WO2004075589A1 - 無線基地局及び移動通信システム - Google Patents

無線基地局及び移動通信システム Download PDF

Info

Publication number
WO2004075589A1
WO2004075589A1 PCT/JP2003/001710 JP0301710W WO2004075589A1 WO 2004075589 A1 WO2004075589 A1 WO 2004075589A1 JP 0301710 W JP0301710 W JP 0301710W WO 2004075589 A1 WO2004075589 A1 WO 2004075589A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
unit
handover
location information
Prior art date
Application number
PCT/JP2003/001710
Other languages
English (en)
French (fr)
Inventor
Takayoshi Ode
Junji Otonari
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to AU2003211423A priority Critical patent/AU2003211423A1/en
Priority to JP2004568460A priority patent/JPWO2004075589A1/ja
Priority to EP03705278A priority patent/EP1549097A1/en
Priority to CNA038246872A priority patent/CN1695399A/zh
Priority to PCT/JP2003/001710 priority patent/WO2004075589A1/ja
Publication of WO2004075589A1 publication Critical patent/WO2004075589A1/ja
Priority to US11/191,352 priority patent/US20050259663A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/02Buffering or recovering information during reselection ; Modification of the traffic flow during hand-off
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/392Additives
    • G03C7/39296Combination of additives
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/322Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by location data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • H04W36/324Reselection being triggered by specific parameters by location or mobility data, e.g. speed data by mobility data, e.g. speed data
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C2001/0854Indium
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/392Additives
    • G03C7/39208Organic compounds
    • G03C7/3924Heterocyclic
    • G03C7/39244Heterocyclic the nucleus containing only nitrogen as hetero atoms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/392Additives
    • G03C7/396Macromolecular additives
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to a radio base station and a mobile communication system, and more particularly to a radio base station and a mobile communication system used for W-CDMA (Wideband-Code Division Multiple Access).
  • W-CDMA Wideband-Code Division Multiple Access
  • W-CDMA is expected as one of the high-speed packet communication systems in next-generation mobile communication systems.
  • the radio base station (hereinafter simply referred to as base station) ) And packet communication between terminals (such as mobile phones).
  • the 3GPP is studying the HSDPA (High Speed Downlink Packet Access) method to perform higher-speed packet communication.
  • HSDPA High Speed Downlink Packet Access
  • This HSDPA is a technology for making packet communication in the downstream (communication from the base station to the terminal) as fast as 10 Mbps.As mentioned above, studies are underway to standardize it in Release 5 which is the 3GPP specification. Compared with Release 99, which is the conventional specification, the major changes are its wireless channel configuration, retransmission control, and introduction of a scheduler unit.
  • HSDPA is realized by setting the following five types of radio channels between the base station BTS and the mobile terminal MS.
  • DL HS-DSCH Downlink High Speed-Dedicated Shared CHannel
  • DL HS-SCCH Downlink High Speed-Shared Control CHannel
  • DL HS-DSCH is a channel for transmitting wireless packet data from the base station BTS to the terminal MS.
  • the data carried on the DL HS-DSCH (1) is data that has been encoded using a turbo code or the like.
  • DL HS-SCCH is a channel for transmitting coding information of a radio bucket, information such as a modulation scheme and the number of transmission bits transmitted by DL HS-DSCH (1).
  • UL HS-DPCCH is a channel for transmitting the reception status (whether a bucket was successfully received) and the number of bits that can be received from the terminal MS to the base station BTS.
  • (4) DL A-DPCH and (5) UL A-DPCH are radio channels individually set to each terminal MS and base station BTS. This channel has been used since Release 99.
  • retransmission control in Release 99 is performed by a radio network controller (RNC) above a base station. That is, as shown in FIG. 27, when the terminal MS receives the bucket P1 from the base station BTS on the DL HS-DSCH (1 in the figure), the terminal MS checks the reception quality and the like (2 in the figure) and corrects the error. If found, if a retransmission request NACK is issued (3 in the figure), this retransmission request NACK is raised to the radio network controller and packet P1 is retransmitted again via the base station BTS (4 in the figure).
  • RNC radio network controller
  • the retransmission control is moved to the base station to narrow the retransmission interval.
  • FIG. 28 shows the configuration of the terminal in this case
  • FIG. 29 shows the configuration of the base station.
  • the packet transmitted by the above-described HS-DSCH is received by the reception unit 34, demodulated and decoded by the demodulation unit 35, and then retransmitted by the retransmission control unit 36, the CRC added to the bucket.
  • the reception unit 34 demodulated and decoded by the demodulation unit 35
  • the retransmission control unit 36 the CRC added to the bucket.
  • the retransmission control unit 36 determines that there is no error, for example, the ACK (reception acknowledgment) signal is transmitted through the modulation unit 32 and the transmission unit 33 using the above-described UL HS-DPCCH, thereby performing new transmission. Request to base station BTS.
  • retransmission control section 36 transmits NACK using UL HS-DPPCH.
  • Retransmission request A retransmission request is made to the base station BTS by transmitting the signal in the same manner. At this time, for example, a retransmission request is made until reception can be performed without error.
  • receiving section 6 receives a UL HS-DPCCH bucket, and demodulating section 7 demodulates and decodes the bucket. Then, the ACK / NACK extraction unit 8 extracts an ACK / NACK signal from the terminal MS and passes it to the scheduler unit 10. When receiving the NACK signal, the scheduler unit 10 retransmits the data stored in the retransmission buffer 3 via the modulation unit 4 and the transmission unit 5. When an ACK signal is received, the information stored in the retransmission buffer 3 is discarded, data is extracted from the normal buffer 2 and stored in the retransmission buffer 3, and transmitted via the modulation unit 4 and the transmission unit 5. I do.
  • a retransmission control unit may be provided instead of the scheduler unit 10 or a retransmission buffer 3 may be provided in the modulation unit 4, but in the following description, retransmission control is performed by the scheduler unit 10 as shown in the figure. Then, an example in which the retransmission buffer 3 is provided before the modulation unit 4 is used.
  • the data transmitted from the host for each terminal is stored in the normal buffer 2 for each terminal.
  • the terminal reception state information extraction unit 9 extracts the terminal It extracts the reception status (for example, C / I, etc.) of the packet transmitted from the end and passes it to the scheduler unit 10.
  • the scheduler unit 10 determines which terminal is given priority for transmission, and controls a switch (not shown). Then, the normal data whose transmission order is determined is stored from the normal buffer 2 to the retransmission buffer 3, modulated by the modulator 4, and transmitted from the transmitter 5.
  • the Max C / I method is a method in which the C / I of each terminal is checked, and the reception status is the best, that is, the C / I is the best, and the transmission ranking and the allocation time are determined in order. is there.
  • the terminal MS is located near the boundary of the cell CL, the C / I is relatively deteriorated, so that a transmission opportunity is not allocated or the transmission time is shortened. .
  • reception conditions are generally poor for terminals located near the cell boundary. This is because the power of the desired signal (Carrier) is attenuated while the distance from the base station to the terminal is long, while T, the interference signal (Interference) is from another base station BTS. C / I will be reduced because they are equal or larger.
  • terminals near the cell boundary are given a transmission opportunity because of poor C / I. They may not be given, or if they are given, their quota time may be shortened. As a result, there is a problem that the throughput of the terminal is deteriorated, and in the worst case, communication becomes impossible.
  • Handover is a general term for the operation of changing the connection destination by moving the terminal MS from the cell CL1 of the base station BTS1 to the cell CL2 of the base station BTS2, as shown in FIG. ing.
  • a handover is abbreviated as a handover below, depending on the method, the ability to be divided into soft handover, hard handover, different frequency handover, cell change, etc.
  • HS-DSCH performs cell change based on its specifications (GPP Release 5) without performing conventional soft handover and hard handover.
  • the cell change is a method of disconnecting the line once and reconnecting to the destination cell as it moves between cells, and is similar to a hard handover.
  • UL A DPCH and DL A DPCH can also perform soft handover. This is a method in which handover is performed simply by changing the spreading code without changing the frequency. Handover is possible without disconnecting the line.
  • RNC radio network controller
  • This handover operation will be described, for example, when a base station having the configuration shown in FIG. 29 is applied to high-speed packet communication (HSDPA).
  • HSDPA high-speed packet communication
  • Method b) is the most feasible method, but differs from the conventional method in that data transfer between base stations is required. This will be described in detail below with reference to FIGS. 29 and 32. It is assumed that retransmission is performed when handover is decided by the radio network controller RNC.
  • a handover request is sent from the radio network controller RNC to the handover controller 11. Passed (step S141 in FIG. 29 or FIG. 32).
  • the handover controller 11 requests the scheduler 10 to transfer data (S142).
  • the scheduling section 10 requests the retransmission buffer 3 to transfer the retransmission data of the handover target terminal to the base station BTS2, which is the handover destination (S143), and the retransmission buffer 3
  • the transfer is performed to the base station BTS2 via the RNC (S144), and after the transfer is completed, the completion is notified to the scheduler (S145).
  • the scheduler unit 10 requests the normal buffer 2 for the handover target terminal to transfer the similarly stored data to the base station BTS2 (S146), and the buffer 2 passes through the radio network controller RNC. Then, the transfer is executed (S147), and after the transfer is completed, the completion of the transfer is reported to the scheduler unit 10 (S148).
  • the scheduler unit 10 reports to the handover control unit that all transfer has been completed (S149), and the handover control unit 11 reports to the radio network controller RNC that the handover is ready (S149). S150). After this, handover is performed (S151).
  • method c) is simple because conventional control can be used.However, as described above, the handover terminal is usually located near the cell boundary, and the C / I is poor. It is considered that the priority set by the scheduler is low and the time is short (in the worst case, it is not assigned).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11-8876 (Abstract Figure 1)
  • the present invention realizes a radio base station and a mobile communication system in which the transmission time of retransmission data or normal data at the time of handover can be shortened in the above method c), thereby securing a transmission allocation time.
  • Disclosure of the invention is to: Disclosure of the invention
  • a wireless base station comprises: a buffer for holding communication data to a terminal; an extraction unit for extracting a communication request signal from a received signal; and an output unit based on an output signal of the extraction unit.
  • a scheduler unit that controls the transmission of the communication data. When the scheduler unit detects a handover request, it prioritizes the data transmission to the handover target terminal prior to executing the handover. It is characterized in that the buffer is controlled so as to perform data transmission.
  • the output signal of the extraction unit that is, the NACK signal when the received signal includes a retransmission request, and the ACK signal when the normal signal is requested, are output.
  • the scheduler unit controls the transmission of communication data to the terminal held in the buffer based on the appropriate output signal.
  • the scheduler unit detects a handover request, the scheduler unit raises the order of data transmission to the handover target terminal known to the scheduler unit itself, so that data transmission from the buffer is preferentially performed. I have to.
  • raising the order of data transmission in the scheduler section is equivalent to a relative increase in transmission allocation time. Therefore, data transmission to the handover target terminal is completed before handover is performed, thereby shortening the time required for handover.
  • the communication data may be either retransmission data or normal data. Therefore, the above buffer is a retransmission buffer or a normal buffer! / Even if it's out of place.
  • the buffer When the buffer is a retransmission buffer for storing retransmission data, the buffer further includes a normal buffer for storing normal data, and the scheduler unit detects the normal when the retransmission buffer becomes empty. Of the normal data held in the buffer, the normal data destined for the handover target terminal can be sent with priority.
  • the normal data held in the normal buffer is also transmitted preferentially.
  • the above-mentioned radio base station further includes an inflow control unit.
  • the scheduler unit when the scheduler unit detects the handover request, the scheduler unit controls the inflow control unit to transmit data from the upper level to the handover target terminal. Inflow can be stopped.
  • the above handover request is given, for example, from a radio network controller (RNC).
  • RNC radio network controller
  • the base station can similarly detect the handover request by the following various methods.
  • the base station calculates a signal propagation time between the terminal and the base station from the time of data transmission to the time when the output signal of the extraction unit is received, and the terminal and the base station from the propagation time.
  • a terminal distance calculation unit that calculates a distance between the terminals, and the scheduler unit can detect the handover request by comparing the distance with a threshold value.
  • the propagation time calculator and the terminal distance calculator may be included in the scheduler.
  • the base station transmits data to the terminal, calculates the time until the ACK or NACK signal returns from the terminal, that is, the signal propagation time between the terminal and the base station. Calculate the distance between stations and calculate By comparing the issued distance with the threshold value of the distance required for handover, the scheduler simulates that the terminal is close to the cell boundary and the handover request is close and the handover request is detected.
  • the order of data transmission to the handover target terminal can be raised and the data transmission can be completed before handover in the same manner as described above.
  • the base station further includes a terminal reception field strength information extraction unit for extracting the reception field strength information calculated and transmitted from the reception signal by the terminal, wherein the scheduler unit compares the reception field strength with a threshold value
  • the handover request can be detected.
  • the terminal reception field strength information extraction unit may be included in the scheduler unit. That is, the scheduler unit can simulate the detection of a handover request by the base station extracting the received electric field strength (or received power) detected by the terminal at the radio base station and comparing the received electric field strength with the threshold value. it can.
  • the base station includes: a terminal position information extraction unit that extracts terminal position information measured and transmitted by the terminal; a position information memory that stores position information of the own station; and a base station based on the terminal position information and the own station position information.
  • a terminal distance calculating unit that calculates a distance between the terminal and the base station, wherein the scheduler unit can detect the handover request by comparing the distance with a threshold value.
  • the terminal position information extraction unit, the position information memory, and the terminal distance calculation unit may be included in the scheduler unit.
  • the scheduler section calculates the distance between the terminal and the base station from the terminal position information obtained from the terminal and the position information of the own station obtained in the own station in advance, and sets this distance as a threshold.
  • detection of a handover request can be simulated in the same manner as described above.
  • the base station further includes a connection base station number information extraction unit for extracting connection base station number information detected and transmitted by the terminal or given from a higher order
  • the scheduling unit includes the connection base station.
  • the handover request can be detected by comparing the number with the threshold.
  • the connection base station number information extraction unit may be included in the scheduler unit. That is, information on the number of connected base stations detected by the terminal or given from a higher level such as a radio network controller is extracted by the radio base station, and the number of connected base stations is compared with a threshold.
  • the scheduler unit can simulate detection of a handover request.
  • the base station includes: a terminal position information extraction unit for extracting terminal position information measured and transmitted by the terminal; a memory for storing past terminal position information extracted by the terminal position information extraction unit; A moving direction calculating unit configured to calculate a moving direction of the terminal from the current terminal position information extracted by the terminal position information extracting unit and the past terminal position information stored in the memory; The handover request can be detected from the moving direction.
  • the terminal position information extracting unit, the memory, and the moving direction calculating unit may be included in the scheduler unit.
  • the terminal location information measured at the terminal is extracted at the base station, and the scheduler unit calculates the moving direction of the terminal by using the current value and the past value of the terminal location information.
  • the terminal is moving to the cell boundary from the moving direction and a substantial handover request has been made.
  • the base station comprises: a terminal position information extraction unit for extracting terminal position information measured and transmitted by the terminal; and a terminal movement direction extraction unit for extracting terminal direction information calculated and transmitted by the terminal.
  • the scheduler unit can detect the handover request from the terminal location information and the moving direction information.
  • the terminal position information extracting unit and the terminal moving direction extracting unit may be included in the scheduler unit.
  • the base station extracts both the terminal location information measured by the terminal and the moving direction information of the terminal also calculated by the terminal, and the scheduler is extracted from the extracted terminal position information and moving direction information.
  • the unit simulates the detection of a handover request.
  • the base station extracts a terminal position information measured and transmitted by the terminal.
  • a location information extraction unit a memory for storing past terminal location information extracted by the terminal location information extraction unit, a current terminal location information extracted by the terminal location information extraction unit, and a memory stored in the memory.
  • a moving speed calculating unit configured to calculate a moving speed of the terminal from past terminal position information, wherein the scheduler unit can detect the handover request by comparing the moving speed with a threshold.
  • the terminal position information extracting unit, the memory, and the moving speed calculating unit may be included in the scheduler unit.
  • the base station uses the terminal position information measured by the terminal and the past value and the current value to calculate the moving speed of the terminal, and compares the moving speed with the threshold value.
  • the detection of a handover request is simulated.
  • the radio base station includes a terminal for calculating and transmitting reception electric field strength information from a received signal, and the radio base station.
  • the radio base station extracts the reception electric field strength information, and sets the reception electric field strength as a threshold.
  • a mobile communication system characterized by detecting the handover request by comparing.
  • a mobile communication system comprising: calculating a distance between a terminal and a base station from position information of its own station; and detecting the handover request by comparing the distance with a threshold.
  • the wireless base station includes a terminal that detects and transmits information on the number of connected base stations, and the wireless base station.
  • the wireless base station extracts the information on the number of connected base stations, and compares the number of connected base stations with a threshold.
  • a mobile communication system characterized by detecting the handover request.
  • the terminal when the received electric field strength is low, the terminal can detect the connected base station number information by site diversity.
  • a terminal for calculating and transmitting terminal position information, and the above-mentioned radio base station extracts the terminal location information, stores the past terminal location information extracted by the terminal location information extraction unit, and displays the extracted current terminal location information and the past terminal location information.
  • a mobile communication system comprising: calculating a moving direction of a terminal; and detecting the handover request from the moving direction.
  • a mobile communication system characterized by calculating a moving speed of the terminal from current terminal position information and the past terminal position information, and detecting the handover request by comparing the moving speed with a threshold value.
  • the present invention also provides a radio base station characterized by comprising means for preferentially processing retransmission data for a terminal to be handed over.
  • FIG. 1 is a block diagram showing a configuration of an embodiment (1) of a radio base station according to the present invention.
  • FIG. 2 is a flowchart showing an operation at the time of handover in the radio base station according to the present invention shown in FIG.
  • FIG. 3 is a block diagram showing a configuration of the embodiment (2) of the radio base station according to the present invention.
  • FIG. 4 is a flowchart showing an operation example at the time of handover in the radio base station according to the present invention shown in FIG.
  • FIG. 5 is a block diagram showing the configuration of the embodiment (3) of the radio base station according to the present invention.
  • FIG. 6 is a flowchart showing an operation example at the time of handover in the radio base station according to the present invention shown in FIG.
  • FIG. 7 is a block diagram showing the configuration of the embodiment (4) of the radio base station according to the present invention.
  • FIG. 8 is a flowchart showing an operation example at the time of handover in the radio base station according to the present invention shown in FIG.
  • FIG. 9 is a block diagram showing the configuration of the embodiment (5) of the radio base station according to the present invention.
  • FIG. 10 is a block diagram showing a configuration of an embodiment of a terminal corresponding to the radio base station shown in FIG.
  • FIG. 11 is a flowchart showing an operation example at the time of handover in the radio base station according to the present invention shown in FIG.
  • FIG. 12 is a block diagram showing the configuration of the embodiment (6) of the radio base station according to the present invention.
  • FIG. 13 is a block diagram showing an embodiment of a terminal corresponding to the radio base station shown in FIG.
  • FIG. 14 is a flowchart showing an operation example at the time of handover in the radio base station according to the present invention shown in FIG.
  • FIG. 15 is a diagram illustrating an example where a terminal receives diversity from a plurality of base stations.
  • FIG. 16 is a block diagram showing a configuration of the embodiment (7) of the radio base station according to the present invention.
  • FIG. 17 is a block diagram showing a configuration of an embodiment of a terminal corresponding to the wireless base station shown in FIG.
  • FIG. 18 is a flowchart showing an operation example at the time of handover in the radio base station according to the present invention shown in FIG.
  • FIG. 19 is a block diagram showing a configuration of an embodiment (8) of the radio base station according to the present invention.
  • FIG. 20 is a flowchart showing an operation example at the time of handover in the radio base station according to the present invention shown in FIG.
  • FIG. 21 is a block diagram showing a configuration of an embodiment (9) of the radio base station according to the present invention. is there.
  • FIG. 22 is a block diagram showing a configuration of an embodiment of a terminal corresponding to the radio base station shown in FIG.
  • FIG. 23 is a flowchart showing an operation example at the time of handover in the radio base station according to the present invention shown in FIG.
  • FIG. 24 is a block diagram showing the configuration of the embodiment (10) of the radio base station according to the present invention.
  • FIG. 25 is a flowchart showing an operation example at the time of handover in the radio base station according to the present invention shown in FIG.
  • FIG. 26 is a diagram showing an HSDPA wireless channel set up between a base station and a terminal in W-CDMA.
  • FIG. 27 is a sequence diagram illustrating a conventionally known retransmission procedure between a base station and one terminal.
  • FIG. 28 is a block diagram showing a configuration example of a conventionally known terminal.
  • FIG. 29 is a block diagram showing a configuration example of a conventionally known radio base station.
  • FIG. 30 is a diagram showing a single cell and a positional relationship between a base station and a terminal in this cell.
  • FIG. 31 is an explanatory diagram of handover between cells.
  • FIG. 32 is a flowchart showing an operation executed at the time of handover in the radio base station shown in FIG.
  • Terminal position information memory Terminal moving direction calculating unit Terminal moving direction information extracting unit Terminal moving speed calculating unit Buffer
  • Example (1) (priority transmission of only retransmission data of the handover target terminal)
  • FIG. 1 shows an embodiment (1) of a radio base station according to the present invention.
  • the inflow control unit 1, the normal buffer 2, the retransmission buffer 3, the modulation unit 4 and the transmission unit 5 are connected in series in this order, and in the reception system, the reception unit 6 and the demodulation unit are connected. 7 are connected in series in this order.
  • An ACK / NACK extraction unit 8 and a terminal reception state information extraction unit 9 are connected to the demodulation unit 7, and a scheduler unit 10 is further connected to these extraction units 8 and 9.
  • the scheduler unit 10 is interconnected with the normal buffer 2 and the retransmission buffer 3, and is also interconnected with the handover control unit 11.
  • FIG. 2 shows an operation example at the time of handover in the base station BTS shown in FIG. 1.
  • a handover request is given to a base station BTS from a radio network controller (not shown) for a terminal connected to the base station BTS.
  • This handover request is received by the handover control unit 11 (Step Sl), and the handover control unit 11 further requests the scheduler unit 10 for handover control (S2).
  • the handover target terminal is performing retransmission control.
  • the scheduler unit 10 assigns a priority to each terminal based on the reception state (for example, C / I) of each terminal, service contents, maximum delay time, and the like, such as the Max C / I method. And the transmission order is scheduled.
  • the scheduler unit 10 that has been requested to perform the handover control sets the highest priority in this example (S3 in the example) to transmit the handover target terminal preferentially, and transmits this to the retransmission buffer 3.
  • the scheduler unit 10 monitors the output signal of the ACK / NACK extraction unit 8, that is, the ACK signal or the NACK signal (S4), and when the NACK signal is extracted, retransmits the retransmission data from the transmission buffer 3. (S5), and the ACK signal When returning from, confirm that retransmission to the terminal has been completed (S6).
  • the scheduler unit 10 issues a normal data transfer request to the normal buffer 2 (S7).
  • the normal buffer 2 transfers the normal data to the handover destination base station via the radio network controller (S8).
  • the normal buffer 2 reports the completion of the transfer to the scheduler unit 10 (S9), and the scheduler unit 10 receiving the transfer prepares the handover control unit 11 for the handover. (S10).
  • the handover control unit 11 reports to the radio network controller that the preparation for the handover has been completed (S11), and the handover is executed (S12).
  • the scheduler unit 10 gives priority to or prioritizes retransmission until a request for a new transmission (ACK signal) is returned from the terminal.
  • ACK signal a request for a new transmission
  • retransmission of the handover target terminal is completed in a shorter time than when the priority is not raised.
  • a new transmission request indicates that transmission to a terminal has been completed with a certain quality or higher or without error.
  • the retransmission control ends when an ACK signal is returned from the terminal.
  • the scheduler unit itself may perform the handover control. Further, a transfer control unit for transferring data in the buffer may be provided. Further, although the transfer of data in the normal buffer and the handover are performed in this order to simplify the description, the handover may be performed during the data transfer of the normal buffer.
  • Embodiment (2) Priority transmission of both retransmission data and normal data
  • FIG. 3 shows an embodiment (2) of the radio base station according to the present invention.
  • the basic configuration is the same as that of the embodiment (1) shown in FIG. 1, but the operation is different as shown in FIG.
  • steps S21 to S25 shown in FIG. 4 are replaced with steps S1 to S5 shown in FIG.
  • the retransmission process is quickly terminated by increasing the transmission priority to the handover target terminal, as in the embodiment (1).
  • step S26 the transmission priority is set to the highest priority not only for the retransmission buffer 3 but also for the normal data for the handover target terminal stored in the normal buffer 2. In this case, it is also possible to raise a certain priority instead of the highest priority.
  • the normal buffer 2 of the handover target terminal is empty (S27). If not, the normal data in the normal buffer 2 is stored in the retransmission buffer 3 and transmitted to the modulation unit 4. It is transmitted via part 5 (S28).
  • the process returns to step S27. If the output signal is a NACK signal, it indicates that there is an error in the reception bucket. It retransmits the retransmission data stored in (S30). Then, steps S29 and S30 are repeated until an ACK signal is returned for this data.
  • step S27 when it is found that the normal buffer 2 of the terminal to be handed over is empty, the completion of preparation is reported to the handover control unit 11 as in step S10 in FIG. 2 (step S31). As in step S11 in Fig. 2, a handover preparation completion report is sent to the radio network controller RNC (S32), and the handover is executed (S33).
  • the circuit scale can be reduced since no signal line is required for that purpose. Furthermore, since there is no data transfer in the network between the radio network controller and the base station, the load on the network can be reduced.
  • FIG. 5 shows an embodiment (3) of the radio base station according to the present invention.
  • the basic configuration of this embodiment (3) is the same as that of the embodiment of FIGS. 1 and 3, but the operation is different as shown in the flowchart of FIG.
  • the operation of the embodiment (3) in FIG. 5 will be described along the flowchart shown in FIG.
  • the scheduler unit 10 controls the inflow control unit 1 to transmit data for the handover target terminal from the upper level. To stop the inflow (S42). As a result, the increase of the normal data in the normal buffer 2 can be stopped.
  • steps S43 to S53 are executed. These steps correspond to steps S2 to S12 shown in FIG. 2, and after stopping the inflow of data to the handover target terminal in step S42, the handover is performed.
  • the top priority is given to retransmission of the target terminal, and the normal data stored in the normal buffer is transferred to the handover destination base station to perform the handover.
  • the data transfer time and the time until the transfer is completed can be reduced, and the normal buffer can be surely emptied. Furthermore, since unnecessary data transfer is eliminated between the radio network controller and the radio base station, the load on the network can be reduced.
  • FIG. 7 shows an embodiment (4) of a radio base station according to the present invention. This embodiment is different in that a transmission time calculator 12 and a terminal distance calculator 13 are provided for the base station shown in FIG. 1, FIG. 3, or FIG. As the buffer 30, the one in which the normal buffer 2 and the retransmission buffer 3 in each of the above embodiments are integrated is used.
  • FIG. 8 shows the operation of the embodiment (4) shown in FIG. 7.
  • the operation of the base station BTS of FIG. 7 will be described with reference to FIG.
  • the propagation time calculation unit 12 calculates the propagation time T of the signal (step S62). The calculation of the propagation time will be described below.
  • the base station BTS puts the packet P2 on the HS-DSCH, receives the transmission time from the transmission unit 5, and stores it.
  • the terminal that has received this packet P2 checks whether this packet P2 contains an error.If there is an error, it returns a NACK signal, which is a retransmission request.If there is no error, it requests new transmission. The signal is sent back to the base station on the HS-DPPCH.
  • the base station BTS that has received the signal by the HS-DPCCH extracts the ACK / NACK signal in the ACK / NACK extraction unit 8 via the reception unit 6 and the modulation unit 7, and uses the extracted time as the propagation time calculation unit.
  • the propagation time calculation unit 12 calculates a round-trip propagation time T by subtracting a predetermined time which is systematically necessary and pre-determined from the response time from signal transmission to reception.
  • terminal distance calculation section 13 calculates distance L between the base station and the terminal (S63 in the same).
  • the scheduler unit 10 having input the distance L compares the threshold value Lth corresponding to the distance where handover is expected to occur (S64), and if the distance L exceeds the threshold Lth, the terminal Judge that it is nearby.
  • steps S65 to S74 are executed on the assumption that the handover request is given from the radio network controller. That is, these steps S65 to S74 correspond to steps S3 to S12 shown in FIG. 2 or steps S43 to S53 shown in FIG. 6, and after the retransmission of the handover target terminal is given the highest priority, the normal Normal data is transferred from the buffer via the network and handover is performed.
  • the comparison between the distance L and the threshold value is performed by the scheduler unit 10, but may be performed inside the terminal distance calculation unit 13, or the propagation time calculation unit 12 and the terminal distance calculation unit 13 may be compared with the scheduler unit 10. May be included.
  • the priority can be determined regardless of the reception status (C / I) of the terminal.
  • the priority it is possible to improve the throughput and transmission delay of terminals, and to provide services that require high-speed transmission.
  • the priority of the transmission in the scheduler unit is increased as in the above embodiment. If the rank is raised and the normal data stored in the normal buffer is transmitted, the handover can be performed faster than when actually receiving and executing the handover request.
  • FIG. 9 shows an embodiment (5) of the radio base station according to the present invention.
  • This embodiment differs from the base station BTS shown in FIG. 1 and the like in that a terminal reception field strength information extraction unit 14 is provided.
  • the buffer 30 As the buffer 30, the normal buffer 2 and the retransmission buffer 3 are integrated as in the embodiment (4).
  • FIG. 10 shows a configuration example of a terminal MS corresponding to the base station BTS shown in FIG. 9, and differs from the conventional example shown in FIG. 28 in that a reception electric field strength calculator 38 is provided.
  • FIG. 11 is a flowchart showing the operation of the base station BTS shown in FIG. 9.
  • the operation of the embodiment of FIGS. 9 and 10 will be described along the flowchart of FIG.
  • the terminal reception field strength information extraction unit 14 shown in FIG. 9 extracts the reception field strength information included in the demodulated signals obtained from the reception unit 6 and the demodulation unit 7 ( S82).
  • the received electric field strength information is the received power information. Good.
  • the received field strength information is obtained by the receiving field strength calculating unit 38 in the terminal MS shown in FIG. 10 by inputting the received signal sent to the terminal via the receiving unit 34 and the demodulating unit 35. It is calculated as information on the received electric field strength E of the received signal.
  • the reception electric field strength calculation section 38 sends the calculated reception electric field strength E to the base station BTS shown in FIG. 9 via the modulation section 32 and the transmission section 33, and As described above, the terminal reception field strength information extraction unit 14 can extract the information.
  • the received field strength information extracted in this way is sent to the scheduler unit 10 and compared with the threshold value Eth (S83). As a result, if it is determined that the received electric field strength E is larger than the threshold value Eth (E> Eth), it is determined that the terminal MS is near the cell boundary, and that the possibility of handover is high (S84). ).
  • retransmission of the handover target terminal is set to the highest priority (S85), and the following steps S66 to S74 are executed (step S86).
  • the effect of fading can be reduced by using a moving average when calculating the received electric field strength at the terminal.
  • by controlling the time interval for calculating the average value it is also possible to reduce the effect of fading.
  • the scheduler unit 10 can include the terminal reception electric field strength information extraction unit 14.
  • the terminal After the terminal calculates the received electric field strength, the terminal itself may determine the possibility of handover, and if it determines that there is a possibility, the terminal may return the fact to the base station.
  • the terminal reception field strength information extraction unit 14 in the base station BTS may be used as a handover determination result extraction unit.
  • Embodiment (6) (Estimate of terminal distance from terminal location information to simulate handover)
  • detection of a substantial handover request is performed using received field strength.
  • the distance between the terminal and the base station is calculated from the position information of the terminal. And attempts to detect a substantial handover request.
  • the base station position information memory 15 in place of the terminal reception field strength information extraction unit 14 shown in FIG. 9, the base station position information memory 15, the terminal position information extraction unit 16, and the terminal distance calculation Part 17 is used.
  • FIG. 13 shows a configuration example of the terminal MS corresponding to the radio base station BTS of the embodiment (6) shown in FIG. 12.
  • the reception field strength calculation unit 38 shown in FIG. instead of using GPS, a GPS (Global Positioning System) unit 38 is used.
  • GPS Global Positioning System
  • the terminal position information extraction unit 16 shown in FIG. 12 extracts terminal position information based on the demodulated signals from the reception unit 6 and the demodulation unit 7 (step S92). As shown in FIG. 13, the terminal position information in this case is extracted by the GPS section 38 as shown in FIG. 13, and transmitted to the base station via the modulation section 32 and the transmission section 33. Are extracted by the terminal location information extraction unit 16.
  • the base station location information memory 15 stores the location information of its own station in advance.
  • the base station location information stored in the base station location information memory 15 and the terminal location information extraction unit 16 The terminal distance calculation unit 17 that has input the terminal position information extracted in step (1) can calculate the terminal-to-base station distance L from the terminal position information Ptl and the base station position information PtO.
  • the scheduler unit 10 that has input the distance L compares the threshold Lth as in the embodiment (4) shown in FIGS. 7 and 8 (S94), and when the distance L exceeds the threshold Lth (L> For Lth), steps S65 to S74 are executed as in the embodiment (5) shown in FIG.
  • the scheduler unit 10 raises the priority of data retransmission in the retransmission buffer 3 and transmits data stored in the normal buffer 2.
  • the base station Since the base station does not move, it is only necessary to perform position measurement or directly input and store it in the position information memory.
  • the scheduler unit 10 can include a base station position information memory 15, a terminal position information extraction unit 16, and a terminal distance calculation unit 17.
  • Example (7) simulation of handover based on the number of connected base stations
  • handover request detection is simulated using the distance between the base station and the terminal and the received electric field strength.However, when the terminal comes near the cell boundary, the number of connected base stations increases. Become. Therefore, it is possible to detect a practical handover request even with such a number of connected base stations.
  • the site diparticity is a method in which the same data is transmitted from a plurality of base stations to a certain terminal.As shown in FIG. 15, since the propagation paths of the base station BTS1 and the base station BTS2 are different, the terminal MS Diversity gain occurs. Assuming that the wave of the phase of the base station BTS1 and BTS 2 to which was the same, so simply is twice received signal strength in DL A- DPCH each other, receiving the combined wave from two base station In this case, the number of connected base stations is 2 at this time.
  • FIG. 16 shows an embodiment (7) of the base station BTS.
  • a connected base station number information extracting unit 18 is provided in order to know the number of connected base stations.
  • an electric field strength calculation unit 37, a site diversity control unit 39, and a connected base station number calculation unit 40 are provided in the configuration of the terminal MS shown in FIG. 17, an electric field strength calculation unit 37, a site diversity control unit 39, and a connected base station number calculation unit 40 are provided.
  • the received electric field intensity E sent from the received electric field intensity calculation unit 37 to the site diversity control unit 39 in the terminal MS must be large. Therefore, the site diversity control unit 39 does not perform the above-described site diversity. Therefore, the number of connected base stations calculating unit does not calculate the number of connected base stations. Since the electric field strength E decreases, control is performed to perform site diversity.
  • the site diversity control unit 39 supplies the combined wave signal of the DL A-DPCH at this time to the connection base station number calculation unit 40, so that the connection base station number calculation unit 40 performs the current connection. N base stations detected Then, this can be transmitted to the base station via the modulation section 32 and the transmission section 33.
  • the connection base station number information N sent from the terminal MS in this way is extracted by the connection base station number information extraction unit 18 (step S102).
  • the scheduler unit 10 receiving the information on the number of connected base stations compares the number N of connected base stations with its threshold Nth (S103), and when the detected number N of connected base stations exceeds the threshold Nth, Determines that the terminal is located near the cell boundary, and performs steps S65 to S74 in the same manner as in FIG. 11 to raise the priority of the retransmission data transmission in the scheduler unit 10 and increase the priority in the normal buffer.
  • the handover is realized at high speed by transmitting the normal data stored in the.
  • This connection base station number information N may be notified to a terminal or a base station from an upper level such as a radio network controller.
  • the scheduler unit 10 can include the connected base station number information extracting unit 18.
  • Embodiment (8) (Handover and fake based on the moving direction of the terminal)
  • the terminal In addition to the base station-terminal distance, the received electric field strength, and the number of connected base stations in the above-described embodiment, it is possible to detect that the terminal can be present near the cell boundary by detecting the moving direction of the terminal. is there.
  • the terminal moving direction calculation ⁇ 20 is performed instead of the terminal distance calculation unit 17 in the embodiment (6) shown in FIG. The difference is that they are used.
  • the operation of the base station shown in FIG. 19 will be described with reference to the flowchart shown in FIG. Note that the terminal in this case can use the configuration example shown in FIG.
  • the terminal location information extraction unit 16 shown in FIG. 19 extracts the terminal location information Ptl sent from the terminal (step S112). Then, the terminal location information Ptl is stored in the terminal location information memory 19 (S113).
  • the terminal location information extraction unit 16 extracts the next terminal location information Pt2 (S114 at the same time), and at this time, the terminal movement direction calculation unit 20 determines the current terminal location information Pt2 extracted by the terminal location information extraction unit 16 And past terminal location information Ptl stored in memory 19 Is input, the moving direction D of the terminal is calculated (S115).
  • the scheduler unit 10 that has input the terminal moving direction D calculated by the moving direction calculating unit 20 determines whether the moving direction D is a cell boundary direction (S116). This is because it can be determined from the moving direction D and the terminal location information Pt2 force that the terminal is facing the cell boundary. If so, steps S65 to S74 are performed as in FIG. Execute.
  • the current terminal position information Pt2 is stored in the terminal position information memory 19 as past terminal position information Ptl (S117).
  • the scheduler unit 10 can include a terminal position information extracting unit 16, a memory 19, and a terminal moving direction calculating unit 20.
  • Embodiment (9) simulation of handover based on the moving direction of the terminal
  • the moving direction of the terminal is calculated in the above embodiment (8), the calculation of the moving direction is performed by the terminal according to the embodiment of the radio base station according to the present invention shown in FIGS. Example (9).
  • the base station BTS does not use the memory 19 and the terminal moving direction calculating unit 20 in the embodiment (8) shown in FIG. 19, but uses the terminal moving direction information extracting unit 21 instead.
  • the terminal MS differs from the embodiment of the terminal shown in FIG. 13 in that a position information memory 41 and a moving direction calculator 42 are used.
  • the position information Ptl detected by the GPS unit 38 and the detected position information Ptl are temporarily stored in the memory 41, and the current position information and the past position information are stored in the moving direction calculation unit 42.
  • the moving direction D of the terminal MS By calculating the moving direction D of the terminal MS by comparing with the base station BTS via the modulating unit 32 and the transmitting unit 23 together with the position information Ptl.
  • terminal position information Ptl is The terminal moving direction information D is extracted by the terminal moving direction information extracting unit 21 (step S123).
  • the scheduler unit 10 determines whether or not the moving direction D is the cell boundary direction (S124). If the moving direction D is the cell boundary direction, the process proceeds to FIG. Similarly, steps S65 to S74 are executed.
  • the priority of the retransmission data transmission in the scheduler unit 10 is increased, and the normal data stored in the normal buffer is increased.
  • the handover can be realized at higher speed.
  • the scheduler unit 10 can include the terminal position information extracting unit 16 and the terminal moving direction information extracting unit 21.
  • Embodiment (10) (The handover time is fictitious based on the moving speed of the terminal)
  • the base station BTS shown in FIG. 24 differs from the base station BTS in that a terminal moving speed calculating unit 22 is used instead of the mobile terminal direction calculating unit 20 in the embodiment (8) shown in FIG.
  • a terminal moving speed calculating unit 22 is used instead of the mobile terminal direction calculating unit 20 in the embodiment (8) shown in FIG.
  • steps S131 to S134 correspond to steps S111 to S114 in the flowchart of the embodiment (8) shown in FIG. 20, and the terminal moving speed calculation unit 22
  • the moving speed V of the terminal can be calculated using the following equation (step S135).
  • V (Pt2-Ptl) I (T2 one Tl)
  • Tl and T2 are the times at which the terminal location information detected by the terminal is added and transmitted.
  • steps S65 to S74 are executed as in FIG. That is, the moving speed When the degree V is large, the priority of the retransmission data transmission in the scheduler unit 10 is increased, and the handover is performed at high speed by transmitting the data stored in the normal buffer.
  • the new current terminal position information Pt2 is stored in the terminal position information memory 19 as the past terminal position information Ptl (S137). .
  • the scheduler unit 10 can include a terminal position information extracting unit 16, a terminal position information memory 19, and a terminal moving speed calculating unit 22.
  • the present invention at the time of handover, by raising the priority of the handover target terminal, it becomes unnecessary to transfer the retransmission data stored in the retransmission buffer during retransmission to the handover destination base station. Similarly, the transfer of normal data stored in the normal buffer is not required. In addition, since transfer is required, the accompanying control becomes unnecessary.
  • the throughput of this terminal is improved by increasing the order of data transmission to that terminal. And the maximum delay time can be easily maintained. The same effect as described above can be obtained in handover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

 ハンドオーバ時における再送データ又は通常データの送信時間を短縮し、以って送信割当時間を確保することのできる無線基地局及び移動通信方式を実現するため、端末への通信データを保持するバッファと、受信信号から通信要求信号を抽出する抽出部と、該抽出部の出力信号に基づいて該通信データの送出を制御するスケジューラ部とで無線基地局を構成し、該スケジューラ部は、ハンドオーバ要求を検出したとき、ハンドオーバを実行する前に、ハンドオーバ対象の端末に対するデータ送信の順位を上げて優先的にデータ送信するように該バッファを制御する。

Description

明 細 書
無線基地局及ぴ移動通信システム 技術分野
本発明は、 無線基地局及ぴ移動通信システムに関し、 特に W-CDMA (Wideband-Code Division Multiple Access:広帯域符号分割多元接続) など に利用される無線基地局及び移動通信システムに関するものである。 背景技術
近年、 次世代移動通信システムにおける高速パケット通信方式の一つとして W-CDMAの発展が期待されている。
この W- CDMA などのパケットを用いた移動通信では、 3GPP (3rd Generation Partnership Project)において仕様の検討が行われており、 ここで決められた プロトコルを用いて、 無線基地局 (以後、 単に基地局と呼ぶ。) 及び端末 (携帯 電話など) 間でパケット通信が行われている。
現在、 3GPP において、 さらなる高速パケット通信を行うために HSDPA (High Speed Downlink Packet Access)方式の検討が行われている。
1. 1 HSDPAについて
この HSDPA は、 下り (基地局から端末への通信) におけるパケット通信を、 10Mbpsという高速なものとするための技術であり、前述のように 3GPPの仕様で あるリリース 5 で規格化するべく検討が行われており、 従来の仕様であるリリ ース 99と比較すると、 その無線チャネル構成、 再送制御およびスケジューラ部 の導入が大きな変更点である。
以下、 簡単に無線チャネルの構成を説明し、 本発明に直接関係するスケジュ ーラ部について説明する。
1. 2 HSDPA無線チャネルについて
図 26に示すように、 以下の 5種類の無線回線を基地局 BTS と移動端末 MS と の間に設定することにより、 HSDPAを実現している。
(1) DL HS-DSCH (Downlink High Speed - Dedicated Shared CHannel) (2) DL HS-SCCH (Downlink High Speed一 Shared Control CHannel)
(3) UL HS-DPCCH (Uplink High Speed一 Dedicated Physical Control CHannel)
(4) DL A DPCH (Downlink Associate Dedicated Physical CHannel)
(5) UL A DPCH (Downlink Associate Dedicated Physical CHannel)
(1) DL HS-DSCHは、 基地局 BTSから端末 MS へ無線パケットデータを伝送する チャネルである。 なお、 DL HS- DSCH (1)に載せられるデータは、 ターボ符号な どによって符号ィ匕されたものである。
(2) DL HS-SCCHは、 DL HS-DSCH (1)で伝送される無線バケツトの符号化情報、 変調方式や送信ビット数などの情報を伝送するチャネルである。
(3) . UL HS-DPCCHは、 端末 MSから基地局 BTSに対して、 受信状況 (バケツト を受信出来たか否か) や受信可能なビット数などを伝送するチャネルである。
(4) DL A-DPCHと (5) UL A-DPCHは、 各端末 MSと基地局 BTSに個別に張られ た無線チャネルである。 このチャネルは従来のリリース 99から用いられている ものである。
1. 3 再送制御とスケジューラ部について
従来のリリース 99における再送制御は、基地局の上位で無線回線制御局(RNC) が行っている。 すなわち、 図 27に示すように、 端末 MSにおいて、 基地局 BTS からのバケツト P1を DL HS-DSCHで受信した際 (同図①) に受信品質等の確認 (同図②) を行い、 誤りを見つけたとき、 再送要求 NACK (同図③) した場合、 この再送要求 NACKは無線回線制御局まで上げられ再び基地局 BTSを介してパケ ット P1の再送 (同図④) が行われる。
これに対し、 リリース 5 においては、 高速パケット伝送、 すなわち、 実効伝 送速度 (スループット) の向上を実現するために以下の 2点を行うことになつ た。
(1)再送制御を基地局に移動することにより、 再送間隔を狭める。
(2)伝送するサービスの内容や端末に状態により、 伝送の優先順位を設定し伝送 するスケジューラ部の導入
以下、 これらについて簡単に説明する。 (1)再送制御について
再送制御の流れは上述した図 27の流れと同様であり、 この場合の端末の構成 を図 28に、 基地局の構成を図 29にそれぞれ示す。
端末 MSにおいては、 図 28に示すように、 前述の HS- DSCHによって伝送され たパケットを受信部 34で受信し復調部 35で復調 ·復号した後、 再送制御部 36 、 バケツトに付加された CRC を見ることによってバケツトの受信状況 (例え ば誤り無しに受信出来たか否力 を確認する。
再送制御部 36で、 例えば誤りが無いと判定した場合は、 前述の UL HS - DPCCH を用いて ACK (受信確認) 信号を、 変調部 32及び送信部 33を経て送信すること により新規の送信を基地局 BTSに対して要求する。
一方、誤りが有ると判定した場合、再送制御部 36が UL HS-DPPCHを用いて NACK
(再送要求) 信号を同様に送信することにより基地局 BTS に対して再送要求を 行う。 このとき、 例えば誤り無く受信できるまで再送要求を行う。
一方、 基地局 BTSでは、 図 29に示すように、 受信部 6において UL HS-DPCCH のバケツトを受信し、 復調部 7で復調 ·復号する。 その後、 ACK/NACK抽出部 8 において端末 MSからの ACK/NACK信号を抽出し、 スケジューラ部 10に渡す。 スケジューラ部 10では NACK信号を受信した場合、 再送バッファ 3に格納し たデータを変調部 4及び送信部 5を経て再送する。 また、 ACK信号を受信した場 合は、 再送バッファ 3に格納された情報を廃棄し、 通常バッファ 2からデータ を取り出して再送バッファ 3に格納するとともに変調部 4及び送信部 5を経由 して送信を行う。
なお、 スケジューラ部 10の代わりに再送制御部を設けてもよいし、 変調部 4 の中に再送バッファ 3 を設けてもよいが、 以下の説明では図示の如く、 再送制 御はスケジューラ部 10で行い、 再送バッファ 3は変調部 4の前段に設ける例を 用いる。
(2)スケジューラ部について
上記のスケジューラ部の機能を以下に説明する。
上位より伝送された各端末向けのデータを、 端末毎の通常バッファ 2 に保持 する。 次に、 端末受信状態情報抽出部 9によって復調部 7の復調信号から、 端 末より伝送されたパケットの受信状況 (例えば、 C/Iなど) を抽出し、 スケジュ ーラ部 10へ渡す。
この受信状態情報を用いてどの端末向けの送信を優先するかをスケジューラ 部 10で決定し、 スィッチ (図示せず) を制御する。 そして、 送信順の決定した 通常データを通常バッファ 2から再送バッファ 3に格納するとともに、変調部 4 で変調し送信部 5から送信する。
ここで、どの端末向けの送信を優先するかを決める手法としては、 Max C/I法、 Round Robin法、 Proportional Fairness法など力 S失口られてレヽる。 特に、 Max C/I 法などの C/Iを用いた選択方法では、 C/Iが良い端末から優先的に選択される。' 例えば、 Max C/I 法は、 各端末の C/I を見て、 最も受信状態の良い、 すなわち C/Iが最良なものから、順に伝送の順位付けや、割当時間を決定する方法である。 このとき、 図 30に示すように、 端末 MSがセル CLの境界付近に位置した場合 は相対的に C/I が劣化するため、 送信の機会が割り当てられなかったり、 送信 時間が短くなったりする。
1. 4 スケジユーリングにおける問題点について
上述したように、 セルの境界付近に位置する端末に対しては、 その受信状況 (例えば C/I) が概して悪い。 これは、 基地局から端末までの距離が遠いことに よって、 "C"、 すなわち希望波 (Carrier)の電力が減衰する一方、 T、 すなわち 妨害波 (Interference)は他の基地局 BTS からのものもあることから同等もしく は大きくなるので、 C/Iは低下するからである。
このとき、 基地局のスケジューラが C/I の良い端末から優先的に割当を行つ ていた場合、 上述のようにセル境界付近の端末は C/I が悪いことから、 送信の 機会が与えられなかったり、 与えられたとしてもその割当時間が短くなってし まったりする。 この結果、 この端末のスループットが劣化したり、 最悪の場合 には通信できなくなってしまうという問題がある。
1. 5 ハンドオーバ時における問題点について
(1)ハンドオーバと再送制御について
ハンドオーバとは、 図 31に示すように、 端末 MSが基地局 BTS1のセル CL1か ら基地局 BTS2のセル CL2に移動することによって接続先を変える動作を総称し ている。 ハンドオーバは、 その方式によって、 ソフトハンドオーバ、 ハードハ ンドオーバ、異周波数ハンドオーバ、セルチェンジなどに分けられる力 以下、 ハンドオーバと略す。
なお、 HS-DSCHは、 その仕様 (GPP リリース 5) から、 従来のソフトハンドォ ーバゃハードハンドオーバを行わず、 セルチェンジを行うものである。 セルチ ヱンジとは、 セル間の移動に伴って、 一度回線を切断し移動先のセルにつなぎ 直すものであり、 ハードハンドオーバと同様である。
一方、 UL A DPCHと DL A DPCHは、 ソフトハンドオーバも行うことが可能であ る。 これは、 周波数を変えず拡散コードを変えるだけでハンドオーバする方法 であり、 回線を切ることなくハンドオーバが可能である。
ここで、 W-CDMAシステムにおけるハンドオーバは、 図 31に示すように無線回 線制御局 (RNC)によつて制御される。
このハンドオーバの動作を、 例えば図 29に示した構成を有する基地局を高速 パケット通信 (HSDPA)に適用した場合において説明する。
端末 MSと基地局 BTS1の間で通信が行われており、 基地局 BTS2へハンドォー バすることが無線回線制御局 RNC によって決まったとし、 且つ再送が行われて おり、 従って図 29に示した再送バッファ 3内には再送データが格納されている ものと仮定する。
このとき、ハンドオーバを行うためには、以下の 3通りの処理が考えられる。 a)この再送データを廃棄する。
b)ハンドオーバ先の基地局 BTS2に転送する。
c)パケット伝送が完了する (端末で誤り無く受信できる)まで再送制御を行う。 (2)ハンドオーバと再送制御による問題点について
上記のハンドオーバ方法 a)は、 データが欠落してしまうため選択できない。 方法 b)は、 最も実現性の高い方法であるが、 従来の方法とは異なり、 基地局同 士間でのデータ転送が必要となる。 これを、 図 29及び図 32を用いて以下に詳 細に説明する。 なお、 無線回線制御局 RNC によってハンドオーバが決まった時 に、 再送が行われていた場合を想定する。
まず、 無線回線制御局 RNCからハンドオーバ要求がハンドオーバ制御部 11に 渡される (図 29又は図 32のステップ S141)。 これを受けて、 ハンドオーバ制御 部 11はスケジューラ部 10に対してデータの転送を要求する (同 S142)。 スケジ ユーラ部 10は、 まず再送バッファ 3に対してハンドオーバ対象端末の再送デー タをハンドオーバ先である基地局 BTS2へデータ転送することを要求し(同 S143)、 再送バッファ 3は、無線回線制御局 RNCを経由して基地局 BTS2に転送を行レヽ(同 S144)、 転送終了後、 スケジューラに対して完了を通知する (同 S145)。
次に、 スケジューラ部 10は、 ハンドオーバ対象端末用通常バッファ 2に対し て、 同様に収められたデータを基地局 BTS2へ転送するよう要求し (同 S146)、 バッファ 2は無線回線制御局 RNCを経由して転送を実行し (同 S147)、 転送終了 後、 スケジューラ部 10に対して転送完了を報告する (同 S148)。
これを受けてスケジューラ部 10はすべて転送を完了したことをハンドオーバ 制御部に報告し (同 S149)、 ハンドオーバ制御部 11は無線回線制御局 RNCにハ ンドオーバの準備ができたことを報告する (同 S150)。 この後にハンドオーバが 実施される (同 S151)。
次に、 方法 c)は、 従来の制御を用レ、ればよいため簡単であるが、 上述したよ うに、 ハンドオーバする端末は通常セルの境界付近に存在しており、 C/Iが悪い ためスケジューラ部によって設定される優先度が低く、 時間が短い (最悪の場 合には割り当てられない) と考えられる。
従って、 ハンドオーバの際に再送完了を待ってからハンドオーバする場合に は、 その動作時間が長くなつてしまったり、 最悪の場合は時間が無くいつまで もハンドオーバできなかったりするなどの問題があった。
このようなハンドオーバ時の問題は、 再送バッファに格納された再送データ だけではなく、 通常バッファに格納された通常データについても同様に生じて いた。
なお、 その他の従来技術として、 優先呼 (プライオリティの高い呼又は QoS の優先度の高い呼) に対して無線チャネルの空きが無い場合に、 空いた時点で その無線チャネルの割当を優先的に行う無線通信システムの優先呼接続装置が 提案されている (例えば、 特許文献 1参照)。
<特許文献 1〉 特開平 11- 8876号公報 (要約書 図 1)
しかしながら、 この従来技術の場合は、 伝送速度等の制限を守ることを目的 としてハンドオーバや切断無しに優先呼の割当を行うものであり、 優先度が高 いもの (すなわちサービスの属性) に対して優先的に割当を行い、 サービスが 変わらない限りどのような場合もその通信が優先されるようになってしまう。 従って本発明は、 上記の方法 c)において、 ハンドオーバ時における再送デー タ又は通常データの送信時間を短縮し、 以って送信割当時間を確保することの できる無線基地局及び移動通信システムを実現することを目的とする。 発明の開示
上記の目的を達成するため本発明に係る無線基地局は、 端末への通信データ を保持するバッファと、 受信信号から通信要求信号を抽出する抽出部と、 該抽 出部の出力信号に基づいて該通信データの送出を制御するスケジューラ部とで 構成され、 該スケジューラ部が、 ハンドオーバ要求を検出したとき、 ハンドォ ーバを実行する前に、 ハンドオーバ対象の端末に対するデータ送信の順位を上 げて優先的にデータ送信するように該バッファを制御することを特徴としてい る。
すなわち、 本発明においては、 抽出部の出力信号、 すなわち、 受信信号が再 送要求を含む場合には NACK信号であり、 通常のデータを要求する場合には ACK 信号が出力されるので、 このような出力信号に基づいてスケジューラ部はバッ ファに保持されている端末への通信データの送出を制御する
このとき、 スケジューラ部は、 ハンドオーバ要求を検出すれば、 スケジユー ラ部自身が知っているハンドオーバ対象の端末に対するデータ送信の順位を上 げることにより、 該バッファからのデータ送信を優先的に行うようにしている。 これにより、 そのハンドオーバ対象端末の C/I などで示される受信状況ゃサ 一ビスに関わらず、 スケジューラ部におけるデータ送信の順位を上げることに より、 相対的に送信割当時間が増えたことと等価になり、 ハンドオーバを行う 前にハンドオーバ対象端末へのデータ送信を完了させ、 以てハンドオーバに要 する時間を短縮している。 上記の場合、 通信データは、 再送データ又は通常データのいずれでもよく、 従つて上記のバッファは再送バッファ又は通常パッファの!/、ずれでもよレ、。 上記のパッファが再送データを格納する再送パッファであった場合、 通常デ ータを格納する通常バッファをさらに備え、 スケジューラ部は、 該再送バッフ ァが空になったことを検出したとき、 該通常バッファに保持された通常データ の内、 ハンドオーバ対象の端末へ向けた通常データを優先して送出することが できる。
すなわち、 ハンドオーバ時において再送データを優先的に送信した後、 通常 バッファに保持された通常データも優先的に送信するものである。
上記の無線基地局は流入制御部をさらに備え、この場合、スケジューラ部は、 該ハンドオーバ要求を検出したとき、 該流入制御部を制御して上位からの該ハ ンドオーバ対象の端末へ向けたデータの流入を停止することができる。
すなわち、 ハンドオーバ時においても無線基地局にデータが流入して来るの で、 予め流入制御部でこのようなデータの流入を止めておけば、 より一層ハン ドオーバ時の優先的なデータ送信が可能となる。
上記のハンドオーバ要求は、 例えば、 無線回線制御局(RNC)から与えられたも のである。
一方、 該ハンドオーバ要求は無線回線制御局から与えられる前に以下の種々 の方式によっても同様に基地局はハンドオーバ要求を検出することができる。 まず、基地局は、データ送信時から該抽出部の出力信号を受信する時までの、 端末一基地局間の信号伝搬時間を算出する伝搬時間算出部と、 この伝搬時間か ら端末一基地局間の距離を算出する端末距離算出部とをさらに備え、 該スケジ ユーラ部が、 該距離を閾値と比べることにより該ハンドオーバ要求を検出する ことができる。
この場合、 伝搬時間算出部と端末距離算出部とをスケジューラ部に含めても よい。
すなわち、基地局から端末に対してデータ送信を行い、端末から ACK又は NACK 信号が戻って来るときまでの時間、 すなわち端末一基地局間の信号伝搬時間を 算出し、 この伝搬時間から端末一基地局間の距離を算出するとともに、 この算 出した距離を、 ハンドオーバが必要な距離の閾値と比べることによりスケジュ ーラ部は、 端末がセルの境界に近付いておりハンドオーバ要求が近いものとし てハンドオーバ要求を検出したものと擬制している。
このようにして、 ハンドオーバ要求を検出した後は、 上記と同様にハンドォ ーバ対象端末へのデータ送信の順位を上げてハンドオーバ前にデータ送信を完 了させることができる。
或いは、 基地局は、 該端末が受信信号から算出して送出した受信電界強度情 報を抽出する端末受信電界強度情報抽出部をさらに備え、 該スケジューラ部が、 該受信電界強度を閾値と比べることにより該ハンドオーバ要求を検出すること もできる。
この場合も、 端末受信電界強度情報抽出部をスケジューラ部に含めてもよレ、。 すなわち、 スケジューラ部は、 端末の側で検出した受信電界強度 (又は受信 電力) を基地局が無線基地局で抽出し、 この受信電界強度を閾値と比べること によりハンドオーバ要求の検出を擬制することができる。
或いは、 基地局は、 該端末が測定して送出した端末位置情報を抽出する端末 位置情報抽出部と、 自局の位置情報を格納する位置情報メモリと、 該端末位置 情報と自局位置情報から端末一基地局間の距離を算出する端末距離算出部とを さらに備え、 該スケジューラ部が、 該距離を閾値と比べることにより該ハンド オーバ要求を検出することもできる。
この場合も、 端末位置情報抽出部と位置情報メモリと端末距離算出部とをス ケジユーラ部に含めてもよい。
すなわち、 この場合には、 スケジューラ部は、 端末から得られた端末位置情 報と、 予め自局で得られる自局の位置情報から端末一基地局間の距離を算出し、 この距離を閾値と比べることにより上記と同様にハンドオーバ要求の検出を擬 制することができる。
さらには、 基地局は、 該端末が検出して送出した、 又は上位から与えられる 接続基地局数情報を抽出する接続基地局数情報抽出部をさらに備え、 該スケジ ユーラ部は、 該接続基地局数を閾値と比べることにより該ハンドオーバ要求を 検出することができる。 この場合も、 接続基地局数情報抽出部をスケジューラ部に含めてもよい。 すなわち、 端末側で検出したか、 又は無線回線制御局などの上位から与えら れる接続基地局数情報を無線基地局側で抽出し、 この接続基地局数を閾値と比 ベることによつても、 スケジューラ部は、 ハンドオーバ要求の検出を擬制する ことができる。
さらには、 基地局は、 該端末が測定して送出した端末位置情報を抽出する端 末位置情報抽出部と、 該端末位置情報抽出部で抽出された過去の端末位置情報 を記憶するメモリと、 該端末位置情報抽出部で抽出された現在の端末位置情報 と該メモリに記憶された過去の端末位置情報から端末の移動方向を算出する移 動方向算出部とをさらに備え、 該スケジューラ部が、 該移動方向から該ハンド オーバ要求を検出することができる。
この場合も、 端末位置情報抽出部とメモリと移動方向算出部とをスケジユー ラ部に含めてもよレ、。
すなわち、 この場合には、 端末において測定した端末位置情報を基地局にお いて抽出し、 スケジューラ部が、 この端末位置情報の現在の値と過去の値を用 いることにより端末の移動方向を算出し、 以つてその移動方向から端末がセル 境界に移動しつつあり実質的なハンドオーバ要求がなされたものと擬制してい 。
さらには、 基地局は、 該端末が測定して送出した端末位置情報を抽出する端 末位置情報抽出部と、 該端末が算出して送出した端末の移動方向情報を抽出す る端末移動方向抽出部とをさらに備え、 該スケジューラ部が、 該端末位置情報 と移動方向情報から該ハンドオーバ要求を検出することができる。
この場合も、 端末位置情報抽出部と、 端末移動方向抽出部とをスケジューラ 部に含めてもよい。
すなわち、 この場合には、 端末で測定された端末位置情報と、 やはり端末に おいて算出された端末の移動方向情報をいずれも基地局において抽出し、 抽出 した端末位置情報と移動方向情報からスケジューラ部がハンドオーバ要求の検 出を擬制するものである。
さらに、 基地局は、 該端末が測定して送出した端末位置情報を抽出する端末 位置情報抽出部と、'該端末位置情報抽出部で抽出された過去の端末位置情報を 記憶するメモリと、 該端末位置情報抽出部で抽出された現在の端末位置情報と 該メモリに記憶された過去の端末位置情報から該端末の移動速度を算出する移 動速度算出部とをさらに備え、 該スケジューラ部が、 該移動速度を閾値と比較 することにより該ハンドオーバ要求を検出することができる。
この場合も、 端末位置情報抽出部とメモリと移動速度算出部とをスケジユー ラ部に含めてもよい。
すなわち、 この場合には、 端末において測定された端末位置情報を基地局に おいて過去の値と現在の値とを用いることにより端末の移動速度を算出し、 こ の移動速度を閾値と比較することによりハンドオーバ要求の検出を擬制するも のである。
また本発明においては、 上記の無線基地局を含む下記の種々の移動通信シス テムが提供される。
すなわち、 受信信号から受信電界強度情報を算出して送出する端末と、 上記 の無線基地局とで構成され、 該無線基地局が、 該受信電界強度情報を抽出し、 該受信電界強度を閾値と比べることにより該ハンドオーバ要求を検出すること を特徴とした移動通信システム。
端末位置情報を測定して送出する端末と、 上記の無線基地局とで構成され、 該無線基地局が、 該端末位置情報を抽出し、 自局の位置情報を格納し、 該端末 位置情報と自局位置情報から端末一基地局間の距離を算出するとともに、 該距 離を閾値と比べることにより該ハンドオーバ要求を検出することを特徴とした 移動通信システム。
接続基地局数情報を検出して送出する端末と、 上記の無線基地局とで構成さ れ、 該無線基地局が、 該接続基地局数情報を抽出し、 該接続基地局数を閾値と 比べることにより該ハンドオーバ要求を検出することを特徴とした移動通信シ ステム。
この場合、 端末は、 受信電界強度が低いとき、 サイ トダイバーシチにより接 続基地局数情報を検出することができる。
端末位置情報を算出して送出する端末と、 上記の無線基地局とで構成され、 該無線基地局が、 該端末位置情報を抽出し、 該端末位置情報抽出部で抽出され た過去の端末位置情報を記憶し、 該抽出された現在の端末位置情報と該過去の 端末位置情報がら端末の移動方向を算出するとともに、 該移動方向から該ハン ドオーバ要求を検出することを特徴とした移動通信システム。
端末の位置情報と移動方向情報を算出して送出する端末と、 上記の無線基地 局とで構成され、 該無線基地局が、 該端末位置情報と該移動方向情報を抽出す るとともに、 該端末位置情報と移動方向情報から該ハンドオーバ要求を検出す ることを特徴とした移動通信システム。
端末位置情報を測定して送出する端末と、 上記の無線基地局とで構成され、 該無線基地局が、 該端末位置情報を抽出し、 該過去の端末位置情報を記憶し、 該抽出された現在の端末位置情報と該過去の端末位置情報から該端末の移動速 度を算出するとともに、 該移動速度を閾値と比較することにより該ハンドォー バ要求を検出することを特徴とした移動通信システム。
また、 本発明では、 ハンドオーバ対象の端末に対する再送データの処理を優 先的に行う手段を設けたことを特徴とする無線基地局も提供される。 図面の簡単な説明
図 1は、 本発明に係る無線基地局の実施例(1)の構成を示したブ口ック図であ る。
図 2は、 図 1に示した本発明に係る無線基地局におけるハンドオーバ時の動 作を示したフローチヤ一ト図である。
図 3は、 本発明に係る無線基地局の実施例 (2)の構成を示したプロック図であ る。
図 4は、 図 3に示した本発明に係る無線基地局におけるハンドオーバ時の動 作例を示したフローチャート図である。
図 5は、 本発明に係る無線基地局の実施例(3)の構成を示したプロック図であ る。
図 6は、 図 5に示した本発明に係る無線基地局におけるハンドオーバ時の動 作例を示したフローチヤ一ト図である。 図 7は、 本発明に係る無線基地局の実施例 (4)の構成を示したプロック図であ る。
図 8は、 図 7に示した本発明に係る無線基地局におけるハンドオーバ時の動 作例を示したフローチャート図である。
図 9は、 本発明に係る無線基地局の実施例(5)の構成を示したプロック図であ る。
図 10は、 図 9に示した無線基地局に対応する端末の実施例の構成を示したブ 口ック図である。
図 11は、 図 9に示した本発明に係る無線基地局におけるハンドオーバ時の動 作例を示したフローチャート図である。
図 12 は、 本発明に係る無線基地局の実施例(6)の構成を示したブロック図で ある。
図 13は、 図 12に示した無線基地局に対応する端末の実施例を示したブロッ ク図である。
図 14は、 図 12に示した本発明に係る無線基地局におけるハンドオーバ時の 動作例を示したフローチヤ一ト図である。
図 15は、 端末が複数の基地局からダイバーシチ受信する場合の例を示した図 である。
図 16 は、 本発明に係る無線基地局の実施例(7)の構成を示したブロック図で ある。
図 17は、 図 16に示した無線基地局に対応する端末の実施例の構成を示した ブロック図である。
図 18は、 図 16に示した本発明に係る無線基地局におけるハンドオーバ時の 動作例を示したフローチャート図である。
図 19 は、 本発明に係る無線基地局の実施例 (8)の構成を示したブロック図で める。
図 20は、 図 19に示した本発明に係る無線基地局におけるハンドオーバ時の 動作例を示したフレーチャート図である。
図 21 は、 本発明に係る無線基地局の実施例 (9)の構成を示したブロック図で ある。
図 22は、 図 21に示した無線基地局に対応する端末の実施例の構成を示した ブロック図である。
図 23は、 図 21に示した本発明に係る無線基地局におけるハンドオーバ時の 動作例を示したフローチャート図である。
図 24は、 本発明に係る無線基地局の実施例(10)の構成を示したプロック図で ある。
図 25は、 図 24に示した本発明に係る無線基地局におけるハンドオーバ時の 動作例を示したフローチャート図である。
図 26は、 W-CDMAにおける基地局と端末間に設定された HSDPA無線回線を示し た図である。
図 27は、 従来から知られている基地局一端末間の再送手順を説明したシーケ ンス図である。
図 28は、 従来から知られてレヽる端末の構成例を示したブ口ック図である。 図 29は、 従来から知られている無線基地局の構成例を示したブロック図であ る。
図 30は、 単一のセルとこのセル内における基地局及び端末の位置関係を示し た図である。
図 31は、 セル間をハンドオーバするときの説明図である。
図 32は、 図 29に示した無線基地局においてハンドオーバ時に実行される動 作を示したフローチヤ一ト図である。
符号の説明
BTS 基地局
MS 端末
RNC 無線回線制御局
1 流入制御部
2 通常バッファ
3 再送バッファ
4 変調部 送信部
受信部
復調部
ACK/NACK抽出部
端末受信状態情報抽出部 スケジューラ部
ハンドオーバ制御部 伝搬時間算出部
端末距離算出部
端末受信電界強度情報抽出部 基地局位置情報メモリ 端末位置情報抽出部 端末距離算出部
端末位置情報メモリ 端末移動方向算出部 端末移動方向情報抽出部 端末移動速度算出部 バッファ
変調部
送信部
受信部
復調部再送制御部
再送制御部
受信電界強度算出部
GPS部
サイトダイバーシチ制御部 接続基地局数算出部 位置情報メモリ
移動方向算出部 図中、 同一符号は同一又は相当部分を示す。 発明を実施するための最良の形態
実施例(1) (ハンドオーバ対象端末の再送データのみ優先送信)
図 1は、 本発明に係る無線基地局の実施例(1)を示したものである。 この実施 例では、 送信系統において、 流入制御部 1 と通常バッファ 2 と再送バッファ 3 と変調部 4 と送信部 5 とがこの順番に直列接続されており、 受信系統において は受信部 6と復調部 7とがこの順番に直列接続されている。
また、 復調部 7には ACK/NACK抽出部 8と端末受信状態情報抽出部 9とが接続 されており、 これらの抽出部 8及ぴ 9にはさらにスケジューラ部 10が接続され ている。 スケジューラ部 10は通常バッファ 2及び再送バッファ 3と相互接続さ れるとともに、 ハンドオーバ制御部 11と相互接続されている。
図 2は、 図 1に示した基地局 BTSにおけるハンドオーバ時の動作例を示して おり、 以下、 図 2のフローチャートに沿って図 1の基地局の動作を説明する。 まず、 基地局 BTSに接続されている端末について無線回線制御局 (図示せず) から基地局 BTS に対してハンドオーバ要求が与えられたものとする。 このハン ドオーバ要求はハンドオーバ制御部 11において受信され (ステップ Sl)、 ハン ドオーバ制御部 11はさらにスケジューラ部 10に対してハンドオーバ制御を要 求する (同 S2)。 このとき、 ハンドオーバ対象となっている端末が再送制御を行 つているものとする。
また、 スケジューラ部 10は、 例えば Max C/I法等のように、 各端末の受信状 態 (例えば C/I)、 サービス内容や最大遅延時間等を基に、 各端末に対して優先 順位を付け、 送信順位をスケジューリングしている。
ハンドオーバ制御を要求されたスケジューラ部 10は、 ハンドオーバ対象の端 末の再送を優先的に行うため、 この例では、 最優先に設定し (同 S3)、 これを再 送バッファ 3に伝える。
この後、 スケジューラ部 10は ACK/NACK抽出部 8の出力信号、 すなわち ACK 信号又は NACK信号を監視し (同 S4)、 NACK信号が抽出されたときには、 送バ ッファ 3から再送データを再送するように制御を行い (同 S5)、 ACK信号が端末 から戻って来たときには端末への再送が完了したことを確認する (同 S6)。
このようにして再送が終わった後、 スケジューラ部 10は通常バッファ 2に対 して通常データの転送要求を行う (同 S7)。 これにより通常バッファ 2は通常デ ータを無線回線制御局を経由してハンドオーバ先の基地局へ転送を行う (同 S8)。 そして、 この通常データの転送が終了すると、 通常バッファ 2 はスケジユー ラ部 10へ転送の完了を報告し (同 S9)、 これを受けたスケジューラ部 10はハン ドオーバ制御部 11に対してハンドオーバの準備が完了したことを報告する (同 S10)。 従って、 ハンドオーバ制御部 11は無線回線制御局に対しハンドオーバの 準備が完了したことを報告し(同 S11)ノ、ンドオーバが実行に移される(同 S12)。 このようにしてスケジューラ部 10は、 端末から新規送信の要求 (ACK信号) が返送されるまで再送を優先又は最優先に行う。 この結果、 ハンドオーバ対象 端末については、 優先順位を上げない場合と比較して短時間で再送が完了する こととなる。 なお、 新規送信の要求とは、 すなわち端末へ一定品質以上又は誤 り無しで伝送出来たことを示す。 再送制御により、 端末から ACK信号が返送さ れることにより再送制御は終了する。
このように、 優先順位を上げることによってハンドオーバ対象端末への再送 がスムーズに行えるため、 再送バッファ 3 をいち早く空にすることができる。 また、 従来、 端末用の再送バッファ内に格納されていたデータをハンドオーバ 先である基地局に転送する必要があつたが、 本発明により必要が無くなる。
なお、 上記の実施例においてスケジューラ部自身でハンドオーバ制御を行つ てもよい。 また、 バッファ内のデータを転送する転送制御部を設けてもよい。 さらには、 説明を簡略化するために通常バッファ内のデータの転送とハンドォ ーバをこの順に行っているが、 通常バッファのデータ転送中にハンドオーバを 実行してもよい。
実施例 (2) (再送データ及び通常データの双方を優先送信)
図 3は、 本発明に係る無線基地局の実施例(2)を示したものである。 この実施 例は、 基本的な構成は図 1に示した実施例(1)と同様であるが、 図 4に示す如く その動作が異なっている。以下、図 4に沿って図 3の基地局の動作を説明する。 まず、 図 4に示したステップ S21〜S25は、 図 2に示したステップ S1〜S5に それぞれ対応しており、 実施例(1)と同様に、 ハンドオーバ対象端末への送信優 先度を上げることにより、 再送処理を迅速に終了させている。
そしてステップ S26においては、 再送バッファ 3だけでなく、 通常バッファ 2 に格納されたハンドオーバ対象端末向けの通常データに関しても送信順位を最 優先に設定する。 なお、 この場合も最優先でなく一定の優先順位を上げるだけ でもよい。
そして、ハンドオーバ対象端末の通常バッファ 2が空か否かを判定し(同 S27)、 空になっていない場合には通常バッファ 2内の通常データを再送バッファ 3に 格納すると共に変調部 4と送信部 5を経て送信する (同 S28)。
そして、 この通常データを送信した結果が端末から返送されて来るので、 こ れを受信部 6及び復調部 7を経由して ACK/NACK抽出部 8において監視し(同 S29)、 この ACK/NACK抽出部 8の出力信号が ACK信号であった場合にはステップ S27に 戻るが、 NACK信号であった場合には受信バケツトにエラーがあったことを示し ているので、 スケジューラ部 10は再送バッファ 3に格納されている再送データ を再送する (同 S30)。 そして、 このデータに関し ACK信号が返送されるまでス テップ S29と S30を繰り返す。
ステップ S27に戻って、 ハンドオーバ対象端末の通常バッファ 2が空になつ ていることが分かったときには、 図 2におけるステップ S10 と同様にハンドォ ーバ制御部 11へ準備完了を報告し (同 S31)、 図 2のステップ S11と同様に無線 回線制御局 RNCへハンドオーバ準備完了報告を行い (同 S32)、 ハンドオーバを 実行する (同 S33)。
このようにして、 通常データの無線回線制御局を経由してハンドオーバ先の 基地局へのデータ転送する必要が無くなり、 またその制御も必要が無くなる。 さらに、 そのための信号線が不必要となることから回路規模を縮小することが 可能となる。 さらに、 無線回線制御局と基地局間のネットワークには、 データ 転送が無くなることからネットワークの負荷を軽減することができる。
なお、 後述するように、 再送バッファ 3 と通常バッファ 2を一体化した構成 も可能である。
実施例 (3)—(ハンドオーバ時に上位からのデータ流入を阻止) 図 5は、 本発明に係る無線基地局の実施例 (3)を示したものである。 この実施 例 (3)も基本的な構成は図 1及び図 3の実施例と同様であるが、 図 6のフローチ ヤートに示すように、 その動作が異なっている。 以下、 図 6 に示すフローチヤ ートに沿って図 5の実施例(3)の動作を説明する。
まず、 図 2のステップ S1又は図 4のステップ S21と同様にハンドオーバ要求 を受信した後、この実施例では、スケジューラ部 10が流入制御部 1を制御して、 上位からのハンドオーバ対象端末向けのデータの流入を停止させる (同 S42)。 これにより、 通常バッファ 2 における通常データの増加を停止させることが できる。
この後、 ステップ S43〜S53を実行するが、 これらのステップは、 図 2に示し たステップ S2〜S12に対応しており、 ステップ S42でハンドオーバ対象端末向 けのデータの流入を停止した後、 ハンドオーバ対象端末の再送を最優先に実行 し、 通常バッファに格納された通常データをハンドオーバ先の基地局へ転送し てハンドオーバを実行している。
このように、 通常バッファ 2 におけるデータ量が増大しないので、 データ転 送時間や転送完了までの時間を短縮できるとともに、 確実に通常バッファを空 にすることが可能となる。 さらには、 無線回線制御局と無線基地局間において は、 不要なデータ転送が無くなるためネットワークの負荷を軽減することが可 倉 となる。
実施例 (4) (伝搬時間から伝搬距離を推定してハンドオーバ時を擬制) 図 7は、 本発明に係る無線基地局の実施例(4)を示したものである。 この実施 例においては、 図 1, 図 3, 又は図 5に示した基地局に対して伝送時間算出部 12 と端末距離算出部 13を設けている点が異なっている。 また、 バッファ 30は、 上記の各実施例における通常バッファ 2 と再送バッファ 3 とを一体化したもの を使用している。
図 8は、 図 7に示した実施例 (4)の動作を示しており、 以下、 この図 8に沿つ て図 7の基地局 BTSの動作を説明する。
まず、 上記の各実施例においては、 ハンドオーバ要求が上位の無線回線制御 局から与えられた場合を想定したが、 この実施例では、 ハンドオーバ要求が無 い場合も考える。 すなわち、 端末がセルの境界付近にあり、 近い将来、 ハンド オーバを行うためのハンドオーバ要求が発生される可能性が高い場合を想定し ている。
このため、 まず信号の受信を開始すると (ステップ S61)、 その信号の伝搬時 間 Tを伝搬時間算出部 12が算出する (同 S62)。 この伝搬時間の算出について以 下に説明する。
基地局 BTSは、 パケット P2を HS-DSCHに乗せ、 送信した時刻を送信部 5から 受けて記憶しておく。 このパケット P2を受信した端末は、 このパケット P2が 誤りを含んでいるか否かを確認し、 誤りが有る場合は再送要求である NACK信号 を返送し、 誤りが無い場合は新規送信を要求する ACK信号を HS- DPPCHに乗せて 基地局へ返送する。
この HS-DPCCHにより信号を受信した基地局 BTSは、 受信部 6及び変調部 7を 介して ACK/NACK抽出部 8において ACK/NACK信号を抽出するとともに、 この抽 出した時刻を伝搬時間算出部 12に知らせる。
これにより、 伝搬時間算出部 12においては、 信号送信時から受信時までの応 答時間からシステム的に必要な予め分かつている所定時間を差し引いて往復の 伝搬時間 Tを算出する。
この結果に基づいて、 端末距離算出部 13は、 基地局と端末との距離 Lを算出 する (同 S63)。
そして、 この距離 Lを入力したスケジューラ部 10は、 ハンドオーバが生じ得 ると予測される距離に相当した閾値 Lthと比較し (同 S64)、 距離 Lが閾値 Lth を越えた場合、 端末がセル境界付近にあると判断する。
このようにして、 ハンドオーバ要求が無線回線制御局から与えられた場合と 同様と見なしてステップ S65〜S74の処理を実行する。 すなわち、 これらのステ ップ S65〜S74は図 2に示したステップ S3〜S12又は図 6に示したステップ S43 〜S53に対応しており、 ハンドオーバ対象端末の再送を最優先に行った後、通常 バッファから通常データをネットワーク経由で転送し、 ハンドオーバを実行し ている。
なお、 この実施例でも、 図 3の実施例(2)と同様に再送データだけでなく通常 データについても優先的に送信することが可能である。 これは以下の各実施例 についても同様である。 ■ なお、 ここでは距離 Lと閾値との比較をスケジューラ部 10で行ったが、 端末 距離算出部 13 の内部で行ってもよく、 或いは伝搬時間算出部 12及び端末距離 算出部 13をスケジューラ部 10に含めてもよい。
さらに、 3GPP においては、 上記の送信タイミングが伝搬による遅延を含んで 規定されているので、 伝搬時間を算出することは容易に可能である。
以上により、 端末の受信状況 (C/I)に関わらず優先順位を決めることができる。 また、 優先順位を上げたことにより、 端末のスループットや送信遅延を改善す ることができ、 高速伝送が必要なサービスの提供が可能となる。
また、 端末がセル境界付近にある場合は、 近い将来にハンドオーバが行われ る可能性が高いので、 ハンドオーバ要求が上位から与えられる前に、 上記の実 施例と同様にスケジューラ部における送信の優先順位を上げ、 通常バッファに 格納された通常データの送信を行えば、 実際にハンドオーバ要求を受信して実 行する場合と比較してより早くハンドオーバを行うことが可能となる。
実施例 (5) (受信電界強度によりハンドオーバ時を擬制)
図 9は、 本発明に係る無線基地局の実施例(5)を示したものである。 この実施 例においては、 図 1等に示した基地局 BTSに対して、 端末受信電界強度情報抽 出部 14を設けた点が異なっている。 また、 バッファ 30は上記の実施例 (4)と同 様に通常バッファ 2と再送バッファ 3とを一体化させたものを使用している。 図 10は、 図 9に示した基地局 BTSに対応する端末 MSの構成例を示したもの で、 図 28に示した従来例において、 受信電界強度算出部 38を設けた点が異な つている。
図 11は、 図 9に示した基地局 BTSの動作を示したフローチャートであり、 以 下、 この図 11のフローチャートに沿って図 9及び図 10の実施例の動作を説明 する。
まず受信を開始すると (ステップ S 81)、 図 9に示した端末受信電界強度情報 抽出部 14は 信部 6及び復調部 7から得られる復調信号に含まれた受信電界強 度情報を抽出する (同 S82)。 この場合の受信電界強度情報は受信電力情報でも よい。
この受信電界強度情報は、 図 10に示した端末 MSにおいて、 受信電界強度算 出部 38が、 端末に送られて来た受信信号を受信部 34と復調部 35を介して入力 することにより、 その受信信号の受信電界強度 E の情報として算出されたもの である。
そして、 この受信電界強度算出部 38は、算出した受信電界強度 Eを変調部 32 と送信部 33を経由して図 9に示した基地局 BTSに送ることにより、 この受信電 界強度 Eを上記のように端末受信電界強度情報抽出部 14において抽出できるこ ととなる。
このようにして抽出された受信電界強度情報はスケジューラ部 10 に送られ、 閾値 Ethと比較される (同 S83)。 この結果、 受信電界強度 Eが閾値 Ethより大 きいことが分かつた場合 (E >Eth)には、端末 MSがセル境界付近にあると判断し、 ハンドオーバの可能性が大きいと判定する (同 S84)。
そして、 図 8 に示した実施例と同様に、 ハンドオーバ対象端末の再送を最優 先に設定し (同 S85)、 以下のステップ S66〜S74を実行する (ステップ S86)。 なお、 端末において受信電界強度を算出する際に移動平均を用いることによ りフェージングによる影響を軽減することができる。 また、 平均値を算出する 時間間隔を制御することにより、 同様にフェージングによる影響を少なくする ことも可能である。
なお、 この実施例においても、 スケジューラ部 10に端末受信電界強度情報抽 出部 14を含めることができる。
また、 端末において受信電界強度を算出した後、 端末自体でハンドオーバの 可能性を判定し、 可能性有りと判定した場合、 その旨を基地局に返送するよう にしてもよい。 この場合には、 基地局 BTS における端末受信電界強度情報抽出 部 14をハンドオーバ判定結果抽出部とすればよい。
実施例 (6) (端末位置情報から端末距離を推定してハンドオーバ時を擬制) 図 9〜11に示した実施例(5)においては受信電界強度を用いて実質的なハンド オーバ要求の検出を行っているが、 図 12に示した本発明に係る無線基地局の実 施例(6)においては、 端末の位置情報から端末と基地局との距離を算出し、 以っ て実質的なハンドオーバを要求検出しようとするものである。
このため、 図 12に示した実施例(6)では、 図 9に示した端末受信電界強度情 報抽出部 14の代わりに、 基地局位置情報メモリ 15と端末位置情報抽出部 16と 端末距離算出部 17とを用いている。
図 13は、 図 12に示した実施例(6)の無線基地局 BTSに対応した端末 MSの構 成例を示したもので、 この実施例では、 図 10 に示した受信電界強度算出部 38 を用いる代わりに、 GPS (Global Positioning System)部 38を用いている。 このような図 12及び図 13に示した実施例(6)の動作を図 14のフローチヤ一 トに沿って以下に説明する。
まず、 図 12に示した端末位置情報抽出部 16は、 受信部 6及び復調部 7から の復調信号に基づき、 端末位置情報を抽出する (ステップ S92)。 この場合の端 末位置情報は、図 13に示した如く、GPS部 38において自局の位置情報を抽出し、 これを変調部 32 と送信部 33を経由して基地局側に送信し、 これを端末位置情 報抽出部 16で抽出したものである。
そして、 基地局位置情報メモリ 15には、 自局の位置情報が予め記憶されてお り、 このような基地局位置情報メモリ 15 に記憶されている基地局位置情報と、 端末位置情報抽出部 16で抽出された端末位置情報とを入力した端末距離算出部 17では、 端末の位置情報 Ptl と基地局の位置情報 PtOから端末一基地局間距離 Lを算出することができる。
この距離 Lを入力したスケジューラ部 10は、図 7及ぴ図 8に示した実施例(4) と同様に閾値 Lthと比較し (同 S94)、 距離 Lが閾値 Lthを越えた場合 (L〉Lth) には、 図 11に示した実施例(5)と同様にステップ S65〜S74を実行する。
すなわち、 スケジューラ部 10は、 再送バッファ 3におけるデータ再送信の優 先順位を上げ、 通常バッファ 2内に格納されたデータの送信を行う。
このようにして、 高速にハンドオーバを実現することが可能となる。
なお、 基地局は移動しないことから、 位置測定を行ったり直接入力したりし て位置情報メモリに記憶しておけばよい。
この実施例においても、 スケジューラ部 10は、 基地局位置情報メモリ 15 と 端末位置情報抽出部 16と端末距離算出部 17を含むことができる。 実施例 (7) (接続基地局数を基にハンドオーバ時を擬制)
上記の実施例では基地局一端末間距離や受信電界強度を用いてハンドオーバ 要求の検出を擬制しているが、 端末がセル境界付近に来ると、 接続される基地 局の数が増加することになる。 従って、 このような接続基地局数によっても実 質的なハンドオーバ要求を検出することが可能である。
ここで、 接続基地局数を検出するために用いるサイ トダイバーシチについて 簡単に説明する。
サイ トダイパーシチとは複数の基地局からある端末に向けて同じデータを送 信する方式であり、 図 15に示すように基地局 BTS1と基地局 BTS2の各伝搬路が 異なることから、 端末 MSにおいてはダイバーシチゲインが生じる。 仮に、 基地 局 BTS1と BTS2からの電波の位相が同じであったとすると、 単純には DL A- DPCH 同士で受信電界強度が 2倍となるので、 二つ基地局からの合成波を受信したこ とになり、 このときの接続基地局数 =2となるものである。
このようなサイ トダイバーシチを用いた実施例(7)が図 16〜18 に示されてい る。 図 16は基地局 BTSの実施例(7)を示したもので、 上記の接続基地局数を知 るために、 接続基地局数情報抽出部 18 を設けており、 これに対応して、 図 17 に示す端末 MSの構成においては、 電界強度算出部 37 とサイトダイバーシチ制 御部 39と接続基地局数算出部 40とが設けられている。
以下、 このような実施例(7)の動作を図 18 に示したフローチャートにより説 明する。
まず、 端末 MSが基地局 BTS1又は BTS2に比較的近い場所に位置している場合 には、 端末 MSにおいて受信電界強度算出部 37からサイ トダイバーシチ制御部 39に送られる受信電界強度 Eが大きいことからサイ トダイバーシチ制御部 39は. 上記のサイ トダイバーシチを行わず、 従って、 接続基地局数算出部も接続基地 局数は算出しないが、セル境界付近に位置している場合には逆に受信電界強度 E が小さくなるのでサイ トダイバーシチを行うように制御を行う。
そして、 サイ トダイバーシチを行うときには、 サイ トダイバーシチ制御部 39 力 このときの DL A-DPCHの合成波信号を接続基地局数算出部 40に与えること により、 接続基地局数算出部 40において現在接続されている基地局数 Nを検出 し、 これを変調部 32及び送信部 33を経由して基地局側に送ることができる。 基地局 BTSにおいては、 このようにして端末 MSから送られて来た接続基地局 数情報 Nを接続基地局数情報抽出部 18で抽出する (ステップ S102)。
そして、 この接続基地局数情報を受けたスケジューラ部 10は、 接続基地局数 Nとその閾値 Nthとを比較し (同 S103)、 検出した接続基地局数 Nが閾値 Nthを 越えている場合には、 端末がセル境界付近に位置しているものと判定し、 図 11 と同様にステップ S65〜S74を実行することにより、 スケジューラ部 10におけ る再送データ送信の優先順位を上げ、 通常バッファ内に格納された通常データ の送信を行って、 高速にハンドオーバを実現している。
この接続基地局数情報 N は、 無線回線制御局などの上位から端末又は基地局 へ通知するようにしてもよレ、。
この実施例においても、 スケジューラ部 10は接続基地局数情報抽出部 18を 含むことができる。
実施例(8) (端末の移動方向に基づいてハンドオーバ時と擬制)
上記の実施例における基地局—端末間距離や受信電界強度や接続基地局数の 他に、 端末の移動方向を検出することによつても端末がセル境界付近に存在し 得ることが検出可能である。
図 19及び図 20に示した本発明に係る無線基地局の実施例(8)においては、 図 12に示した実施例 (6)における端末距離算出部 17の代わりに端末移動方向算出 咅 20を用いている点が異なっている。
以下、 図 20に示したフローチャートに沿って図 19に示した基地局の動作を 説明する。 なお、 この場合の端末は、 図 13に示した構成例を用いることができ る。
まず図 19に示した端末位置情報抽出部 16では、 端末から送られて来た端末 位置情報 Ptlを抽出する (ステップ S112)。 そして、 この端末位置情報 Ptlを端 末位置情報メモリ 19に格納する (同 S113)。
さらに端末位置情報抽出部 16は次の端末位置情報 Pt2を抽出し (同 S114)、 この時点で端末移動方向算出部 20は、 端末位置情報抽出部 16で抽出された現 在の端末位置情報 Pt2とメモリ 19に格納されている過去の端末位置情報 Ptlと を入力することにより端末の移動方向 Dを算出する (同 S115)。
移動方向算出部 20によって算出された端末移動方向 Dを入力したスケジユー ラ部 10は、 移動方向 Dがセル境界方向か否かを判定する (同 S116)。 これは、 移動方向 D と端末位置情報 Pt2力 ら端末がセル境界に向っていると判断するこ とができるので、 そのように判断された場合には、 図 11 と同様にステップ S65 〜S74を実行する。
ただし、 移動方向 D がセル境界方向でないことが分かったきには、 現在の端 末位置情報 Pt2を過去の端末位置情報 Ptlとして端末位置情報メモリ 19に記憶 しておく (同 S117)。
このようにしても、 高速なハンドオーバを実現することが可能となる。
この実施例においても、 スケジューラ部 10は、 端末位置情報抽出部 16 とメ モリ 19と端末移動方向算出部 20とを含むことができる。
実施例(9) (端末の移動方向に基づいてハンドオーバ時を擬制)
上記の実施例(8)においては端末の移動方向を算出しているが、 この移動方向 の算出を端末で行っているのが図 21〜図 23に示した本発明に係る無線基地局の 実施例(9)である。
このため、 基地局 BTSにおいては、 図 19に示した実施例(8)におけるメモリ 19及び端末移動方向算出部 20は用いずに、その代わり端末移動方向情報抽出部 21を用いており、 これに対応して、 端末 MSにおいては、 図 13に示した端末の 実施例に加えて位置情報メモリ 41 と移動方向算出部 42 とを用いている点が異 なっている。
このような実施例(9)の動作を図 23 に示したフローチャートにより以下に説 明する。
まず、 端末 MSにおいて、 GPS部 38で検出された位置情報 Ptlと、 この検出し た位置情報 Ptlを一旦メモリ 41に格納しておき、 移動方向算出部 42において 現在の位置情報と過去の位置情報とを比較することにより端末 MSの移動方向 D を算出して位置情報 Ptlとともに変調部 32及び送信部 23を経由して基地局 BTS こ: ^ 。
基地局 BTSにおいては、 端末位置情報抽出部 16において端末位置情報 Ptlが 抽出され (ステップ S122)、 端末移動方向情報抽出部 21において端末移動方向 情報 Dが抽出される (同 S123)。
この結果、 図 20のステップ S116と同様に、 スケジューラ部 10は移動方向 D がセル境界方向か否かを判定し (同 S124)、移動方向 Dがセル境界方向であった 場合には図 11と同様にステップ S65〜S74を実行する。
このようにして、 移動方向 D と端末位置情報 Ptl とからセル境界に向ってい ると判定した場合には、 スケジューラ部 10における再送データ送信の優先順位 を上げ、 通常バッファ内に格納された通常データの送信を行うことにより、 よ り高速にハンドオーバを実現することができる。
この実施例においても、 スケジューラ部 10は、 端末位置情報抽出部 16 と端 末移動方向情報抽出部 21を含むことができる。
実施例(10) (端末の移動速度に基づいてハンドオーバ時を擬制)
上記の実施例 (8)及び (9)においては端末の移動方向を用いて制御をしている 力 端末の移動速度を用いても同様な判定をすることが可能である。
このような制御を行う実施例(10)が図 24及ぴ図 25に示されている。
すなわち、 図 24に示した基地局 BTSにおいては、 図 19に示した実施例(8)に おける移動端末方向算出部 20の代わりに端末移動速度算出部 22を用いている 点が異なっている。 このような実施例の動作を図 25に示したフローチャートに 沿って以下に説明する。
図 25のフローチヤ一トにおいて、 ステップ S131〜S134は、 図 20に示した実 施例 (8)のフローチャートにおけるステップ S 111〜S 114に対応するものであり、 端末移動速度算出部 22は、 2つの端末位置情報 Ptl と Pt2をそれぞれ端末位置 メモリ 19 と端末位置情報抽出部 16から入力することにより、 次式を用いて端 末の移動速度 Vを算出することができる (ステップ S135)。
V = (Pt2 - Ptl) I (T2 一 Tl)
なお、 Tl及び T2は、 端末で検出された端末位置情報にそれぞれ付加されて送 られて来る時刻である。
この結果、 算出した端末速度 Vが閾値 Vthより大きいことが分かったときに は (同 S136)、 図 11と同様にステップ S65~S74を実行する。 すなわち、 移動速 度 Vが大きい場合は、 スケジューラ部 10における再送データ送信の優先順位を 上げ、 通常バッファ内に格納されたデータの送信を行うことにより高速にハン ドオーバを行うようにしている。
この場合も端末移動速度 Vが閾値 Vth以下であることが分かった場合には、 新しい現在の端末位置情報 Pt2を過去の端末位置情報 Ptl として端末位置情報 メモリ 19に記憶しておく (同 S137)。
この実施例においても、 スケジューラ部 10は、 端末位置情報抽出部 16 と端 末位置情報メモリ 19と端末移動速度算出部 22を含むことができる。
以上のとおり本発明によれば、 ハンドオーバ時に、 ハンドオーバ対象端末の 優先度を上げることにより、 再送中で再送バッファに格納されている再送デー タをハンドオーバ先の基地局へ転送する必要が無くなる。 また、 同様に通常バ ッファ内に格納された通常データの転送も必要なくなる。 また、 転送が必要な <なるため、 それに伴う制御が必要無くなる。
また、 ハンドオーバが行われる場合は、 その端末に対するデータの基地局へ の流入を停止することにより、 バッファ内部の転送がスムーズにかつ確実に実 行できる。
また、 伝搬時間、 位置情報や接続基地局数を用いて、 端末がセル境界にある と判断された場合は、 その端末へのデータ送信の順位を上げることにより、 こ の端末のスループットが向上したり、 最大遅延時間を守ったりすることが容易 にできるようになる。また、ハンドオーバに際しても上述と同様な効果がある。

Claims

請 求 の 範 囲
1 . 端末への通信データを保持するバッファと、
受信信号から通信要求信号を抽出する抽出部と、
該抽出部の出力信号に基づいて該通信データの送出を制御するスケジューラ 部とで構成され、
該スケジューラ部が、 ハンドオーバ要求を検出したとき、 ハンドオーバを実 行する前に、 ハンドオーバ対象の端末に対するデータ送信の順位を上げて優先 的にデータ送信するように該バッファを制御することを特徴とした無線基地局。
2 .請求の範囲 1において、
該通信データが、 再送データであり、 該バッファが再送バッファであること を特徴とした無線基地局。
3 . 請求の範囲 1において、
該通信データが、 通常データであり、 該バッファが通常バッファであること を特徴とした無線基地局。
4 . 請求の範囲 2において、
通常バッファをさらに備え、 該スケジューラ部は、 該再送バッファが空にな つたことを検出したとき、 該通常バッファに保持された通常データの内、 ハン ドオーバ対象の端末へ向けた通常データを優先して送出させることを特徴とし た無線基地局。
5 . 請求の範囲 1から 4のいずれか 1つにおいて、
流入制御部をさらに備え、 該スケジューラ部は、 該ハンドオーバ要求を検出 したとき、 該流入制御部を制御して上位からの該ハンドオーバ対象の端末へ向 けたデータの流入を停止することを特徴とした無線基地局。
6 . 請求の範囲 1から 5のいずれか 1つにおいて、
該ハンドオーバ要求が無線回線制御局から与えられることを特徴とした無線 基地局。
7 . 請求の範囲 1から 5のいずれか 1つにおいて、 データ送信時から該抽出部の出力信号を受信する時までの、 端末一基地局間 の信号伝搬時間を算出する伝搬時間算出部と、 この伝搬時間から端末一基地局 間の距離を算出する端末距離算出部とをさらに備え、 該スケジューラ部は、 該 距離を閾値とを比べることにより該ハンドオーバ要求を検出することを特徴と
5. した無線基地局。
8 . 請求の範囲 1力、ら 5のいずれか 1つにおいて、
該スケジューラ部は、 データ送信時から該抽出部の出力信号を受信する時ま での、 端末一基地局間の信号伝搬時間を算出し、 この伝搬時間から端末一基地 局間の距離を算出するとともに、 該距離を閾値と比べることにより該ハンドォ0 ーバ要求を検出することを特徴とした無線基地局。
9 . 請求の範囲 1から 5のいずれか 1つにおいて、
該端末が受信信号から算出して送出した受信電界強度情報を抽出する端末受 信電界強度情報抽出部をさらに備え、 該スケジューラ部は、 該受信電界強度を 閾値と比べることにより該ハンドオーバ要求を検出することを特徴とした無線5 基地局。
1 0 . 請求の範囲 1から 5のいずれか 1つにおいて、
該スケジューラ部は、 該端末が受信信号から算出して送出した受信電界強度 情報を抽出し、 該受信電界強度を閾値と比べることにより該ハンドオーバ要求 を検出することを特徴とした無線基地局。
0 1 1 . 請求の範囲 1から 5のいずれか 1つにおいて、
該端末が測定して送出した端末位置情報を抽出する端末位置情報抽出部と、 自局の位置情報を格納する位置情報メモリと、 該端末位置情報と自局位置情報 力 ら端末一基地局間の距離を算出する端末距離算出部とをさらに備え、 該スケ ジユーラ部は、 該距離を閾値とを比べることにより該ハンドオーバ要求を検出5 することを特徴とした無線基地局。
1 2 . 請求の範囲 1から 5のいずれか 1つにおいて、
該スケジューラ部は、 該端末が測定して送出した端末位置情報を抽出し、 自 局の位置情報を格納し、 該端末位置情報と自局位置情報から端末一基地局間の 距離を算出するとともに、 該距離を閾値とを比べることにより該ハンドオーバ 要求を検出することを特徴とした無線基地局。
1 3 . 請求の範囲 1から 5のいずれか 1つにおいて、
該端末が検出して送出した、 又は上位から与えられる接続基地局数情報を抽 出する接続基地局数情報抽出部をさらに備え、 該スケジューラ部は、 該接続基 地局数を閾値と比べることにより該ハンドオーバ要求を検出することを特徴と した無線基地局。
1 4 . 請求の範囲 1力 ら 5のいずれか 1つにおいて、
該スケジューラ部は、 該端末が検出して送出した、 又は上位から与えられる 接続基地局数情報を抽出し、 該接続基地局数を閾値と比べることにより該ハン ドオーバ要求を検出することを特徴とした無線基地局。
1 5 . 請求の範囲 1カゝら 5のいずれか 1つにおいて、
該端末が測定して送出した端末位置情報を抽出する端末位置情報抽出部と、 該端末位置情報抽出部で抽出された過去の端末位置情報を記憶するメモリと、 該端末位置情報抽出部で抽出された現在の端末位置情報と該メモリに記憶され た過去の端末位置情報から端末の移動方向を算出する移動方向算出部とをさら に備え、 該スケジューラ部は、 該移動方向から該ハンドオーバ要求を検出する ことを特徴とした無線基地局。
1 6 . 請求の範囲 1から 5のいずれか 1つにおいて、
該スケジューラ部は、 該端末が測定して送出した端末位置情報を抽出し、 該 抽出された過去の端末位置情報を記憶し、 該抽出された現在の端末位置情報と 該過去の端末位置情報から端末の移動方向を算出するとともに、 該移動方向か ら該ハンドオーバ要求を検出することを特徴とした無線基地局。
1 7 . 請求の範囲 1力 ら 5のいずれか 1つにおいて、
該端末が測定して送出した端末位置情報を抽出する端末位置情報抽出部と、 該端末が算出して送出した端末の移動方向情報を抽出する端末移動方向抽出部 とをさらに備え、 該スケジューラ部は、 該端末位置情報と移動方向情報から該 ハンドオーバ要求を検出することを特徴とした無線基地局。
1 8 . 請求の範囲 1力 ら 5のいずれか 1つにおいて、
該スケジューラ部は、 該端末が測定して送出した端末位置情報を抽出し、 該 端末が算出して送出した端末の移動方向情報を抽出するとともに、 該端末位置 情報と移動方向情報から該ハンドオーバ要求を検出することを特徴とした無線 基地局。
1 9 . 請求の範囲 1力 ら 5のいずれか 1つにおいて、
該端末が測定して送出した端末位置情報を抽出する端末位置情報抽出部と、 該端末位置情報抽出部で抽出された過去の端末位置情報を記憶するメモリと、 該端末位置情報抽出部で抽出された現在の端末位置情報と該メモリに記憶され た過去の端末位置情報から該端末の移動速度を算出する移動速度算出部とをさ らに備え、 該スケジューラ部は、 該移動速度を閾値と比較することにより該ハ ンドオーバ要求を検出することを特徴とした無線基地局。
2 0 . 請求の範囲 1力、ら 5のいずれか 1つにおいて、
該スケジューラ部は、 該端末が測定して送出した端末位置情報を抽出し、 該 抽出された過去の端末位置情報を記憶し、 該抽出された現在の端末位置情報と 該過去の端末位置情報から該端末の移動速度を算出するとともに、 該移動速度 を閾値と比較することにより該ハンドオーバ要求を検出することを特徴とした 無線基地局。
2 1 . 受信信号から受信電界強度情報を算出して送出する端末と、
請求の範囲 1から 20のいずれか 1つに記載の無線基地局とで構成され、 該無線基地局が、 該受信電界強度情報を抽出し、 該受信電界強度を閾値と比 ベることにより該ハンドオーバ要求を検出することを特徴とした移動通信シス テム。
2 2 . 端末位置情報を測定して送出する端末と、
請求の範囲 1から 20のいずれか 1つに記載の無線基地局とで構成され、 該無線基地局が、 該端末位置情報を抽出し、 自局の位置情報を格納し、 該端 末位置情報と自局位置情報から端末一基地局間の距離を算出するとともに、 該 距離を閾値とを比べることにより該ハンドオーバ要求を検出することを特徴と した移動通信システム。
2 3 . 接続基地局数情報を検出して送出する端末と、
請求の範囲 1から 20のいずれか 1つに記載の無線基地局とで構成され、 該無線基地局が、 該接続基地局数情報を抽出し、 該接続基地局数を閾値と比 ベることにより該ハンドオーバ要求を検出することを特徴とした移動通信シス テム。
2 4 . 請求の範囲 23において、
該端末が、 受信電界強度が低いとき、 サイ トダイバーシチにより接続基地局 数を検出することを特徴とした移動通信システム。
2 5 . 端末位置情報を算出して送出する端末と、
請求の範囲 1から 20のいずれか 1つに記載の無線基地局とで構成され、 該無線基地局が、 該端末位置情報を抽出し、 該抽出された過去の端末位置情 報を記憶し、 該抽出された現在の端末位置情報と該過去の端末位置情報から端 末の移動方向を算出するとともに、 該移動方向から該ハンドオーバ要求を検出 することを特徴とした移動通信システム。
2 6 . 端末の位置情報と移動方向情報を算出して送出する端末と、
請求の範囲 1から 20のいずれか 1つに記載の無線基地局とで構成され、 該無線基地局が、 該端末位置情報を抽出し、 該移動方向情報を抽出するとと もに、 該端末位置情報と移動方向情報から該ハンドオーバ要求を検出すること を特徴とした移動通信システム。
2 7 . 端末位置情報を測定して送出する端末と、
請求の範囲 1から 20のいずれか 1つに記載の無線基地局とで構成され、 該無線基地局が、 該端末位置情報を抽出し、 該抽出された過去の端末位置情 報を記憶し、 該抽出された現在の端末位置情報と該過去の端末位置情報から該 端末の移動速度を算出するとともに、 該移動速度を閾値と比較することにより 該ハンドオーバ要求を検出することを特徴とした移動通信システム。
2 8 . ハンドオーバ対象の端末に対する再送データの処理を優先的に行う手段 を設けたことを特徴とする無線基地局。
PCT/JP2003/001710 2003-02-18 2003-02-18 無線基地局及び移動通信システム WO2004075589A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2003211423A AU2003211423A1 (en) 2003-02-18 2003-02-18 Radio base station and mobile communication system
JP2004568460A JPWO2004075589A1 (ja) 2003-02-18 2003-02-18 無線基地局及び移動通信システム
EP03705278A EP1549097A1 (en) 2003-02-18 2003-02-18 Radio base station and mobile communication system
CNA038246872A CN1695399A (zh) 2003-02-18 2003-02-18 无线基站和移动通信系统
PCT/JP2003/001710 WO2004075589A1 (ja) 2003-02-18 2003-02-18 無線基地局及び移動通信システム
US11/191,352 US20050259663A1 (en) 2003-02-18 2005-07-28 Radio base station and mobile communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/001710 WO2004075589A1 (ja) 2003-02-18 2003-02-18 無線基地局及び移動通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/191,352 Continuation US20050259663A1 (en) 2003-02-18 2005-07-28 Radio base station and mobile communication system

Publications (1)

Publication Number Publication Date
WO2004075589A1 true WO2004075589A1 (ja) 2004-09-02

Family

ID=32894214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001710 WO2004075589A1 (ja) 2003-02-18 2003-02-18 無線基地局及び移動通信システム

Country Status (6)

Country Link
US (1) US20050259663A1 (ja)
EP (1) EP1549097A1 (ja)
JP (1) JPWO2004075589A1 (ja)
CN (1) CN1695399A (ja)
AU (1) AU2003211423A1 (ja)
WO (1) WO2004075589A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174279A (ja) * 2004-12-17 2006-06-29 Fujitsu Ltd 無線基地局、移動局
JP2006229320A (ja) * 2005-02-15 2006-08-31 Matsushita Electric Ind Co Ltd 再送制御方法、無線通信システム、基地局および移動局
JP2007089141A (ja) * 2005-08-25 2007-04-05 Ntt Docomo Inc 基地局、制御局、及び、無線通信制御方法
WO2007052747A1 (ja) * 2005-11-04 2007-05-10 Ntt Docomo, Inc. データ転送方法及び基地局
EP1788756A1 (en) * 2005-11-16 2007-05-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting packets in wireless network
WO2007083547A1 (ja) * 2006-01-17 2007-07-26 Ntt Docomo, Inc. ハンドオーバ制御方法
WO2007145340A1 (ja) * 2006-06-16 2007-12-21 Ntt Docomo, Inc. 基地局、ユーザ装置及び方法
JP2008118459A (ja) * 2006-11-06 2008-05-22 Nec Corp 無線通信システム、無線基地局及びこれらにおける上り信号受信方法
WO2008078381A1 (ja) * 2006-12-25 2008-07-03 Fujitsu Limited 無線通信システム、無線基地局、及び無線通信方法
WO2008090624A1 (ja) 2007-01-26 2008-07-31 Fujitsu Limited 基地局装置及びセル切り替え決定方法
JP2008211483A (ja) * 2007-02-26 2008-09-11 Kyocera Corp 通信方法及び通信システム
JP2008270950A (ja) * 2007-04-17 2008-11-06 Fujitsu Ltd 無線通信システムにおける移動端末及びハンドオーバー処理装置
US7760682B2 (en) 2005-08-25 2010-07-20 Ntt Docomo, Inc. Base station, control station and radio communication control method
CN101300873B (zh) * 2005-11-04 2011-10-26 株式会社Ntt都科摩 基站和数据传送方法
JP2013143671A (ja) * 2012-01-11 2013-07-22 Sumitomo Electric Ind Ltd 無線基地局装置、通信制御方法および通信制御プログラム

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7590064B1 (en) * 2004-07-20 2009-09-15 Nortel Networks Limited Method and system of flow control in multi-hop wireless access networks
US7414983B2 (en) * 2004-12-30 2008-08-19 Motorola, Inc. Methods for managing data transmissions between a mobile station and a serving station
CN100433917C (zh) * 2005-08-29 2008-11-12 华为技术有限公司 高速下行分组接入用户在基站间平滑切换的方法
US7653060B2 (en) * 2005-09-26 2010-01-26 David Mayhew System and method for implementing ASI over long distances
JP5161782B2 (ja) 2005-10-04 2013-03-13 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動体システムにおける隣接リストの自動構築
US8842631B2 (en) * 2005-11-30 2014-09-23 Qualcomm Incorporated Data state transition during handoff
US7613444B2 (en) 2006-04-28 2009-11-03 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic building of monitored set
GB0616682D0 (en) 2006-08-22 2006-10-04 Nec Corp Mobile telecommunications
TWI330018B (en) * 2007-01-24 2010-09-01 Realtek Semiconductor Corp Wireless transmission apparatus and method
CA2680687C (en) * 2007-03-20 2016-08-09 Nec Corporation Base station, mobile communication system using the base station and data transfer method
US8442531B2 (en) * 2007-05-15 2013-05-14 Nokia Corporation Context transfers and multi-band operation for wireless networks
US8830950B2 (en) 2007-06-18 2014-09-09 Qualcomm Incorporated Method and apparatus for PDCP reordering at handoff
CN101175325B (zh) * 2007-10-19 2010-06-16 中兴通讯股份有限公司 多网络模式下的终端切换方法及装置
JP5368812B2 (ja) * 2008-07-15 2013-12-18 京セラ株式会社 無線端末及び通信端末
US9078182B2 (en) * 2008-08-28 2015-07-07 Kyocera Corporation Radio terminal and communication terminal
KR101558304B1 (ko) * 2008-11-20 2015-10-07 삼성전자주식회사 무선 근거리 통신망에서 셀 경계에서의 서비스 불균형을 개선하기 위한 방법 및 장치
CN102334358B (zh) * 2009-06-01 2016-05-11 上海贝尔股份有限公司 服务续传方法、用户设备和基站
JP5909950B2 (ja) * 2011-03-17 2016-04-27 富士通株式会社 無線基地局装置、及び無線基地局装置におけるデータ転送方法
CN103024837B (zh) * 2011-09-23 2018-02-16 中兴通讯股份有限公司 一种减小切换引起的媒体面时延的方法及装置
CN103167583B (zh) * 2011-12-16 2015-09-16 鼎桥通信技术有限公司 用户接入方法和无线网络控制器
US8817707B2 (en) * 2012-07-20 2014-08-26 Intel Corporation Mechanisms for roaming between 3GPP operators and WLAN service providers
US11064416B2 (en) * 2019-01-15 2021-07-13 Verizon Patent And Licensing Inc. Mobility management for airborne mobile devices
US11082853B2 (en) * 2019-08-07 2021-08-03 At&T Intellectual Property I, L.P. System and method for avoiding signal spoofing attacks in wireless broadband networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036954A (ja) * 1999-06-11 2001-02-09 Lucent Technol Inc Cdmaシステムにおける単方向モード順方向リンク高速パケット・データ・サービスのための主転送無線通信方法及びシステム
JP2002501695A (ja) * 1997-04-15 2002-01-15 ノキア ネットワークス オサケ ユキチュア パケットベースのテレコミュニケーションネットワークにおけるハンドオーバー時のパケットロス回避方法及びハンドオーバー方法
JP2002077982A (ja) * 2000-08-28 2002-03-15 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置及び無線通信方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109390A (en) * 1989-11-07 1992-04-28 Qualcomm Incorporated Diversity receiver in a cdma cellular telephone system
US5423066A (en) * 1992-11-24 1995-06-06 Motorola, Inc. Method of responding to resource requests in a trunked communication system without call-handoff
JP3399623B2 (ja) * 1994-03-16 2003-04-21 富士通株式会社 移動局位置捕捉装置
JPH09182143A (ja) * 1995-12-27 1997-07-11 Sony Corp 端末装置
US6701149B1 (en) * 1999-07-19 2004-03-02 Nortel Networks Limited Handoff framework to support real-time delay-critical services in a next generation network
JP3426218B2 (ja) * 2001-01-19 2003-07-14 松下電器産業株式会社 基地局装置及び符号化/変調方法
GB0120033D0 (en) * 2001-08-16 2001-10-10 Fujitsu Ltd Cell selection
US7254396B2 (en) * 2002-09-12 2007-08-07 Broadcom Corporation Network or access point handoff based upon historical pathway

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002501695A (ja) * 1997-04-15 2002-01-15 ノキア ネットワークス オサケ ユキチュア パケットベースのテレコミュニケーションネットワークにおけるハンドオーバー時のパケットロス回避方法及びハンドオーバー方法
JP2001036954A (ja) * 1999-06-11 2001-02-09 Lucent Technol Inc Cdmaシステムにおける単方向モード順方向リンク高速パケット・データ・サービスのための主転送無線通信方法及びシステム
JP2002077982A (ja) * 2000-08-28 2002-03-15 Matsushita Electric Ind Co Ltd 基地局装置、通信端末装置及び無線通信方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006174279A (ja) * 2004-12-17 2006-06-29 Fujitsu Ltd 無線基地局、移動局
US8711804B2 (en) 2005-02-15 2014-04-29 Panasonic Corporation Retransmission control method, base station and mobile station
JP2006229320A (ja) * 2005-02-15 2006-08-31 Matsushita Electric Ind Co Ltd 再送制御方法、無線通信システム、基地局および移動局
EP1845737A4 (en) * 2005-02-15 2012-03-28 Panasonic Corp METHOD OF ADJUSTING RETRANSMISSION, BASE AND MOBILE STATION
EP1845737A1 (en) * 2005-02-15 2007-10-17 Matsushita Electric Industrial Co., Ltd. Retransmission control method, base station and mobile station
JP2007089141A (ja) * 2005-08-25 2007-04-05 Ntt Docomo Inc 基地局、制御局、及び、無線通信制御方法
US7760682B2 (en) 2005-08-25 2010-07-20 Ntt Docomo, Inc. Base station, control station and radio communication control method
WO2007052747A1 (ja) * 2005-11-04 2007-05-10 Ntt Docomo, Inc. データ転送方法及び基地局
CN101300873B (zh) * 2005-11-04 2011-10-26 株式会社Ntt都科摩 基站和数据传送方法
EP1788756A1 (en) * 2005-11-16 2007-05-23 Samsung Electronics Co., Ltd. Apparatus and method for transmitting packets in wireless network
US7986714B2 (en) 2005-11-16 2011-07-26 Samsung Electronics Co., Ltd. Apparatus and method for transmitting packets in wireless network
WO2007083547A1 (ja) * 2006-01-17 2007-07-26 Ntt Docomo, Inc. ハンドオーバ制御方法
JP2007194746A (ja) * 2006-01-17 2007-08-02 Ntt Docomo Inc ハンドオーバ制御方法
US8654736B2 (en) 2006-06-16 2014-02-18 Ntt Docomo, Inc. Base station, user apparatus, and method
JP4954996B2 (ja) * 2006-06-16 2012-06-20 株式会社エヌ・ティ・ティ・ドコモ 基地局、ユーザ装置及び方法
WO2007145340A1 (ja) * 2006-06-16 2007-12-21 Ntt Docomo, Inc. 基地局、ユーザ装置及び方法
JP2008118459A (ja) * 2006-11-06 2008-05-22 Nec Corp 無線通信システム、無線基地局及びこれらにおける上り信号受信方法
JPWO2008078381A1 (ja) * 2006-12-25 2010-04-15 富士通株式会社 無線通信システム、無線基地局、及び無線通信方法
WO2008078381A1 (ja) * 2006-12-25 2008-07-03 Fujitsu Limited 無線通信システム、無線基地局、及び無線通信方法
JP4718617B2 (ja) * 2006-12-25 2011-07-06 富士通株式会社 無線通信システム、無線基地局、及び無線通信方法
US8041358B2 (en) 2007-01-26 2011-10-18 Fujitsu Limited Base station apparatus and cell switching determination method
WO2008090624A1 (ja) 2007-01-26 2008-07-31 Fujitsu Limited 基地局装置及びセル切り替え決定方法
JP2008211483A (ja) * 2007-02-26 2008-09-11 Kyocera Corp 通信方法及び通信システム
JP2008270950A (ja) * 2007-04-17 2008-11-06 Fujitsu Ltd 無線通信システムにおける移動端末及びハンドオーバー処理装置
JP2013143671A (ja) * 2012-01-11 2013-07-22 Sumitomo Electric Ind Ltd 無線基地局装置、通信制御方法および通信制御プログラム

Also Published As

Publication number Publication date
AU2003211423A1 (en) 2004-09-09
US20050259663A1 (en) 2005-11-24
CN1695399A (zh) 2005-11-09
JPWO2004075589A1 (ja) 2006-06-01
EP1549097A1 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
WO2004075589A1 (ja) 無線基地局及び移動通信システム
TWI271955B (en) Communication method, packet radio system, controller and user terminal
CN1748435B (zh) 改进的上行链路信号检测和降低的上行链路信号功率的系统和方法
JP4223039B2 (ja) 基地局装置
US6999430B2 (en) Method and apparatus for transmitting data traffic on a wireless communication channel
JP4022744B2 (ja) 移動通信システム及びベストセル変更方法並びにそれに用いる基地局制御装置
US7376436B2 (en) Radio communication system, communication terminal device, base station device, and radio communication method
EP2352337B1 (en) Configuration of hs-dsch serving cell change improvements
EP1998475B1 (en) Transmission power control method and base station
JP5308515B2 (ja) 自律的再送信を通じたアップリンクカバレージの向上
US20030142658A1 (en) Base station, control device, communication system and communication method
EP1777979A1 (en) Mobile station apparatus and upstream line transmission rate control method
WO2006030571A1 (ja) 移動局装置および上り回線送信電力制御方法
US20100080194A1 (en) Radio base station and mobile station
EP1265375A1 (en) Mobile communication system, base station, and method of controlling packet transmission timing for the system
CN101166075A (zh) 移动通信系统、基站及估计上行链路分组重发数目的方法
RU2410840C2 (ru) Способ и система для передачи информации об уровне шума для высокоскоростного пакетного доступа по восходящей линии связи
US20080132234A1 (en) Apparatus and method for utilizing the transport layer to provide measurement opportunities for the physical layer in a multi-mode network
CN109075901B (zh) 许可辅助接入载波上的链路自适应
JP2009005385A (ja) 基地局装置
US8201040B2 (en) Communication device, radio communication terminal, radio base station and communication method
JP4771093B2 (ja) 端末とネットワークとの間での非同期通信における確認応答についての情報の交換を最適化する方法
JP2009094612A (ja) 無線通信システムにおけるハンドオフ制御方法
KR100737075B1 (ko) 무선 기지국 및 그 데이터 송신 방법
EP1868405B1 (en) Method for optimizing reception notification information exchanges in synchronous communication between terminal and network, and mobile terminal

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004568460

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003705278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057002835

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038246872

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003705278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11191352

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057002835

Country of ref document: KR