EP1179895B1 - Array antenna base station apparatus - Google Patents
Array antenna base station apparatus Download PDFInfo
- Publication number
- EP1179895B1 EP1179895B1 EP01912344A EP01912344A EP1179895B1 EP 1179895 B1 EP1179895 B1 EP 1179895B1 EP 01912344 A EP01912344 A EP 01912344A EP 01912344 A EP01912344 A EP 01912344A EP 1179895 B1 EP1179895 B1 EP 1179895B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signals
- calibration
- transmitting
- section
- received
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/02—Arrangements for optimising operational condition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
- H01Q1/246—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/085—Access point devices with remote components
Definitions
- the present invention relates to a base station apparatus using an adaptive array-antenna technology which adaptively controls directivity by adding weights to the outputs of a plurality of antenna elements.
- a base station apparatus (hereinafter, sometimes called as “array-antenna base-station apparatus") using an adaptive array-antenna (hereinafter, sometimes called as "AAA”) comprises a plurality of antennas elements, and freely set the directivity by adjusting the amplitude and the phases of signals received with each antenna element.
- the directivity is formed by multiplication of received signals or transmitting signals by complex coefficients (hereinafter, the complex coefficient is called as "weight").
- the array-antenna base-station apparatus may intensely receive only signals from a desired direction by adjusting the above weights to be multiplied. This is called as "have adjustable received-directivity".
- the array-antenna base-station apparatus may keep the received SIRS (Signal to Interference Ratios) of signals arriving from each direction high by having the received directivity so that a desired signal is received in an optimum manner.
- SIRS Signal to Interference Ratios
- a micro-cell method in which a range (cell) to be covered by one base station is reduced, has been noticed in a mobile communication field from a viewpoint of reuse of frequencies.
- the number of radio base stations necessary for serving the same area is increased in the above micro-cell method, there have been problems that there are limitations on the installation space, weight, size and so on, and handover is frequently generated.
- a radio base station apparatus in which a relay-station apparatus and a control-station apparatus are connected using metallic cables has bee proposed as means for solving the above problems.
- the above radio base station apparatus has a configuration where a control-station apparatus, which mainly comprises a radio modem section and a control section in a conventional base section, is centralized and arranged in the center, and a large number of relay-station apparatuses, which mainly comprise antennas and transmitting and receiving amplifiers, are provided.
- the above limitation on the installation space may be eliminated, as the above base station may be made smaller and lighter.
- the handover processing may be also performed with the above control-station apparatus in a centralized manner.
- FIG. 1 is a block diagram showing a configuration of a conventional array-antenna base-station apparatus using metallic cables for connecting the above control-station apparatus and the above relay-station apparatus.
- the receiving side of the array-antenna base-station apparatus is shown for brief description.
- only one relay-station apparatus is shown in the drawing for brief description, though the control-station apparatus is generally connected to a large number of relay-station apparatuses .
- a relay-station apparatus 11 has a configuration comprising: antennas 12-1 through 12-N; and receiving amplifiers 13-1 through 13-N.
- a control-station apparatus 21 has a configuration comprising; frequency conversion sections 22-1 through 22-N; and a demodulating section 23. The above relay-station apparatus 11 and control-station apparatus 21 are connected through metallic cables 31-1 through 31-N.
- the above receiving amplifier 13-1 amplifies received signals which are received from a communication terminal apparatus (not shown) of a communication end through the antenna 12-1, and outputs the amplified signals to the above frequency conversion section 22-1 through the metallic cable 31-1.
- the frequency conversion section 22-1 converts the frequency of the received signals from the receiving amplifier 13-1 from a radio frequency band to a baseband frequency one for output to the demodulating section 23.
- the above demodulating section 23 demodulates received signals (baseband signals) output from the frequency conversion sections 22-1 through 22-N by multiplication of the above signals by weights.
- Received signals which have been taken into the relay-station apparatus 11 through the antenna 12-1, from a communication terminal apparatus (not shown) are sent to the control-station apparatus 21 through the metallic cable 31-1.
- the received signals sent to the control-station apparatus 21 are amplified in the frequency conversion section 22-1, and thereafter, demodulated in the demodulating section 23 after multiplication by weights.
- the received SIRs may be kept high in the array-antenna base-station as the above array-antenna base-station may intensely receive signals from a specified direction by multiplication of the received signals by weights.
- Document EP 0 843 380 A provides a method to variably control an antenna directivity of the base station by an electric signal fed to the antenna.
- a control station obtains the electric signal to be fed to the radio base station antenna through computation on the basis of the signal received from the mobile station by the radio base station antenna, and the electric signal or data necessary for generation of the electric signal is transmitted to the radio base station via a communication medium, to adaptively control the directivity of the radio base station antenna.
- Document DE 34 41 462 A discloses that calibration signals with different levels are combined with the measurement signal and transmitted, on the receiving side, the calibration signals and the measurement signals are discriminated, and the level of the measurement signal is calibrated according to the detected level of the calibration signal.
- the object of the present invention is to provide an array-antenna base-station apparatus in which loss in signals, which are transmitted from a relay-station apparatus to a control-station apparatus, is small; there are larger degrees of freedom in selection of installation sites; and, furthermore, the amplitude fluctuations and the phase rotations, and so on caused by characteristics of analog devices on each path may be calibrated.
- Inventors of the present invention have noticed that loss at transferring signals may be reduced, and an installation space may be saved by use of optical cables for cables connecting the relay-station apparatus and the control-station apparatus of a radio base station.
- weights may be calculated with good accuracy by measuring characteristic errors caused in transmitting and received signals by analog devices of each radio receiving circuits with known signals.
- the object of the present invention is realized by the array-antenna base-station apparatus in which the relay-station apparatus and the control-station apparatus are connected with the optical cables; in addition, characteristic errors added by analog devices are measured, using calibration signals which are known signals; and the measured characteristic-errors are cancelled from the received signals and the transmitting signals.
- FIG. 2 is a block diagram showing a schematic configuration of the array-antenna base-station apparatus according to the one embodiment of the present invention.
- an array-antenna base-station apparatus 100 comprises: antenna elements 101-1 through 101-N; duplexers 102-1 through 102-N; a relay-station apparatus 110; a control-station apparatus 120; and optical cables 140, 150.
- the above optical cables 140, 150 are distributing cables using optical fiber cables.
- the above relay-station apparatus 110 comprises: a relay-station receiving apparatus 110a; and a relay-station transmitting apparatus 110b.
- the above control-station apparatus 120 comprises: a control-station receiving apparatus 120a; and a control-station transmitting apparatus 120b.
- the above duplexer 102-1 switches between the receiving side and the transmitting side. That is, in the case of receiving, the duplexer 102-1 outputs received signals from the antenna elements 101-1 through 101-N to the relay-station receiving apparatus 110a, and in the case of transmitting, transmits transmitting signals from the relay-station transmitting apparatus 110b through the antenna elements 101-1 through 101-N.
- the relay-station receiving apparatus 110a performs predetermined processing, such as receiving amplification, of the received signals, and outputs the processed signals to the above control-station receiving apparatus 120a through the optical cable 140.
- the control-station receiving apparatus 120a forms directivity by multiplying the output signals from the relay-station receiving apparatus 110a by weights. And, the control-station receiving apparatus 120a obtains received data after demodulating processing of signals forming the directivity.
- the control-station transmitting apparatus 120b generates transmitting signals after modulating processing of transmitting data, and, at the same time, forms directivity for the above generated transmitting signal, referring to the weights which have been calculated by the control-station receiving apparatus 120a.
- the generated transmitting signals are output to the relay-station transmitting apparatus 110b through the optical cable 150.
- the relay-station transmitting apparatus 110b outputs the output signals from the control-station transmitting apparatus 120b through the antenna elements 101-1 through 101-N after transmitting processing such as transmitting amplification.
- each of the above relay-station apparatuses is connected to the control-station apparatus 120 through the optical cables when a plurality of relay-station apparatuses are installed, though only one relay-station apparatus 110 is shown in FIG. 2 for brief description.
- the configuration of the array-antenna base-station apparatus 100 will be described separately for the receiving side and the transmitting side.
- the receiving side will be described referring to FIG. 3, and the transmitting side will be done referring to FIG. 4.
- FIG. 3 is a block diagram showing a configuration of the receiving side of the array-antenna base-station apparatus according to the present embodiment.
- the relay-station receiving apparatus 110a comprises: receiving amplifiers 111-1 through 111-N; E/O (electric/optical) conversion sections 112-1 through 112-N; a wavelength multiplexing section 113; and a section 114 for generating calibration signals.
- control-station receiving apparatus 120a comprises: a wavelength separation section 121; O/E (optical/electric) conversion sections 122-1 through 122-N; frequency conversion sections 123-1 through 123-N; signal discriminating sections 124-1 through 124-N; a section 125 for measuring calibration signals; a recording section 126; and a demodulating section 127.
- the relay-station receiving apparatus 110a and the control-station receiving apparatus 120a are connected to each other through the optical cable 140.
- the section 114 for generating calibration signals generates known signals for calibration (hereinafter, called as "calibration signals"), and outputs the above known signal to the receiving amplifiers 111-1 through 111-N.
- the receiving amplifier 111-1 amplifies calibration signals from the section 114 for generating calibration signals, and received signals from the communication terminal apparatus 200 (refer to FIG. 2) through the antenna element 101-1, respectively, and outputs the above calibration signals from the section 114 for generating calibration signals, and received signals from the communication terminal apparatus 200 to the E/O conversion section 112-1.
- the receiving amplifier 111-N amplifies calibration signals from the section 114 for generating calibration signals, and received signals from the communication terminal apparatus 200 through the antenna element 101-N, respectively, and outputs the above calibration signals from the section 114 for generating calibration signals, and received signals from the communication terminal apparatus 200 to the E/O conversion section 112-N.
- the above E/O conversion section 112-1 converts the calibration signals and the received signals from the receiving amplifier 111-1 into optical signals for output to the wavelength multiplexing section 113.
- the above E/O conversion section 112-N converts the calibration signals and the received signals from the receiving amplifier 111-N into optical signals for output to the wavelength multiplexing section 113.
- the above wavelength multiplexing section 113 multiplexes the calibration signals and the received signals, which have been converted respectively into optical signals in the E/O conversion sections 112-1 through 112-N, and outputs the above calibration and received signals to the wavelength separation section 121 through the optical cable 140.
- the wavelength separation section 121 separates the calibration signal and the received signals, which have been multiplexed, from the relay-station receiving apparatus 110a into signals on each path, respectively, and outputs the separated signals to the corresponding O/E conversion sections 122-1 through 122-N. That is, the above wavelength separation section 121 outputs, among multiplexed signals from the wavelength multiplexing section 113, the received signals and the calibration signals sent on a path passing through the receiving amplifier 111-1, the E/O conversion section 112-1, and the wavelength multiplexing section 113 to the O/E conversion section 122-1.
- the above wavelength separation section 121 outputs, among the multiplexed signals from the wavelength multiplexing section 113, the received signals and the calibration signals sent on a path passing through the receiving amplifier 111-N, the E/O conversion section 112-N, and wavelength multiplexing section 113, to the O/E conversion section 122-N.
- the O/E conversion section 122-1 converts the output signals from the wavelength separation section 121 into electric signals for output to the frequency conversion section 123-1.
- the O/E conversion section 122-N converts the output signals from the wavelength separation section 121 into electric signals for output to the frequency conversion section 123-N.
- the frequency conversion section 123-1 converts the frequency of the output signals from the O/E conversion section 122-1 to a baseband frequency band, and outputs the converted signals to the signal discriminating section 124-1.
- the frequency conversion section 123-N converts the frequency of the output signals from the O/E conversion section 122-N to a baseband frequency band, and outputs the converted signals to the signal discriminating section 124-N.
- the above signal discriminating section 124-1 discriminates the received signals from signals output from the frequency conversion section 123-1 for output to the demodulating section 127. And, the above signal discriminating section 124-1 discriminates the calibration signals from the signals output from the frequency conversion section 123-1 for output to the section 125 for measuring calibration signals.
- the signal discriminating section 124-N discriminates the received signals from signals output from the frequency conversion section 123-N for output to the demodulating section 127. And, the above signal discriminating section 124-N discriminates the calibration signals from the signals output from the frequency conversion section 123-N for output to the section 125 for measuring calibration signals.
- the section 125 for measuring calibration signals measures superimposed characteristic errors on the calibration signals output from the signal discriminating sections 124-1 through 124-N. Amplitude fluctuations and phase rotations, which have been caused by analog devices which exist on paths from the section 114 for generating calibration signals to the section 125 for measuring calibration signals, are added as characteristic errors to the above calibration signals.
- the section 125 for measuring calibration signals obtains deviations from the expectation values of the calibration signals output from the signal discriminating sections 124-1 through 124-N, and the above deviations are supposed to be the characteristic errors.
- the above characteristic errors which have been measured for each path as described above are output to the recording section 126.
- the recording section 126 preserves the above characteristic errors output from the above section 125 for measuring calibration signals in calibration tables. As the above characteristic errors are separately measured for each path in the receiving side, the same number (that is, "N pieces") of calibration tables as that of paths in the receiving side are separately made.
- the demodulating section 127 cancells the characteristic errors superimposed on the received signals which have been output from the signal discriminating sections 124-1 through 124-N, referring to the characteristic errors preserved in the calibration tables stored in the recording section 126. And, the above demodulating section 127 calculates the weights, so that received signals arriving from a desired direction may be intensely received (or, interference signals arriving from a predetermined direction may be suppressed), based on the received signals which have cancelled the characteristic errors, and the calculated weights are multiplied by the received signals on each path. The above demodulating section 127 generates combined signals by mutual addition of the received signals, which have been multiplied by the weights, on each path.
- the above demodulating section 127 obtains the received data by predetermined demodulating processing of the combined signals which have been generated as described above. Moreover, the above demodulating section 127 outputs the calculated weights to a modulating section 224 (refer to FIG. 4) in the transmitting side.
- the characteristic-error operation section 501 cancells the characteristic errors superimposed on the received signals which have been output from the signal discriminating sections 124-1 through 124-N, referring to the measured values of the characteristic errors output from the recording section 126.
- the above demodulating section 127 may cancell the characteristic errors superimposed on the received signals by subtraction of characteristic errors superimposed on the calibration signals from the received signals. As described above, it is sometimes called as "calibration" in the present description that the characteristic errors measured using the calibration signals are cancelled from the received signals (or, transmitting signals).
- the received signals from which the characteristic errors have been cancelled in the characteristic-error operation section 501 are output to a weight control section 502 and multipliers 503-1 through 503-N.
- the above weight control section 502 estimates the direction of arrival of the received signals; calculates the weights for each path so that received signals arriving from a desired direction may be intensely received (or, interference signals arriving from a predetermined direction may be suppressed), based on the above estimation results and prior information; and outputs the calculated weights to the corresponding multipliers 503-1 through 503-N, and the modulating section 224 shown in FIG. 4, respectively.
- the multipliers 503-1 through 503-N multiplies the received signals output from the characteristic-error operation section 501 by the weights for output to an adder 504.
- the above adder 504 generates the received signals with directivity by addition of the received signals output from the multipliers 503-1 through 503-N.
- the received signals which have had the directivity as described above are demodulated in a demodulator 505 by a predetermined demodulating method such as QPSK (Quaternary Phase Shift Keying) and 16QAM (Quadrature Amplitude Modulation) to obtain the received data.
- a predetermined demodulating method such as QPSK (Quaternary Phase Shift Keying) and 16QAM (Quadrature Amplitude Modulation) to obtain the received data.
- the array-antenna base-station apparatus is provided with N pieces of antenna elements and N different paths corresponding to each antenna element, a case for only one path corresponding to the antenna element 101-1 will be described, and description of other cases for other paths will be eliminated, as signals passing through whatever paths are processed in a similar manner.
- Signals transmitted from the communication terminal apparatus 200 are received at the array-antenna base-station apparatus 100 through the antenna elements 101-1 through 101-N.
- the received signals received through the antenna element 101-1 are sent to the receiving amplifier 111-1 through the duplexer 102-1.
- the received signals amplified in the receiving amplifier 111-1 are output to the wavelength multiplexing section 113 after conversion into optical signals in the E/O conversion section 112-1.
- the calibration signals are output from the section 114 for generating calibration signals; amplified in the receiving amplifier 111-1; converted into optical signals in the E/O conversion section 112-1; and output to the wavelength multiplexing section 113.
- the received signals and the calibration signals after conversion into optical signals are multiplexed, and the above multiplexed signals are output to the wavelength separation section 121 through the optical cable 140.
- the above multiplexed signals output from the above wavelength multiplexing section 113 are separated for each path in the wavelength separation section 121. That is, the received signals and the calibration signals sent on a path through the receiving amplifier 111-1, the E/O conversion section 112-1, and the wavelength multiplexing section 113 are separated from the multiplexed signals, and output to the O/E conversion section 112-1. Similarly, the received signals and the calibration signals sent on a path through the receiving amplifier 111-N, the E/O conversion section 112-N, and the wavelength multiplexing section 113 are separated from the multiplexed signals, and output to the O/E conversion section 112-N.
- the received signals and the calibration signals output from the wavelength separation section 121 are converted into electric signals in the O/E conversion section 122-1, and then output to the signal discriminating section 124-1 after frequency conversion into a baseband frequency band in the frequency conversion section 123-1.
- the received signals among signals output from the frequency conversion section 123-1 are discriminated from the calibration signals in the signal discriminating section 124-1, and sent to the demodulating section 127.
- the calibration signals among signals output from the frequency conversion section 123-1 are discriminated from the received signals in the signal discriminating section 124-1, and sent to the section 125 for measuring calibration signals.
- the characteristic errors are measured, based on the calibration signals output from the signal discriminating sections 124-1 through 124-N, and the measured characteristic errors are output to the recording section 126.
- the above characteristic errors are preserved in the recording section 126 as characteristic errors to be calibrated at demodulation in the calibration table.
- the characteristic errors are separately measured for the paths corresponding to the antenna elements 101-1 through 101-N, respectively, the same number of calibration tables as that of the antenna elements are separately provided, too.
- the demodulating section 127 the characteristic errors included in the received signals output from the signal discriminating sections 124-1 through 124-N are cancelled, referring to the calibration tables stored in the recording section 126. Subsequently, the weights are calculated, based on the received signals from which the characteristic errors have been cancelled, and the calculated weights are multiplied by the received signals on each path.
- the received signals, which have been multiplied by weights as described above, on each path are added each other to generate a combined signal, and demodulating processing of the above combined signal is performed to obtain the received data.
- FIG. 4 is a block diagram showing a configuration of the transmitting side of the array-antenna base-station apparatus according to the present embodiment.
- a relay-station transmitting apparatus 110b comprises: signal discriminating sections 211-1 through 211-N; transmitting amplifiers 212-1 through 212-N; O/E conversion sections 213-1 through 213-N; a wavelength separation section 214; a section 215 for measuring calibration signals; and a recording section 216.
- a control-station transmitting apparatus 120b comprises: a wavelength multiplexing section 221; E/O conversion sections 222-1 through 222-N; frequency conversion sections 223-1 through 223-N; a modulating section 224; and a section 225 for generating calibration signals.
- the above relay-station transmitting apparatus 110b and the above control-station transmitting apparatus 120b are connected through an optical cable 150.
- the modulating section 224 In the control-station transmitting apparatus 120b, the modulating section 224 generates transmitting signals by primary modulation, such as QPSK, of transmitting data, and characteristic errors are cancelled from the transmitting signals on each path, referring to calibration tables preserved in the recording section 216, as described later. And, the modulating section 224 forms directivity for the transmitting signals by multiplication of the transmitting signals on each path by weights output from the demodulating section 127 (refer to FIG. 3) provided in the control-station receiving apparatus 120a. Thus, the generated transmitting signals are output to frequency conversion the corresponding sections 223-1 through 223-N, respectively.
- primary modulation such as QPSK
- the section 225 for generating calibration signals generates known signals (calibration signals) for calibration, and outputs the above known signals to the frequency conversion sections 223-1 through 223-N.
- the frequency conversion section 223-1 converts the frequencies of the received signals from the modulating section 224 and the calibration signals from the above section 225 for generating calibration signals to a radio frequency band for output to the E/O conversion section 222-1.
- the frequency conversion section 223-N converts the frequencies of the received signals from the modulating section 224 and the calibration signals from the above section 225 for generating calibration signals to a radio frequency band for output to the E/O conversion section 222-N.
- the E/O conversion section 222-1 converts the amplified transmitting-signals and the calibration signals from the frequency conversion section 223-1 from electric signals to optical signals, and outputs the optical signals after conversion to the wavelength multiplexing section 221.
- the E/O conversion section 222-N converts the amplified transmitting-signals and the calibration signals from the frequency conversion section 223-N from electric signals to optical signals, and outputs the optical signals after conversion to the wavelength multiplexing section 221.
- the above wavelength multiplexing section 221 multiplexes the transmitting signals and the calibration signals, which have been output from the E/O conversion sections 222-1 through 222-N after conversion into optical signals, and the multiplexed signals are output to the wavelength separation section 214 through the optical cable 150.
- the wavelength separation section 214 separates the transmitting signals and the calibration signals output from the wavelength multiplexing section 221 for each path corresponding to antenna elements 101-1 through 101-N for output to the O/E conversion sections 213-1 through 213-N. That is, the wavelength separation section 214 outputs, among the multiplexed signals from the wavelength multiplexing section 221, signals, which have been transmitted on a path passing through the radio transmitters 223-1, the E/O conversion section 222-1, and the wavelength multiplexing section 221, to the O/E conversion section 213-1.
- the wavelength separation section 214 outputs, among the multiplexed signals from the wavelength multiplexing section 221, signals, which have been transmitted on a path passing through the radio transmitter 223-N, the E/O conversion section 222-N, and the wavelength multiplexing section 221, to the O/E conversion section 213-N.
- the received signals and the calibration signals transmitted through other paths are also output to the corresponding O/E conversion section.
- the O/E conversion section 213-1 converts the output signals from the wavelength separation section 214 from optical signals to electric signals, and outputs the electric signals after conversion to the transmitting amplifier 212-1.
- the O/E conversion section 213-N converts the output signals from the wavelength separation section 214 from optical signals to electric signals, and outputs the electric signals after conversion to the transmitting amplifier 212-N.
- the transmission amplifier 212-1 amplifies signals output from the O/E conversion section 213-1 for output to the signal discriminating section 211-1.
- the transmission amplifier 212-N amplifies output signals from the O/E conversion section 213-N for output to the signal discriminating section 211-N.
- the signal discriminating section 211-1 discriminates the calibration signals from the output signals from the transmitting amplifier 212-1 for output to the section 215 for measuring calibration signals.
- the signal discriminating section 211-1 discriminates the transmitting signals from the output signals from the transmitting amplifier 212-1 for radio transmission through the antenna element 101-1.
- the signal discriminating section 211-1 discriminates the calibration signals, among signals output from the transmitting amplifier 212-1, as transmitting signals for output to the section 125 for measuring calibration signals.
- the signal discriminating section 211-1 discriminates the transmitting signals, among signals output from the transmitting amplifier 212-N, as calibration signals for radio transmission through the antenna element 101-N.
- the signal discriminating section 211-N discriminates the calibration signals, among signals output from the transmitting amplifier 212-N, as transmitting signals for output to the section 215 for measuring calibration signals.
- the section 215 for measuring calibration signals measures the characteristic errors superimposed on the calibration signals output from the signal discriminating sections 211-1 through 211-N.
- the amplitude fluctuations and the phase rotations which are caused by analog devices which exists on the path from generation at the section 225 for generating calibration signals to input to the section 215 for measuring calibration signals, are added to the above calibration signals.
- the above section 215 for measuring calibration signals obtains deviations from the expectation values of the amplitude and the phases of the calibration signals output from the signal discriminating sections 211-1 through 211-N, and the above deviations are supposed to be the characteristic errors.
- the characteristic errors measured as described above are output to the recording section 216.
- the above recording section 216 preserves the above characteristic errors sent from the above section 215 for measuring calibration signals in calibration tables. As the above characteristic errors are separately measured for each path of the transmitting circuits, the same number of calibration tables as that of receiving circuits are separately made.
- a modulator 601 generates transmitting signals after primary modulation, such as QPSK, of transmitting data, and outputs the generated transmitting signals to multipliers 602-1 through 602-N.
- the above multipliers 602-1 through 602-N multiplies the above transmitting signals by weights output from the demodulating section 127, and outputs the above transmitting signals after multiplication to a characteristic-error operation section 603.
- the above characteristic-error operation section 603 cancells characteristic errors, which are predicted to be superimposed on the transmitting signals in the subsequent processing, referring to the measured values of the characteristic errors output from the wavelength multiplexing section 221.
- the above characteristic-error operation section 603 may cancell the characteristic errors, which have been added in analog devices before transmission of the transmitting signals from the antenna elements 101-1 through 101-N, for example, by subtracting the characteristic errors superimposed on the calibration signals from the transmitting signals.
- the array-antenna base-station apparatus is provided with N pieces of antenna elements and N different paths corresponding to each antenna element, a case for only one path corresponding to the antenna element 101-1 will be described, and description of other cases for other paths will be sometimes eliminated, as signals passing through whatever paths are processed in a similar manner.
- Modulation processing such as QPSK, of the transmitting data is performed in the modulating section 224, and the characteristic errors on each path are cancelled, referring to the contents of the calibration tables preserved in the recording section 216.
- the transmitting amplifiers 212-1 through 212-N, and so on are added to the above transmitting signals before output from the antenna elements 101-1 through 101-N, the above characteristic errors are previously cancelled in modulating section 224.
- the transmitting signals on each path are output to the frequency conversion section 223-1 through 223-N in the demodulating section 224.
- the directivity of the transmitting signals is formed.
- Predetermined radio-transmitting processing of output signals (transmitting signals) of the modulating section 224 is performed in the frequency conversion section 223-1, and the processed signals are converted into optical signals in the E/O conversion section 222-1, and output to the wavelength multiplexing section 221.
- radio-transmitting processing of the calibration signals output from the section 225 for generating calibration signals is performed in the frequency conversion section 223-1, and the processed signals are converted into optical signals in the E/O conversion section 222-1 and output to the wavelength multiplexing section 221.
- the transmitting signals and the calibration signals which have been output from the frequency conversion sections 223-1 through 223-N, and converted into optical signals, are multiplexed in the wavelength multiplexing section 221, and output to the wavelength separation section 214 through the optical cable 150.
- the transmitting signals and the calibration signals output from the wavelength multiplexing section 221 are separated into signals on each path in the wavelength separation section 214. That is, among the multiplexed signals output from the above wavelength multiplexing section 221, signals transmitted on a path passing through the radio transmitters 223-1, the E/O conversion section 222-1, and the wavelength multiplexing section 221 are output to the corresponding to the O/E conversion section 213-1. And, among the multiplexed signals output from the above wavelength multiplexing section 221, signals transmitted on a path passing through the radio transmitters 223-N, the E/O conversion section 222-N, and the wavelength multiplexing section 221 are output to the corresponding to the O/E conversion section 213-N.
- the received signals and the calibration signals sent through other paths are also output to the corresponding O/E conversion section.
- Predetermined radio-transmitting processing of the transmitting signals and the calibration signals, which have been output from the wavelength separation sections 214, and converted from optical signals into electric signals in the O/E conversion section 213-1, is performed in the transmitting amplifier 212-1, and output to the signal discriminating section 211-1.
- the calibration signals, among signals output from the transmitting amplifier 212-1, are discriminated as the received signals, and sent to the section 215 for measuring the calibration signals in the signal discriminating section 211-1.
- the characteristic errors are measured based on the calibration signals from the signal discriminating sections 211-1 through 211-N, and the measured characteristic errors are sent to the recording section 216, and preserved in the calibration tables of the above recording section 216 as characteristic errors to be calibrated at demodulation.
- the above characteristic errors are separately measured for each path corresponding to the antenna elements 101-1 through 101-N, respectively, the same number of calibration tables as that of receiving circuits are separately provided.
- the transmitting signals among signals output from the transmitting amplifier 212-1, are discriminated in the signal discriminating section 11-1 as the calibration signals, and sent by radio through the antenna elements 101-1 through 101-N.
- loss of signals to be transmitted may be reduced, as the relay-station receiving apparatus and the control-station receiving apparatus are configured to be connected through optical cables, and the relay-station transmitting apparatus and the control-station transmitting apparatus are also done so in the array-antenna base-station apparatus according to the present embodiment.
- the degrees of freedom in selection of installation sites is increased, as signals are multiplexed for transmission, using optical cables to cause no need to provide cables for each path corresponding to antenna elements.
- expected directivity may be obtained with good accuracy, as the characteristic errors may be intermittently adjusted by calibration which is performed for segments from the relay-station receiving apparatus to the control-station receiving apparatus, and from the relay-station transmitting apparatus to the control-station transmitting apparatus.
- an apparatus for generating calibration signals which transmits calibration signals
- may be provided outside the base station apparatus may be applied, though the above description has been made in the present embodiment for a case where the section for generating calibration signals is provided inside the array-antenna base-station apparatus.
- the apparatus for generating calibration signals is provided outside the base station apparatus, and calibration signals are transmitted by radio or cable from the above apparatus for generating calibration signals to the array-antenna base-station apparatus.
- the array-antenna base-station apparatus having a configuration where loss of signals transmitted from the relay-station apparatus to the control-station apparatus is small; the degrees of freedom in selection of installation sites is large; and phase rotations and so on caused by the characteristics of analog devices on each circuit may be calibrated.
- the present invention is preferably used in a field related with an array-antenna base-station apparatus which adaptively controls the directivity by adding weights to antenna outputs of a plurality of antenna elements.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Radio Relay Systems (AREA)
- Optical Communication System (AREA)
Abstract
Description
- The present invention relates to a base station apparatus using an adaptive array-antenna technology which adaptively controls directivity by adding weights to the outputs of a plurality of antenna elements.
- A base station apparatus (hereinafter, sometimes called as "array-antenna base-station apparatus") using an adaptive array-antenna (hereinafter, sometimes called as "AAA") comprises a plurality of antennas elements, and freely set the directivity by adjusting the amplitude and the phases of signals received with each antenna element. The directivity is formed by multiplication of received signals or transmitting signals by complex coefficients (hereinafter, the complex coefficient is called as "weight").
- The array-antenna base-station apparatus may intensely receive only signals from a desired direction by adjusting the above weights to be multiplied. This is called as "have adjustable received-directivity". The array-antenna base-station apparatus may keep the received SIRS (Signal to Interference Ratios) of signals arriving from each direction high by having the received directivity so that a desired signal is received in an optimum manner.
- On the other hand, a micro-cell method, in which a range (cell) to be covered by one base station is reduced, has been noticed in a mobile communication field from a viewpoint of reuse of frequencies. As the number of radio base stations necessary for serving the same area is increased in the above micro-cell method, there have been problems that there are limitations on the installation space, weight, size and so on, and handover is frequently generated.
- A radio base station apparatus in which a relay-station apparatus and a control-station apparatus are connected using metallic cables has bee proposed as means for solving the above problems. The above radio base station apparatus has a configuration where a control-station apparatus, which mainly comprises a radio modem section and a control section in a conventional base section, is centralized and arranged in the center, and a large number of relay-station apparatuses, which mainly comprise antennas and transmitting and receiving amplifiers, are provided. Thereby, the above limitation on the installation space may be eliminated, as the above base station may be made smaller and lighter. Moreover, the handover processing may be also performed with the above control-station apparatus in a centralized manner.
- FIG. 1 is a block diagram showing a configuration of a conventional array-antenna base-station apparatus using metallic cables for connecting the above control-station apparatus and the above relay-station apparatus. Here, only the receiving side of the array-antenna base-station apparatus is shown for brief description. In addition, only one relay-station apparatus is shown in the drawing for brief description, though the control-station apparatus is generally connected to a large number of relay-station apparatuses .
- As shown in the drawing, a relay-station apparatus 11 has a configuration comprising: antennas 12-1 through 12-N; and receiving amplifiers 13-1 through 13-N. A control-station apparatus 21 has a configuration comprising; frequency conversion sections 22-1 through 22-N; and a
demodulating section 23. The above relay-station apparatus 11 and control-station apparatus 21 are connected through metallic cables 31-1 through 31-N. - As the same manner is used for processing of any received signals on N different paths corresponding to each of the above antennas 12-1 through 12-N, processing on only the path corresponding to the antennas 12-1 will be described below.
- In the relay-station apparatus 11, the above receiving amplifier 13-1 amplifies received signals which are received from a communication terminal apparatus (not shown) of a communication end through the antenna 12-1, and outputs the amplified signals to the above frequency conversion section 22-1 through the metallic cable 31-1. In the control-station apparatus 21, the frequency conversion section 22-1 converts the frequency of the received signals from the receiving amplifier 13-1 from a radio frequency band to a baseband frequency one for output to the demodulating
section 23. The above demodulatingsection 23 demodulates received signals (baseband signals) output from the frequency conversion sections 22-1 through 22-N by multiplication of the above signals by weights. - Then, processing of received signals taken into the base station apparatus with the above configuration will be described.
- Received signals, which have been taken into the relay-station apparatus 11 through the antenna 12-1, from a communication terminal apparatus (not shown) are sent to the control-station apparatus 21 through the metallic cable 31-1. The received signals sent to the control-station apparatus 21 are amplified in the frequency conversion section 22-1, and thereafter, demodulated in the demodulating
section 23 after multiplication by weights. Thus, the received SIRs may be kept high in the array-antenna base-station as the above array-antenna base-station may intensely receive signals from a specified direction by multiplication of the received signals by weights. - However, the above conventional array-antenna base-station apparatus has had the following problems:
- 1) Loss in transmitted signals is large, as metallic cables are used for signal transmission from the relay-station apparatus to the control-station apparatus.
- 2) There are limitations on the installation space, as it is required to transmit signals taken in from a plurality of antenna elements, and larger number of metallic cables are increased.
- 3) The signals received through each antenna element reaches the
demodulating section 23, passing through a path corresponding to each antenna element. The characteristics of the above paths depend on the differences of the characteristics between analog devices provided in amplifiers, and so on. Accordingly, the directivity obtained in the demodulating section deviates from the desired one due to unknown amplitude fluctuations and the phase rotations added to each received signal. Though the characteristics of each path may be previously measured at installation for adjusting the deviations, it is difficult to maintain the desired directivity for a long time, as the above characteristics of each path changes with the passage of time according to the changes in the temperature and so on. -
Document EP 0 843 380 A provides a method to variably control an antenna directivity of the base station by an electric signal fed to the antenna. In the system of the document, a control station obtains the electric signal to be fed to the radio base station antenna through computation on the basis of the signal received from the mobile station by the radio base station antenna, and the electric signal or data necessary for generation of the electric signal is transmitted to the radio base station via a communication medium, to adaptively control the directivity of the radio base station antenna. - Document
DE 34 41 462 A discloses that calibration signals with different levels are combined with the measurement signal and transmitted, on the receiving side, the calibration signals and the measurement signals are discriminated, and the level of the measurement signal is calibrated according to the detected level of the calibration signal. - Document
US5 982 327 A discloses that a plurality of weighted output signals are formed based on at least two covariance matrices and at least the two steering vectors, which are determined from the pilot symbols. The pilot symbols are inserted in a user signal with data symbols. - The object of the present invention is to provide an array-antenna base-station apparatus in which loss in signals, which are transmitted from a relay-station apparatus to a control-station apparatus, is small; there are larger degrees of freedom in selection of installation sites; and, furthermore, the amplitude fluctuations and the phase rotations, and so on caused by characteristics of analog devices on each path may be calibrated.
- Inventors of the present invention have noticed that loss at transferring signals may be reduced, and an installation space may be saved by use of optical cables for cables connecting the relay-station apparatus and the control-station apparatus of a radio base station. In addition, the above inventors of the present invention have noted that weights may be calculated with good accuracy by measuring characteristic errors caused in transmitting and received signals by analog devices of each radio receiving circuits with known signals.
- That is, the object of the present invention is realized by the array-antenna base-station apparatus in which the relay-station apparatus and the control-station apparatus are connected with the optical cables; in addition, characteristic errors added by analog devices are measured, using calibration signals which are known signals; and the measured characteristic-errors are cancelled from the received signals and the transmitting signals.
-
- FIG. 1 is a block diagram showing a configuration of a conventional array-antenna base-station apparatus using metallic cables for connecting a control-station apparatus and a relay-station apparatus;
- FIG. 2 is a block diagram showing a schematic configuration of an array-antenna base-station apparatus according to one embodiment of the present invention;
- FIG. 3 is a block diagram showing a configuration of the receiving side of the array-antenna base-station apparatus according to the one embodiment of the present invention;
- FIG. 4 is a block diagram showing a configuration of the transmitting side of the array-antenna base-station apparatus according to the one embodiment of the present invention;
- FIG. 5 is a block diagram showing a configuration of a demodulating section provided in the array-antenna base-station apparatus according to the one embodiment of the present invention; and
- FIG. 6 is a block diagram showing a configuration of a modulating section provided in the array-antenna base-station apparatus according to the one embodiment of the present invention.
- Hereinafter, a best mode for carrying out the present invention will be described in detail, referring to attached drawings.
- In the first place, the schematic configuration of an array-antenna base-station apparatus according to one embodiment of the present invention will be described. FIG. 2 is a block diagram showing a schematic configuration of the array-antenna base-station apparatus according to the one embodiment of the present invention.
- As shown in the above drawing, an array-antenna base-station apparatus 100 comprises: antenna elements 101-1 through 101-N; duplexers 102-1 through 102-N; a relay-station apparatus 110; a control-station apparatus 120; and
optical cables optical cables apparatus 110a; and a relay-station transmitting apparatus 110b. The above control-station apparatus 120 comprises: a control-station receivingapparatus 120a; and a control-station transmitting apparatus 120b. - The above duplexer 102-1 switches between the receiving side and the transmitting side. That is, in the case of receiving, the duplexer 102-1 outputs received signals from the antenna elements 101-1 through 101-N to the relay-station receiving
apparatus 110a, and in the case of transmitting, transmits transmitting signals from the relay-station transmitting apparatus 110b through the antenna elements 101-1 through 101-N. - The relay-station receiving
apparatus 110a performs predetermined processing, such as receiving amplification, of the received signals, and outputs the processed signals to the above control-station receivingapparatus 120a through theoptical cable 140. The control-station receivingapparatus 120a forms directivity by multiplying the output signals from the relay-station receivingapparatus 110a by weights. And, the control-station receivingapparatus 120a obtains received data after demodulating processing of signals forming the directivity. - The control-
station transmitting apparatus 120b generates transmitting signals after modulating processing of transmitting data, and, at the same time, forms directivity for the above generated transmitting signal, referring to the weights which have been calculated by the control-station receiving apparatus 120a. The generated transmitting signals are output to the relay-station transmitting apparatus 110b through theoptical cable 150. The relay-station transmitting apparatus 110b outputs the output signals from the control-station transmitting apparatus 120b through the antenna elements 101-1 through 101-N after transmitting processing such as transmitting amplification. - Here, a plurality of relay-station apparatuses are usually installed in one control-station apparatus, and each of the above relay-station apparatuses is connected to the control-station apparatus 120 through the optical cables when a plurality of relay-station apparatuses are installed, though only one relay-station apparatus 110 is shown in FIG. 2 for brief description.
- Then, the configuration of the array-antenna base-station apparatus 100 will be described separately for the receiving side and the transmitting side. For the above description, the receiving side will be described referring to FIG. 3, and the transmitting side will be done referring to FIG. 4.
- FIG. 3 is a block diagram showing a configuration of the receiving side of the array-antenna base-station apparatus according to the present embodiment. As shown in the above drawing, the relay-
station receiving apparatus 110a comprises: receiving amplifiers 111-1 through 111-N; E/O (electric/optical) conversion sections 112-1 through 112-N; awavelength multiplexing section 113; and asection 114 for generating calibration signals. And, the control-station receiving apparatus 120a comprises: a wavelength separation section 121; O/E (optical/electric) conversion sections 122-1 through 122-N; frequency conversion sections 123-1 through 123-N; signal discriminating sections 124-1 through 124-N; asection 125 for measuring calibration signals; arecording section 126; and ademodulating section 127. The relay-station receiving apparatus 110a and the control-station receiving apparatus 120a are connected to each other through theoptical cable 140. - In the relay-
station receiving apparatus 110a, thesection 114 for generating calibration signals generates known signals for calibration (hereinafter, called as "calibration signals"), and outputs the above known signal to the receiving amplifiers 111-1 through 111-N. The receiving amplifier 111-1 amplifies calibration signals from thesection 114 for generating calibration signals, and received signals from the communication terminal apparatus 200 (refer to FIG. 2) through the antenna element 101-1, respectively, and outputs the above calibration signals from thesection 114 for generating calibration signals, and received signals from the communication terminal apparatus 200 to the E/O conversion section 112-1. Similarly, the receiving amplifier 111-N amplifies calibration signals from thesection 114 for generating calibration signals, and received signals from the communication terminal apparatus 200 through the antenna element 101-N, respectively, and outputs the above calibration signals from thesection 114 for generating calibration signals, and received signals from the communication terminal apparatus 200 to the E/O conversion section 112-N. The above E/O conversion section 112-1 converts the calibration signals and the received signals from the receiving amplifier 111-1 into optical signals for output to thewavelength multiplexing section 113. Similarly, the above E/O conversion section 112-N converts the calibration signals and the received signals from the receiving amplifier 111-N into optical signals for output to thewavelength multiplexing section 113. The abovewavelength multiplexing section 113 multiplexes the calibration signals and the received signals, which have been converted respectively into optical signals in the E/O conversion sections 112-1 through 112-N, and outputs the above calibration and received signals to the wavelength separation section 121 through theoptical cable 140. - In the control-
station receiving apparatus 120a, the wavelength separation section 121 separates the calibration signal and the received signals, which have been multiplexed, from the relay-station receiving apparatus 110a into signals on each path, respectively, and outputs the separated signals to the corresponding O/E conversion sections 122-1 through 122-N. That is, the above wavelength separation section 121 outputs, among multiplexed signals from thewavelength multiplexing section 113, the received signals and the calibration signals sent on a path passing through the receiving amplifier 111-1, the E/O conversion section 112-1, and thewavelength multiplexing section 113 to the O/E conversion section 122-1. Similarly, the above wavelength separation section 121 outputs, among the multiplexed signals from thewavelength multiplexing section 113, the received signals and the calibration signals sent on a path passing through the receiving amplifier 111-N, the E/O conversion section 112-N, andwavelength multiplexing section 113, to the O/E conversion section 122-N. - The O/E conversion section 122-1 converts the output signals from the wavelength separation section 121 into electric signals for output to the frequency conversion section 123-1. Similarly, the O/E conversion section 122-N converts the output signals from the wavelength separation section 121 into electric signals for output to the frequency conversion section 123-N. The frequency conversion section 123-1 converts the frequency of the output signals from the O/E conversion section 122-1 to a baseband frequency band, and outputs the converted signals to the signal discriminating section 124-1. Similarly, the frequency conversion section 123-N converts the frequency of the output signals from the O/E conversion section 122-N to a baseband frequency band, and outputs the converted signals to the signal discriminating section 124-N. The above signal discriminating section 124-1 discriminates the received signals from signals output from the frequency conversion section 123-1 for output to the
demodulating section 127. And, the above signal discriminating section 124-1 discriminates the calibration signals from the signals output from the frequency conversion section 123-1 for output to thesection 125 for measuring calibration signals. Similarly, the signal discriminating section 124-N discriminates the received signals from signals output from the frequency conversion section 123-N for output to thedemodulating section 127. And, the above signal discriminating section 124-N discriminates the calibration signals from the signals output from the frequency conversion section 123-N for output to thesection 125 for measuring calibration signals. - The
section 125 for measuring calibration signals measures superimposed characteristic errors on the calibration signals output from the signal discriminating sections 124-1 through 124-N. Amplitude fluctuations and phase rotations, which have been caused by analog devices which exist on paths from thesection 114 for generating calibration signals to thesection 125 for measuring calibration signals, are added as characteristic errors to the above calibration signals. Thesection 125 for measuring calibration signals obtains deviations from the expectation values of the calibration signals output from the signal discriminating sections 124-1 through 124-N, and the above deviations are supposed to be the characteristic errors. The above characteristic errors which have been measured for each path as described above are output to therecording section 126. Therecording section 126 preserves the above characteristic errors output from theabove section 125 for measuring calibration signals in calibration tables. As the above characteristic errors are separately measured for each path in the receiving side, the same number (that is, "N pieces") of calibration tables as that of paths in the receiving side are separately made. - The
demodulating section 127 cancells the characteristic errors superimposed on the received signals which have been output from the signal discriminating sections 124-1 through 124-N, referring to the characteristic errors preserved in the calibration tables stored in therecording section 126. And, theabove demodulating section 127 calculates the weights, so that received signals arriving from a desired direction may be intensely received (or, interference signals arriving from a predetermined direction may be suppressed), based on the received signals which have cancelled the characteristic errors, and the calculated weights are multiplied by the received signals on each path. Theabove demodulating section 127 generates combined signals by mutual addition of the received signals, which have been multiplied by the weights, on each path. Theabove demodulating section 127 obtains the received data by predetermined demodulating processing of the combined signals which have been generated as described above. Moreover, theabove demodulating section 127 outputs the calculated weights to a modulating section 224 (refer to FIG. 4) in the transmitting side. - Then, the configuration of the
demodulating section 127 will be described is described, referring to FIG. 5. The characteristic-error operation section 501 cancells the characteristic errors superimposed on the received signals which have been output from the signal discriminating sections 124-1 through 124-N, referring to the measured values of the characteristic errors output from therecording section 126. In a word, as the calibration signals and the received signals are input to thedemodulating section 127 passing through the same path, the same characteristic errors caused by the same analog devices are supposed to be superimposed on the above calibration signals and received signals. Accordingly, theabove demodulating section 127 may cancell the characteristic errors superimposed on the received signals by subtraction of characteristic errors superimposed on the calibration signals from the received signals. As described above, it is sometimes called as "calibration" in the present description that the characteristic errors measured using the calibration signals are cancelled from the received signals (or, transmitting signals). - The received signals from which the characteristic errors have been cancelled in the characteristic-
error operation section 501 are output to aweight control section 502 and multipliers 503-1 through 503-N. The aboveweight control section 502 estimates the direction of arrival of the received signals; calculates the weights for each path so that received signals arriving from a desired direction may be intensely received (or, interference signals arriving from a predetermined direction may be suppressed), based on the above estimation results and prior information; and outputs the calculated weights to the corresponding multipliers 503-1 through 503-N, and themodulating section 224 shown in FIG. 4, respectively. The multipliers 503-1 through 503-N multiplies the received signals output from the characteristic-error operation section 501 by the weights for output to anadder 504. Theabove adder 504 generates the received signals with directivity by addition of the received signals output from the multipliers 503-1 through 503-N. The received signals which have had the directivity as described above are demodulated in ademodulator 505 by a predetermined demodulating method such as QPSK (Quaternary Phase Shift Keying) and 16QAM (Quadrature Amplitude Modulation) to obtain the received data. - Then, operations of the receiving side of the array-antenna base-station apparatus with the above configuration will be described. Here, though the array-antenna base-station apparatus according to the present embodiment is provided with N pieces of antenna elements and N different paths corresponding to each antenna element, a case for only one path corresponding to the antenna element 101-1 will be described, and description of other cases for other paths will be eliminated, as signals passing through whatever paths are processed in a similar manner.
- Signals transmitted from the communication terminal apparatus 200 (refer to FIG. 2) are received at the array-antenna base-station apparatus 100 through the antenna elements 101-1 through 101-N. The received signals received through the antenna element 101-1 are sent to the receiving amplifier 111-1 through the duplexer 102-1. The received signals amplified in the receiving amplifier 111-1 are output to the
wavelength multiplexing section 113 after conversion into optical signals in the E/O conversion section 112-1. On the other hand, the calibration signals are output from thesection 114 for generating calibration signals; amplified in the receiving amplifier 111-1; converted into optical signals in the E/O conversion section 112-1; and output to thewavelength multiplexing section 113. In the abovewavelength multiplexing section 113, the received signals and the calibration signals after conversion into optical signals are multiplexed, and the above multiplexed signals are output to the wavelength separation section 121 through theoptical cable 140. - The above multiplexed signals output from the above
wavelength multiplexing section 113 are separated for each path in the wavelength separation section 121. That is, the received signals and the calibration signals sent on a path through the receiving amplifier 111-1, the E/O conversion section 112-1, and thewavelength multiplexing section 113 are separated from the multiplexed signals, and output to the O/E conversion section 112-1. Similarly, the received signals and the calibration signals sent on a path through the receiving amplifier 111-N, the E/O conversion section 112-N, and thewavelength multiplexing section 113 are separated from the multiplexed signals, and output to the O/E conversion section 112-N. - The received signals and the calibration signals output from the wavelength separation section 121 are converted into electric signals in the O/E conversion section 122-1, and then output to the signal discriminating section 124-1 after frequency conversion into a baseband frequency band in the frequency conversion section 123-1. The received signals among signals output from the frequency conversion section 123-1 are discriminated from the calibration signals in the signal discriminating section 124-1, and sent to the
demodulating section 127. And, the calibration signals among signals output from the frequency conversion section 123-1 are discriminated from the received signals in the signal discriminating section 124-1, and sent to thesection 125 for measuring calibration signals. - In the
section 125 for measuring calibration signals, the characteristic errors are measured, based on the calibration signals output from the signal discriminating sections 124-1 through 124-N, and the measured characteristic errors are output to therecording section 126. The above characteristic errors are preserved in therecording section 126 as characteristic errors to be calibrated at demodulation in the calibration table. In this case, as the characteristic errors are separately measured for the paths corresponding to the antenna elements 101-1 through 101-N, respectively, the same number of calibration tables as that of the antenna elements are separately provided, too. - In the
demodulating section 127, the characteristic errors included in the received signals output from the signal discriminating sections 124-1 through 124-N are cancelled, referring to the calibration tables stored in therecording section 126. Subsequently, the weights are calculated, based on the received signals from which the characteristic errors have been cancelled, and the calculated weights are multiplied by the received signals on each path. The received signals, which have been multiplied by weights as described above, on each path are added each other to generate a combined signal, and demodulating processing of the above combined signal is performed to obtain the received data. - FIG. 4 is a block diagram showing a configuration of the transmitting side of the array-antenna base-station apparatus according to the present embodiment. As shown in the above drawing, a relay-
station transmitting apparatus 110b comprises: signal discriminating sections 211-1 through 211-N; transmitting amplifiers 212-1 through 212-N; O/E conversion sections 213-1 through 213-N; awavelength separation section 214; asection 215 for measuring calibration signals; and arecording section 216. A control-station transmitting apparatus 120b comprises: awavelength multiplexing section 221; E/O conversion sections 222-1 through 222-N; frequency conversion sections 223-1 through 223-N; amodulating section 224; and asection 225 for generating calibration signals. The above relay-station transmitting apparatus 110b and the above control-station transmitting apparatus 120b are connected through anoptical cable 150. - In the control-
station transmitting apparatus 120b, the modulatingsection 224 generates transmitting signals by primary modulation, such as QPSK, of transmitting data, and characteristic errors are cancelled from the transmitting signals on each path, referring to calibration tables preserved in therecording section 216, as described later. And, the modulatingsection 224 forms directivity for the transmitting signals by multiplication of the transmitting signals on each path by weights output from the demodulating section 127 (refer to FIG. 3) provided in the control-station receiving apparatus 120a. Thus, the generated transmitting signals are output to frequency conversion the corresponding sections 223-1 through 223-N, respectively. - The
section 225 for generating calibration signals generates known signals (calibration signals) for calibration, and outputs the above known signals to the frequency conversion sections 223-1 through 223-N. The frequency conversion section 223-1 converts the frequencies of the received signals from the modulatingsection 224 and the calibration signals from theabove section 225 for generating calibration signals to a radio frequency band for output to the E/O conversion section 222-1. Similarly, the frequency conversion section 223-N converts the frequencies of the received signals from the modulatingsection 224 and the calibration signals from theabove section 225 for generating calibration signals to a radio frequency band for output to the E/O conversion section 222-N. The E/O conversion section 222-1 converts the amplified transmitting-signals and the calibration signals from the frequency conversion section 223-1 from electric signals to optical signals, and outputs the optical signals after conversion to thewavelength multiplexing section 221. Similarly, the E/O conversion section 222-N converts the amplified transmitting-signals and the calibration signals from the frequency conversion section 223-N from electric signals to optical signals, and outputs the optical signals after conversion to thewavelength multiplexing section 221. The abovewavelength multiplexing section 221 multiplexes the transmitting signals and the calibration signals, which have been output from the E/O conversion sections 222-1 through 222-N after conversion into optical signals, and the multiplexed signals are output to thewavelength separation section 214 through theoptical cable 150. - In the relay-
station transmitting apparatus 110b, thewavelength separation section 214 separates the transmitting signals and the calibration signals output from thewavelength multiplexing section 221 for each path corresponding to antenna elements 101-1 through 101-N for output to the O/E conversion sections 213-1 through 213-N. That is, thewavelength separation section 214 outputs, among the multiplexed signals from thewavelength multiplexing section 221, signals, which have been transmitted on a path passing through the radio transmitters 223-1, the E/O conversion section 222-1, and thewavelength multiplexing section 221, to the O/E conversion section 213-1. Similarly, thewavelength separation section 214 outputs, among the multiplexed signals from thewavelength multiplexing section 221, signals, which have been transmitted on a path passing through the radio transmitter 223-N, the E/O conversion section 222-N, and thewavelength multiplexing section 221, to the O/E conversion section 213-N. Similarly, the received signals and the calibration signals transmitted through other paths are also output to the corresponding O/E conversion section. - The O/E conversion section 213-1 converts the output signals from the
wavelength separation section 214 from optical signals to electric signals, and outputs the electric signals after conversion to the transmitting amplifier 212-1. Similarly, the O/E conversion section 213-N converts the output signals from thewavelength separation section 214 from optical signals to electric signals, and outputs the electric signals after conversion to the transmitting amplifier 212-N. The transmission amplifier 212-1 amplifies signals output from the O/E conversion section 213-1 for output to the signal discriminating section 211-1. Similarly, the transmission amplifier 212-N amplifies output signals from the O/E conversion section 213-N for output to the signal discriminating section 211-N. The signal discriminating section 211-1 discriminates the calibration signals from the output signals from the transmitting amplifier 212-1 for output to thesection 215 for measuring calibration signals. The signal discriminating section 211-1 discriminates the transmitting signals from the output signals from the transmitting amplifier 212-1 for radio transmission through the antenna element 101-1. And, the signal discriminating section 211-1 discriminates the calibration signals, among signals output from the transmitting amplifier 212-1, as transmitting signals for output to thesection 125 for measuring calibration signals. Similarly, the signal discriminating section 211-1 discriminates the transmitting signals, among signals output from the transmitting amplifier 212-N, as calibration signals for radio transmission through the antenna element 101-N. And, the signal discriminating section 211-N discriminates the calibration signals, among signals output from the transmitting amplifier 212-N, as transmitting signals for output to thesection 215 for measuring calibration signals. - The
section 215 for measuring calibration signals measures the characteristic errors superimposed on the calibration signals output from the signal discriminating sections 211-1 through 211-N. The amplitude fluctuations and the phase rotations, which are caused by analog devices which exists on the path from generation at thesection 225 for generating calibration signals to input to thesection 215 for measuring calibration signals, are added to the above calibration signals. Theabove section 215 for measuring calibration signals obtains deviations from the expectation values of the amplitude and the phases of the calibration signals output from the signal discriminating sections 211-1 through 211-N, and the above deviations are supposed to be the characteristic errors. The characteristic errors measured as described above are output to therecording section 216. Theabove recording section 216 preserves the above characteristic errors sent from theabove section 215 for measuring calibration signals in calibration tables. As the above characteristic errors are separately measured for each path of the transmitting circuits, the same number of calibration tables as that of receiving circuits are separately made. - Here, a configuration of the
modulating section 224 will be described in more detail, referring to FIG. 6. Amodulator 601 generates transmitting signals after primary modulation, such as QPSK, of transmitting data, and outputs the generated transmitting signals to multipliers 602-1 through 602-N. The above multipliers 602-1 through 602-N multiplies the above transmitting signals by weights output from thedemodulating section 127, and outputs the above transmitting signals after multiplication to a characteristic-error operation section 603. - The above characteristic-
error operation section 603 cancells characteristic errors, which are predicted to be superimposed on the transmitting signals in the subsequent processing, referring to the measured values of the characteristic errors output from thewavelength multiplexing section 221. The above characteristic-error operation section 603 may cancell the characteristic errors, which have been added in analog devices before transmission of the transmitting signals from the antenna elements 101-1 through 101-N, for example, by subtracting the characteristic errors superimposed on the calibration signals from the transmitting signals. - Then, operations of the transmitting side of the array-antenna base-station apparatus with the above configuration will be described.
- Here, though the array-antenna base-station apparatus according to the present embodiment is provided with N pieces of antenna elements and N different paths corresponding to each antenna element, a case for only one path corresponding to the antenna element 101-1 will be described, and description of other cases for other paths will be sometimes eliminated, as signals passing through whatever paths are processed in a similar manner.
- Modulation processing, such as QPSK, of the transmitting data is performed in the
modulating section 224, and the characteristic errors on each path are cancelled, referring to the contents of the calibration tables preserved in therecording section 216. In a word, as unknown amplitude fluctuations, the phase rotations, and so on caused by dispersion in the characteristics of analog devices provided in the frequency conversion sections 223-1 through 223-N, the transmitting amplifiers 212-1 through 212-N, and so on are added to the above transmitting signals before output from the antenna elements 101-1 through 101-N, the above characteristic errors are previously cancelled in modulatingsection 224. And, the transmitting signals on each path, which have been multiplied by weights, are output to the frequency conversion section 223-1 through 223-N in thedemodulating section 224. Thereby, the directivity of the transmitting signals is formed. Predetermined radio-transmitting processing of output signals (transmitting signals) of themodulating section 224 is performed in the frequency conversion section 223-1, and the processed signals are converted into optical signals in the E/O conversion section 222-1, and output to thewavelength multiplexing section 221. On the other hand, radio-transmitting processing of the calibration signals output from thesection 225 for generating calibration signals is performed in the frequency conversion section 223-1, and the processed signals are converted into optical signals in the E/O conversion section 222-1 and output to thewavelength multiplexing section 221. The transmitting signals and the calibration signals, which have been output from the frequency conversion sections 223-1 through 223-N, and converted into optical signals, are multiplexed in thewavelength multiplexing section 221, and output to thewavelength separation section 214 through theoptical cable 150. - The transmitting signals and the calibration signals output from the
wavelength multiplexing section 221 are separated into signals on each path in thewavelength separation section 214. That is, among the multiplexed signals output from the abovewavelength multiplexing section 221, signals transmitted on a path passing through the radio transmitters 223-1, the E/O conversion section 222-1, and thewavelength multiplexing section 221 are output to the corresponding to the O/E conversion section 213-1. And, among the multiplexed signals output from the abovewavelength multiplexing section 221, signals transmitted on a path passing through the radio transmitters 223-N, the E/O conversion section 222-N, and thewavelength multiplexing section 221 are output to the corresponding to the O/E conversion section 213-N. Here, the received signals and the calibration signals sent through other paths are also output to the corresponding O/E conversion section. - Predetermined radio-transmitting processing of the transmitting signals and the calibration signals, which have been output from the
wavelength separation sections 214, and converted from optical signals into electric signals in the O/E conversion section 213-1, is performed in the transmitting amplifier 212-1, and output to the signal discriminating section 211-1. The calibration signals, among signals output from the transmitting amplifier 212-1, are discriminated as the received signals, and sent to thesection 215 for measuring the calibration signals in the signal discriminating section 211-1. In theabove section 215 for measuring the calibration signals, the characteristic errors are measured based on the calibration signals from the signal discriminating sections 211-1 through 211-N, and the measured characteristic errors are sent to therecording section 216, and preserved in the calibration tables of theabove recording section 216 as characteristic errors to be calibrated at demodulation. As the above characteristic errors are separately measured for each path corresponding to the antenna elements 101-1 through 101-N, respectively, the same number of calibration tables as that of receiving circuits are separately provided. - And, the transmitting signals, among signals output from the transmitting amplifier 212-1, are discriminated in the signal discriminating section 11-1 as the calibration signals, and sent by radio through the antenna elements 101-1 through 101-N.
- Thus, loss of signals to be transmitted may be reduced, as the relay-station receiving apparatus and the control-station receiving apparatus are configured to be connected through optical cables, and the relay-station transmitting apparatus and the control-station transmitting apparatus are also done so in the array-antenna base-station apparatus according to the present embodiment. Moreover, the degrees of freedom in selection of installation sites is increased, as signals are multiplexed for transmission, using optical cables to cause no need to provide cables for each path corresponding to antenna elements. In addition, expected directivity may be obtained with good accuracy, as the characteristic errors may be intermittently adjusted by calibration which is performed for segments from the relay-station receiving apparatus to the control-station receiving apparatus, and from the relay-station transmitting apparatus to the control-station transmitting apparatus.
- Furthermore, easy installation may be realized, as the characteristic errors may be adjusted after the base station apparatus has been set up to cause no need for adjustment of the base station apparatus at installation by calibration which is performed for segments from the relay-station receiving apparatus to the control-station receiving apparatus, and from the relay-station transmitting apparatus to the control-station transmitting apparatus.
- Here, a configuration where either the receiving side or the transmitting side of the base station apparatus perform the calibration may be applied in the present invention, though the above description has been made in the present embodiment for a case where both of the receiving side and the transmitting side of the base station apparatus perform the calibration.
- Here, a configuration where an apparatus for generating calibration signals, which transmits calibration signals, may be provided outside the base station apparatus may be applied, though the above description has been made in the present embodiment for a case where the section for generating calibration signals is provided inside the array-antenna base-station apparatus. For example, there may be applied a configuration where the apparatus for generating calibration signals is provided outside the base station apparatus, and calibration signals are transmitted by radio or cable from the above apparatus for generating calibration signals to the array-antenna base-station apparatus.
- As described above, according to the present invention, there may be provided the array-antenna base-station apparatus having a configuration where loss of signals transmitted from the relay-station apparatus to the control-station apparatus is small; the degrees of freedom in selection of installation sites is large; and phase rotations and so on caused by the characteristics of analog devices on each circuit may be calibrated.
- The present invention is preferably used in a field related with an array-antenna base-station apparatus which adaptively controls the directivity by adding weights to antenna outputs of a plurality of antenna elements.
Claims (8)
- An array-antenna base station receiving apparatus (101, 102, 110a, 120a, 140) comprising:a plurality of antenna elements (101-1, ..., 101-N);a relay station receiving apparatus (110a);a control station receiving apparatus (120a);wherein said relay station receiving apparatus transmits signals to said control station receiving apparatus through a first optical fiber transmitting channel (140);
characterized by
said relay station receiving apparatus (110a) including:first conversion means (112) adapted for converting signals received from a communication end (200) through said plurality of antenna elements respectively, and known calibration signals, into optical signals respectively;said control station receiving apparatus (120a) including:first separation means (122, 124) adapted for converting said optical signals transmitted through said first optical fiber transmitting channel (140) into electrical signals, and separating said calibration signals from said electrical signals on a per path corresponding to each antenna element basis;first measurement means (125) adapted for measuring characteristic errors superimposed upon said calibration signals separated on a per path corresponding to each antenna element basis in said first separation means;first error cancelling means (127, 501) adapted for cancelling said characteristic errors measured on a per calibration signal basis in said first measurement means from said received signals separated on a per path corresponding to each antenna element basis in said first separation means; anddirectivity forming means (127, 502, 503, 504, 505) adapted for calculating weights according to said received signals having said characteristic errors cancelled, and forming the received signals with directivity in accordance with said calculated weights. - The array antenna base station receiving apparatus according to claim 1, wherein said relay station receiving apparatus (110a) comprises first calibration signal generating means (114) which generates known calibration signals, which are fed into the receiving amplifier and then converted into the optical signals together with said received signals on a per path corresponding to each antenna element basis, for the use of calibration for the reception.
- The array antenna base station receiving apparatus according to claims 1 or 2, wherein, through said plurality of antenna elements (101), said relay station receiving apparatus (110a) is adapted for obtaining the received signals transmitted from the communication end (200) and the known calibration signals transmitted from said calibration signal generating means for use of calibration.
- An array-antenna base station transmitting apparatus (101, 102, 110b, 120b, 150) comprising:a plurality of antenna elements (101-1, ..., 101-N);a relay station transmitting apparatus (110b);a control station transmitting apparatus (120b);wherein said control station transmitting apparatus transmits signals to said relay station transmitting apparatus through a second optical fiber transmitting channel (150);
characterized by
said control station transmitting apparatus (120b) including:second error cancelling means (224, 603) adapted for cancelling said characteristic errors superimposed upon transmitting signals before transmission through the respective antenna elements, in accordance with an output of second measurement means (215), wherein the measured values of the characteristic errors are output from a wavelength multiplexing means (221);modulation means (224) adapted for generating transmitting signals with directivity by multiplying the weights output from said directivity forming means (127) with said transmitting signals having said characteristic errors cancelled in said second error cancelling means; andsecond conversion means (222) adapted for converting said transmitting signals with directivity generated in said modulation means and known calibration signals into optical signals respectively;said relay station transmitting apparatus (110b) including:second separation means (211, 213) adapted for demultiplexing and converting the optical signals transmitted through said second optical fiber transmission channel into electrical signals, and separating the calibration signals from said converted electrical signals on a per path corresponding to each antenna element basis;said second measurement means (215) adapted for measuring characteristic errors superimposed upon said calibration signals separated on a per path corresponding to each antenna element basis in said second separation means. - The array antenna base station transmitting apparatus according to claim 4, wherein said control station transmitting apparatus (120b) comprises second calibration signal generating means (225) which generates known calibration signals, for the use of calibration for the transmitting.
- An array-antenna base station (100) including said base station receiving apparatus as defined in any of claims 1-3 and said base station transmitting apparatus as defined in claims 4 or 5.
- A method for receiving signals with directivity, comprising the steps of:generating known calibration signals for the use of calibration for receiving signals;converting signals received from a communication end (200) through said plurality of antenna elements, and generated known calibration signals, into optical signals respectively;converting said optical signals transmitted through said first optical fiber transmitting channel(140) into electrical signals, and separating said calibration signals from said converted electrical signals on a per path corresponding to each antenna element basis;measuring characteristic errors superimposed upon said calibration signals separating on a per path corresponding to each antenna element basis;cancelling said characteristic errors measured on a per calibration signal basis from said received signals separated on a per path corresponding to each antenna element basis;calculating weights according to said received signals having said characteristic errors cancelled; andforming the received signals with directivity in accordance with said calculated weights.
- A method for transmitting signals with directivity, comprising the steps of:generating known calibration signals for the use of calibration for transmitting signals;cancelling said characteristic errors superimposed upon transmitting signals before transmission through the respective antenna elements, in accordance with the measured values of the characteristic errors for each path of said transmitting apparatus;generating transmitting signals with directivity by multiplying the weights output from said directivity forming means (127) with said transmitting signals having said characteristic errors cancelled;converting said generated transmitting signals with directivity and the generated calibration signals into optical signals respectively;transmitting the optical multiplexed signals through said second optical fiber transmitting channel (150);converting the optical signals transmitted through said second optical fiber transmitting channel into electrical signals;separating said calibration signals from said converted electrical signals on a per path corresponding to each antenna element basis;measuring characteristic errors superimposed upon said calibration signals discriminated on a per path corresponding to each antenna element basis in said second discrimination means.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000078410A JP2001267990A (en) | 2000-03-21 | 2000-03-21 | Array antenna base station device |
JP2000078410 | 2000-03-21 | ||
PCT/JP2001/002001 WO2001071944A1 (en) | 2000-03-21 | 2001-03-14 | Array antenna base station apparatus |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1179895A1 EP1179895A1 (en) | 2002-02-13 |
EP1179895A4 EP1179895A4 (en) | 2003-08-06 |
EP1179895B1 true EP1179895B1 (en) | 2007-07-04 |
Family
ID=18595825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01912344A Expired - Lifetime EP1179895B1 (en) | 2000-03-21 | 2001-03-14 | Array antenna base station apparatus |
Country Status (7)
Country | Link |
---|---|
US (1) | US6987989B2 (en) |
EP (1) | EP1179895B1 (en) |
JP (1) | JP2001267990A (en) |
CN (1) | CN1159862C (en) |
AU (1) | AU4113001A (en) |
DE (1) | DE60129189T2 (en) |
WO (1) | WO2001071944A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9112611B2 (en) | 2009-02-03 | 2015-08-18 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3631716B2 (en) * | 2001-11-22 | 2005-03-23 | 埼玉日本電気株式会社 | W-CDMA radio base station and delay time difference correction method thereof |
JP2003324393A (en) * | 2002-02-26 | 2003-11-14 | Matsushita Electric Ind Co Ltd | Bi-directional optical transmission system, and master and slave stations used therefor |
WO2003073649A1 (en) * | 2002-02-28 | 2003-09-04 | Sanyo Electric Co., Ltd. | Radio device, radio device calibration system, calibration method, and calibration program |
US20040082365A1 (en) * | 2002-07-18 | 2004-04-29 | Celerica Ltd | Digitization and transmitting cellular RF signals by several light wavelengths |
US20040109831A1 (en) * | 2002-07-18 | 2004-06-10 | M & M Inx Co. | Cosmetic compositions for the protection and optical enhancement of tattooed skin |
CN100382457C (en) * | 2003-02-26 | 2008-04-16 | 日本无线株式会社 | Array antenna communication device |
JP4068500B2 (en) * | 2003-05-14 | 2008-03-26 | 日本無線株式会社 | Array antenna communication device |
JP4383806B2 (en) * | 2003-08-29 | 2009-12-16 | 株式会社日立国際電気 | Optical digital transmission device |
JP2006261748A (en) * | 2005-03-15 | 2006-09-28 | Mitsubishi Electric Corp | Optical transmission antenna device |
JP4531607B2 (en) * | 2005-03-30 | 2010-08-25 | 富士通株式会社 | Calibration device |
JP4528236B2 (en) | 2005-09-29 | 2010-08-18 | 株式会社日立製作所 | Radio base station apparatus and communication method |
US8873585B2 (en) | 2006-12-19 | 2014-10-28 | Corning Optical Communications Wireless Ltd | Distributed antenna system for MIMO technologies |
WO2009081376A2 (en) | 2007-12-20 | 2009-07-02 | Mobileaccess Networks Ltd. | Extending outdoor location based services and applications into enclosed areas |
JP5246689B2 (en) * | 2008-07-01 | 2013-07-24 | 独立行政法人情報通信研究機構 | Space communication system |
JP5125988B2 (en) * | 2008-10-23 | 2013-01-23 | 富士通株式会社 | Wireless relay device |
AU2010210766A1 (en) | 2009-02-03 | 2011-09-15 | Corning Cable Systems Llc | Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof |
US9673904B2 (en) | 2009-02-03 | 2017-06-06 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
US8280259B2 (en) | 2009-11-13 | 2012-10-02 | Corning Cable Systems Llc | Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication |
US8275265B2 (en) | 2010-02-15 | 2012-09-25 | Corning Cable Systems Llc | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
EP2541783B1 (en) * | 2010-02-25 | 2020-11-04 | Mitsubishi Electric Corporation | Interference wave suppression device, relay device, relay system, and interference wave suppression method |
CN103222114A (en) | 2010-09-07 | 2013-07-24 | 庄昆杰 | Dual-polarized microstrip antenna |
US9252874B2 (en) | 2010-10-13 | 2016-02-02 | Ccs Technology, Inc | Power management for remote antenna units in distributed antenna systems |
EP2702780A4 (en) | 2011-04-29 | 2014-11-12 | Corning Cable Sys Llc | Systems, methods, and devices for increasing radio frequency (rf) power in distributed antenna systems |
WO2012148938A1 (en) | 2011-04-29 | 2012-11-01 | Corning Cable Systems Llc | Determining propagation delay of communications in distributed antenna systems, and related components, systems and methods |
WO2013148986A1 (en) | 2012-03-30 | 2013-10-03 | Corning Cable Systems Llc | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (mimo) configuration, and related components, systems, and methods |
WO2013162988A1 (en) | 2012-04-25 | 2013-10-31 | Corning Cable Systems Llc | Distributed antenna system architectures |
EP2883416A1 (en) | 2012-08-07 | 2015-06-17 | Corning Optical Communications Wireless Ltd. | Distribution of time-division multiplexed (tdm) management services in a distributed antenna system, and related components, systems, and methods |
US9455784B2 (en) | 2012-10-31 | 2016-09-27 | Corning Optical Communications Wireless Ltd | Deployable wireless infrastructures and methods of deploying wireless infrastructures |
WO2014085115A1 (en) | 2012-11-29 | 2014-06-05 | Corning Cable Systems Llc | HYBRID INTRA-CELL / INTER-CELL REMOTE UNIT ANTENNA BONDING IN MULTIPLE-INPUT, MULTIPLE-OUTPUT (MIMO) DISTRIBUTED ANTENNA SYSTEMS (DASs) |
US9647758B2 (en) | 2012-11-30 | 2017-05-09 | Corning Optical Communications Wireless Ltd | Cabling connectivity monitoring and verification |
TW201448494A (en) * | 2013-06-05 | 2014-12-16 | Infolink System Integrations Corp | Radio frequency power compensation device |
EP3008828B1 (en) | 2013-06-12 | 2017-08-09 | Corning Optical Communications Wireless Ltd. | Time-division duplexing (tdd) in distributed communications systems, including distributed antenna systems (dass) |
CN105452951B (en) | 2013-06-12 | 2018-10-19 | 康宁光电通信无线公司 | Voltage type optical directional coupler |
US9247543B2 (en) | 2013-07-23 | 2016-01-26 | Corning Optical Communications Wireless Ltd | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
US9661781B2 (en) | 2013-07-31 | 2017-05-23 | Corning Optical Communications Wireless Ltd | Remote units for distributed communication systems and related installation methods and apparatuses |
US9385810B2 (en) | 2013-09-30 | 2016-07-05 | Corning Optical Communications Wireless Ltd | Connection mapping in distributed communication systems |
US9178635B2 (en) | 2014-01-03 | 2015-11-03 | Corning Optical Communications Wireless Ltd | Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference |
US9775123B2 (en) | 2014-03-28 | 2017-09-26 | Corning Optical Communications Wireless Ltd. | Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power |
US9357551B2 (en) | 2014-05-30 | 2016-05-31 | Corning Optical Communications Wireless Ltd | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems |
US9525472B2 (en) | 2014-07-30 | 2016-12-20 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
US9730228B2 (en) | 2014-08-29 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
US9602210B2 (en) | 2014-09-24 | 2017-03-21 | Corning Optical Communications Wireless Ltd | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
US9420542B2 (en) | 2014-09-25 | 2016-08-16 | Corning Optical Communications Wireless Ltd | System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units |
JP2016082402A (en) * | 2014-10-16 | 2016-05-16 | 富士通株式会社 | Baseband processing device, radio device and radio communication system |
US9729267B2 (en) | 2014-12-11 | 2017-08-08 | Corning Optical Communications Wireless Ltd | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
US20160249365A1 (en) | 2015-02-19 | 2016-08-25 | Corning Optical Communications Wireless Ltd. | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das) |
US9681313B2 (en) | 2015-04-15 | 2017-06-13 | Corning Optical Communications Wireless Ltd | Optimizing remote antenna unit performance using an alternative data channel |
US9948349B2 (en) | 2015-07-17 | 2018-04-17 | Corning Optical Communications Wireless Ltd | IOT automation and data collection system |
US10560214B2 (en) | 2015-09-28 | 2020-02-11 | Corning Optical Communications LLC | Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS) |
US10236924B2 (en) | 2016-03-31 | 2019-03-19 | Corning Optical Communications Wireless Ltd | Reducing out-of-channel noise in a wireless distribution system (WDS) |
JP6930087B2 (en) * | 2016-10-21 | 2021-09-01 | 日本電気株式会社 | Distributed antenna system, wireless communication system, wireless communication method and its control device |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60106240A (en) | 1983-11-15 | 1985-06-11 | Fuji Electric Co Ltd | Transmission system for analog light signal |
JPH04157820A (en) | 1990-10-20 | 1992-05-29 | Nippon Telegr & Teleph Corp <Ntt> | Radio communication device |
JP2998094B2 (en) | 1991-07-15 | 2000-01-11 | 日本電信電話株式会社 | Mobile communication system |
JPH0530020A (en) | 1991-07-18 | 1993-02-05 | Nippon Telegr & Teleph Corp <Ntt> | Mobile communication system |
US5339184A (en) * | 1992-06-15 | 1994-08-16 | Gte Laboratories Incorporated | Fiber optic antenna remoting for multi-sector cell sites |
JPH0677865A (en) | 1992-08-24 | 1994-03-18 | Fujitsu Ltd | Radio communication system by route diversity system |
US5621752A (en) | 1994-06-23 | 1997-04-15 | Qualcomm Incorporated | Adaptive sectorization in a spread spectrum communication system |
JP3290831B2 (en) * | 1994-11-21 | 2002-06-10 | 明星電気株式会社 | Antenna device and base station |
JP3997294B2 (en) * | 1996-11-13 | 2007-10-24 | 独立行政法人情報通信研究機構 | Mobile radio communication system |
JPH10336149A (en) * | 1997-05-28 | 1998-12-18 | Matsushita Electric Ind Co Ltd | Cdma radio communication device with arrayed antenna |
JP3812787B2 (en) * | 1997-11-20 | 2006-08-23 | 株式会社日立国際電気 | Optical conversion repeater amplification system |
US6374124B1 (en) * | 1997-12-24 | 2002-04-16 | Transcept, Inc. | Dynamic reallocation of transceivers used to interconnect wireless telephones to a broadband network |
US5982327A (en) * | 1998-01-12 | 1999-11-09 | Motorola, Inc. | Adaptive array method, device, base station and subscriber unit |
JP3156768B2 (en) | 1998-01-21 | 2001-04-16 | 日本電気株式会社 | Cellular base station and position locating device mounted on it |
JP3940490B2 (en) | 1998-03-13 | 2007-07-04 | 株式会社東芝 | Distributed antenna system |
JP3504495B2 (en) * | 1998-04-28 | 2004-03-08 | 松下電器産業株式会社 | Array antenna wireless communication device |
US6336042B1 (en) * | 1998-06-05 | 2002-01-01 | Transcept, Inc. | Reverse link antenna diversity in a wireless telephony system |
JP3519276B2 (en) * | 1998-06-18 | 2004-04-12 | 松下電器産業株式会社 | Calibration device |
US6362906B1 (en) * | 1998-07-28 | 2002-03-26 | Raytheon Company | Flexible optical RF receiver |
EP1122898A1 (en) * | 2000-01-31 | 2001-08-08 | KDD Corporation | Optical repeater monitoring system and a method thereof |
-
2000
- 2000-03-21 JP JP2000078410A patent/JP2001267990A/en active Pending
-
2001
- 2001-03-14 CN CNB018005101A patent/CN1159862C/en not_active Expired - Lifetime
- 2001-03-14 AU AU41130/01A patent/AU4113001A/en not_active Abandoned
- 2001-03-14 EP EP01912344A patent/EP1179895B1/en not_active Expired - Lifetime
- 2001-03-14 DE DE60129189T patent/DE60129189T2/en not_active Expired - Lifetime
- 2001-03-14 US US09/979,017 patent/US6987989B2/en not_active Expired - Lifetime
- 2001-03-14 WO PCT/JP2001/002001 patent/WO2001071944A1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
None * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9112611B2 (en) | 2009-02-03 | 2015-08-18 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
Also Published As
Publication number | Publication date |
---|---|
DE60129189D1 (en) | 2007-08-16 |
CN1364352A (en) | 2002-08-14 |
JP2001267990A (en) | 2001-09-28 |
EP1179895A1 (en) | 2002-02-13 |
DE60129189T2 (en) | 2007-10-11 |
EP1179895A4 (en) | 2003-08-06 |
CN1159862C (en) | 2004-07-28 |
US6987989B2 (en) | 2006-01-17 |
AU4113001A (en) | 2001-10-03 |
US20020159118A1 (en) | 2002-10-31 |
WO2001071944A1 (en) | 2001-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1179895B1 (en) | Array antenna base station apparatus | |
US6738020B1 (en) | Estimation of downlink transmission parameters in a radio communications system with an adaptive antenna array | |
EP2139070B1 (en) | Adaptive array antenna transceiver apparatus | |
US6512917B1 (en) | Radio communication device and transmitting power control method | |
US7286855B2 (en) | Method and apparatus for adaptive transmission beam forming in a wireless communication system | |
US6101399A (en) | Adaptive beam forming for transmitter operation in a wireless communication system | |
EP1398845B1 (en) | Spectrally efficient high capacity wireless communication systems | |
US7688909B2 (en) | Radio communication system, radio communication method, radio transmitter and radio receiver | |
US7340248B2 (en) | Calibration apparatus | |
JP4077084B2 (en) | Transmitting apparatus and transmitting method | |
US20060019712A1 (en) | Calibration apparatus for smart antenna and method thereof | |
GB2335572A (en) | Multiple beam antenna system | |
KR20090051112A (en) | Repeater having dual receiver or transmitter antenna configuration with adaptation for increased isolation | |
KR20010088416A (en) | Array antenna receiving apparatus | |
EP1492252B1 (en) | Multi-beam antenna transmitter/receiver and transmitting/receiving method and transmission beam selection method | |
EP2100386A1 (en) | Method and apparatus for improving transmission efficiency in a mobile radio communications system | |
EP0763307A2 (en) | Diversity combining for antennas | |
CN100397806C (en) | Apparatus and method for calibrating reception signal in mobile communication system | |
US6526291B1 (en) | Method and a system for radio transmission | |
JP2007116414A (en) | Radio communication apparatus and radio communication method | |
KR102301131B1 (en) | multi-antenna channel estimation apparatus and method for beamforming | |
EP1146665A1 (en) | Base station device and radio receiving method | |
KR20060119895A (en) | Method for transmitting signals in a radiocommunication system and corresponding transmitter station and receiver station | |
US20080112493A1 (en) | Method and System for Recursively Detecting MIMO Signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20011207 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20030625 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7H 04B 7/08 B Ipc: 7H 04B 7/06 B Ipc: 7H 04B 7/10 A Ipc: 7H 01Q 3/26 B Ipc: 7H 04B 10/12 B |
|
17Q | First examination report despatched |
Effective date: 20030808 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60129189 Country of ref document: DE Date of ref document: 20070816 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080407 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20140612 AND 20140618 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60129189 Country of ref document: DE Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60129189 Country of ref document: DE Representative=s name: GRUENECKER, KINKELDEY, STOCKMAIR & SCHWANHAEUS, DE Effective date: 20140711 Ref country code: DE Ref legal event code: R081 Ref document number: 60129189 Country of ref document: DE Owner name: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF, US Free format text: FORMER OWNER: PANASONIC CORPORATION, KADOMA-SHI, OSAKA, JP Effective date: 20140711 Ref country code: DE Ref legal event code: R082 Ref document number: 60129189 Country of ref document: DE Representative=s name: GRUENECKER PATENT- UND RECHTSANWAELTE PARTG MB, DE Effective date: 20140711 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: PANASONIC INTELLECTUAL PROPERTY CORPORATION OF, US Effective date: 20140722 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200303 Year of fee payment: 20 Ref country code: GB Payment date: 20200304 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20200214 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60129189 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20210313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210313 |