WO2004074231A1 - 芳香族カルボン酸の製造方法 - Google Patents

芳香族カルボン酸の製造方法 Download PDF

Info

Publication number
WO2004074231A1
WO2004074231A1 PCT/JP2004/001549 JP2004001549W WO2004074231A1 WO 2004074231 A1 WO2004074231 A1 WO 2004074231A1 JP 2004001549 W JP2004001549 W JP 2004001549W WO 2004074231 A1 WO2004074231 A1 WO 2004074231A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetic acid
aromatic carboxylic
carboxylic acid
methyl acetate
producing
Prior art date
Application number
PCT/JP2004/001549
Other languages
English (en)
French (fr)
Inventor
Motoki Numata
Katsuhiko Fukui
Tomohiko Ogata
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to AU2004213274A priority Critical patent/AU2004213274A1/xx
Publication of WO2004074231A1 publication Critical patent/WO2004074231A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups

Definitions

  • the present invention relates to a method for producing an aromatic carboxylic acid, and more particularly to a method for producing an aromatic carboxylic acid using acetic acid as a solvent or the like during production.
  • an alkyl aromatic hydrocarbon such as para-xylene is converted into an acetic acid solvent with molecular oxygen in the presence of a catalyst containing cobalt, manganese and bromine.
  • a slurry containing crystals of terephthalic acid or other aromatic carboxylic acid produced by an oxidative reaction in a liquid phase is subjected to solid-liquid separation treatment, subjected to a drying step to obtain a coarse aromatic carboxylic acid, and then obtained.
  • a crude aromatic carboxylic acid is dissolved in water, and this aqueous solution is purified by hydrogenation to produce a high-purity aromatic carboxylic acid.
  • the method for producing such an aromatic carboxylic acid has a problem that acetic acid, which is a solvent, is consumed during the oxidation reaction, that is, acetic acid is lost during the production process.
  • One of the causes is as follows. There is by-product of methyl acetate due to the heterogeneous reaction of acetic acid. Condensable components contained in the oxidizing exhaust gas generated from the reactor are condensed by a condenser to suppress the by-product of methyl acetate, and then the methyl acetate contained in the uncondensed gas is recovered by contacting and absorbing with acetic acid.
  • a technique is known in which the concentration of methyl acetate in the reaction mother liquor is increased by circulating this to the reactor to suppress the by-product reaction from acetic acid to methyl acetate (see Patent Document 1). .
  • the oxidized exhaust gas is directly introduced into the distillation column for distillation, and aliphatic carboxylic acid esters such as methyl acetate contained in the exhaust gas from the distillation column are brought into contact with aliphatic sulfonic acid such as acetic acid to be absorbed.
  • aliphatic carboxylic acid esters such as methyl acetate contained in the exhaust gas from the distillation column are brought into contact with aliphatic sulfonic acid such as acetic acid to be absorbed.
  • Patent Document 2 A method is also known in which methyl acetate contained in the distillate obtained in the solvent recovery step of dehydrating oxidized water from the acetic acid solvent is recovered by distillation and returned to the oxidation reactor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 53-83493 (lower left column of page 2)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2000-0727 14
  • Patent Document 3 Japanese Patent Application Laid-Open No. Sho 53-3-84932
  • Patent Document 4 International Publication No. 98/45 2 3 9
  • methyl acetate is included in the exhaust gas mainly composed of inert gas (inert gas) after the vapor distilled by distillation in the solvent recovery step is fractionated and methyl acetate is recovered from the vapor accompanying methyl acetate. It still accompanies, and it is unclear what should be used effectively.
  • an object of the present invention is to solve the above-mentioned problems, minimize the consumption of an acetic acid solvent in a process for producing an aromatic carboxylic acid, industrially increase the production efficiency, and advantageously improve terephthalic acid.
  • aromatic carboxylic acids such as acids.
  • an aromatic carboxylic acid is produced by producing a slurry containing an aromatic carboxylic acid by oxidizing an alkyl aromatic compound in a liquid phase using acetic acid as a solvent.
  • the method for producing aromatic carboxylic acid in a step subsequent to the oxidation reaction step, is characterized in that methyl acetate contained in the generated exhaust gas is separated and collected, and the collected methyl acetate is returned to the oxidation reaction step.
  • methyl acetate contained in the oxidized exhaust gas generated from the reactor recovered, but also a step subsequent to the oxidation reaction, for example, a crystallization step Since the methyl acetate contained in the exhaust gas generated in one or more steps selected from the solid-liquid separation step, the drying step and the solvent recovery step is returned to the oxidation reaction step, the by-product of methyl acetate is suppressed, The loss of acetic acid as a solvent during the reaction is reduced, and the production efficiency is improved.
  • an alkyl aromatic compound is oxidized in a liquid phase to produce a slurry containing an aromatic carboxylic acid, and an aromatic carboxylic acid is produced from this slurry through at least a solid-liquid separation step.
  • Acetic acid contained in the liquid or vapor generated from the oxidation reaction step or the solid-liquid separation step or both steps is recovered by distillation, and the methyl acetate in the exhaust gas generated by this distillation is recovered And then return to the oxidation reaction step to produce an aromatic carboxylic acid.
  • a method of recovering methyl acetate in the exhaust gas a method of recovering methyl acetate by absorbing it in an acetic acid solution is efficient and preferable.
  • the acetic acid used for collecting methyl acetate it is preferable to use acetic acid obtained by separating acetic acid and water in a solvent collecting step.
  • a method for producing an aromatic carboxylic acid comprising recovering methyl acetate from the process gas and returning the acetic acid component to the oxidation reaction step.
  • the acetic acid component collected as an aqueous acetic acid solution is used as a part of the solvent.
  • the aqueous acetic acid solution may be used in a cake washing step in a solid-liquid separation step, or may be supplied to a solvent recovery step to reduce water content, and then reused together with other recovered acetic acid.
  • water separated by separating acetic acid and water in the solvent recovery step can be used.
  • para-xylene can be used as the alkyl aromatic compound in the above-described step
  • terephthalic acid can be used as the aromatic carboxylic acid.
  • FIG. 1 is a system diagram of an aromatic carboxylic acid production apparatus showing an embodiment of the present invention.
  • 1 is a reactor
  • 2 is a condenser
  • 3 is an exhaust gas
  • 4 is a condensate
  • 5 is a crystallization tank
  • 6 is a solid-liquid separator
  • 7 is a solvent recovery tower
  • 8 is a dehydration tower.
  • Reference numeral 9 denotes a dryer
  • 10 denotes a high-pressure absorption tower
  • 11 denotes a low-pressure absorption tower.
  • the alkyl aromatic compound used in the present invention is an alkylbenzene or alkyl such as mono-, di-, or trialkylbenzene which is converted into an aromatic carboxylic acid such as aromatic monocarboxylic acid, aromatic dicarboxylic acid, or aromatic tricarboxylic acid by liquid phase oxidation.
  • aromatic carboxylic acid such as aromatic monocarboxylic acid, aromatic dicarboxylic acid, or aromatic tricarboxylic acid by liquid phase oxidation.
  • Naphthalene, etc. including those in which some of the alkyl groups have been oxidized.
  • the method for producing the aromatic carboxylic acid used in the present invention typically includes
  • (V) a solvent recovery step of recovering acetic acid from a vapor or liquid containing acetic acid generated from at least one of the steps (i) to (iV).
  • the present invention is particularly applicable to the production of terephthalic acid, and the preferred aromatic aromatic compound is para-xylene.
  • the amount of acetic acid used as a solvent in the present invention is usually 2 to 6 times the weight of paraxylene as a raw material.
  • the acetic acid solvent may contain a small amount of water, specifically, 15% by weight or less.
  • a molecular oxygen-containing gas is used. It is usually used because air is simple equipment and can be used at low cost. Dilution air and oxygen-enriched air can also be used.
  • a catalyst containing cobalt (Co), manganese '(Mn) and bromine (Br) as constituent elements is usually used as a catalyst.
  • the reaction for oxidizing para-xylene in the liquid phase is performed in the presence of a catalyst in an acetic acid solvent, in the range of 140 to 230. C., preferably at 150 to 210 ° C., by oxidizing para-xylene while continuously supplying a molecular oxygen-containing gas.
  • the pressure in the oxidation reaction step is a pressure at which the mixture can maintain a liquid phase at least at the reaction temperature or higher, and is usually 0.2 to 5 MPa, preferably 1 to 2 MPa.
  • the reactor is usually a tank equipped with a stirrer, but the stirrer is not always necessary and may be a bubble column type.
  • a cooler is provided at the upper part of the reactor, and a gas supply port containing molecular oxygen is provided at the lower part. Then, the molecular oxygen-containing gas supplied from the lower part is used for the oxidation reaction, is extracted from the reactor as an exhaust gas accompanied by a large amount of solvent vapor, and is then condensed from the exhaust gas in a reflux cooler. After being condensed and separated, it is discharged as oxidizing exhaust gas. Part of the condensate is purged out of the system to control the water content of the reaction mother liquor, and the rest is returned to the reactor.
  • the oxidized exhaust gas is introduced into a high-pressure absorption tower, and the methyl acetate in the exhaust gas is absorbed by gas-liquid contact with acetic acid or a liquid containing acetic acid.
  • acetic acid it is preferable to use acetic acid recovered from the solvent recovery step.
  • the acetic acid that has absorbed methyl acetate in this way is returned to the oxidation reactor and subjected to the oxidation reaction, and is used for the terephthalic acid generation reaction.
  • a crystallization step for a slurry of the reaction product obtained in the oxidation reaction step the reaction slurry is lowered to an appropriate temperature and pressure to obtain a terephthalic acid slurry.
  • the crystallization conditions are 1 to 6 crystallization stages, and preferably 2 to 4 crystallization stages.
  • a series of crystallization steps employ flash cooling, and the final step is preferably performed under reduced pressure boiling.
  • Terephthalic acid is usually recovered from the crystallized slurry through a solid-liquid separation step and a drying step, and sent to the hydrogenation purification step.
  • the drying step is omitted, and the acetic acid solvent is passed through a solvent replacement step. May be replaced with an aqueous solvent, and sent directly to the hydrorefining step.
  • a device for performing solid-liquid separation a device such as a centrifuge, a horizontal belt filter, a rotary vacuum filter, or the like is generally used, but is not limited thereto.
  • the solvent recovery step is a step of purifying the condensate of the oxidized exhaust gas and the mother liquor separated at the time of solid-liquid separation to recover acetic acid.Since the water produced by oxidation is removed, the solvent recovery step is also referred to as the acetic acid dehydration step. Is done.
  • exhaust gas containing methyl acetate and acetic acid generated in each step must be used. Aggregate at least one of the above into a collected gas, which is absorbed It can be carried out by introducing the acetic acid into a droplet and guiding it to a tower to absorb the acetic acid. This absorption condition is preferably as low as possible from the viewpoint of absorption efficiency, and is usually carried out at 50 ° C or lower.
  • a liquid containing water is added to crude terephthalic acid to form a slurry, which is heated and dissolved, and then subjected to hydrogenation treatment in the presence of a catalyst.
  • This is a method for producing high-purity terephthalic acid by performing liquid separation.
  • the crude terephthalic acid is usually supplied to the hydrogenation reaction system as a slurry of 20 to 35 % by weight / 0 with respect to the liquid containing water.
  • any known catalyst can be used, and examples thereof include palladium, ruthenium, rhodium, osmium, iridium, and platinum supported on activated carbon. These catalysts may be used in combination.
  • the conditions for the hydrorefining reaction are usually as follows: a reaction temperature of 255 to 300 ° C, a reaction pressure of 1 to 12 MPa, and a hydrogen partial pressure of 0.05 to 3 MPa. Is common, but is not limited to this.
  • Terephthalic acid purified by a hydrogenation reaction is generally separated as a solid by crystallization and solid-liquid separation.
  • the crystallization conditions are selected in consideration of the yield of the solids to be precipitated, the purity of the solids, etc.
  • the crystallization is carried out in a plurality of stages, and the crystallization conditions in the final stage are as follows. 40 to 180 ° C, 0.3 to 1. OMPa. At this time, the residence time in each crystallization tank is about 5 to 200 minutes. If the temperature of the crystallization tank in the final stage is lower than the above range, the precipitation amount of impurities such as p-TA rapidly increases, which is not preferable because the purity of terephthalic acid separated as a solid content is low.
  • terephthalic acid precipitated in the crystallization step is separated from a liquid whose main component is water.
  • the temperature and pressure conditions for the solid-liquid separation are generally selected to be substantially the same as the above-mentioned conditions for the crystallization tank, and when the crystallization process is performed in multiple stages, the conditions for the final crystallization tank.
  • a device for performing solid-liquid separation a device such as a centrifuge, a horizontal belt filter, a rotary vacuum filter, or the like is generally used, but is not limited thereto. Also, these It is also possible to use two or more devices in combination.
  • Terephthalic acid obtained by separating solids precipitated after the purification step by solid-liquid separation may be dried as it is to obtain a product, or after slurrying with fresh water in a suspension washing tank, washing, and then solidifying.
  • the solid content separated by liquid separation may be dried to obtain a product.
  • a reactor also referred to as an oxidation reactor
  • a reactor 1 is supplied with a mixture of a catalyst containing Co / Mn / Br, an acetic acid solvent, and a raw material xylene, and a molecular oxygen-containing gas.
  • the gas component extracted from the reactor 1 is condensed and separated from condensable components such as acetic acid in a condenser (gas-liquid separator) 2 and then discharged from the heat exchanger 2 as oxidized exhaust gas.
  • a part of the condensate 4 is discharged out of the system as a purge for water control, and then refluxed to the reactor 1.
  • the slurry obtained by the oxidation treatment in the reactor 1 is transferred to a low-temperature re-oxidation tank (not shown), and is oxidized at a lower temperature than the reactor 1 by a small amount of molecular oxygen-containing gas.
  • the oxidized slurry is further crystallized in the crystallization tank 5.
  • the number of crystallization stages is usually 1 to 6 stages.
  • the slurry subjected to the crystallization treatment is separated into a mother liquor component and a crude terephthalic acid cake by a solid-liquid separator 6, and a crude terephthalic acid is obtained via a dryer 9.
  • the crude terephthalic acid is converted into a slurry with water-containing liquid in a mixing tank (not shown), and after dissolution, transferred to a hydrogenation and purification reactor where it is purified and processed into high-purity terephthalic acid.
  • the oxidized exhaust gas condensate and the mother liquor component separated by the solid-liquid separator 6 are transferred to a solvent recovery step having a solvent recovery tower 7 and a dehydration tower 8, and acetic acid is recovered.
  • Exhaust gas 3 is discharged not only from the reactor 1, but also from the crystallization tank 5, the solid-liquid separator 6, the dryer 9, and the dehydration tower 8.
  • Exhaust gas composed of such an aggregate of one or more local exhaust gases is introduced into the high-pressure absorption tower 10 or the low-pressure absorption tower 11 and is entrained in the exhaust gas using acetic acid as an absorbing solution. Absorb methyl acetate and collect in reactor 1.
  • an inert gas such as a process gas is passed through the drier so that the solvent component evaporated in the drier accompanies the gas and goes out of the drier.
  • a means for discharging since the gas contains methyl acetate, it is preferable to apply the means for collecting methyl acetate of the present invention.
  • acetic acid obtained by separating acetic acid and water in the solvent recovery step (7 and 8) is preferable. Further, it is preferable to provide a device for absorbing and recovering acetic acid using water on the downstream side of the high-pressure absorption tower 10 and the low-pressure absorption tower 11.
  • the methyl acetate absorption device and the acetic acid absorption device may be separate towers, or may be provided integrally with the same tower.
  • the water used for acetic acid absorption at this time was water obtained by separating acetic acid and water in the solvent recovery step (7 and 8) or solid-liquid separation in the hydrogenation purification step. A separation mother liquor containing water as a main component is preferred.
  • methyl acetate is produced from the exhaust gas of the aggregate of the exhaust gas containing methyl acetate generated in one or more steps selected from the crystallization step, the solid-liquid separation step, the drying step and the solvent recovery step.
  • a by-product reaction of methyl acetate is suppressed, loss of acetic acid as a solvent during the reaction is reduced, and production efficiency is improved.
  • the present invention not only recovers the methyl acetate contained in the oxidized exhaust gas generated from the reactor, but also performs the steps subsequent to the oxidation reaction step, ie, the crystallization step and the solid-liquid separation step.
  • methyl acetate obtained from exhaust gas generated in one or more steps selected from the drying step and the solvent recovery step is also returned to the oxidation reaction step, so that the recovery efficiency of methyl acetate is increased,
  • the loss of acetic acid as a solvent therein is reduced and the production efficiency is improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明の課題は、芳香族カルボン酸の製造工程における酢酸溶媒の消費量を可及的に少なくし、工業的に製造効率を高めて有利にテレフタル酸などの芳香族カルボン酸を製造することである。本発明は、酢酸を溶媒とし、アルキル芳香族化合物を液相中で酸化反応させて芳香族カルボン酸を含有するスラリーを生成して芳香族カルボン酸を製造する方法において、前記酸化反応工程より後工程すなわち、晶析工程、固液分離工程、乾燥工程および溶媒回収工程から選ばれる1以上からなる工程で発生する排気ガスに含まれる酢酸メチルを分離回収し、回収された酢酸メチルを前記酸化反応工程へ返送するようにした芳香族カルボン酸の製造方法に係わる。

Description

明 細 書 芳香族カルボン酸の製造方法 <技術分野 >
この発明は、 芳香族カルボン酸の製造方法に関し、 詳しくは製造時に溶媒等と して酢酸を用いる芳香族カルボン酸の製造方法に関する。
<背景技術 >
一般に、 テレフタル酸などの芳香族カルボン酸の工業的製造方法として、 パラ キシレンなどのアルキル芳香族炭化水素を、 酢酸溶媒中でコバルト、 マンガン及 ぴ臭素を含有する触媒の存在下に分子状酸素により液相で酸化反応させ、 生成し たテレフタル酸またはその他の芳香族カルボン酸の結晶を含むスラリ一を固液分 離処理し、 乾燥工程を経て粗性な芳香族カルボン酸とし、 次いで得られた粗性芳 香族カルボン酸を水に溶解し、 この水溶液を水素添加により精製処理して高純度 な芳香族カルボン酸を製造する方法が知られている。
このような芳香族カルボン酸を製造する方法では、 酸化反応中に溶媒である酢 酸が消費され、 すなわち製造工程中に酢酸の損失が起こるという問題があり、 そ の原因の一つとしては、 酢酸の不均一化反応による酢酸メチルの副生がある。 酢酸メチルの副生を抑制するために、 反応器から発生した酸化排ガス中に含有 される凝縮性成分をコンデンサーによって凝縮した後に、 未凝縮ガスに含まれる 酢酸メチルを酢酸と接触 ·吸収させて回収し、 これを反応器に循環させることに より、 反応母液中の酢酸メチルの濃度を高くし、 酢酸から酢酸メチルへの副生反 応を抑制する技術が知られている (特許文献 1参照)。
また、 酸化排ガスを、 直接、 蒸留塔に導入して蒸留を行ない、 蒸留塔の排ガス に含まれる酢酸メチルなどの脂肪族カルボン酸エステルを、 酢酸などの脂肪族力 ルポン酸と接触させて吸収させ、 その処理ガスを洗浄水と接触させて脂肪族カル ボン酸を吸収させる技術が知られている (特許文献 2参照)。 また、 酢酸溶媒から酸化生成水を脱水する溶媒回収工程で得られた留出水に含 まれる酢酸メチルを蒸留処理して回収し、 酸化反応器に戻す方法も知られている
(特許文献 3参照)。
また、 酢酸メチルを回収する方法として、 共沸蒸留を用いた溶媒回収方法にお いて、 蒸留留出蒸気を分縮して酢酸メチル同伴蒸気から酢酸メチルを回収する方 法も知られている (特許文献 4参照)。
[特許文献 1 ] 特開昭 5 3— 8 4 9 3 3号公報 (第 2頁左下欄)
[特許文献 2 ] 特開 2 0 0 0— 7 2 7 1 4号公報
[特許文献 3 ] 特開昭 5 3— 8 4 9 3 2号公報
[特許文献 4 ] 国際公開第 9 8 / 4 5 2 3 9号公報
<発明の開示 >
しかしながら、 上記したように酢酸メチルの副生を抑制するために、 反応器か ら発生した酸化排ガスや溶媒回収工程の留出水中に含有される酢酸メチルを回収 するというだけでは、 酢酸の消費量低減には充分でなく、 さらに酢酸の損失を低 減して効率的に芳香族カルボン酸を製造する必要がある。
また、 溶媒回収工程で蒸留により留出した蒸気を分縮し、 酢酸メチルを同伴す る蒸気から酢酸メチルを回収した後のィナートガス (不活性ガス) を主体とする 排気ガスには、 酢酸メチルが依然として同伴しており、 これを有効利用すべき点 は未解決である。
このような問題点は、 酢酸を溶媒として用いるテレフタル酸おょぴその他の芳 香族カルボン酸の製造において共通する問題でもある。
そこで、 この発明の課題は、 上記した問題点を解決して、 芳香族カルボン酸の 製造工程における酢酸溶媒の消費量を可及的に少なくし、 工業的に製造効率を高 めて有利にテレフタル酸などの芳香族カルボン酸を製造することである。
上記の課題を解決するために、 この発明では、 酢酸を溶媒とし、 アルキル芳香 族化合物を液相中で酸化反応させて芳香族カルボン酸を含有するスラリーを生成 して芳香族カルボン酸を製造する方法において、 前記酸化反応工程より後工程で 発生する排気ガスに含まれる酢酸メチルを分離回収し、 回収された酢酸メチルを 前記酸化反応工程へ返送することを特徴とする芳香族カルボン酸の製造方法とし たのである。
上記したように構成されるこの発明の芳香族カルボン酸の製造方法では、 反応 器から発生した酸化排ガス中に含有される酢酸メチルを回収するだけではなく、 酸化反応より後工程、 例えば晶析工程、 固液分離工程、 乾燥工程および溶媒回収 工程から選ばれる 1工程または複数の工程で発生した排気ガスに含まれる酢酸メ チルを酸化反応工程へ返送するので、 酢酸メチルの副生が抑制され、 反応中の溶 媒である酢酸の損失が低減され、 製造効率が向上することになる。
また、 酢酸を溶媒とし、 アルキル芳香族化合物を液相中で酸化反応させて芳香 族カルボン酸を含有するスラリーを生成し、 このスラリ一から少なくとも固液分 離工程を経て芳香族カルボン酸を製造する方法において、 酸化反応工程もしくは 固液分離工程または両工程から発生する液体または蒸気に含まれる酢酸を蒸留操 作にて回収し、 この蒸留操作にて宪生した排気ガス中の酢酸メチルを回収して酸 化反応工程へ返送することを特徴とする芳香族カルボン酸の製造方法としたので あ 。
上記した芳香族カルボン酸の製造方法では、 溶媒回収工程において、 蒸留操作 によって得られる留出水中の酢酸メチルだけでなく、 留出ガスの凝縮成分を可能 な限り凝縮した後に、 発生したィナートガスを主体とする排気ガス中の酢酸メチ ルをも回収して酸化反応工程へ返送するようにしたので、 さらに酢酸メチルの回 収効率が高まり、 反応中の溶媒である酢酸の損失を極めて効率よく低下させるこ とができる。
上記排気ガス中の酢酸メチルを回収する方法としては、 酢酸メチルを酢酸液に 吸収させて回収する方法が、 効率的で好ましい。 また、 酢酸メチルの回収に用い る酢酸は、 溶媒回収工程において酢酸と水を分離処理して得られたものを用いる のが好ましい。
また、 前記問題点の解決に加えて、 酢酸メチルを酢酸に吸収させた後の処理ガ スに酢酸の一部が同伴するという問題点を解決するために、 前述した排気ガス中 の酢酸メチルを回収して酸化反応工程へ返送することを特徴とする芳香族カルボ ン酸の製造方法において、 酢酸メチルを酢酸に吸収して回収した後、 処理ガス中 に含まれる酢酸成分を水に吸収させ、 酢酸水溶液として回収した酢酸成分を溶媒 の一部として使用する。 また、 この酢酸水溶液は、 固液分離工程におけるケーキ 洗浄工程に用いてもよいし、 溶媒回収工程に供給して水分を低減した後にその他 回収酢酸と共に再利用しても良い。
上記した酢酸を吸収させる水は、 溶媒回収工程において酢酸と水を分離処理し て分留された水を用いることができる。
また、 上述した工程におけるアルキル芳香族化合物としては、 パラキシレンを 採用でき、 また芳香族カルボン酸はテレフタル酸を採用することができる。
<図面の簡単な説明 >
図 1は、 本発明の一例の実施形態を示す芳香族カルボン酸の製造装置の系統図 でめる。
なお、 図中の符号、 1は反応器、 2は凝縮器、 3は排気ガス、 4は凝縮液、 5 は晶析槽、 6は固液分離機、 7は溶媒回収塔、 8は脱水塔、 9は乾燥機、 1 0は 高圧吸収塔、 1 1は低圧吸収塔を表す。 ぐ発明を実施するための最良の形態 >
以下において、 この発明について詳細に説明する。
この発明に用いるアルキル芳香族化合物は、 液相酸化により芳香族モノカルボ ン酸、 芳香族ジカルボン酸、 芳香族トリカルボン酸等の芳香族カルボン酸に変換 されるモノ、 ジ、 トリアルキルベンゼン等のアルキルベンゼンやアルキルナフタ レン等であり、 そのアルキル基の一部が酸化されたものをも含む。
また、 この発明に用いられる芳香族カルボン酸の製造方法としては、 典型的に は、
( i ) 酢酸を溶媒とし、 コバノレト、 マンガンおよび臭素を含む触媒存在下でアル キル芳香族化合物を液相酸化して芳香族力ルポン酸含有のスラリ一を生成する酸 化反応工程、
( i i ) 生成したスラリーの母液中に溶解した芳香族カルボン酸を晶析する工程
( i i i ) 晶析工程で得られた芳香族カルボン酸スラリーを母液と芳香族カルボ ン酸を含むケーキに固液分離する工程、
( i V ) 分離されたケーキに付着する液体を除去する乾燥工程、
( V ) 工程 ( i ) から工程 ( i V ) の少なくとも 1つから発生する酢酸を含有す る蒸気又は液体から酢酸を回収する溶媒回収工程、 の各工程を含んでいる。
この発明は、 特にテレフタル酸の製造に適用され、 好ましい原料としてのアル キル芳香族化合物は、 パラキシレンである。
以下、 パラキシレンを酸化してテレフタル酸を製造する場合について実施形態 を説明する。
この発明に用いる溶媒としての酢酸の使用量は、 通常、 原料となるパラキシレ ンに対して 2〜 6重量倍である。 また酢酸溶媒は、 若干量の水、 具体的には 1 5 重量%以下の水を含有しているものでも使用できる。
パラキシレンを液相で酸化反応させるには、 分子状の酸素含有ガスを用いる。 通常は空気が簡単な設備で、 低コストで使用できることから用いられ、 希釈空気 、 酸素富化空気なども使用できる。
パラキシレンを酸化するには、 通常、 触媒としてコバルト (C o )、 マンガン' ( M n ) 及び臭素 (B r ) を構成元素として含む触媒が用いられる。
液相中でパラキシレンを酸化する反応は、 酢酸溶媒中の触媒存在下に、 1 4 0 〜2 3 0。C、 好ましくは 1 5 0〜2 1 0 °Cの温度で分子状酸素含有ガスを連続的 に供給しながらパラキシレンを酸化することにより行なう。 酸化反応工程での圧 力は、 少なくとも反応温度で混合物が液相を保持できる圧力、 またはそれ以上の 高圧であり、 通常 0 . 2〜5 M P a、 好ましくは 1〜 2 M P aである。
反応器は、 通常、 攪拌機付きの槽であるが、 必ずしも攪拌機は必要ではなく、 気泡塔タイプのものでも良い。 反応器上部に冷却器を、 下部に分子状酸素含有ガ ス供給口が設けられている。 そして、 下部より供給した分子状酸素含有ガスは、 酸化反応に利用された後、 多量の溶媒蒸気を同伴した排ガスとして反応器より抜き出され、 次いで、 還流冷 却器にて排ガスから凝縮性成分を凝縮分離した後、 酸化排ガスとして排出される 。 凝縮液は、 反応母液の水分調節のためにその一部が系外にパージされて、 残り は反応器に還流される。
また、 酸化排ガスは、 高圧吸収塔に導入され、 排ガス中の酢酸メチルを酢酸ま たは酢酸を含む液に気液接触をさせて吸収させる。 酢酸は、 溶媒回収工程から回 収された酢酸の使用が好ましい。
このように酢酸メチルを吸収した酢酸は、 酸化反応器に返送されて酸化反応に 供され、 テレフタル酸の生成反応に用いられる。
そして、 酸化反応工程で得られた反応物をスラリー化したものについての晶析 工程では、 反応スラリーを適切な温度と圧力まで下げ、 テレフタル酸スラリーを 得る。 晶析の条件は、 晶析の段数として 1段から 6段であり、 好ましくは 2から 4段である。 一連の晶析工程は、 フラッシュ冷却が採用され、 最終工程は減圧沸 騰状態で行なうことが好ましい。
テレフタル酸は、 通常、 晶析処理したスラリーを固液分離工程、 乾燥工程を経 て回収され、 水素添加精製工程に送られるが、 この乾燥工程を省略して、 溶媒置 換工程を経て酢酸溶媒から水溶媒に置換して、 直接、 水素添加精製工程に送って もよい。
固液分離を実施する装置としては、 通常、 遠心分離機、 水平ベルトフィルタ一 、 ロータリーバキュームフィルタ一等の装置が用いられるが、 これらに限定され るものではない。
また、 溶媒回収工程は、 酸化排ガス凝縮液や固液分離された際に分取された母 液を精製して酢酸を回収する工程であり、 酸化生成水を除去するので、 酢酸脱水 工程とも別称される。
上述したような晶析工程、 固液分離工程、 乾燥工程および溶媒回収工程から発 生した排気ガスから酢酸メチルおよび酢酸を回収するには、 各工程で発生した酢 酸メチルゃ酢酸を含む排気ガスの 1以上を集合させて集合ガスとし、 これを吸収 塔に導いて液滴状などに調整した酢酸と接触させて吸収することにより実施でき る。 この吸収条件は、 吸収効率の面からできるだけ低温であることが好ましく、 通常は 5 0 °C以下で行なわれる。
水素添加精製工程は、 粗テレフタル酸に水を含む液体を加えてスラリー化し、 これを加熱溶解した状態で、 触媒の存在下に水素添加処理を行い、 得られた処理 物に、 晶析及び固液分離を施すことによって高純度テレフタル酸を製造する方法 である。 この際、 粗テレフタル酸は、 水を含む液体に対して、 通常、 2 0〜3 5 重量 °/0のスラリーとして水素添加反応系に供給される。
水素添加触媒としては、 これまでに公知の任意の触媒を使用することが可能で 、 例えば、 活性炭に担持させたパラジウム、 ルテニウム、 ロジウム、 オスミウム 、 イリジウム、 白金等が挙げられる。 これらの触媒は併用してもよい。
水素添加精製反応の条件としては、 通常、 反応温度を 2 5 5〜3 0 0 °C、 反応 圧力を 1〜 1 2 M P a、 水素分圧を 0 . 0 5〜3 M P a として実施するのが一般 的であるが、 これに限定されるものではない。
水素添加反応により精製されたテレフタル酸は、 晶析、 及び固液分離すること によって固形分として分離するのが一般的である。 晶析の条件は、 析出する固形 分の収率、 同固形分の純度等を勘案して選択するが、 通常、 晶析を複数段に亘っ て行い、 その最終段での晶析条件が 1 4 0〜 1 8 0 °C、 0 . 3〜1 . O M P aと する。 この際、 それぞれの晶析槽での滞留時間は 5〜 2 0 0分程度とする。 最終 段での晶析槽の温度が上記の範囲より低くなると、 p— T A等の不純物の析出量 が急激に増加するため、 固形分として分離されるテレフタル酸の純度が低くなつ て好ましくない。
一般に、 晶析を行った後に固液分離を行なうことにより、 晶析工程で析出した テレフタル酸を、 主成分が水である液体から分離する。 固液分離する温度、 及び 、 圧力条件としては、 通常、 上記した晶析槽の条件、 晶析工程が多段に亘る場合 はその最終晶析槽の条件とほぼ等しい条件が選ばれる。 固液分離を実施する装置 としては、 通常、 遠心分離機、 水平ベルトフィルター、 ロータリーバキュームフ ィルター等の装置が用いられるが、 これに限定するものではない。 また、 これら の装置を 2つ以上組み合わせて使用する事も可能である。
精製工程後に析出した固形分を固液分離によって分離して得たテレフタル酸は 、 そのまま乾燥して製品としてもよく、 また懸洗槽にて新水とスラリー化して洗 浄を施した後、 固液分離して分離された固形分を乾燥して製品としてもよい。 次に図 1の装置系統図を参照して、 本発明のテレフタル酸の製造方法について の代表的な実施形態の一例を説明する。
まず、反応器(酸化反応器とも別称される。) 1に、 C o /M n / B rを含む触 媒、 酢酸溶媒、 原料パラキシレンの混合物と、 分子状酸素含有ガスを供給する。 この反応器 1より抜き出されるガス成分は、 凝縮器 (気一液分離器) 2にて酢酸 等の凝縮性成分を凝縮分離した後、 酸化排ガスとして熱交換器 2から排出される 。 凝縮液 4は、 その一部を水分調節のためのパージ分として系外に排出した後、 反応器 1に還流される。
反応器 1で酸化処理されて得られたスラリーは、低温追酸化槽(図示せず。) に 移送され、 少量の分子状酸素含有ガスによって反応器 1より低い温度で酸化処理 される。 酸化処理されたスラリーは、 晶析槽 5でさらに晶析される。 晶析の段数 は、 通常 1段から 6段である。 この晶析処理が施されたスラリーは、 固液分離機 6にて母液成分と粗テレフタル酸ケーキとに分離され、 乾燥機 9を経由して粗テ レフタル酸を得る。
また、 粗テレフタル酸は、 図外の混合槽において、 水を含む液体とのスラリ一 とされ、 溶解後、 水素添加精製反応器に移送され、 高純度テレフタル酸に精製処 理される。
一方、 酸化排ガス凝縮液や固液分離機 6にて分離された母液成分は、 溶媒回収 塔 7および脱水塔 8を有する溶媒回収工程に移送され、 酢酸が回収される。 反応器 1ばかりでなく、 晶析槽 5、 固液分離機 6、 乾燥機 9、 脱水塔 8からも 排気ガス 3が排出される。 このような 1つ以上の局所からの排気ガスの集合体か らなる排気ガスは、 高圧吸収塔 1 0または低圧吸収塔 1 1に導入され、 吸収液に 酢酸を用いて排気ガスに同伴される酢酸メチルを吸収して反応器 1に回収する。 固液分離機として、 水平ベルトフィルターやロータリ一バキュームフィルター 等の濾過型の固液分離装置を用いる場合には、 分離機内の濾過部の上流側にガス を供給しながら、 真空装置により濾液及びガスを排出し、 吸引濾過する。 このと き排出された濾液及びガスは気液分離し、 得られたガスの少なくとも一部は工程 外に排出されるが、 このガスには酢酸メチルが含まれているので、 本発明の酢酸 メチルの回収手段を適用することが好ましい。
また、 乾燥機として、 回転式乾燥機、 流動床乾燥機において、 プロセスガス等 の不活性ガスを乾燥機内に流通させることによって乾燥機内で蒸発した溶媒成分 を前記ガスに同伴させて乾燥機外へ排出する手段を用いる場合には、 ガスに酢酸 メチルが含まれているので、 本発明の酢酸メチルの回収手段を適用することが好 ましい。
吸収塔 1 0または 1 1において酢酸メチルを回収するために用いられる酢酸と しては、 溶媒回収工程 ( 7及び 8 ) において酢酸と水を分離処理して得られた酢 酸が好ましい。 また、 高圧吸収塔 1 0、 及び低圧吸収塔 1 1の下流側には酢酸を 、 水を用いて吸収して回収する装置を設けることが好ましい。 酢酸メチルの吸収 装置と酢酸の吸収装置は、 別塔でもよく、 同じ塔に一体化されて設けられていて も良い。 このときの酢酸の吸収に用いられる水は、 溶媒回収工程 (7及び 8 ) に おいて酢酸と水を分離処理して得られた水や、 水素添加精製工程において、 固液 分離により得られた水を主成分とする分離母液が好ましい。
このようにすると、 晶析工程、 固液分離工程、 乾燥工程および溶媒回収工程か ら選ばれる 1つまたは複数の工程で発生した酢酸メチルを含有する排気ガスの集 合体の排気ガスから酢酸メチルが回収され、 これを酸化反応工程へ返送すること により、 酢酸メチルの副生反応が抑制され、 反応中の溶媒である酢酸の損失が低 減し、 製造効率が向上する。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。
本出願は、 2003年 2月 21 日出願の日本特許出願 (特願 2003— 044121) に基づ くものであり、 その内容はここに参照として取り込まれる。 ぐ産業上の利用可能性 >
この発明は、 反応器から発生した酸化排ガス中に含有される酢酸メチルを回収 するだけでなく、 酸化反応工程より後の工程、 すなわち晶析工程、 固液分離工程
、 乾燥工程および溶媒回収工程から選ばれる 1つまたは複数の工程で発生した排 気ガスから得られる酢酸メチルをも酸化反応工程へ返送するようにしたので、 酢 酸メチルの回収効率が高まり、 反応中の溶媒である酢酸の損失が減少し、 製造効 率が向上することになるという利点がある。
また、 酢酸メチルを酢酸に吸収して回収した際、 吸収処理ガスに同伴した酢酸 を所要工程に返送するようにした発明では、 酢酸の損失が減少するので、 工業的 に製造効率を高めて有利にテレフタル酸などの芳香族力ルポン酸を製造できる利 点がある。

Claims

請 求 の 範 囲
1 . 酢酸を溶媒とし、 アルキル芳香族化合物を液相中で酸化反応させて芳 香族カルボン酸を含有するスラリーを生成して芳香族カルボン酸を製造する方法 において、
前記酸化反応工程より後工程で発生する排気ガスに含まれる酢酸メチルを分離 回収し、 回収された酢酸メチルを前記酸化反応工程へ返送することを特徴とする 芳香族カルボン酸の製造方法。
2 . 酸化反応工程より後工程が、 晶析工程、 固液分離工程、 乾燥工程およ び溶媒回収工程から選ばれる 1以上の工程であることを特徴とする請求の範囲第 1項記載の芳香族カルボン酸の製造方法。
3 . 排気ガスが、 晶析工程、 固液分離工程、 乾燥工程および溶媒回収工程 から選ばれる複数の工程で発生した酢酸メチルを含有するガスの集合体からなる 排気ガスであることを特徴とする請求の範囲第 2項記載の芳香族カルボン酸の製 造方法。
4 . 酢酸を溶媒とし、 アルキル芳香族化合物を液相中で酸化反応させて芳 香族カルボン酸を含有するスラリ一を生成し、 このスラリーから少なくとも固液 分離工程を経て芳香族カルボン酸を製造する方法において、
酸化反応工程もしくは固液分離工程または両工程から発生する液体または蒸気 に含まれる酢酸を蒸留操作にて回収し、 この蒸留操作にて発生した排気ガス中の 酢酸メチルを回収して酸化反応工程へ返送することを特徴とする芳香族カルボン 酸の製造方法。
5 . 排気ガス中の酢酸メチルの回収は、 酢酸メチルを酢酸に吸収させるこ とによるものであることを特徴とする請求の範囲第 1項乃至第 4項のいずれかに 記載の芳香族カルボン酸の製造方法。
6 . 排気ガス中の酢酸メチルを酢酸に吸収して回収処理した後、 処理後の ガス中に含まれる酢酸を水に吸収させて、 酢酸水溶液を得て、 この酢酸水溶液を 直接または水の含有量を低下させた後に溶媒の一部として使用することを特徴と する請求の範囲第 5項記載の芳香族カルボン酸の製造方法。
7 . 酢酸の吸収に用いる水が、 溶媒回収工程において酢酸と水の分離処理 して得られた水であることを特徴とする請求の範囲第 6項記載の芳香族カルボン 酸の製造方法。
8 . 酢酸メチルの吸収に用いる酢酸が、 溶媒回収工程において酢酸と水を 分離処理して得られた酢酸であることを特徴とする請求の範囲第 5項乃至第 7項 のいずれかに記載の芳香族カルボン酸の製造方法。
9 . アルキル芳香族化合物が、 パラキシレンであり、 芳香族カルボン酸が テレフタル酸であることを特徴とする請求の範囲第 1項乃至第 8項のいずれかに 記載の芳香族カルボン酸の製造方法。
PCT/JP2004/001549 2003-02-21 2004-02-13 芳香族カルボン酸の製造方法 WO2004074231A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2004213274A AU2004213274A1 (en) 2003-02-21 2004-02-13 Process for producing aromatic carboxylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-044121 2003-02-21
JP2003044121 2003-02-21

Publications (1)

Publication Number Publication Date
WO2004074231A1 true WO2004074231A1 (ja) 2004-09-02

Family

ID=32905446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001549 WO2004074231A1 (ja) 2003-02-21 2004-02-13 芳香族カルボン酸の製造方法

Country Status (3)

Country Link
CN (1) CN100402482C (ja)
AU (1) AU2004213274A1 (ja)
WO (1) WO2004074231A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100368370C (zh) * 2006-03-29 2008-02-13 中国石化仪征化纤股份有限公司 对二甲苯氧化母液中悬浮物的回收系统装置
US7863481B2 (en) 2006-03-01 2011-01-04 Eastman Chemical Company Versatile oxidation byproduct purge process
US7880032B2 (en) 2006-03-01 2011-02-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7888530B2 (en) 2004-09-02 2011-02-15 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7897810B2 (en) 2004-09-02 2011-03-01 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7897808B2 (en) 2006-03-01 2011-03-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7956215B2 (en) 2006-03-01 2011-06-07 Grupo Petrotemex, S.A. De C.V. Versatile oxidation byproduct purge process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914003A (zh) * 2010-07-02 2010-12-15 逸盛大化石化有限公司 一种烷基芳香烃液相催化氧化生产芳香族羧酸的方法
GB201417621D0 (en) * 2014-10-06 2014-11-19 Invista Tech Sarl Production of an aromatic dicarboxylic acid
GB201417735D0 (en) * 2014-10-07 2014-11-19 Invista Tech Sarl Production of an aromatic dicarboxylic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384932A (en) * 1976-12-30 1978-07-26 Mitsubishi Chem Ind Ltd Preparation of terephthalic acid
JP2000072714A (ja) * 1998-08-24 2000-03-07 Mitsui Chemicals Inc 芳香族カルボン酸の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1088561A (en) * 1976-12-30 1980-10-28 Hiroshi Hashizume Process for producing terephthalic acid
KR20000005733A (ko) * 1998-06-05 2000-01-25 나까니시 히로유끼 방향족카복실산의제조방법
US6143926A (en) * 1999-09-21 2000-11-07 E. I. Du Pont De Nemours And Company Process for producing pure terephthalic acid with improved recovery of precursors, solvent and methyl acetate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5384932A (en) * 1976-12-30 1978-07-26 Mitsubishi Chem Ind Ltd Preparation of terephthalic acid
JP2000072714A (ja) * 1998-08-24 2000-03-07 Mitsui Chemicals Inc 芳香族カルボン酸の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888530B2 (en) 2004-09-02 2011-02-15 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7897810B2 (en) 2004-09-02 2011-03-01 Eastman Chemical Company Optimized production of aromatic dicarboxylic acids
US7959879B2 (en) * 2004-09-02 2011-06-14 Grupo Petrotemex, S.A. De C.V. Optimized production of aromatic dicarboxylic acids
US7863481B2 (en) 2006-03-01 2011-01-04 Eastman Chemical Company Versatile oxidation byproduct purge process
US7880032B2 (en) 2006-03-01 2011-02-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7897808B2 (en) 2006-03-01 2011-03-01 Eastman Chemical Company Versatile oxidation byproduct purge process
US7902395B2 (en) 2006-03-01 2011-03-08 Eastman Chemical Company Versatile oxidation byproduct purge process
US7956215B2 (en) 2006-03-01 2011-06-07 Grupo Petrotemex, S.A. De C.V. Versatile oxidation byproduct purge process
CN100368370C (zh) * 2006-03-29 2008-02-13 中国石化仪征化纤股份有限公司 对二甲苯氧化母液中悬浮物的回收系统装置

Also Published As

Publication number Publication date
CN100402482C (zh) 2008-07-16
CN1751015A (zh) 2006-03-22
AU2004213274A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
EP1214285B1 (en) Process for producing pure terephthalic acid with improved recovery of precursors, solvent and methyl acetate
JP5411288B2 (ja) 酢酸ビニルの製造方法
US6150553A (en) Method for recovering methyl acetate and residual acetic acid in the production acid of pure terephthalic acid
JP2001288139A (ja) 高純度テレフタル酸の製造方法
WO2004074231A1 (ja) 芳香族カルボン酸の製造方法
JP2000191583A (ja) 芳香族カルボン酸の製造方法
TWI499579B (zh) 芳族羧酸之製造
EP1104396B1 (en) Method for recovering methyl acetate and residual acetic acid in the production of pure terephthalic acid
JP5973438B2 (ja) フィルターフィードスラリーにおける水のパーセントを制御することによるテレフタル酸パージろ過速度の向上
KR102592022B1 (ko) 산화에 의해 방향족 디카복실산을 제조하기 위한 에너지 및 환경적으로 통합된 방법
KR101426571B1 (ko) 다목적 산화 부산물 퍼지 방법
JP2017095391A (ja) 芳香族ジカルボン酸の製造方法
JP2004269521A (ja) 芳香族カルボン酸の製造方法
US20150315116A1 (en) Pure plant mother liquor solvent extraction system and method
JPH11335321A (ja) 芳香族カルボン酸の製造方法
JP7169241B2 (ja) 芳香族カルボン酸と脂肪族有機酸との混合物の製造方法
RU2574394C2 (ru) Производство ароматических карбоновых кислот
JP2009504646A (ja) 酸化剤パージ流からの安息香酸の除去方法
KR20130140091A (ko) 방향족 카르복실산의 제조
JPH11171826A (ja) 芳香族カルボン酸の製造方法
JPH10195016A (ja) 高純度テレフタル酸の製造方法
WO2015131059A1 (en) Separating acetic acid from tpa and ipa

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 3627/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20048045914

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2004213274

Country of ref document: AU

Date of ref document: 20040213

Kind code of ref document: A

122 Ep: pct application non-entry in european phase