1 to 31-N are examples of the present invention.
  • a switch 23 is arranged in front of the beam forming unit 94-R.
  • the feature of the present embodiment lies in the following operation performed by the switch 23.
  • the switch 23 is connected to the corresponding first to N-th inputs of the beam forming unit 94 in the same manner as in the above-described first embodiment.
  • the switch 23 includes the receivers 9 2 -N, 9 2-( ⁇ -1),.
  • the outputs of 92-1 are connected to the 1st to Nth inputs of the beam forming unit 94-R, respectively.
  • the first to N-th outputs of the switch 23 include (the receiving sections 92-1 to 92 -N and the duplexer 91-1) in both the first phase and the second phase. 9 9 1 -N regardless of the connection via the switch 22), the baseband signals corresponding to only the received waves in the order of arrival at the elements 90 E -l to 90 E -N are obtained. can get.
  • various signal processing and beamforming adapted to a desired channel arrangement, modulation scheme, and multiple access scheme in the baseband region can be flexibly achieved.
  • FIG. 6 is a diagram showing a fourth embodiment of the present invention.
  • the present embodiment includes the following elements.
  • the feature of the present embodiment lies in the following processing performed by the above-described level monitoring unit 42 and the multipliers 41-1 to 41-N in coordination.
  • the level monitoring unit 42 repeats the following processing at a predetermined cycle (frequency) ′.
  • the average value (level) of the amplitudes of these baseband signals is obtained by integrating the N baseband signals output by the receivers 92-1 to 92-N in parallel.
  • the multipliers 4 1 -1 to 4 1 -N multiply the baseband signals output in parallel by the receivers 9 2 -to 9 2 -N by the above-mentioned weights, thereby obtaining the amplitudes of these base band signals ( Level) to correct the disparity.
  • phase difference estimating unit 33 A is provided in place of the phase difference estimating unit 33.
  • the feature of this embodiment lies in the following processing procedure performed by the phase difference estimating unit 33A.
  • the phase difference estimating unit 33A is one of the following receiving units among the receiving units 92-1-1-92-N (here, for simplicity, it is assumed that the receiving unit 92-1 is the receiving unit 92-1) ) Is selected as the reference receiver described above.
  • phase shift amount (may be measured at a predetermined frequency. ⁇ ) Is known.
  • phase difference estimating unit 33 A repeats the following processes (1) and (2) at a predetermined cycle (frequency).
  • the individual transfer of the receiving units (for example, the receiving units 92-2 to 92 -N) other than the reference receiving unit described above is performed.
  • the difference ⁇ p 2 to ⁇ p ⁇ between the phase amount and the reference phase shift amount of the reference receiver is obtained, and the individual value ranges of these differences ⁇ ⁇ 2 to ⁇ ⁇ ⁇ are monitored.
  • the receiving unit corresponding to the difference (one of ⁇ ⁇ 2 to ⁇ ⁇ ⁇ ) whose monitored range is the narrowest in this way is set to the new reference reception. Specified as a part.
  • phase shift amount of the receiving units 92-1 to 92 - ⁇ is the same as the phase shift amount of the receiving unit with the least variation in the phase shift amount among these receiving units 92-1 to 92 - ⁇ . It is evaluated as a relative value, and is used for estimating the angle of arrival 0 k described above and correcting the difference between these phase shift amounts.
  • the range of the operation target in the above-described arithmetic operation becomes narrower, and the rounding error and the The truncation error can be reduced.
  • the switching between the first phase and the second phase is performed alternately for each symbol given as a received wave.
  • switching may be performed, for example, for each slot, packet, or any other transmission unit arriving as a received wave.
  • the number N of the elements 90E-l to 90E-N is not specifically shown.
  • such a number N is plural, and may be any value as long as the increase in the processing amount due to the increase in the number N is allowed.
  • the input of the receiving units 92-1 to 92 -N is supplied to the input of the duplexer 91-:!-D in any of the first phase and the second phase.
  • ⁇ 9 1 -N (element 9 0 E-1 to 90 EN), one of the two pairs with the corresponding elements at constant intervals is connected without overlapping.
  • the present invention is not limited to such a configuration.
  • the first phase In the second phase and the second phase the intervals between the two elements at which the received waves to be individually and alternately given to the receiving units 92- :! to 92-N do not have to be set in descending or ascending order. And may be a common value.
  • the angle of arrival 0 k corresponds to (N ⁇ 1) receiving units other than the above-described reference receiving unit among the receiving units 9 2-1 to 92 -N. It is calculated as the average of the calculated (N-1) angles of arrival.
  • such an arrival angle ⁇ k can be obtained without performing any integration processing by applying the first embodiment to only two reception units, or in this way, smoothing in the order of time series arrival angle theta k obtained is (integration) it may be determined by being.
  • such two elements may not be the elements constituting the array antenna, or may be some of the elements constituting the array antenna.
  • the present invention is applied to a radio base station provided with an array antenna in a mobile communication system.
  • the present invention is not limited to such a mobile communication system, and forms a wireless transmission path via an antenna (not an array antenna) composed of a plurality of elements fed in parallel. This is applicable regardless of the channel arrangement, multiple access scheme, frequency arrangement, zone configuration, modulation scheme, and transmission information configuration, as long as the equipment is capable of transmitting.
  • the array antenna 90 is configured by arranging all of the elements 90 El to 90 EN at regular intervals on the above-mentioned virtual line.
  • the array antenna 90 is not limited to such a configuration.
  • the arrival angle ⁇ k of the received wave is uniquely defined as a known function (theoretical formula, approximation formula, experimental formula, etc.). As long as it is determined, the arrangement of the elements 90 E -l to 90 E -N may be any.
  • phase shift difference estimating units 33 and 33 A and the multipliers 3 1- may be performed in the reverse order on the time axis.
  • the angle of arrival of a received wave can be accurately determined. It is required to be stable.
  • the operation time required for calculating the angle of arrival is reduced, power consumption is reduced, and responsiveness is maintained high.
  • the third wireless device according to the present invention deterioration of transmission quality is reduced.
  • the wiring in the wireless frequency region or the intermediate frequency region is simplified, and the configuration is standardized.
  • the angle of arrival can be obtained at low cost and with high accuracy, and flexible signal processing and beamforming can be flexibly achieved in a desired channel arrangement, modulation method and multiple access method. It becomes possible.
  • the transmission quality is further improved. Further, in the seventh wireless device according to the present invention, the accuracy of the angle of arrival is improved along with the flexible adaptation to various frames, packets and other configurations.
  • the ninth radio apparatus according to the present invention, a decrease in transmission quality due to insufficient accuracy of the angle of arrival is avoided, and the provided elements and receiving means are effective in improving transmission quality. It is utilized for.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

本発明は、アンテナに受信波が到来した方向を推定し、その受信波の送信端との間にこのアンテナを介して無線伝送路を形成する無線装置に関する。本発明の目的は、構成が大幅に変更されることなく環境条件の変化や経年変化に柔軟に適応し、かつ伝送品質が安定に維持されることにある。そのために、本発明にかかわる無線装置は、共通の送信端から2つの素子に到来した受信波の一方と他方とをこれらの受信波のシンボル周期の整数倍の期間毎に交互に並行して検波する2つの受信手段と、期間毎に、「2つの素子の間隔に比例し、これらの素子の実効的な配置と受信波の到来角との関数と個別に与えられ、かつ2つの受信手段の移相量の差を共通に含む2つの位相」の差分の逆関数としてその到来角を算出する到来角算出手段13とを備えて構成される。

Description

明細書 無線装置 技術分野
本発明は、 アンテナに受信波が到来した方向を推定し、 その受信波の送信端と の間にこのアンテナを介して無線伝送路を形成する無線装置に関する。 背景技術
近年、 ベースバンド領域において多数の信号にかかわるディジタル信号処理を 高速に、 かつリアルタイムに実現でき、 かつ安価なディジタルシグナルプロセッ サが多くの電子機器に搭載されている。
したがって、 このようなディジタル信号処理は、 例えば、 CDMA方式が適用 された移動通信システムの無線基地局では、 複数の素子からなるアレーアンテナ を介して並行して形成される複数のチヤネル毎の指向性の維持に併せて、 これら の指向性に基づく干渉妨害の除去や伝送品質の向上に積極的に適用されている。 図 8は、アレーアンテナが備えられた無線基地局装置の構成例を示す図である。 図において、 アレーアンテナ 90を構成し、 かつ仮想的な直線上に一定の間隔 dで配置された複数 N個の素子 9 ΟΕ-1〜9 O E-N の給電端はそれぞれ分波器 9 1 -1〜 91 -N の一方の入力に接続され、 これらの分波器 9 1 -1〜 9 1 -N の出 力はそれぞれ受信部 92-1〜92-N を介して到来角推定部 93およびビーム形 成部 94-E の対応する入力に接続される。 ビーム形成部 94-Eの出力は図示さ れない復調部の入力に接続される。 到来角推定部 93の出力は上述したビーム形 成部 94-R の制御入力と、 そのビーム形成部 94-R と対をなすビーム形成部 9 4-Tの制御入力に接続され、 このビーム形成部 94-Tの入力には、図示されない 変調部の出力が接続される。 ビーム形成部 94-Tが有する複数 Nの出力は、 それ ぞれ信号合成部 95-:!〜 95 -Nの第一の入力に接続される。 信号合成部 95·1〜 95 -Νが個別に有する第二ないし第 ρ(≥ 2)の入力にはそれぞれ後述する 「単一 または複数のベースバンド」 が並行して与えられ、 これらの信号合成部 95 -;!〜 9 5-N の出力はそれぞれ送信部 9 6-1〜96-N を介して分波器 9 1〜9 1 -N の他方の入力に接続される。
なお、 以下では、 複数の素子 90 E-;!〜 90 E-N、 分波器 9 1 _1〜 9 1 -Nおよ び受信部 9 2-1〜9 2-Nの内、符号に付加された添え番号が共通であり、 かつ縦 続接続された素子、 分波器および受信部の組み合わせについては、 「ブランチ」 と称する。
また、 以下では、 これらの 「ブランチ」 の相互の配置については、 上述した仮 想的な直線上における素子 90 E-l〜90 E-Nの物理的な配置で表わす。
このような無線基地局装置では、 受信部 92-1〜 9 2-Nは、 それぞれ素子 90 E-:!〜 90 E-N から分波器 9 1-1〜9 1 -N を介して入力され、 これらの素子 9 0 !〜 90 E-Nに並行して到来した受信波をへテロダイン検波(あるいはホモ ダイン検波)することによって、 N個のベースバンド信号 S 1〜S Nを生成する。 なお、 これらのベースバンド信号 S 1〜 S Nの振幅については、 簡単のため、 ここでは共通の値 (その値の公称値で正規化された 「1」 ) であると仮定する。 また、 上述した受信波の波長は、 既知の値 λとして与えられると仮定する。 到来角推定部 9 3は、下式 (1)〜(4)で示される算術演算を行うことによって、 こ れらのベースバンド信号 S 1〜SNの内、 一定の間隔 dで隣接する 「ブランチ」 を介して得られたベースバンド信号の位相差の平均値 Θを求める。
S k = e j 8 k (k = 1〜N) ■ · · (1)
Φ k, k +i =Arg(Sk + 1 ■ Sk*) ■ ■ · (2)
Θ k, k + l =sin— 1 ( k 2 π d) ■ ■ · (3)
Figure imgf000004_0001
さらに、 到来角推定部 93は、 このようにして求められた平均値 Θと、 素子 9 0 E-:!〜 90 E-Nの配置 (上述した 「仮想的な直線」 によって示される方位を含 む。)とに基づいて一義的に定まる方位角として、上述した受信波の到来角 Θ A を 求める。
ビーム形成部 94 -R は、 その到来角 Θ A の方向にアレーアンテナ 90の主口 一ブが形成される移相量 φ 1〜 ψ Nを示すウェイ ト e j 1〜 e i Nと、 上述した ベースバンド信号 S 1〜SNとの積和として得られる信号 (以下、 「ベースバン ド信号 R」 とレ、う。 ) を復調部に与えることによって、 ベースバンド領域でビー ムフォーミングを行う。
また、 ビーム形成部 94-Tは、 既述の変調部から与えられる 「ベースバンド信 号 T」 に、 「上述したようにビーム形成部 94-Rによって行われる処理とは逆の 処理」 を施すことによって、 Ν個のベースバンド信号を生成する。
信号合成部 9 5-1〜 9 5-Νは、 これらの Ν個のベースバンド信号と、 『図示さ れない他のビーム形成部によって並行して生成され、 かつ 「上述した受信波の送 信端以外の個々の端末 (ユーザ)宛に送信されるべき伝送情報」で変調された「単 一または複数のベースバンド信号 J の集合 (何れも、 N個のブランチに対応した N個のベースバンド信号の組み合わせとして構成される。 ) J とをブランチ毎に 合成することによって、 N個の送信ベースバンド信号を生成する。
送信部 96-1〜9 6 -Nは、 これらの N個の送信ベースバンド信号を個別に所望 の無線周波信号に変換し、 かつ分波器 9 1 -1〜 9 1 -Nおよび素子 90 E-l〜 90 E-Nを介してこれらの無線周波数信号を並行して送信する。
すなわち、 アレーアンテナ 90に到来した正規の受信波の送信端との間には、 既述のビームフォーミングによって全二重の無線伝送路が所望の指向性に基づい て形成されるので、 伝送品質が高く維持される。
特許文献 1
特開 200 2 - 1 0 743 9号公報
特許文献 2
特開平 10- 1 70 6 2 1号公報
特許文献 3
特開平 6— 2 73 504号公報
特許文献 4
特開平 8— 1 146 6 2号公報
ところで、 上述した従来例では、 到来角推定部 9 3によって求められる到来角 Θ A の精度は、受信部 9 2-:!〜 92 -Nの移相量や利得の偏差が小さい場合には、 十分に高く維持される。 しかし、 これらの受信部 9 2 -:!〜 9 2 -Nには、例えば、低雑音増幅器( L N A : Low Noise Amplifier) や周波数変換器のように、本来的な特性が非線形であって その特性に偏差を伴い、 かつ温度その他の環境条件や経年に応じて移相量や利得 が大幅に変化し得る回路や素子が備えられる。
すなわち、 実際には、 到来角推定部 9 3によって求められる到来角には誤差や 変動分を伴い、 これらの誤差や変動分に起因して伝送品質およびサービス品質が 低下し得る。
このような課題は、 一般に、 設計や製造だけではなく、 運用の過程で受信部の 特性の偏差が十分に小さく設定され、 かつ保たれる場合には、 解決され得る。
し力 し、 このような対処は、 実際には、 コス ト高であるために適用され難かつ た。
また、 上述した課題を解決する先行技術には、 例えば、 出願人および発明者が 本願と共通である出願 (特願 2 0 0 1— 5 3 3 5 9 4号) に記載された 「偏差補 償装置」 がある。
しかし、 このような 「偏差捕償装置」 では、 フィードフォワード回路として 専用の分岐回路、 合成器、 受信機その他が備えられなければならないために、 ァ レーアンテナの素子の数が大きいほどハードウェアの規模が増加する可能性があ つた。 発明の開示
本発明の目的は、 ブランチの数とこれらのブランチの特性の偏差との如何に かかわらず、 ハードウエアの規模が大幅に増加することなく、 かつ環境条件の変 化や経年変化に柔軟に適応して伝送品質が安定に維持される無線装置を提供する ことにある。
さらに、 本発明の目的は、 環境条件の変動や経年に応じて個々の受信手段の移 相量が変化しても、 受信波の到来角が精度よく安定に求められる点にある。
また、 本発明の目的は、 到来角の算出に要する演算所要時間が短縮され、 かつ 消費電力が節減されると共に、 応答性が高く維持される点にある。 , さらに、 本発明の目的は、 伝送品質の劣化が軽減される点にある。 また、 本発明の目的は、 到来角が安価に精度よく求められ、 かつ所望のチヤネ ル配置、 変調方式および多元接続方式に適応した多様な信号処理およびビームフ ォーミングの柔軟な達成が可能となる点にある。
さらに、 本発明の目的は、 無線周波領域あるいは中間周波領域における布線が 簡略化され、 かつ構成の標準化が図られる点にある。
また、 本発明の目的は、 伝送品質がさらに高められる点にある。
さらに、 本発明の目的は、 多様なフレーム、 パケットその他の構成に対する柔 軟な適応に併せて、 到来角の精度の向上が図られる点にある。
また、 本発明の目的は、 到来角の精度が不十分であることに起因する伝送品質 の低下が回避され、 かつ備えられた素子および受信手段は、 伝送品質の向上に有 効に活用される点にある。
さらに、 本発明の目的は、 本発明が適用された装置やシステムでは、 安価に確 度高く性能が高められ、 かつ総合的な信頼性が高く維持される点にある。
上述した目的は、 2つの受信手段が 2つの素子に並行して到来する受信波をシ ンボル周期の整数倍の期間毎に交互に並行して検波し、 その周期毎に、 「これら の 2つの素子の間隔および配置と、その受信波の到来角との関数として与えられ、 かつこれらの 2つの受信手段の一方に対する他方の移相量の差を共通に含む 2つ の位相」 の差分の逆関数として、 その到来角を算出する点に特徴がある無線装置 によって達成される。
このような無線装置では、 このような差分には、 上述した 2つの受信手段の移 相量は、 これらの移相量の如何にかかわらず含まれない。
また、 上述した目的は、 上述した 2つの位相の何れか一方と、 既述の求められ た到来角に対する上記の関数の値との差に亘つて、 2つの受信手段の移相量の差 を圧縮する点に特徴がある無線装置によって達成される。
このような無線装置では、 2つの受信手段の個々の移相量の偏差や変動分が圧 縮されるので、 既述の 2つの位相の差分の値域がこのような移相量の偏差や変動 分に応じて拡大する程度が緩和される。
さらに、 上述した目的は、 到来角の方向に、 複数の素子から構成され、 あるい はこれらの素子を含んで構成されたアンテナの主ロープを形成する点に特徴があ る無線装置によって達成される。
このような無線装置では、 既述の通りに 2つの受信手段の移相量と、 これらの 移相量の変動分との何れにも依存することなく精度よく求められた到来角で示さ れる方向に、 指向性を有する無線伝送路が形成される。
また、 上述した目的は、 2つの受信手段が 2つの検波手段と、 上述した 2つの 素子に並行して到来した受信波を既述の期間毎に交互にこれらの検波手段に与え る選択手段とから構成された点に特徴がある無線装置によって達成される。 このような無線装置では、 2つの素子の給電端は上記の受信手段の双方に接続 されることなく、 選択手段の対応する個々の入力に直接接続され、 かつ受信手段 は 2つの検波手段と選択手段とで構成される。
さらに、 上述した目的は、 2つの素子に並行して到来した受信波に個別に対応 した信号に、 既述の 2つの受信手段によって検波の結果として並行して出力され る 2つの信号を組み替える点に特徴がある無線装置によって達成される。
このような無線装置では、 2つの素子に並行して到来した受信波が既述の期間 毎に 2つの受信手段によって交互に検波されるにもかかわらず、 これらの 2つの 素子と 2つの受信手段との組み合わせとして定常的に形成されるべき 2つのブラ ンチが保全される。
また、 上述した目的は、 2つの素子に並行して到来した受信波に個別に対応す る信号のレベルの偏差を圧縮する点に特徴がある無線装置によって達成される。 このような無線装置では、 移相量だけではなく、 利得に関しても受信手段の特 性の偏差が圧縮されるので、 既述の到来角の精度と受信波に施されるべき所望の 信号処理の精度とが向上する。
さらに、 上述した目的は、 既述の期間が 「受信波として既知めスロッ トあるい はバケツ トが到来する期間」 として与えられる点に特徴がある無線装置によって 達成される。
このような無線装置では、 受信波の到来角を既述の逆関数として示す 2つの位 相の差には、 上述したスロッ トゃパケッ トを構成するシンボルの数に亘る平均値 として求められた 2つの受信手段の移相量の差が共通に含まれる。
また、 上述した目的は、 素子 (ブランチ) の数が 「3」 以上の複数である場合 にも適用可能な構成として一般された無線装置によって達成される。
このような無線装置では、 素子の数 Nが 「3」 以上であっても、 上述した対毎 に属する 2つの受信手段の移相量は、 これらの移相量の如何にかかわらず、 既述 の差分には含まれない。
さらに、 上述した目的は、 2つのブランチの対毎に並行して算出された到来角 が平均化されることによって精度が高められる点に特徴がある無線装置によって 達成される。
このような無線装置では、 到来角の精度は、 既述の対の数 Pが大きいほど高め られ 。 図面の簡単な説明
図 1は、 本発明の第一の原理ブロック図である。
図 2は、 本発明の第二の原理ブロック図である。
図 3は、 本発明の第一および第三の実施形態を示す図である。
図 4は、 本発明の第一の実施形態の動作を説明する図である。
図 5は、 本発明の第二および第五の実施形態を示す図である。
図 6は、 本発明の第四の実施形態を示す図である。
図 7は、 本発明の第二および第五の実施形態の他の構成を示す図である。
図 8は、アレーアンテナが備えられた無線基地局装置の構成例を示す図である。 発明を実施するための最良の形態
まず、 本発明にかかわる無線装置の原理を説明する。
図 1は、 本発明の第一の原理ブロック図である。
本発明にかかわる第一の無線装置の原理は、 下記の通りである。
2つの受信手段 1 2 - 1、 1 2 -2は、 共通の送信端 1 0から 2つの素子 1 1 - 1、
1 1 -2 に到来した受信波の一方と他方とをこれらの受信波のシンボル周期の整 数倍の期間毎に交互に並行して検波する。 到来角算出手段 1 3は、 このような期 間毎に、 「2つの素子 1 1 - 1、 1 1 -2の間隔に比例し、 これらの素子 1 1 - 1、 1 1 -2の配置と上述した受信波の到来角との関数として個別に与えられ、 かつ 2つ の受信手段 1 2-1、 1 2-2の移相量の差を共通に含む 2つの位相」 の差分の逆関 数としてその到来角を算出する。
このような差分には、 上述した 2つの受信手段 1 2-1、 1 2-2の移相量は、 こ れらの移相量の如何にかかわらず含まれない。
したがって、 環境条件の変動や経年に応じて受信手段 1 2-1、 1 2-2の移相量 が変化しても、 受信波の到来角が精度よく安定に求められる。
本発明にかかわる第二の無線装置の原理は、 下記の通りである。
校正手段 14は、 2つの位相の何れか一方と、 到来角算出手段 1 3によって求 められた到来角に対する関数の値との差に亘つて、 2つの受信手段 1 2-1、 1 2 -2の移相量の差を圧縮する。
すなわち、 2つの受信手段 1 2-1、 1 2-2の個々の移相量の偏差や変動分が圧 縮されるので、 既述の 2つの位相の差分の値域がこのような移相量の偏差や変動 分に応じて拡大する程度が緩和される。
したがって、 到来角の算出に要する演算所要時間が短縮され、 かつ消費電力が 節減されると共に、 応答性と総合的な信頼性とが高く維持される。
本発明にかかわる第三の無線装置の原理は、 下記の通りである。
ビームフォーミング手段 1 5は、 到来角算出手段 1 3によって求められた到来 角の方向に、 複数の素子から構成され、 あるいはこれらの素子を含んで構成され たアンテナ 1 1 Aの主ローブを形成する。
すなわち、 既述の通りに 2つの受信手段 1 2-1、 1 2-2の移相量と、 これらの 移相量の変動分との何れにも依存することなく精度よく求められた到来角で示さ れる方向に、 指向性を有する無線伝送路が形成される。
したがって、 このような無線伝送路では、 伝送品質の劣化が上述した指向性の 下で軽減される。
本発明にかかわる第四の無線装置の原理は、 下記の通りである。
2つの受信手段 1 2-1、 1 2 -2は、 2つの検波手段 1 2 D-l、 1 2D-2と選択 手段 1 2 Sとから構成される。 選択手段 1 2 Sは、 2つの素子 1 1-1、 1 1 -2に 並行して到来した受信波を期間毎に交互にそれぞれ 2つの検波手段 1 2D-1、 1 2D-2に与える。 これらの検波手段 1 2 D-l、 1 2D-2は、 このようにして与え られた受信波を並行して検波する。
すなわち、 2つの素子 1 1-1、 1 1 -2の給電端は上記の受信手段 1 2-1、 1 2 -2の双方に接続されることなく、 選択手段 1 2 Sの対応する個々の入力に直接接 続され、 かつ受信手段 1 2-1、 1 2-2は 2つの検波手段 1 2D-1、 1 2D-2と選 択手段 1 2 Sとで構成される。
したがって、 無線周波領域あるいは中間周波領域における布線が簡略化され、 かつ構成の標準化が図られる。
本発明にかかわる第五の無線装置の原理は、 下記の通りである。
ブランチ保全手段 1 7は、 2つの素子 1 1-1、 1 1-2に並行して到来した受信 波に個別に対応した信号に、 2つの受信手段 1 2-1、 1 2-2によって既述の検波 の結果として並行して出力される 2つの信号を組み替える。
すなわち、 2つの素子 1 1-1、 1 1-2に並行して到来した受信波が既述の期間 毎に 2つの受信手段 1 2-1、 1 2-2 によって交互に検波されるにもかかわらず、 これらの 2つの素子 1 1 -1、 1 1-2と 2つの受信手段 1 2-1、 1 2-2との組み合 わせとして定常的に形成されるべき 2つのブランチが保全される。
したがって、 到来角が安価に精度よく求められ、 かつ所望のチャネル配置、 変 調方式および多元接続方式に適応した多様な信号処理およびビームフォーミング の柔軟な達成が可能となる。
本発明にかかわる第六の無線装置の原理は、 下記の通りである。
レベル偏差補償手段 1 8は、 2つの素子 1 1 -1、 1 1 -2に並行して到来した受 信波に個別に対応する信号のレベルの偏差を圧縮する。
すなわち、 移相量だけではなく、 利得に関しても受信手段 1 2-1、 1 2-2の特 性の偏差が圧縮されるので、 既述の到来角の精度と受信波に施されるべき所望の 信号処理の精度とが向上する。
したがって、 伝送品質の劣化が抑えられる。
本発明にかかわる第七の無線装置の原理は、 下記の通りである。
既述の期間は、 受信波として既知のスロットあるいはバケツトが到来する期間 である。
すなわち、 受信波の到来角を既述の逆関数として示す 2つの位相の差には、 上 述したスロットゃバケツトを構成するシンボルの数に 1る平均値として求められ た 2つの受信手段の移相量の差が共通に含まれる。
したがって、 多様なフレーム、 パケットその他の構成に対する柔軟な適応に併 せて、 到来角の精度の向上が図られる。
図 2は、 本発明の第二の原理ブロック図である。
本発明にかかわる第八の無線装置の原理は、 下記の通りである。
複数 n (≤ 2 P) の受信手段 1 2-1~ 1 2-nは、 複数 Nの素子 1 1-1〜: L 1-N が論理的に二つずつ配分されてなる単一または複数 Pの対毎に、 その対に属する 2つの素子に並行して共通の送信端 10から到来した 2つの受信波のシンポル周 期の整数倍の期間が経過する度に、 これらの 2つの受信波の一方と他方とを交互 に並行して検波する。 到来角算出手段 1 3Aは、 上述した単一または複数 Pの対 毎に、 既述の期間が経過する度に、 「2つの素子の間隔に比例し、 これらの 2つ の素子の配置と 2つの受信波の到来角との関数として個別に与えられ、 これらの 受信波を交互に並行して検波する 2つの受信手段の移相量の差を共通に含む 2つ の位相」 の差分の逆関数としてその到来角を算出する。
すなわち、 素子 1 1-1〜1 l-Nの数Nが 「3」 以上であっても、 上述した対毎 に属する 2つの受信手段の移相量は、 これらの移相量の如何にかかわらず、 既述 の差分には含まれない。
したがって、 環境条件の変動や経年に応じて受信手段 1 2-1〜1 2-nの移相量 が変化しても、 受信波の到来角が精度よく安定に求められる。
本発明にかかわる第九の無線装置の原理は、 下記の通りである。
到来角算出手段 1 3Aは、 単一または複数 Pの対毎に算出された到来角の平均 値としてその到来角を特定する。
すなわち、 到来角の精度は、 既述の対の数 Pが大きいほど高められる。
したがって、 このような到来角の精度が不十分であることに起因する伝送品質 の低下が回避され、 かつ素子 1 1-1〜1 1-Nおよび受信手段 1 2-1〜 1 2-nは、 伝送品質の向上に有効に活用される。
以下、 図面に基づいて本発明の実施形態について詳細に説明する。
[実施形態 1 ] 図 3は、 本発明の第一および第三の実施形態を示す図である。
本実施形態には、 図 8に示される到来角推定部 93に代わる到来角推定部 21 が備えられ、 かつ分波器 9 1-:!〜 9 1-N と受信部 92-1〜92 -N との段間にス ィツチ 22が配置される。
図 4は、 本発明の第一の実施形態の動作を説明する図である。
以下、 図 3および図 4を参照して本発明の第一の実施形態の動作を説明する。 本実施形態の動作は、 到来角推定部 21がスィッチ 22と連係して行う下記の 処理の手順にある。
スィツチ 22は、 ァレーアンテナ 90に到来する受信波のシンボル毎に同期し てそのシンボルの周期で交互に、分波器 9 1-1〜91 -Nの出力をそれぞれ下記の 形態 (a)、(b) で受信部 92-1〜92-Nの入力に接続する。
(a) 受信部 92-iの入力に分波器 9 1-iの出力を接続する。 ( i = 1〜N)
(b) 受信部 92-iの入力に分波器 9 1 -(N-i+1)の出力を接続する。 ( i = 1〜N) なお、 以下では、 分波器 9 1-:!〜 91-N の出力と受信部 92-1〜92 -N の入 力との間が上記の形態 (a) で接続されている期間を 「第一のフェーズ」 と称し、反 対に上記の形態 (b) で接続されている期間を 「第二のフェーズ」 と称する。
したがって、 「既述の仮想的な直線上に隣接して配置された素子 90 E-l〜9 0 E-Nの間隔 d」および「上述した受信波の波長; I」が既知の値として与えられ、 かつ「受信部 92-2〜92 -Nの個々の移相量と受信部 92-1の移相量との差 δ ρ 2〜 δ ρ Ν」 に併せて、 「この受信波が到来する方向を示す到来角 Θ k 」 が未知 数として定義された場合には、 第一のフェーズにおいて、 受信部 92-2〜92-N の出力に個別に得られるベースバンド信号の位相は、 受信部 92-1の出力に得ら れるベースバンド信号の位相 (以下、 「基準位相 1」 という。 ) に対してそれぞ れ下式 (ί 2) 〜 (f Ν) で示される相対値 δ 02〜δ θ Ν (以下、 「位相差」 と いう。 ) で表わされる。
6 02= 2 d/l - sin0 k+ 5 p 2 ■ ■ · ( f 2 ) δ 0 N= 2 π(Ν— l)d/; · sine k+ S p N ■ · · ( f N) また、 第二のフェーズでは、 第一のフェーズとの対比においては、 各ブランチ はそれぞれ受信部 9 2-;!〜 92-N が共通に含まれることによって構成される力 S、 これらの受信部 92-:!〜 9 2-Nに接続される素子 (符号 「 90 Ε·1」 〜 「 90 Ε -Ν」 の何れかで示される。 ) と分波器 ( 「符号 「9 1-1」 〜 「9 1-Ν」 の何れか で示される。 ) との対が異なることによって、 図 4(a)、 (b)に対比されるように、 受信波が実効的に到来する方向を示す到来角の符号が反転する。
したがって、 第二のフェーズにおいて、 受信部 9 2-2〜9 2 -Nの出力に個別に 得られるベースバンド信号の位相は、 受信部 9 2-1の出力に得られるベースバン ド信号の位相 (以下、 「基準位相 2」 という。 ) に対してそれぞれ下式 ( f 2' ) 〜 ( f N' ) で示される相対値 δ θ 〜 δ θ Ν' (以下、 「位相差」 とレ、う。 ) で表わされる。
δ Θ = 2 π d / /1 ' sin (— Θ k)+ δ p 2 · · · ( f 2 , ) · ·
8 θ N = 2 π(Ν— 1 ) d / λ ■ sin (— θ k)+ δ ρ Ν ' · ■ ( f Ν' ) さらに、 これらの式 ( f 2) 〜 ( f N) 、 ( f 2' ) 〜 ( f N' ) は、 第一お よび第二のフェーズにおいて個々のブランチに共通に含まれる既述の差 δ ρ 2〜 δ ρ Νが消去されることによって、 それぞれ下式 (F 2) 〜 (FN) で示される ように、 受信部 92-1〜9 2-Νの何れの移相量にも依存することなく到来角 Θ k を示す式に変換され得る。
Θ„=sin_1[( δ θ 2- 8 θ 2' )λ/4 π d] ■ · ■ (F 2 )
θ k=sin -1 [(δ 0 Ν— δ 0 Ν' )λ/4(Ν— 1)π d] · · · (FN)
到来角推定部 2 1は、スィ ッチ 22と同期して既述の「第一のフェーズ」 と 「第 二のフェーズ」 とにおける上述した位相差 δ 02〜δ Θ Ν、 8 θ 2' 〜 δ を求 め、 これらの位相差 δ Θ 2〜 δ ø Ν、 δ Θ 2 ' 〜 δ Θ を上式 (F 2 ) 〜 (F N ) に代入する算術演算を行うことによって得られる (N— 1 ) 個の到来角 6 k の平 均をとることによって、 その到来角 0 K を精度よく求める。
このような到来角 Θ k は、受信部 9 2 -:!〜 9 2 -Nの前段にスィツチ 2 2が付加 され、 かつ到来角推定部 2 1がそのスィッチ 2 2と連係して既述の処理を行うこ とによって、 上式 (F 2 ) 〜 (F N) に示すように、 受信部 9 2 -:!〜 9 2 -Nの何 れの移相量にも依存することなく求められる。
すなわち、 従来例に比べて構成が大幅に変更されることなく、 環境条件の変動 や経年に応じて受信部 9 2 -:!〜 9 2 -Nの移相量が変化し得る場合であっても、所 望の受信波の到来角が精度よく安定に求められる。
さらに、 ビーム形成部 9 4 -Tは、 このようにして求められた到来角で示される 方向にアレーアンテナ 9 0の主ローブを形成する。
したがって、 本実施形態によれば、 消費電力や総合的な信頼性にかかわる要求 が著しく妨げられることなく、 伝送品質が良好な無線伝送路が安定に形成され、 サービス品質が高く維持される。
なお、 本実施形態では、 移動通信システムの無線基地局において、 端末との間 にアレーアンテナを介して指向性を有する全二重の無線伝送路が形成されている。 しかし、 本発明は、 このような無線基地局に限定されず、 例えば、 単に、 受信 波が到来する方向を求め、あるいは監視する計測系や監視系に適用されてもよい。 また、 本実施形態では、 上述した第一のフェーズと第二のフェーズとにおいて 受信部 9 2 -:!〜 9 2 -Nに入力される受信波は、スィッチ 2 2によって交互に選択 されている。
し力 し、 本発明はこのような構成に限定されず、 例えば、 スィッチ 2 2が受信 部 9 2 -;!〜 9 2 -N に分散されて備えられ、 これらの受信部 9 2 -1〜9 2 -N が個 別に取り込むべき受信波を選択することも可能である。
さらに、 式 ( f 2 ) 〜 ( ί N) 、 ( f 2 ' ) 〜 ( f ) は、 これらの式に変 数 (未知数) として含まれる値が既述の値以外に付加されない限り、 等価な近似 式その他の如何なる式で代替されてもよい。
[実施形態 2 ] 図 5は、 本発明の第二および第五の実施形態を示す図である。
本実施形態には、 図 5に示すように、 下記の要素が備えられる。
- 受信部 9 2 -;!〜 9 2 -Nの後段に付加され、 かつ一方の入力がそれぞれこれら の受信部 9 2 -:!〜 9 2 -Nの出力に接続された乗算器 3 1 -:!〜 3 1 -N
■ 一方の入力に到来角推定部 2 1の出力が接続され、 出力がビーム形成部 9 4 -R 9 4 -Tの制御入力に接続されたセレクタ 3 2
- 乗算器 3 1 -:!〜 3 1 -N の一方の入力と共に、 受信部 9 2 -:!〜 9 2 -N の出力 に接続された N個の入力を有し、 かつセレクタ 3 2の他方の入力に接続された第 一の出力と、 乗算器 3 1 - 1〜3 1 -Nの他方の入力に接続された第二ないし第 (N + 1 ) の出力とを有する位相差推定部 3 3
以下、 図 5を参照して本発明の第二の実施形態の動作を説明する。
本実施形態の特徴は、位相差推定部 3 3によつて行われる下記の処理の手順と、 その位相差推定部 3 3と連係する乗算器 3 1 -1〜3 1 -N およびセレクタ 3 2の 動作とにある。
位相差推定部 3 3は、始動時には、乗算器 3 1 -1〜3 1 -Nの全てに初期値「1」 を与える。
また、 セレクタ 3 2は、 既定の周期や頻度で与えられる時点には、 ビーム形成 部 9 4 -Rヽ 9 4 -Tの制御入力に到来角推定部 2 1の第一の出力を接続する。
したがって、 このような状態では、 到来角推定部 2 1およびビーム形成部 9 4 -R、 9 4 -Tは、 上述した第一の実施形態と同様に連係する。
—方、 上述した時点が始点に該当する期間 (以下、 「校正期間」 という。 ) に は、 位相差推定部 3 3は、 下記の処理を行う。
• 上述した第一の実施形態において到来角推定部 2 1によって行われる処理と 同様の手順に基づいて到来角 0 k を求める。 . · 上式 ( f 2 ) ( f 2 ' ) の対ないし上式 ( f N) 、 ( f ) の対にそれぞ れこの到来角 0 k が代入されてなる連立方程式の根として、 既述の 「受信部 9 2 - 2〜 9 2 -Nの個々の移相量と受信部 9 2 - 1 (以下、 「基準受信部」 とレ、う。 ) の 移相量との差 δ p 2〜 δ p N」 を求める。
• 乗算器 3 1 - 1〜 3 1 -Nに 「これらの差 δ ρ 2〜 δ ρ Νが圧縮される重み」 を 与える。
• セレクタ 3 2を介してビーム形成部 9 4 -R、 9 4 -Tに、 このようにして求め られた到来角 0 k を 「到来角推定部 2 1によって求められた到来角 0 k 」 に代え て与える。
すなわち、 受信部 9 2 -;!〜 9 2 -Nの個々の移相量の偏差や変動分は、 位相差推 定部 3 3と乗算器 3 1 -:!〜 3 1 -Nとの連係の下で最小の値に維持される。
このように本実施形態によれば、 到来角推定部 2 1で行われるべき演算の過程 で演算対象として参照される個々の値の値域は、 上述した移相量の偏差や変動分 が何ら圧縮されない場合に比べて小さく維持されるので、 演算所要時間の短縮に 併せて、消費電力の節減が図られ、かつ応答性その他の性能が高められると共に、 総合的な信頼性が高く維持される。
なお、 本実施形態では、 既述の校正期間毎に、 位相差推定部 3 3によって新た な重みが求められ、 かつ到来角推定部 2 1は、 乘算器 3 1 -1〜 3 1 -Nに与えられ るこれらの重みに応じてビーム形成部 9 4 -R、 9 4 -Tに到来角 Θ k を与えている。 し力、し、 本発明はこのような構成に限定されず、 例えば、 始動の直後における 定常的な応答が遅れることが許容される場合には、 セレクタ 3 2に併せて到来角 推定部 2 1が備えられず、 位相差推定部 3 3がその到来角推定部 2 1を兼ねるこ とも可能である。
さらに、 本実施形態では、 位相差推定部 3 3および乗算器 3 1 - 1〜 3 1 -Nによ つて受信部 9 2 -1〜 9 2 -Nの移相量の格差が是正された後には、その位相差推定 部 3 3が休止し、 その位相差推定部 3 3に代わって到来角推定部 2 1が到来角 Θ k を求めている。
しかし、 本発明はこのような構成に限定されず、 例えば、 上述した移相量の格 差が是正された後には、 位相差推定部 3 3が到来角推定部 2 1に代わって到来角 Θ k を求めてもよい。
また、 位相差推定部 3 3に代わって到来角 Θ k を求める到来角推定部 2 1につ いては、 本発明が適用されることなく構成された到来角推定部による代替が可能 であり、 このように構成されることによってハードウエアの規模の縮小や消費電 力の節減が図られ、 かつ総合的な信頼性が高められてもよい。 さらに、 本実施形態では、 位相差推定部 3 3は、 受信波に同期することなく、 乗算器 3 1 -1〜3 1 -Nに新たな重みを与えている。
しかし、 本発明はこのような構成に限定されず、 例えば、 受信波、 またはその 受信波として与えられるフレーム、 スロッ トその他の伝送単位、 あるいはシンポ ルの単位に同期して、 新たな重みが乗算器 3 1 - 1〜3 1 -Nに与えられてもよい。
[実施形態 3 ]
以下、 本発明の第三の実施形態について説明する。
本実施形態では、 図 3に点線で示すように、 ビーム形成部 9 4 -Rの前段にスィ ツチ 2 3が配置される。
以下、 図 3を参照して本発明の第三の実施形態の動作を説明する。
本実施形態の特徴は、 スィッチ 2 3によって行われる下記の動作にある。
スィツチ 2 3は、既述の第一のフェーズでは、既述の第一の実施形態と同様に、 ビーム形成部 9 4 の対応する第 1ないし第 Nの入力にそれぞれ受信部 9 2 -1
〜 9 2 -Nの出力を接続する。
また、 第二のフェーズでは、 スィッチ 2 3は、 受信部 9 2 -N、 9 2 -(Ν-1)、 ···
9 2 - 1の出力をそれぞれビーム形成部 9 4 -R の第 1ないし第 Nの入力に接続す る。
すなわち、 スィッチ 2 3の第 1ないし第 Nの出力には、 第一のフェーズと第二 のフェーズとの何れにおいても (受信部 9 2 -1〜9 2 -Nと分波器 9 1 - 1〜 9 1 -N との問におけるスィツチ 2 2を介する接続の如何にかかわらず) 、 それぞれ素子 9 0 E -l〜 9 0 E -N に到来した順序の受信波のみに対応するベースバンド信号 が得-られる。
したがって、 本実施形態によれば、 ベースバンド領域において所望のチャネル 配置、 変調方式および多元接続方式に適応した多様な信号処理およびビームフォ 一ミングが柔軟に達成される。
[実施形態 4 ]
図 6は、 本発明の第四の実施形態を示す図である。
本実施形態には、 図 6に示すように、 下記の要素が備えられる。
- 到来角推定部 2 1およびスィッチ 2 3の前段に配置され、 かつ一方の入力に 受信部 9 2 -:!〜 9 2 -Nの出力が接続された乗算器 4 ;!〜 4 1 -N - これらの受信部 9 2 -;!〜 9 2 -Nの出力に縦続接続され、 かつ出力が上述した 乗算器 4 1 -:!〜 4 1 -Nの他方の入力に接続されたレベル監視部 4 2
以下、 図 6を参照して本発明の第四の実施形態の動作を説明する。
本実施形態の特徴は、上述したレベル監視部 4 2と乗算器 4 1 -1〜4 1 -Nが連 係して行う下記の処理にある。
レベル監視部 4 2は、 下記の処理を所定の周期 (頻度)'で反復する。
• 受信部 9 2 -1〜 9 2 -Nによって出力された N個のベースバンド信号を並行し て積分することによって、 これらのベースバン ド信号の振幅の平均値 (レベル) を求める。
- これらの平均値 (レベル) の格差が是正されるスカラー量の重みを求め、 こ れらの重みをそれぞれ乗算器 4 1 -1〜4 1 -Nに与える。
乗算器 4 1 -1〜4 1 -N は、 受信部 9 2 -ト 9 2 -N によって並行して出力され たベースバンド信号に上述した重みを乗じることによって、 これらのベースバン ド信号の振幅 (レベル) の格差を是正する。
すなわち、移相量と利得との双方に関して受信部 9 2 -1- 9 2 -Nの特性の偏差 が圧縮されるので、 既述の到来角 Θ k の精度に併せて、 ベースバンド領域で受信 波に施される信号処理の精度が高められ、 さらに伝送品質が高く維持される。
[実施形態 5 ]
以下、 本発明の第五の実施形態について説明する。
本実施形態には、 図 5に示すように、 位相差推定部 3 3に代えて位相差推定部 3 3 Aが備えられる。
以下、 図 5を参照して本発明の第五の実施形態の動作を説明する。
本実施形態の特徴は、 位相差推定部 3 3 Aによって行われる下記の処理の手順 にある。
位相差推定部 3 3 Aは、受信部 9 2 -1- 9 2 -Nの内、下記の何れかの受信部(こ こでは、 簡単のため、 受信部 9 2 - 1であると仮定する。 ) を既述の基準受信部と して選択する。
- 予め理論的に求められ、 あるいは実測された移相量の変動幅が最小である受 信部
- 移相量 (所定の頻度で計測されてもよい。 · ) が既知である受信部 .
- 移相量とその移相量の値域の幅との双方もしくは何れか一方が最小である受 信部
さらに、 位相差推定部 3 3 Aは、 下記の処理 (1), (2)を所定の周期 (頻度) で反 復する。
(1) 既述の第二の実施形態と同様の処理を行うことによって、 「既述の基準受信 部以外の受信部 (例えば、 受信部 9 2 -2〜 9 2 -N) の個々の移相量と、 その基準 受信部の移相量との差 δ p 2〜 δ p Ν」を求め、これらの差 δ ρ 2〜 δ ρ Νの個々 の値域を監視する。
(2) 基準受信部以外の受信部の内、 このよ うにして監視された値域が最も狭い差 ( δ ρ 2〜 δ ρ Νの何れか 1つ) に対応する受信部を新たな基準受信部として特 定する。
すなわち、 受信部 9 2 - 1〜 9 2 -Νの移相量は、 これらの受信部 9 2 -1〜 9 2 -Ν の内、移相量の変動が最も少ない受信部の移相量に対する相対値として評価され、 既述の到来角 0 k の推定と、 これらの移相量の格差の是正に供される。
したがって、 基準受信部の移相量が広範に変化する場合に比べて、 既述の算術 演算における演算対象の値域が狭小となり、 その演算が行われるべき有効桁数の 削減に併せて、 丸め誤差や打ち切り誤差の軽減が可能となる。
なお、 上述した各実施形態では、 既述の第一のフェーズと第二のフェーズとの 切り替えは、 受信波として与えられるシンボル毎に交互に行われている。
しかし、 このような切り替えは、 例えば、 受信波として到来したスロッ ト、 パ ケッ トその他の如何なる伝送単位毎に行われてもよい。
さらに、 上述した各実施形態では、 素子 9 0 E - l〜 9 0 E -Nの数 Nが具体的に 示されていない。
しかし、 このような数 Nは、 複数であり、 その数 Nの増加に起因する処理量の 増加が許容される限り、 如何なる値であってもよい。
また、 上述した各実施形態では、 受信部 9 2 - 1〜 9 2 -Nの入力には、 第一のフ エーズと第二のフェーズとの何れにおいても、 分波器 9 1 -:!〜 9 1 -N (素子 9 0 E-1〜90 E-N) の内、 対応する素子の間隔が一定である 2つからなる対の何れ か一方が重複することなく接続されている。
しかし、 本発明はこのような構成に限定されず、 これらの分波器 9 1〜9 1 -N (素子 90 E-l~ 90 E-N) の特性が均一であると見なされる限り、 第一のフ エーズと第二のフェーズとにおいて受信部 9 2-:!〜 9 2-N に個別に交互に与え られるべき受信波が到来する 2つずつの素子の間隔は、 降順や昇順に設定されな くてもよく、 かつ共通の値であってもよい。
さらに、 上述した対をなす 2つの素子の双方もしくは何れか一方は、 他の何れ かの対に共通に含まれてもよい。
また、 上述した各実施形態では、 到来角 0 k は、 受信部 9 2-1〜9 2-Nの内、 既述の基準受信部以外の (N— 1) 個の受信部に対応して求められた (N— 1) 個の到来角の平均値として求められている。
しかし、 このような到来角 Θ k は、 例えば、 二つの受信部のみに対して第一の 実施形態が適用されることによって、何ら積分処理が施されることなく求められ、 あるいはこのようにして求められた到来角 Θ k が時系列の順に平滑化 (積分) さ れることによって求められてもよい。
さらに、 このような 2つの素子は、 ァレーアンテナを構成する素子でなくても よく、 あるいはそのァレーアンテナを構成する素子の内、 一部の素子であっても よい。
また、 上述した各実施形態では、 移動通信システムにおいてアレーアンテナが 備えられた無線基地局に本発明が適用されている。
し力 し、 本発明は、 このような移動通信システムに限定されず、 並行して給電 される複数の素子から構成されるアンテナ (ァレーアンテナでなくてもよい。 ) を介して無線伝送路を形成する機器である限り、 チャネル配置、 多元接続方式、 周波数配置、 ゾーン構成、 変調方式および伝送情報の構成の如何にかかわらず、 適用可能である。
さらに、 上述した各実施形態では、 アレーア テナ 90は、 既述の仮想的な直 線上に素子 90 E-l〜 9 0 E-N の全てが一定の間隔で配置されることによって 構成されている。 しかし、 アレーアンテナ 9 0はこのような構成に限定されず、 下記の項目に対 して受信波の到来角 Θ k が既知の関数 (理論式、 近似式、 実験式等々) として一 義的に定まる限り、素子 9 0 E -l〜9 0 E -Nの配置は如何なるものであってもよ レ、。
■ 素子 9 0 E -:!〜 9 0 E -Nの間隔
• 個々の受信部 9 2 -1〜9 2 -Nによって第一のフェーズと第二のフェーズとに それぞれ受信された受信波の位相差
• これらの受信部 9 2 -;!〜 9 2 -Nの移相量の差
また、 上述した第二および第五の実施形態では、 例えば、 図 7に点線で示す'よ うに構成されることによって、 移相差推定部 3 3、 3 3 Aと乗算器 3 1 -;!〜 3 1 -N とによって行われる既述の処理と等価な処理が時間軸上で逆の順序で行われ てもよい。
さらに、 本発明は、 上述した実施形態に限定されるものではなく、 本発明の範 囲において多様な形態による実施形態が可能であり、 かつ構成要素の一部もしく は全てに如何なる改良が施されてもよい。 産業上の利用の可能性
上述したように本発明にかかわる第一および第八に記載の無線装置では、 環境 条件の変動や経年に応じて個々の受信手段の移相量が変化しても、 受信波の到来 角が精度よく安定に求められる。
また、 本発明にかかわる第二の無線装置では、 到来角の算出に要する演算所要 時間が短縮され、 かつ消費電力が節減されると共に、 応答性が高く維持される。 さらに、本発明にかかわる第三の無線装置では、伝送品質の劣化が軽減される。 また、 本発明にかかわる第四の無線装置では、 無線周波領域あるいは中間周波 領域における布線が簡略化され、 かつ構成の標準化が図られる。
さらに、 本発明にかかわる第五の無線装置では、 到来角が安価に精度よく求め られ、 かつ所望のチャネル配置、 変調方式および多元接続方式に適応した多様な 信号処理およびビームフォーミングの柔軟な達成が可能となる。
また、 本発明にかかわる第六の無線装置では、 伝送品質がさらに高められる。 さらに、 本発明にかかわる第七の無線装置では、 多様なフレーム、 パケットそ の他の構成に対する柔軟な適応に併せて、 到来角の精度の向上が図られる。
また、 本発明にかかわる第九の無線装置では、 到来角の精度が不十分であるこ とに起因する伝送品質の低下が回避され、かつ備えられた素子および受信手段は、 伝送品質の向上に有効に活用される。
したがって、 これらの発明が適用された装置やシステムでは、 安価に確度高く 性能が高められ、 かつ総合的な信頼性が高く維持される。

Claims

請求の範囲
( 1 ) 共通の送信端から 2つの素子に到来した受信波の一方と他方とをこれら の受信波のシンボル周期の整数倍の期間毎に交互に並行して検波する 2つの受信 手段と、
前記期間毎に、 「前記 2つの素子の間隔に比例し、 これらの素子の配置と前記 受信波の到来角との関数として個別に与えられ、 かつ前記 2つの受信手段の移相 量の差を共通に含む 2つの位相」 の差分の逆関数としてその到来角を算出する到 来角算出手段と
を備えたことを特徴とする無線装置。
( 2 ) 請求の範囲 1に記載の無線装置において、
前記 2つの位相の何れか一方と、 前記到来角箅出手段によつて求められた到来 角に対する前記関数の値との差に亘つて、 前記 2つの受信手段の移相量の差を圧 縮する校正手段を備えた
ことを特徴とする無線装置。
( 3 ) 請求の範囲 1に記載の無線装置において、
前記到来角算出手段によって求められた到来角の方向に、 前記複数の素子から 構成され、 あるいはこれらの素子を含んで構成されたアンテナの主ローブを形成 するビームフォーミング手段を備えた
ことを特徴とする無線装置。
( 4 ) 請求の範囲 1に記載の無線装置において、
前記 2つの受信手段は、
前記 2つの素子に到来した何れの受信波の検波も可能な 2つの検波手段と、 前記 2つの素子に並行して到来した受信波を前記期間毎に交互に前記 2つの検 波手段に与える選択手段とから構成された
ことを特徴とする無線装置。
( 5 ) 請求の範囲 1に記載の無線装置において、
前記 2つの素子に並行して到来した受信波に個別に対応した信号に、 前記 2つ の受信手段によって前記検波の結果として並行して出力される 2つの信号を組み 替えるブランチ保全手段を備えた
ことを特徴とする無線装置。
( 6 ) 請求の範囲 5に記載の無線装置において、
前記 2つの素子に並行して到来した受信波に個別に対応する信号のレベルの偏 差を圧縮するレベル偏差補償手段を備えた
ことを特徴とする無線装置。
( 7 ) 請求の範囲 1に記載の無線装置において、
前記期間は、
前記受信波として既知のスロットあるいはバケツトが到来する期間である ことを特徴とする無線装置。
( 8 ) 複数 Nの素子が論理的に二つずつ配分されてなる単一または複数 Pの対 毎に、 その対に属する 2つの素子に並行して共通の送信端から到来した 2つの受 信波のシンボル周期の整数倍の期間が経過する度に、 これらの 2つの受信波の一 方と他方とを交互に並行して検波する n (≤ 2 P ) の受信手段と、
前記単一または複数 Pの対毎に、 前記期間が経過する度に、 「前記 2つの素子 の間隔に比例し、 これらの 2つの素子の配置と前記 2つの受信波の到来角との関 数として個別に与えられ、 これらの受信波を交互に並行して検波する 2つの受信 手段の移相量の差を共通に含む 2つの位相」 の差分の逆関数としてその到来角を 算出する到来角算出手段と
を備えたことを特徴とする無線装置。
( 9 ) 請求の範囲 8に記載の無線装置において、
前記到来角算出手段は、
前記単一または複数 Pの対毎に算出された到来角の平均値としてその到来角を 特定する
ことを特徴とする無線装置。
PCT/JP2003/002844 2003-03-11 2003-03-11 無線装置 WO2004082171A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004569332A JP4116624B2 (ja) 2003-03-11 2003-03-11 無線装置
PCT/JP2003/002844 WO2004082171A1 (ja) 2003-03-11 2003-03-11 無線装置
US11/059,953 US7409227B2 (en) 2003-03-11 2005-02-17 Radio apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/002844 WO2004082171A1 (ja) 2003-03-11 2003-03-11 無線装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/059,953 Continuation US7409227B2 (en) 2003-03-11 2005-02-17 Radio apparatus

Publications (1)

Publication Number Publication Date
WO2004082171A1 true WO2004082171A1 (ja) 2004-09-23

Family

ID=32983434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002844 WO2004082171A1 (ja) 2003-03-11 2003-03-11 無線装置

Country Status (3)

Country Link
US (1) US7409227B2 (ja)
JP (1) JP4116624B2 (ja)
WO (1) WO2004082171A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110126939A (ko) * 2010-05-18 2011-11-24 주식회사 만도 통합 레이더 시스템 및 차량 제어 시스템
US9255953B2 (en) 2012-02-16 2016-02-09 Src, Inc. System and method for antenna pattern estimation
US9445237B1 (en) * 2015-03-11 2016-09-13 Qualcomm Incorporated First arrival path based multipath mitigation for angle of arrival estimation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177064A (ja) * 1996-10-20 1998-06-30 Matsushita Electric Ind Co Ltd 到来方向推定装置
JPH10229307A (ja) * 1997-02-13 1998-08-25 Kokusai Denshin Denwa Co Ltd <Kdd> アレーアンテナの制御方法及び装置
JP2001281316A (ja) * 2000-01-24 2001-10-10 Matsushita Electric Ind Co Ltd 電波到来方向推定装置及び指向性可変送受信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2908170B2 (ja) 1993-03-23 1999-06-21 三菱電機株式会社 方位測定装置
JPH08114662A (ja) 1994-10-14 1996-05-07 Japan Radio Co Ltd 位相差測定誤差検出方法
JP3482810B2 (ja) * 1996-04-18 2004-01-06 崔 勝元 配列アンテナ及びその設計方法と、配列アンテナでの信号処理方法と、それを利用した信号送受信装置及び方法
JPH10170621A (ja) 1996-12-11 1998-06-26 Anritsu Corp 電波方向探知装置
JP3391662B2 (ja) * 1997-06-06 2003-03-31 松下電器産業株式会社 アダプティブアレーアンテナ受信装置
JP3233088B2 (ja) * 1998-01-22 2001-11-26 松下電器産業株式会社 指向性制御アンテナ装置
JPH11281725A (ja) * 1998-03-26 1999-10-15 Nec Corp 多重伝搬波パラメータ計測方法及び装置並びにプログラムを記録した機械読み取り可能な記録媒体
JP3985883B2 (ja) * 1998-10-09 2007-10-03 松下電器産業株式会社 電波到来方向推定アンテナ装置
US6351238B1 (en) * 1999-02-23 2002-02-26 Matsushita Electric Industrial Co., Ltd. Direction of arrival estimation apparatus and variable directional signal receiving and transmitting apparatus using the same
US6366241B2 (en) * 2000-06-26 2002-04-02 Trueposition, Inc. Enhanced determination of position-dependent signal characteristics of a wireless transmitter
JP3629195B2 (ja) 2000-09-28 2005-03-16 株式会社東芝 到来方向推定装置及び到来方向推定方法
EP1387180A1 (en) * 2000-12-12 2004-02-04 Matsushita Electric Industrial Co., Ltd. Radio-wave arrival-direction estimating apparatus and directional variable transceiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177064A (ja) * 1996-10-20 1998-06-30 Matsushita Electric Ind Co Ltd 到来方向推定装置
JPH10229307A (ja) * 1997-02-13 1998-08-25 Kokusai Denshin Denwa Co Ltd <Kdd> アレーアンテナの制御方法及び装置
JP2001281316A (ja) * 2000-01-24 2001-10-10 Matsushita Electric Ind Co Ltd 電波到来方向推定装置及び指向性可変送受信装置

Also Published As

Publication number Publication date
US7409227B2 (en) 2008-08-05
JP4116624B2 (ja) 2008-07-09
US20050159121A1 (en) 2005-07-21
JPWO2004082171A1 (ja) 2006-06-15

Similar Documents

Publication Publication Date Title
CN100492929C (zh) 利用指向性波束的通道检索电路、无线接收装置及无线发射装置
US8019285B2 (en) Wireless communication device
EP1179895B1 (en) Array antenna base station apparatus
US6624784B1 (en) Adaptive array antenna
EP1120858A2 (en) Adaptive array transceiver apparatus
JP3332911B2 (ja) 無線装置およびそのキャリブレーション方法
JP5367843B2 (ja) 無線信号処理装置及び無線装置
EP1227542A1 (en) Deviation compensator
WO2008082344A1 (en) Method and apparatus for improving transmission efficiency in a mobile radio communications system
US6714769B2 (en) Method and system for implementing smart antennas and diversity techniques
JP3519276B2 (ja) キャリブレーション装置
WO2001091330A1 (fr) Systeme de calibrage pour un appareil recevant une antenne reseau
WO1999050965A1 (fr) Recepteur radio et procede de reception
CN111416635A (zh) 一种测角方法和测角设备
JP2001111465A (ja) 無線受信機およびダイバーシチ受信機
WO2004082171A1 (ja) 無線装置
US20040266360A1 (en) Adaptive transceiver system
JP2007089067A (ja) 無線通信方法及び無線通信装置
JP2001086057A (ja) 無線通信システム
JP4028273B2 (ja) 給電回路
JP2006157588A (ja) 無線受信装置
KR20070066430A (ko) 스마트 안테나 시스템의 송수신 경로 보정 장치
EP1806855A2 (en) Method and system for implementing smart antennas and diversity techniques

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004569332

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11059953

Country of ref document: US

122 Ep: pct application non-entry in european phase