WO2004073857A1 - メタクリル酸製造用触媒及びその製法 - Google Patents

メタクリル酸製造用触媒及びその製法 Download PDF

Info

Publication number
WO2004073857A1
WO2004073857A1 PCT/JP2004/001999 JP2004001999W WO2004073857A1 WO 2004073857 A1 WO2004073857 A1 WO 2004073857A1 JP 2004001999 W JP2004001999 W JP 2004001999W WO 2004073857 A1 WO2004073857 A1 WO 2004073857A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
catalyst
slurry
coated
cesium
Prior art date
Application number
PCT/JP2004/001999
Other languages
English (en)
French (fr)
Inventor
Atsushi Sudo
Yoshimasa Seo
Hideki Sugi
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to US10/545,699 priority Critical patent/US7825061B2/en
Priority to EP04713199.0A priority patent/EP1595600B1/en
Priority to MXPA05008754A priority patent/MXPA05008754A/es
Priority to JP2005502792A priority patent/JP4478107B2/ja
Priority to BR0407442-4A priority patent/BRPI0407442A/pt
Publication of WO2004073857A1 publication Critical patent/WO2004073857A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/195Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium or tantalum
    • B01J27/198Vanadium
    • B01J27/199Vanadium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles

Definitions

  • the present invention relates to a method for producing methacrylic acid by gas phase catalytic oxidation of methachlorin, isobutyl aldehyde, or isobutyric acid having a long life and having high activity and high selectivity. It relates to a catalyst and its production method.
  • catalysts have been proposed as catalysts for the production of methacrylic acid by gas phase catalytic oxidation of methacrylone, isobutyl aldehyde or isobutyric acid. .
  • Most of these catalysts are mainly composed of molybdenum and phosphorus, and have a structure of heteropolyacid and / or a salt thereof.
  • the catalyst used in this reaction is known to be a similar reaction to this reaction.
  • the reaction activity is lower and the selectivity to the target substance is lower. Although they are low and have short lifespans, they are partially industrialized, but there is a need for improved catalytic performance.
  • the present inventors have previously attempted to improve the low activity, low selectivity, and short life of the conventional metal-mouthed, gas-phase catalytic oxidation catalyst, and added various elements to Mo, V, and P. It was discovered that the catalyst with vapor-phase gas-phase contact oxidation has a heteropolyacid (salt) structure, is highly active, has high selectivity, and is particularly stable over its life. Publication No. 58-1 1 4 16 No. 6, Special Publication No. 5 9-2 4 140, Japanese Patent Publication No. 62-1 4 3 5 No. 5, Special Publication No. 62-310 7 7 The catalyst described in the publication is proposed.
  • 11-226441 discloses that purified starch is used when granulating a catalytically active component, and the starch is burned off in a calcination step, whereby the pore volume of the catalyst is reduced. Improve A method for producing a shaped catalyst is described.
  • the catalyst powder is usually formed into a column, a tablet, a ring, a sphere, or the like, or an active catalyst substance is impregnated or coated on an inert carrier.
  • this coated catalyst having an inert carrier as the core are as follows: (1) the effective utilization of the catalytically active component can be increased; (2) the residence time distribution of the reactants in the catalyst becomes uniform. (3) Improvement of the thermal conductivity of the catalyst or dilution of the inert carrier makes it easier to remove the heat of reaction.
  • the present invention relates to a catalyst or a coated catalyst for producing methacrylic acid with high yield and high selectivity by gas phase catalytic oxidation of methacrolein, isobutyl aldehyde or isobutyric acid, and their catalysts.
  • the purpose is to provide a manufacturing method.
  • the present inventors have attempted to improve the low activity, low selectivity, and short life of the conventional gas-phase catalytic oxidation catalyst for methacrolein as a method for solving the above-mentioned problems.
  • P the preparation of the catalysts C u, C s and NH 4 as essential components, i.e., in preparing the hetero Po Li acid (salt) containing the essential components, cesium weak acid and a C s material
  • salt or cesium hydroxide is added, and ammonium acetate or ammonium hydroxide is added as the NH 4 raw material, respectively, high activity, high selectivity, and particularly stable life and high stability are obtained.
  • the inventors have found that a high-performance industrial catalyst can be obtained, and have completed the present invention.
  • M o, V, P, C u a catalyst hetero port Li salt as a catalyst active component containing a hetero Po Li acid to C s and NH 4 the essential active ingredient, the catalyst activity Cs as a raw material Methachlorin, isobutyl aldehyde or methacrylic acid, characterized by being obtained using a weak acid salt or cesium hydroxide, and ammonium acetate as a NH 4 raw material, respectively.
  • composition of the catalytically active component is represented by the following formula (1)
  • X is SbAs, Ag, M g, Zn, Al, B, Ge, Sn, Pb, Ti, Zr, Cr, Re, Bi, W, Fe, Co, Ni, Ce, Th , K and Rb each represent one or more elements selected from the group consisting of: a to g represent the atomic ratio of each element, and a represents 0.1 ⁇ a ⁇ 6.0.
  • b is a positive number of 0.5 ⁇ b ⁇ 6.0
  • c is 0 ⁇ c ⁇ 3.0 positive integer
  • d is 0.0.1 ⁇ d ⁇ 3.0 positive integer
  • e is 0.1 ⁇ e ⁇ 3.0 positive integer
  • is 0 ⁇ 0 ⁇ 3.0
  • Represent the positive numbers of g is a value determined by the acid-acid value of each element.
  • a is a positive number of 0.5 ⁇ a ⁇ l.2, a positive number of b power 0.9 ⁇ b ⁇ 1.5, a positive number of c power 0.2 ⁇ c ⁇ 0.8, and d is A catalyst according to the above (5), wherein a positive number of 0.2 ⁇ d ⁇ 0.8, a positive number of e force S 1.0 ⁇ e ⁇ 2.2, and a f force S 0 ⁇ f ⁇ 0.8;
  • the following compounds A-1 to A-3 and, if necessary, the compound A-4 are mixed with water, and an aqueous solution or dispersion of these compounds (hereinafter a slurry solution containing both) is prepared.
  • step (A) A step of drying the slurry obtained in step (A) to obtain a dried slurry
  • a process for producing a catalyst for the production of methacrylic acid by gas phase catalytic oxidation of methacrolein, isobutyl aldehyde or isobutyric acid characterized by comprising:
  • S b As, Ag, Mg, Zn, Al, B, Ge, Sn, Pb, Ti, Zr, Cr, Re, B at least one compound selected from the group consisting of compounds having i, W, Fe, Co, Ni, Ce, Th, K, or Rb step (b)
  • the following compounds a-1 to a_3 and, if necessary, disulfide compound a-4 are mixed with water to prepare a slurry of these compounds.
  • step (a) The slurry obtained in step (a) is dried and slurry dried.
  • step (b) Mixing the compound having solid copper with the dried slurry obtained in step (b) to obtain a powder
  • step (c) Calcining the coated molded product obtained in step (c), characterized in that the method comprises the steps of gas-phase catalytic oxidation of methacrolein, isobutyl aldehyde or isobutyric acid. Production method of coated catalyst for crylic acid production,
  • binder at least one selected from the group consisting of water and organic compounds having a boiling point of 150 ° C. or less at 1 atm is used.
  • the catalyst of the present invention can produce methacrylic acid from methachlorin, isobutyl aldehyde or isoacetic acid with high yield and low selectivity. Extremely high industrial value because it can be used for reactions. ' BEST MODE FOR CARRYING OUT THE INVENTION
  • One catalyst for obtaining good or correct the process of the present invention M o, V, P, C u, C s and NH 4 and good necessary Ri plurality of compounds having multiple rather by young other elements, respectively (hereinafter
  • a compound having these active ingredients is also referred to as an “active ingredient-containing compound” in water and dissolved or dispersed in water (step (A)) to prepare a slurry.
  • Cesium weak acid salt or cesium hydroxide was used as the cesium compound, and ammonium acetate was used as the ammonium conjugate, and the slurry was dried (step (B)).
  • the active ingredient-containing compound used for preparing a one-part slurry other than cesium weak acid salt or cesium hydroxide and ammonium acetate is dried (step (B)) or calcined. More preferred are compounds that form heteropolyacid or a salt thereof. Examples of the compound include chlorides, sulfates, nitrates, oxides and acetates of the active ingredient elements.
  • nitrates such as potassium nitrate or cobalt nitrate, oxides such as molybdenum oxide, vanadium pentoxide, antimony trioxide, cerium oxide, zinc oxide or germanium oxide, positive phosphorus
  • An acid or a salt thereof
  • an acid such as an acid, phosphoric acid, boric acid, aluminum phosphate or 12-tungstic acid, and the like
  • copper acetate copper acetate, cupric acetate, basic copper acetate, cupric oxide, or the like, preferably cupric acetate
  • copper raw material has a favorable effect. May be. These may be used alone or as a mixture of two or more.
  • the cesium weak acid salt is not particularly limited as long as it is a salt of a weak acid generally known as cesium, and examples thereof include cesium hydrogen carbonate, cesium carbonate, and cesium acetate. Cesium acetate is preferred. Of these, commercially available cesium acetate can be used as it is. For example, an aqueous solution of a water-soluble salt of cesium such as cesium hydroxide or cesium carbonate can be used. An equivalent amount or more of acetic acid may be added to the mixture and added as an aqueous solution of cesium acetate.
  • the active component other than Mo, V, P, Cu, Cs, and NH 4 is a compound known as a component element of a catalyst for producing methacrylic acid. If there are no restrictions, S b, A s, A g, M g, Z n, A l, B, G e, S n, P b, T i, Z r, C r, R e, B i, W, F e, C o, N i, C One or more members selected from the group consisting of e, Th, K and Rb are listed, and among these, elements other than As are preferred.
  • the ratio of each active component of the catalyst in the present invention is such that the atomic ratio of vanadium to molybdenum 10 is usually 0.1 or more and 6.0 or less, preferably 0.3 or more and 2.0 or less. 0 or less, especially preferred
  • the ring is usually 0.5 or more and less than or equal to 6.0, preferably 0.9 or more and less than or equal to 1.5, and copper is usually greater than 0 and more than 3.
  • ammonia is usually more than 0.1 and less than or equal to 3.0.
  • the type of the other active components and the use ratio thereof used as necessary are appropriately determined in accordance with the conditions of use of the catalyst and the like so that a catalyst having optimum performance can be obtained.
  • the preferred correct catalysts used in normal conditions the following formula (1) M o 1 0 V a P b C u c C s d (NH 4) e X f O "(1) (In the formula, Mo is molybdenum, V is vanadium, ⁇ is phosphorus, Cu is copper, Cs is cesium, (NH 4 ) is an ammonium group, X is Sb.As, Ag , M g, Z n, A l, B, G e, Sn, P b, T i, Z r, C r, R e, B i, W, F e, C o, N i, C e, Each of one or more elements selected from the group consisting of Th, K, and Rb, a to
  • a positive number of 0, b is a positive number of 0.5 ⁇ b ⁇ 6.0, c is a positive number of 0 and c ⁇ 3.0, d is a positive number of 0.0 1 ⁇ d ⁇ 3.0, e Is a positive number of 0.1 ⁇ e ⁇ 3.0, and f is a positive number of 0 f 3.0.
  • G is a value determined by the acid-acid valency of each element.) It has a component composition.
  • This active ingredient composition means the composition in the slurry slurry described below, and does not necessarily reflect the composition of the powder after the step (d).
  • the NH 4 component volatilizes and is replaced by a hydrogen atom or a metal atom.
  • the NH 4 component in the dried slurry may be volatilized through the firing step.
  • the extent of volatilization of NH 4, the calcination temperature, firing time, firing atmosphere (although different I'm in or in the air nitrogen force, up to 9 0 It evaporates about mol%.
  • S b is preferable as the element X.
  • S b is used as required in the above formula (1) in a range from 0 to 2.2, preferably from 0.01 to 0.8.
  • the catalyst can be obtained by the following procedure.
  • an aqueous solution or aqueous dispersion of the active ingredient-containing compound (hereinafter, referred to as a slurry solution including both) is prepared.
  • the slurry solution can be obtained by uniformly mixing a plurality of compounds having each active ingredient and a solvent, preferably water.
  • the slurry preferably contains all of the necessary active ingredient-containing compounds in the required amount of the catalyst.
  • the order of adding the active ingredient-containing compound when preparing a slurry solution is not particularly limited, but the compound having Mo, V and P is first used as a slurry solution, and then the cesium weak acid salt or water is used. It is preferable to add a compound having cesium oxide, ammonium acetate and copper to the slurry.
  • the temperature at which the slurry is prepared is not particularly limited as long as it does not interfere with the preparation, but a compound containing cesium weak acid salt or cesium hydroxide, ammonium acetate, and copper is added.
  • the temperature is usually between 0 and 35 ° C, preferably between 10 and 30 ° C
  • the resulting catalyst may be highly active. Since this tendency becomes remarkable when copper acetate is used as a compound having copper, the slurry liquid is prepared more efficiently by using the above-mentioned preferred addition method. .
  • the slurry solution is preferably an aqueous solution.
  • the use ratio of the compound of each active ingredient in one slurry is not particularly limited as long as the atomic ratio of each active ingredient is in the above range.
  • the amount of water used is not particularly limited as long as it can completely dissolve the entire amount of the compound to be used or can be uniformly mixed, but is appropriately determined in consideration of the drying method and drying conditions described below. Is done. That is, it is about 200 to 2000 parts by mass with respect to 100 parts by mass of the compound for preparation of the slurry. Although the amount of water may be large, too much water increases the energy cost of the drying process and may not be completely dried, and has many disadvantages. Not suitable, so an appropriate amount is preferred.
  • the drying method is not particularly limited as long as the slurry liquid can be completely dried, and examples thereof include drum drying, freeze drying, spray drying, and evaporation to dryness. Of these, in the present invention, It is possible to dry the slurry from powder to granules in a short time from the liquid state. It is preferable to use the evaporation drying method, which is easy to dry the slurry liquid directly. Evaporation drying is particularly preferable. New
  • the drying temperature in the case of spray drying differs depending on the slurry concentration, the feed rate, etc., but the temperature at the outlet of the dryer is generally 70 to 150 ° C.
  • the evaporation to dryness may be carried out according to a standard method.
  • pulverization since the slurry-dried product is obtained as a lump or a large particle, pulverization may be appropriately performed, preferably 3 OO / Pulverize to less than zm.
  • a dried slurry such a crushed one is included in the dried slurry.
  • the slurry slurry thus obtained can be subjected to a gas-phase catalytic oxidation reaction as the catalyst of the present invention, but as described above, in order to reduce the pressure loss of the reaction gas.
  • step (A) one slurry was prepared without using a compound having copper, and After this is subjected to a drying step, a mixture of the obtained dried product and a powder of a compound containing copper can be used as the catalyst of the present invention.
  • the coated catalyst of the present invention further comprises selecting an ammonium hydroxide as an ammonium source in the step (A).
  • the starting compound is dissolved and Z or dispersed in water (step (a)) to prepare a slurry solution, which is dried (step (b)) to obtain a slurry slurry.
  • step (a) there is no particular restriction on the order of addition of each starting compound, but as in step (A), the compound having Mo, V, and P is first converted into a slurry, and then the slurry is added. It is preferable to add a compound which is a source of ummonium, ammonium and copper to the slurry.
  • the temperature at which the compounds serving as a cesium source, an ammonium source and a copper source are added is usually 0 to 35 ° C, preferably 10 to 30 ° C. Is preferred.
  • a slurry was prepared in step (a) without using a compound having copper, and the slurry was subjected to a drying step. After that, a mixture obtained by mixing the obtained dried product and a powder of a compound having copper was used. (Step (b ')) Thus, the coated catalyst of the present invention can be obtained.
  • step (c) The obtained dried slurry (or the mixture; hereinafter, the dried slurry contains the mixture) is subjected to the following coating step (step (c)).
  • the tumbling granulation method described below is preferred.
  • the disk is rotated at high speed, and the carrier in the container is rotated and revolved. 'Repeat repeatedly.' Stir vigorously, and add the binder and dried slurry and, if necessary, other additives such as a mixture of a molding aid and a strength improving material.
  • a method for coating the mixture on a carrier by The method for adding the binder is as follows: 1) Premix the mixture with the above mixture, 2) Add the mixture at the same time as adding the mixture into the fixed container, 3) Add the mixture into the fixed container, and then add the mixture.
  • the addition rate is adjusted using an auto feeder or the like so that the mixture is not attached to the wall of the fixed container, and the mixture is not agglomerated, and a predetermined amount is supported on the carrier. I prefer to adjust it New
  • the binder is not particularly limited as long as it is at least one selected from the group consisting of water and organic compounds having a boiling point at 150 ° C or less at 1 atm. Considering the above factors, those having a boiling point of 100 ° C or lower are preferred.
  • Specific examples of binders other than water include alcohols such as methanol, ethanol, pronools, and butanols, preferably alcohols having 1 to 4 carbon atoms. Examples thereof include ethers such as coal, ethyl ether, butyl ether and dioxane; esters such as ethyl acetate and butyl acetate; ketones such as acetate and methylethyl ketone; and aqueous solutions thereof.
  • ethanol is preferred.
  • the ratio of ethanol / water is 10/0 to 5/5 (weight ratio), preferably 100 to 7/3 (weight ratio).
  • an ethanol concentration of about 10 to 30% by mass is particularly preferred.
  • the amount of the binder used is usually 2 to 60 parts by mass, preferably 5 to 25 parts by mass, based on 100 parts by mass of the slurry slurry.
  • the carrier used in the present invention include silicon carbide, alumina, silica alumina, mullite, arandom and the like having a diameter of 1 to 15 mm, preferably 2.5 to 1 Omm. , Especially preferred 2.
  • a spherical carrier having a diameter of 5 to 4.5 mm is exemplified.
  • These carriers usually have a porosity of 10 to 70%.
  • the porosity of the carrier is calculated assuming that the dry weight of the carrier is W, the weight in water is W 2 , and the saturated water absorption weight is W 3 (W 3 — / (W a-W 2 ) XI
  • the range is from 10 to 75% by mass, preferably from 15 to 60% by mass.
  • the reaction activity of the coated catalyst is large, but the mechanical strength tends to be low (the friability is high). Conversely, when the percentage of the dried slurry to be coated is small, the mechanical strength is high (the friability is small), but the reaction activity tends to be low.
  • a molding aid such as silica gel, diatomaceous earth, or alumina powder may be used, if necessary.
  • the amount of the molding aid used is usually 5 to 60 parts by mass based on 100 parts by mass of the slurry slurry.
  • inorganic fibers such as ceramic fibers and whiskers, which are inert to the catalyst component, are used as the strength improving material. This is useful for improving the mechanical strength of the catalyst.
  • fibers that react with catalytic components such as titanic acid reamed whiskers and basic magnesium carbonate whiskers, are not preferred. The amount of these fibers used is usually 1 to 30 parts by mass relative to 100 parts by mass of the dried slurry.
  • additives such as a molding aid and a strength improving material are usually added to a granulator together with a carrier, a slurry slurry, a binder and the like in a coating step and used for coating the carrier.
  • the dried slurry is coated on a carrier, and the coated product obtained at this time usually has a diameter of about 3 to 15 mm, preferably about 3.2 to 5 mm.
  • the coated catalyst thus obtained can be used as it is as a catalyst in the gas phase catalytic oxidation reaction, but firing (step (d)) may improve the catalytic activity. I like it.
  • the firing temperature in this case is usually 100 to 420 ° C, preferably 250 to 400 ° C, and the firing time is 1 to 20 hours.
  • the firing is usually performed in an air atmosphere, but may be performed in an inert gas atmosphere such as nitrogen, or may be further performed in an air atmosphere as necessary after the firing in the inert gas atmosphere. Perform firing in May be. Further, if calcination is carried out in an inert gas atmosphere or preferably in the presence of a reducing agent, a more active catalyst may be obtained, which is preferable.
  • the reducing agent is not particularly limited as long as it is preferably a gas at the calcination temperature, and includes alcohols, aldehydes, ketones, and organic acids having 2 to 5 carbon atoms. Among them, ethanol is particularly preferred.
  • the catalyst of the present invention obtained as described above is used in the production of methacrylic acid by gas phase catalytic oxidation of methanol mouth lane, isobutyl aldehyde or isobutyric acid. You. When the catalyst of the present invention is used, unless otherwise specified, the slurry slurry obtained through the steps (A) to (B) or the slurry (a) to (c) (and preferably Or the coated catalyst obtained through the step (d)).
  • molecular oxygen or a gas containing molecular oxygen is used for the gas phase catalytic oxidation reaction.
  • the molar ratio of the molecular oxygen to the metal-carrying lane is preferably in the range of 0.5 to 20 and particularly preferably in the range of 1 to 10.
  • water is preferable to add water to the raw material gas in a molar ratio of 1 to 20 with respect to the metal-carrying lane.
  • the raw material gas may contain, in addition to oxygen and, if necessary, water (including usually as steam), a gas inert to the reaction such as nitrogen, carbon dioxide, and saturated hydrocarbon.
  • a gas inert to the reaction such as nitrogen, carbon dioxide, and saturated hydrocarbon.
  • the gas obtained by oxidizing isoptilene, tertiary butanol, and methyl tert-butyl ether may be supplied as it is to methacrolein.
  • the reaction temperature in the gas phase catalytic oxidation reaction is usually from 200 to 400 ° C, preferably from 260 to 360 ° C, and the supply amount of the raw material gas is usually 1 space velocity (SV). 0 0 ⁇ 6 0 0 0 hr - 1, and preferred rather is a 4 0 0 ⁇ 3 0 0 0 hr _ 1.
  • the catalyst according to the present invention When the catalyst according to the present invention is used, there is no significant change in the reaction result even when the SV is increased, and the reaction can be performed at a high space velocity.
  • the catalytic oxidation reaction can be performed under increased or reduced pressure, but generally, a pressure near the atmospheric pressure is suitable.
  • Example hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
  • compositions of the catalytically active components in the examples are all ratios calculated from the charged raw materials. In the formula, oxygen is omitted.
  • the solution was cooled to 15 to 20 ° C, and while stirring, a solution obtained by dissolving 13.33 g of cesium acetate in 15 O ml of pure water was added thereto.
  • a solution obtained by dissolving 16.06 g of ammonium acetate in 5 O ml was gradually added at the same time, and then the slurry was further added to 170 ml of pure water with 170 ml of pure water.
  • a solution of 11.09 g of cupric monohydrate was added, and the mixture was aged at 15 to 20 ° C. for 1 hour to obtain a green-blue slurry.
  • the slurry was dried by evaporating to dryness with hot water and crushed in a mortar to 300 / im or less to obtain a dried slurry.
  • the composition of the dried slurry obtained is
  • the obtained coated molded article was calcined at 310 ° C. for 5 hours under air flow to obtain a coated catalyst of the present invention.
  • the particle size of the obtained coated catalyst was 4.3 mm (average value).
  • the reaction performance was measured at a reaction bath temperature of 310 ° C, and then the reaction bath temperature was raised to 350 ° C and the reaction was continued for 15 hours. Next, the reaction bath temperature was lowered to 310 ° C., and the reaction results were measured. Table 1 shows the results of the reaction.
  • the solution was cooled to 15 to 20 ° C, and a solution obtained by dissolving 23.33 g of cesium acetate in 17 O ml of pure water while stirring was added to a solution of 170 ml of pure water.
  • a solution of 33.73 g of ammonium acetate was gradually added to the mixture, and the mixture was gradually aged at 15 to 20 ° C. for 1 hour to obtain a green-blue slurry.
  • the slurry was dried by evaporating to dryness with hot water and pulverized to 300 / Xm or less in a mortar to obtain a powder.
  • the composition of the obtained powder is
  • cupric acetate monohydrate powder in such an amount that the atomic ratio becomes Cu 0.4 with respect to Mo 10 was added to the above powder and a strength improving material (Cera). 66.1 g) and uniformly mixed with a spherical porous alumina carrier (particle diameter: 3.5 mm, porosity: 25.5%) to 44.1 g. 0 mass. Coating was performed by a rolling granulation method using an aqueous solution of / 0 ethanol as a binder to obtain a coated molded product. The particle size of the obtained coated catalyst was 4.3 mm (average value).
  • the obtained coated molded product was subjected to 380 liters of ethanol (20 g Zh) as a reducing agent under nitrogen flow (SL Zmin.).
  • the coated catalyst of the present invention was obtained by firing at 10 ° C. for 10 hours.
  • the active component composition of the obtained coated catalyst is
  • the obtained coated molded product was treated with ethanol (20 g Zh) as a reducing agent under nitrogen flow (5 L / min.).
  • the coated catalyst of the present invention was obtained by firing at 80 ° C for 10 hours.
  • the active ingredient composition of the resulting coated catalyst is
  • a solution obtained by diluting 26.08 g of an 28% aqueous ammonia solution in 150 ml of pure water is gradually added at the same time, and the mixture is aged at 15 to 20 ° C for 1 hour to obtain a green-blue slurry. I got a liquid
  • the slurry was dried by evaporating to dryness in a hot water bath.
  • the powder was crushed in a pot to a size of 300 m or less to obtain a powder.
  • the composition of the obtained powder is
  • cupric acetate monohydrate powder in an amount of 0.4 in atomic ratio to Mo 10 was added to the above powder and a strength improving material (ceramics). 34.7 g) and uniformly mixed with each other to obtain a spherical porous alumina carrier (particle size: 3.5 mm, porosity: 25.5%), 90 mass per 23,2,6 g .
  • a coating was formed by a rolling granulation method using an aqueous solution of / 0 ethanol as a binder to obtain a coated molded product. The particle size of the obtained coated molded product was 4.3 mm (average value).
  • the obtained coated molded product was calcined at 310 ° C. for 5 hours under an air flow to obtain a coated catalyst for comparison.
  • the composition of the obtained coated catalyst is
  • the amount of antimony trioxide was changed to 22.14 g, the amount of ammonium acetate was changed to 26.23 g, and the calcination process was changed to 310 ° C and 5 hours under air flow. Except for this, the coated catalyst of the present invention was obtained in the same manner as in Example 2. The particle size of the obtained coated catalyst was 4.3 mm (average value).
  • Example 6 The amount of vanadium pentoxide to 15.48 g, 85 mass. /. Except that the amount of orthophosphoric acid was changed to 31.7 g, the amount of ammonium acetate was changed to 31.886 g, and the calcination process was changed to 310 ° C and 5 hours under air flow, respectively.
  • a coated catalyst of the present invention was obtained in the same manner as in Example 2. The particle size of the obtained coated catalyst was 4.3 mm (average value).
  • Cesium acetate 23.33 g Z water 170 ml aqueous solution was mixed with cesium hydroxide 'monohydrate 20.4 lg / water 17 ml aqueous solution ( s O .5), except that The coated catalyst of the present invention was obtained.
  • the particle size of the obtained coated catalyst was 4.3 mm (average value).
  • Aqueous solution of cesium acetate 23.3.3 g Z water 170 m 1 was added to cesium hydroxide.monohydrate 20.4 1 g Z water 123 ml and acetic acid 7.30 g Z water 5
  • a coated catalyst of the present invention was obtained in the same manner as in Example 2 except that 2.5 m 1 was changed to a stronger one.
  • the particle size of the obtained coated catalyst was 4.3 mm (average value).
  • a coated catalyst of the present invention was obtained in the same manner as in Example 2, except that the amount of antimony trioxide was changed to 2.21 g.
  • the particle size of the obtained coated catalyst was 4.3 mm (average value).
  • the coated catalyst of the present invention was obtained in the same manner as in Example 3 except that the amount of ammonium acetate was changed to 21.4 lg, and ammonium trioxide was not used.
  • the particle size of the obtained coated catalyst was 4.3 mm (average value).
  • the cooling temperature of the dark blue solution in which antimony trioxide is dissolved is 26-
  • a coated catalyst of the present invention was obtained in the same manner as in Example 2, except that the temperature was changed to 30 ° C.
  • the particle size of the obtained coated catalyst was 4.3 mm (average value).
  • a coating for comparison was made in the same manner as in Example 2 except that cesium acetate and ammonium acetate were not used and the amount of cupric acetate-monohydrate was changed to 24.26 g.
  • a catalyst was obtained.
  • the particle size of the obtained coated catalyst was 4.3 mm (average value). '' Comparative Example 4
  • a coated catalyst for comparison was obtained in the same manner as in Example 2 except that cesium acetate was not used.
  • the particle size of the obtained coated catalyst is 4.3 mm
  • the amount of 85% by mass orthophosphoric acid was increased to 19.22 g, and cesium nitrate A coated catalyst for comparison was obtained in the same manner as in Comparative Example 1 except that 54 g was changed to 7.02 g of potassium acetate.
  • the particle size of the obtained coated catalyst was 4.3 mm (average value).
  • Example 4 to 10 and Comparative Examples 2 to 6 were subjected to an oxidation reaction in the same manner as in Example 1 under the conditions of a bath temperature of 350 ° C. and 15 hours, and then the bath temperature was changed to 31. The temperature was lowered to 0 ° C and the reaction results were measured. The results are shown in Table 5 together with the atomic ratio of each catalytically active component of the coated catalyst.
  • Catalyst active component composition Catalyst performance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

メ タ ク リ ル酸製造用触媒及びその製法 技術分野
本発明は、 寿命が長く かつ高活性、 高選択性を有する メ タ ク ロ レイ ン、 イ ソブチルアルデヒ細ドまたはイ ソ酪酸を気相接触酸 化 してメ タ ク リ ル酸を製造するための触媒及びその製法に関す る。
背景技術
メ タ ク ロ レイ ン、 イ ソ ブチルアルデヒ ドまたはイ ソ酪酸を気 相接触酸化 してメ タ ク リ ル酸を製造するために使用 される触媒 と しては数多く の触媒が提案されている。 これら触媒の大部分 はモ リ ブデン、 リ ンを主成分とする も ので、 ヘテロ ポ リ 酸及び /またはその塩の構造を有する ものである。 し力 しなが ら、 こ の反応で使用 されている触媒はこの反応と 同様の反応と して知 られている、 ァク 口 レイ ンの気相接触酸化反応によ り ァク リ ル 酸を製造する反応のための触媒であるモ リ ブデン—バナジウム 系触媒と比較する と 、 反応活性は低く 、 目 的物質への選択性も 低く 、 寿命も短いため、 一部工業化されている ものの、 触媒性 能の改良が求め られている。
本発明者 らは、 先に従来のメ タ ク 口 レイ ン気相接触酸化触媒 の低活性、 低選択性、 短寿命の改良を試み、 M ο 、 V、 P に種々 の元素を添加 したメ タ ク 口 レイ ン気相接触酸化触媒が、 ヘテ ロ ポ リ 酸 (塩) 構造を有し、 高活性、 高選択性で特に寿命的に安 定した触媒である こ と を見出 し、 特公昭 5 8 - 1 1 4 1 6 号公 報、 特公昭 5 9 — 2 4 1 4 0号公報、 特公昭 6 2 — 1 4 5 3 5 号公報、 特公昭 6 2 - 3 0 1 7 7 号公報記載の触媒を提案 して いる。
近年、 原料ガス濃度が高 く 、 高温で酸化反応を行 う環境下で、 更に高活性、 高選択性、 長寿命である触媒が求め られている。 こ の要求に応える触媒を提供するため種々 の製法が提案され、 例えば特開平 5 — 3 1 3 6 8 号公報ゃ特開平 8 — 1 9 6 9 0 8 号公報には M o 、 V、 P以外の成分と して N H 4 を使用 し、 ア ン モ - ゥム源と してア ンモ ニ ア水を使用する成型触媒の製法が提 案されている。 また、 特開平 1 1 — 2 2 6 4 1 1 号公報には、 触媒活性成分を造粒する際に精製デンプンを使用 し、 焼成工程 で該デンプンを焼失させる こ と で、 触媒の細孔容積を向上させ る成型触媒の製法が記載されている。
また、 工業用触媒と して固定床反応器に充填 して用いる場合 は、 触媒層前後での反応ガス の圧力損失を少なく するために、 ある一定の大き さ に触媒を成型する事が必要である。 そのため、 通常は触媒粉末を柱状物、 錠剤、 リ ン グ状、 球状等に成型する か、 活性触媒物質を不活性担体に含浸ある いは被覆させて用い る方法も知 られている。
こ の不活性担体を芯とする被覆触媒の利点と しては、 ①触媒 活性成分の有効利用率を上げる こ と ができ る、 ②反応物質の触 媒内での滞留時間分布が均一と な り 選択性の向上が期待でき る ③触媒の熱伝導率向上あるいは不活性担体の希釈効果に よ って 反応熱の除去が容易 と なる、 等が挙げられ、 従って発熱の大き な選択的酸化反応への適用の例が多い。
一方、 被覆触媒製造上の技術的困難点と しては、 ①被覆層の 剥離、 ひび割れが起こ り 易 く 機械的強度の強い触媒が得られ難 い、 ②多量に活性触媒物質を担体上に被覆する事が難しい、 ③ 不活性物質が入るために活性の高い触媒を得る こ と が難 しい等 を挙げる こ と ができ る。
かかる点を克服する方法は活性触媒物質の性状と も関わ り 、 汎用的な技術はな く 触媒個々 に解決する と い う のが現状である。 発明の開示
本発明は、 メ タ ク ロ レイ ン、 イ ソプチルアルデヒ ドまたはィ ソ酪酸を気相接触酸化 してメ タ ク リ ル酸を高収率、 高選択的に 製造するための触媒または被覆触媒及びそれらの製法を提供す る こ と を 目 的 とする。
本発明者 ら は、 上記問題点を解決する方法と して、 従来のメ タ ク ロ レイ ン用気相接触酸化触媒の低活性、 低選択性、 短寿命 の改良を試み、 M o 、 V、 P 、 C u 、 C s 及び N H 4 を必須成分 とする触媒を調製する際、 即ち、 該必須成分を含むヘテロ ポ リ 酸 (塩) を調製する際に、 C s 原料と してセシウム弱酸塩また は水酸化セ シ ウ ム を、 また、 N H 4原料と して酢酸ア ンモニ ゥム または水酸化ア ンモ ニゥムをそれぞれ添加 した場合に高活性、 高選択性で特に寿命的に安定した高性能な工業化触媒が得られ る こ と を見いだし、 本発明を完成させた。
すなわち、 本発明は、
( 1 ) M o 、 V、 P 、 C u 、 C s 及び N H 4 を必須の活性成分と するヘテロ ポ リ 酸を含むヘテロ ポ リ 酸塩を触媒活性成分とする 触媒であって、 該触媒活性成分の う ち C s 原料と してセ シ ウ ム 弱酸塩または水酸化セ シウ ムを、 また、 N H 4原料と して酢酸ァ ンモニ ゥムをそれぞれ使用 して得られる も のである こ と を特徴 とする メ タ ク ロ レイ ン、 イ ソブチルアルデヒ ドまたはイ ソ酪酸 を気相接触酸化 してメ タ ク リ ル酸を製造するための触媒、
( 2 ) C s 原料が酢酸セ シ ウ ムまたは水酸化セ シ ウ ムである上 記 ( 1 ) 記載の触媒、
( 3 ) 活性成分と して砒素を含有しない上記 ( 1 ) または ( 2 ) 記載の触媒、
( 4 ) C u原料と して酢酸銅または酸化第二銅を使用 した上記
( 1 ) 〜 ( 3 ) のいずれか一項に記載の触媒、
( 5 ) 触媒活性成分の組成が下記式 ( 1 )
M o 1 0 V a P b C u c C s d ( N H 4 ) e X f O g ( 1 )
(式中 M o はモ リ プデン、 Vはバナジ ウム、 P は リ ン、 C u は 銅、 C s はセシウム、 ( N H 4 ) はアンモニゥム基を、 Xは S b A s 、 A g 、 M g 、 Z n 、 A l 、 B 、 G e 、 S n 、 P b 、 T i 、 Z r 、 C r 、 R e 、 B i 、 W、 F e 、 C o 、 N i 、 C e 、 T h 、 K及び R b からなる群か ら選ばれた 1 種以上の元素をそれぞれ 表 し、 a 〜 g は、 それぞれの元素の原子比を表 し、 a は 0 . 1 ≤ a ≤ 6 . 0 の正数、 b は 0 . 5 ≤ b ≤ 6 . 0 の正数、 c は 0 < c ≤ 3 . 0 の正数、 d は 0 . 0 1 ≤ d ≤ 3 . 0 の正数、 e は 0 . 1 ≤ e ≤ 3 . 0 の正数、 ί は 0 ≤ ί ≤ 3 . 0 の正数をそれ ぞれ表す。 g は各元素の酸酸価数によ って定ま る値である。 ) で表される上記 ( 1 ) 〜 ( 4 ) のいずれか一項に記載の触媒、
( 6 ) a が 0 . 5 ≤ a ≤ l . 2 の正数、 b 力 0 . 9 ≤ b ≤ 1 . 5 の正数、 c 力 0 . 2 ≤ c ≤ 0 . 8 の正数、 d が 0 . 2 ≤ d ≤ 0 . 8 の正数、 e 力 S 1 . 0 ≤ e ≤ 2 . 2 の正数、 f 力 S 0 ≤ f ≤ 0 . 8 である上記 ( 5 ) 記載の触媒、
( 7 ) S b を必須成分と する上記 ( 5 ) または ( 6 ) 記載の触 媒、
( 8 )
工程 ( A )
下記化合物 A — 1 〜 A — 3 及ぴ必要に よ り ィ匕合物 A — 4 を水 と混合 し、 これ らの化合物の水溶液または水分散体 (以下、 両者を含めてス ラ リ ー液と い う ) を調製するェ 程、 化合物 A— 1 ; M o を有する化合物、 Vを有する化合物 P を有する化合物及び C u を有する化合物 ィ匕合物 A— 2 ; セシウム弱酸塩または水酸化セシウム ィ匕合物 A— 3 ; 酢酸アンモニゥム
ィ匕合物 A — 4 ; S b 、 A s 、 A g 、 M g 、 Z n 、 A l 、 B 、 G e 、 S n、 P b 、 T i 、 Z r 、 C r 、 R e 、 B i 、 W、 F e 、 C o 、 N i 、 C e 、 T h 、 Kまたは R b を有 する化合物からなる群か ら選ばれた 1 種以上の化合物 工程 ( B )
工程 ( A ) で得られたス ラ リ ー液を乾燥してス ラ リ ー乾 燥体を得る工程
からなる こ と を特徴とする メ タ ク ロ レイ ン、 イ ソブチルアルデ ヒ ドまたはイ ソ酪酸の気相接触酸化によ る メ タ ク リ ル酸製造用 触媒の製法、
( 9 ) 化合物 A — 4 を必須成分と して使用する上記 ( 8 ) 記載 の触媒の製法、
( 1 0 )
工程 ( a )
下記化合物 a — l 〜 a — 3 及び必要によ り ィ匕合物 a - 4 を水と混合 し、 これ らの化合物のス ラ リ ー液を調製する ェ程、 ィ匕合物 a — 1 ; M o を有する化合物、 Vを有する化合物、 P を有する化合物及び C u を有する化合物
ィ匕合物 a — 2 ; セシウム弱酸塩または水酸化セシウム 化合物 a - 3 ; 酢酸ア ンモ ニ ゥムまたは水酸化ア ンモニ ゥム
ィ匕合物 a — 4 ; S b 、 A s 、 A g 、 M g 、 Z n 、 A l 、 B、 G e 、 S n、 P b 、 T i 、 Z r 、 C r 、 R e 、 B i 、 W、 F e 、 C o 、 N i 、 C e 、 T h 、 Kまたは R b を有 する化合物か らなる群から選ばれた 1 種以上の化合物 工程 ( b )
工程 ( a ) で得られたス ラ リ ー液を乾燥してス ラ リ ー乾 燥体を得る工程、
工程 ( c )
工程 ( b ) で得られたス ラ リ ー乾燥体を、 バイ ンダーを 用いて担体に被覆 し、 被覆成型物を得る工程、
工程 ( d )
工程 ( c ) で得られた被覆成型物を焼成する工程、 か らなる こ と を特徴とする メ タ ク ロ レイ ン、 イ ソプチルアルデ ヒ ドまたはイ ソ酪酸の気相接触酸化によ る メ タ ク リ ル酸製造用 被覆触媒の製法、
( 1 1 )
工程 ( a )
下記化合物 a - 1 〜 a _ 3 及び必要に よ り ィ匕合物 a - 4 を水 と混合 し、 これ らの化合物のス ラ リ ー液を調製する ェ程、 ィ匕合物 a — 1 ; M o を有する化合物、 Vを有する化合物、 P を有する化合物及び C u を有する化合物
ィ匕合物 a — 2 ; セシウム弱酸塩または水酸化セシウム ィ匕合物 a — 3 ; 酢酸ア ンモ ニゥムまたは水酸化ア ンモニ ゥム
ィ匕合物 a _ 4 ; S b 、 A s 、 A g 、 M g 、 Z n 、 A l 、 B 、 G e 、 S n 、 P b 、 T i 、 Z r 、 C r 、 R e 、 B i 、 W、 F e 、 C o 、 N i 、 C e 、 T h 、 Kまたは R b を有 する化合物からなる群から選ばれた 1 種以上の化合物 工程 ( b )
工程 ( a ) で得られたス ラ リ ー液を乾燥してス ラ リ ー乾 燥体を得る工程、
工程 ( b ' )
工程 ( b ) で得られたス ラ リ ー乾燥体に固体の銅を有す る化合物を混合して粉体を得る工程、
工程 ( c )
工程 ( b , ) で得られた粉体を、 バイ ンダーを用いて担 • 体に被覆し、 被覆成型物を得る工程、
工程 ( d )
工程 ( c ) で得られた被覆成型物を焼成する工程、 か らなる こ と を特徴とする メ タ ク ロ レイ ン、 ィ ソプチルアルデ ヒ ドまたはイ ソ酪酸の気相接触酸化によ る メ タ ク リ ル酸製造用 被覆触媒の製法、
( 1 2 ) 化合物 a — 4 を必須成分と して使用する上記 ( 1 0 ) または ( 1 1 ) 記載の被覆触媒の製法、
( 1 3 )バイ ンダーと して、水及び 1 気圧下での沸点が 1 5 0 °C 以下である有機化合物からなる群から選ばれる少な く と も 1 種 を用いる上記 ( 1 0 ) 〜 ( 1 2 ) のいずれか 1 項に記載の被覆 触媒の製法、
( 1 4 ) バイ ンダーがエタ ノ ールである上記 ( 1 3 ) 記載の被 覆触媒の製法、
( 1 5 ) バイ ンダーがエタ ノ ール Z水 = 1 0 / 0 〜 5 / 5 (質 量比) である上記 ( 1 3 ) 記載の被覆触媒の製法、
( 1 6 ) 工程 ( d ) において、 被覆成型物を還元剤共存下で焼 成する上記 ( 1 0 ) 〜 ( 1 5 ) のいずれか 1 項に記載の被覆触 媒の製法、
( 1 7 ) 還元剤がエタ ノ ールである上記 ( 1 6 ) 記載の被覆触 媒の製法、
( 1 8 ) 上記 ( 1 0 ) 〜 ( 1 7 ) のいずれか 1 項に記載の製法 によ り 得られる メ タ ク ロ レイ ン、 ィ ソブチルアルデヒ ドまたは ィ ソ酪酸の気相接触酸化によ るメ タ ク リ ル酸製造用被覆触媒、 に関する ものである。 発明の効果
本発明の触媒は高収率、 髙選択率でメ タ ク ロ レイ ン、 イ ソブ チルアルデヒ ドまたはイ ソ酢酸力ゝ らメ タ ク リ ル酸を製造する こ と ができ、 更に高負荷条件の反応に使用する こ と ができ るため 工業的価値が極めて大きい。 ' 発明を実施するための最良の形態
まず、 本発明の第一の態様であるセ シ ウ ム弱酸塩または水酸 ィ匕セシウム及び酢酸アンモニ ゥムを使用 した触媒について説明 する。
本発明の触媒を得る好ま しい方法の 1 つは、 M o、 V、 P、 C u、C s 及び N H 4並びに必要によ り その他の元素をそれぞれ 若 し く は複数有する複数の化合物 (以下場合によ り これ ら活性 成分を有する化合物を 「活性成分含有化合物」 と も言 う ) を水 に溶解及びノまたは分散 (工程 ( A ) ) させ、 ス ラ リ ー液を調 製する際にセシ ウ ム化合物 と してセシウム弱酸塩または水酸化 セシウムを、 また、 アンモニ ゥムィ匕合物と して酢酸アンモニ ゥ ムをそれぞれ使用 し、 得られたス ラ リ ー液を乾燥 (工程 ( B ) ) する方法である。
本発明において、 セシ ウ ム弱酸塩または水酸化セ シ ウ ム及び 酢酸ア ンモニ ゥム以外のス ラ リ一液調製用に用い られる活性成 分含有化合物は、 乾燥 (工程 ( B ) ) または焼成に よ り へテロ ポ リ 酸またはその塩を形成する化合物が好ま しい。 該化合物と しては活性成分元素の、 塩化物、 硫酸塩、 硝酸塩、 酸化物また は酢酸塩等が挙げられる。 好ま しい化合物をよ り 具体的に例示 する と硝酸カ リ ゥムまたは硝酸コバル ト等の硝酸塩、 酸化モ リ プデン、 五酸化バナジウ ム、 三酸化アンチモ ン、 酸化セ リ ゥム、 酸化亜鉛または酸化ゲルマニ ウム等の酸化物、 正 リ ン酸、 リ ン 酸、 硼酸、 リ ン酸アルミ ニ ウムまたは 1 2 タ ングス ト リ ン酸等 の酸 (またはその塩) 等が挙げられる。 また、 銅原料と して酢 酸銅 (酢酸第一銅、 酢酸第二銅、 塩基性酢酸銅、 酸化第二銅等、 好ま し く は酢酸第二銅) を使用する と好ま しい効果を奏する場 合がある。 これらは単独で使用 しても よい し、 2種以上を混合 して使用 しても よい。
セシウム弱酸塩と しては、 セシウム と一般的に知 られている 弱酸の塩であれば特に制限はな く 、 例えば炭酸水素セシウム、 炭酸セ シ ウ ム、 酢酸セ シ ウ ム等が挙げられ、 酢酸セ シウ ム が好 ま しい。 なお、 これらの う ち酢酸セ シ ウ ム は、 市販品をそのま ま使用する こ と ができ る が、 例えば水酸化セシウムや炭酸セシ ゥム等の、 セ シ ウ ム の水溶性塩の水溶液に等当量以上の酢酸を 添加 して酢酸セシ ウ ム水溶液と して添加 しても よい。
本発明において、 M o 、 V、 P 、 C u 、 C s 及び N H 4以外の 活性成分と しては、 メ タ ク リ ル酸製造用触媒の成分元素 と して 知 られている化合物であれば特に制限はないが、 S b 、 A s 、 A g 、 M g 、 Z n 、 A l 、 B、 G e 、 S n 、 P b 、 T i 、 Z r 、 C r 、 R e 、 B i 、 W、 F e 、 C o 、 N i 、 C e 、 T h 、 K及 び R b カゝらなる群カゝ ら選ばれる 1 種以上が挙げられ、 これ らの う ち A s 以外の元素が好ま しい。
本発明における触媒の各活性成分の割合は、 その原子比がモ リ ブデン 1 0 に対 して、 バナジウムが通常 0 . 1 以上で 6 . 0 以下、 好ま し く は、 0 . 3 以上で 2 . 0以下、 特に好ま し く は
0 . 5 以上で 1 . 2 以下、 リ ンが通常 0 . 5 以上で 6 . 0 以下、 好ま し く は 0 . 9 以上で 1 . 5 以下、 銅が通常 0 よ り 大き く 3 .
0 以下、 好ま し く は 0 . 0 1 以上で 1 . 0 以下、 特に好ま し く は 0 . 2以上で 0 . 8 以下、 セシウムが通常 0 . 0 1 以上で 3 .
0 以下、 好ま し く は 0 . 1 以上で 1 . 5 以下、 特に好ま し く は
0 . 2 以上で 1 . 0 以下、 アンモニ ゥムが通常 0 . 1 以上で 3 .
0 以下、 好ま しく は 0 . 5 以上で 3 . 0 以下、 特に好ま し く は
1 . 0 以上で 2 . 2 以下である。 必要によ り 用いるその他の活 性成分の種類及びその使用割合は、 その触媒の使用条件等に合 わせて、 最適な性能を示す触媒が得られる よ う に、 適宜決定さ れる。 通常の条件で使用 される好ま しい触媒は、 下記式 ( 1 ) M o 1 0 V a P b C u c C s d ( N H 4 ) e X f O „ ( 1 ) (式中 M o はモ リ プデン、 Vはバナジウム、 Ρ は リ ン、 C u は 銅、 C s はセシウム、 ( N H 4 ) はアンモニ ゥム基を、 Xは S b . A s 、 A g 、 M g 、 Z n、 A l 、 B、 G e 、 S n、 P b、 T i 、 Z r 、 C r 、 R e 、 B i 、 W、 F e 、 C o 、 N i 、 C e 、 T h、 K及び R b か らなる群か ら選ばれた 1 種以上の元素それぞれ表 し、 a 〜 g は、 それぞれの元素の原子比を表 し、 a は 0 . 1 ≤ a ≤ 6 . 0 の正数、 b は 0 . 5 ≤ b ≤ 6 . 0 の正数、 c は 0 く c ≤ 3 . 0 の正数、 d は 0 . 0 1 ≤ d ≤ 3 . 0 の正数、 e は 0 . 1 ≤ e ≤ 3 . 0 の正数、 f は 0 f 3 . 0 の正数をそれぞれ 表す。 g は各元素の酸酸価数によって定ま る値である。 ) で示される活性成分組成を有する ものである。 なお、 こ の活性 成分組成は、 下記する ス ラ リ ー乾燥体における組成を意味 し、 工程 ( d ) を経た粉体の組成を必ず しも反映してい る も のでは ない。 すなわち、 焼成工程 (工程 ( d ) ) における焼成温度と 焼成時間によ って、 N H 4成分は揮発 し、 水素原子又は金属原子 と置換する こ と が考え られ、 本発明者 らの知見によ る と ス ラ リ 一乾燥体中の N H 4成分が、焼成工程を経る こ と によ り 揮発する 場合も ある。 N H 4の揮発の程度は、 焼成温度、 焼成時間、 焼成 の雰囲気 (空気中か窒素中力 によ って異なるが、 最大で 9 0 モル%程度揮発する。
前記式 ( 1 ) において、 元素 X と しては S b が好ま しい。 S b は、 前記式 ( 1 ) において、 0 以上 2 . 2 以下、 好ま し く は 0 . 0 1 以上 0 . 8 以下の範囲で必要に応 じ使用 される。
該触媒は以下の手順によ り 得る こ と ができ る。
まず活性成分含有化合物の水溶液または水分散体 (以下、 両 者を含めてス ラ リ ー液と い う ) を調製する。 ス ラ リ ー液は、 各 活性成分を有する複数の化合物 と溶媒、 好ま し く は水と を均一 に混合 して得る こ と ができ る。 該ス ラ リ ー液は必要な活性成分 含有化合物の全てを、 触媒の必要量において含有する こ と が好 ま しい。 ス ラ リ一液を調製する際の活性成分含有化合物の添加 順序に特に制限はないが、 M o、 V及び P を有する化合物を先 にス ラ リ ー液と し、 その後セシウム弱酸塩または水酸化セシゥ ム、 酢酸ア ンモ ニ ゥム及び銅を有する化合物をス ラ リ ー液に添 加するほう が好ま しい。
ス ラ リ ー液を調製する際の温度は、 調製に支障がない範囲で あれば特に制限はないが、 セシウム弱酸塩または水酸化セシゥ ム、 酢酸アンモニ ゥ ム及ぴ銅を有する化合物を添加する際の温 度は、 通常 0〜 3 5 °C、 好ま し く は 1 0〜 3 0 °Cの範囲である ほ う が、 得られる触媒が高活性になる場合がある。 こ の傾向は 銅を有する化合物と して酢酸銅を使用 した場合に顕著になるの で、 ズ ラ リ ー液の調製方法は、 前記好ま しい添加方法を採用 し たほ う が効率的になる。
本発明においては、 ス ラ リ ー液が水溶液である のが好ま しい。 ス ラ リ一液における各活性成分の化合物の使用割合は、 各活性 成分の原子比が上記 した範囲であれば特に制限はない。 水の使 用量は、 用いる化合物の全量を完全に溶解でき るか、 または均 一に混合でき る量であれば特に制限はないが、 下記する乾燥方 法や乾燥条件等を勘案 して適宜決定される。 即ち、 通常ス ラ リ 一調製用化合物の合計質量 1 0 0 質量部に対 して、 2 0 0〜 2 0 0 0 質量部程度である。 水の量は多く て も よいが、 多過ぎる と乾燥工程のエネルギー コ ス トが高 く な り 、 また完全に乾燥で き ない場合も生ずる などデメ リ ッ ト が多く 、 メ リ ッ トはあま り ないので適量が好ま しい。
次いで上記で得られたス ラ リ ー液を乾燥 し、 ス ラ リ ー乾燥体 と する。 乾燥方法は、 ス ラ リ ー液が完全に乾燥でき る方法であ れば特に制限はないが、 例えば ドラ ム乾燥、 凍結乾燥、 噴霧乾 燥、 蒸発乾固等が挙げられる。 これらの う ち本発明においては、 ス ラ リ一液状態から短時間に粉末または顆粒に乾燥する こ と が でき る嘖霧乾燥ゃス ラ リ一液を直接乾燥でき簡便である蒸発乾 固が好ま しく 、 蒸発乾固が特に好ま しい。
噴霧乾燥の場合の乾燥温度はス ラ リ ー液の濃度、 送液速度等 によ って異なるが概ね乾燥機の出 口 における温度が 7 0〜 1 5 0 °Cである。 また、 こ の際得られるス ラ リ ー乾燥体の平均粒径 が 3 0〜 5 0 Ο μ πι程度 と なる よ う 乾燥する のが好ま しい。 蒸 発乾固は定法に従っ て行えばよいが、 この場合特にス ラ リ ー乾 燥体が塊状も しく は大き な粒子と して得られるので、 適宜粉砕、, 好ま し く は 3 O O /z m以下と なる よ う に粉砕 して使用する。 本 発明においてスラ リ ー乾燥体といった場合、 このよ う に粉砕さ れたものもス ラ リ ー乾燥体に含むもの とする。
こ う して得られたス ラ リ ー乾燥体は、 本発明の触媒と して気 相接触酸化反応に供する こ と ができ るが、 前記 した よ う に反応 ガス の圧力損失を少なく するために、 柱状物、 錠剤、 リ ング状、 球状等に成型するのが好ま しい。 こ の う ち選択性の向上や反応 熱の除去が期待でき る こ と から不活性担体をス ラ リ一乾燥体で 被覆 し、 被覆触媒と する のが特に好ま しい。 なお、 工程 ( A ) において銅を有する化合物を使用せずにス ラ リ一液を調製 し、 これを乾燥工程に供した後、 得られた乾燥体と銅を有する化合 物の粉末を混合したものを本発明の触媒とする こ と もでき る。
以下、 本発明の第二の実施態様である被覆触媒の製法につき 説明する。
本発明の被覆触媒は、 前記ス ラ リ一乾燥体を製造する に際 し、 工程 ( A ) においてア ンモニ ゥム源と して、 更に水酸化ア ンモ - ゥムを選択し う る こ と を除き同様に行う こ と ができ る。 即ち、 水に原料化合物を溶解及び Zまたは分散 (工程 ( a ) ) させス ラ リ ー液を調製し、 これを乾燥 (工程 ( b ) ) し、 ス ラ リ ー乾 燥体を得る。 工程 ( a ) において各原料化合物の添加順序に特 に制限はないが、 工程 ( A ) における と 同様、 M o、 V、 P を 有する化合物を先にス ラ リ一液と し、 その後セ シ ウ ム源、 ア ン モニ ゥム源及び銅源と なる化合物をス ラ リ一液に添加する ほ う が好ま しい。 工程 ( a ) における場合もセ シ ウ ム源、 ア ンモニ ゥム源及び銅源と なる化合物を添加する際の温度は、 通常 0〜 3 5 °C、 好ま しく は 1 0〜 3 0 °Cが好ま しい。
なお、 工程 ( a ) において銅を有する化合物を使用せずにス ラ リ ー液を調製し、 これを乾燥工程に供した後、 得 られた乾燥 体と銅を有する化合物の粉末を混合 した混合物 (工程 ( b ' ) ) か ら本発明の被覆触媒を得る こ と もでき る。
得られたス ラ リ ー乾燥体 (または前記混合物 ; 以下、 ス ラ リ 一乾燥体は前記混合物を含む) を下記の被覆工程 (工程 ( c ) ) に供する。
被覆工程 (工程 ( c ) ) は以下に述べる転動造粒法が好ま し い。 こ の方法は、 例えば固定容器内の底部に、 平らなあ るいは 凹凸のある 円盤を有する装置中で、 円盤を高速で回転する こ と によ り 、 容器内の担体を 自転運動 と公転運動の繰り 返しによ り.' 激し く 撹拌させ、 こ こ にバイ ンダー と ス ラ リ ー乾燥体並びに必 要によ り 他の添加剤例えば成型助剤及び強度向上材の混合物等 を添加する こ と によ り 該混合物を担体に被覆する方法である。 バイ ンダ一の添加方法は、 ①前記混合物に予め混合 してお く 、 ②混合物を固定容器内に添加する の と 同時に添加、 ③混合物を 固定容器内に添加 した後に添加、 ④混合物を固定容器内に添加 する前に添加、 ⑤混合物 とバイ ンダーをそれぞれ分割し、 ②〜 ④を適宜組み合わせて全量添加する等の方法が任意に採用 し う る。 こ の う ち⑤においては、 例えば混合物の固定容器壁への付 着、 混合物同士の凝集がなく 担体上に所定量が担持される よ う ォー ト フィ ーダ一等を用いて添加速度を調節 して行 う のが好ま しい。
バイ ンダーは水及びその 1 気圧下での沸点が 1 5 0 °C以下の 有機化合物か らなる群か ら選ばれる少な く と も 1 種であれば特 に制限はないが、 被覆後の乾燥等を考慮する と沸点 1 0 0 °C以 下のも のが好ま しい。 水以外のバイ ンダ一の具体例 と してはメ タ ノール、 エタ ノ ール、 プロ ノ ノ ール類、 ブタ ノ ール類等のァ ルコール、 好ま し く は炭素数 1 〜 4 の アル コ ール、 ェチルエー テル、 ブチルエーテルまたはジォキサン等のエーテル、 酢酸ェ チルまたは酢酸プチル等のエス テル、 ァセ ト ンまたはメ チ レエ チルケ ト ン等のケ ト ン等並びにそれら の水溶液等が挙げられ、 特にエタ ノ ールが好ま しい。 バイ ンダーと してエタ ノールを使 用する場合、 エタ ノ ール/水 = 1 0 / 0 ~ 5 / 5 (質量比) 、 好ま し く は 1 0 0 〜 7 / 3 (質量比) であるが、 エタ ノ ール 濃度で 1 0 〜 3 0 質量%程度が特に好ま しい。 これらバイ ンダ 一の使用量は、 ス ラ リ ー乾燥体 1 0 0 質量部に対 して通常 2 〜 6 0質量部、 好ま し く は 5 〜 2 5 質量部である。
本発明において用い う る担体の具体例と しては、 炭化珪素、 アルミ ナ、 シリ カアルミ ナ、 ムライ ト 、 アラ ンダム等の直径 1 〜 1 5 m m、 好ま し く は 2 . 5 〜 1 O m m、 特に好ま し く は 2 . 5〜 4 . 5 m mの球形担体等が挙げられる。 これら担体は通常 は 1 0〜 7 0 %の気孔率を有する も のが用い られる。 こ こで、 担体の気孔率は、 担体の乾燥重量を W 、 水中重量を W 2、 飽和 吸水重量を W 3 と した場合に (W 3 — / ( W a - W 2 ) X I
0 0 で定義される値であ る。 担体と被覆される ス ラ リ ー乾燥体 の割合は通常、 ス ラ リ ー乾燥体 Z (ス ラ リ ー乾燥体 +担体) =
1 0〜 7 5 質量%、 好ま し く は 1 5〜 6 0 質量% と なる範囲で ある。
被覆される ス ラ リ一乾燥体の割合が多い場合、 被覆触媒の反 応活性は大き く なる が、 機械的強度が小さ く なる (磨損度が大 き く な る) 傾向があ る。 逆に、 被覆される ス ラ リ ー乾燥体の割 合が少ない場合、 機械的強度は大きい (磨損度は小 さい) が、 反応活性は小さ く なる傾向がある。
本発明においては、 ス ラ リ ー乾燥体を担体上に被覆する'場合、 更に必要によ り シ リ カ ゲル、 珪藻土、 アル ミ ナ粉末等の成型助 剤を用いても よい。 成型助剤の使用量は、 ス ラ リ ー乾燥体 1 0 0 質量部に対 して通常 5〜 6 0 質量部である。
また、 更に必要に よ り 触媒成分に対 して不活性な、 セラ ミ ツ ク ス繊維、 ウイ スカ一等の無機繊維を強度向上材と して用いる 事は、 触媒の機械的強度の向上に有用である。 しカゝ し、 チタ ン 酸力 リ ゥム ゥイ スカーや塩基性炭酸マグネシウム ゥイ スカー の 様な触媒成分と反応する繊維は好ま し く ない。 これ ら繊維の使 用量は、 ス ラ リ ー乾燥体 1 0 0 質量部に対 して通常 1〜 3 0 質 量部である。
上記成型助剤及び強度向上材等の添加剤は、 通常被覆工程に おいて、 担体、 ス ラ リ ー乾燥体、 バイ ンダー等と共に造粒機中 に添加 し、 担体の被覆に使用 される。
このよ う に してス ラ リ一乾燥体を担体に被覆する が、 この際 得られる被覆品は通常直径が 3〜 1 5 m m程度、 好ま し く は 3 . 2〜 5 m m程度である。
こ う して得られた被覆触媒はそのまま触媒と して気相接触酸 ィ匕反応に供する こ と ができ るが、 焼成 (工程 ( d ) ) する と触 媒活性が向上する場合があ り 好ま しい。 この場合の焼成温度は 通常 1 0 0〜 4 2 0 °C、 好ま し く は 2 5 0 ~ 4 0 0 °C、 焼成時 間は 1〜 2 0 時間である。
なお、 焼成は通常空気雰囲気下において行われる が、 窒素の よ う な不活性ガス雰囲気下で行っても 良い し、 不活性ガス雰囲 気下での焼成後に必要に応 じて更に空気雰囲気下で焼成を行つ ても良い。 また、 不活性ガス雰囲気下、 好ま し く は還元剤の存 在下に焼成を行 う と 更に活性の高い触媒が得られる場合があ り 好ま しい。 還元剤 と しては焼成温度において好ま し く は気体と なる も のであれば特に制限はな く 、 C O及び炭素数が 2 〜 5 の アルコール類、 アルデヒ ド類、 ケ ト ン類、 有機酸類が挙げられ る が、 特にエタ ノ ールが好ま しい。
上記のよ う に して得られた本発明の触媒は、 メ タ ク 口 レイ ン、 ィ ソプチルアルデヒ ドまたはィ ソ酪酸を気相接触酸化してメ タ ク リ ル酸を製造する際に使用 される。 なお、 本発明の触媒と い つた場合、 特に断らない限 り 、 工程 ( A ) 〜 ( B ) を経て得ら れたス ラ リ ー乾燥体、 または工程 ( a ) 〜 ( c ) (及び好ま し く は更に工程 ( d ) ) を経て得られた被覆触媒の両者を含む意 味で使用する。
以下、 本発明の触媒を使用するのに最も好ま しい原料である メ タ ク 口 レイ ンの気相接触反応場合につき説明する。
気相接触酸化反応には、 分子状酸素または分子状酸素含有ガ ス が使用 される。 メ タ ク 口 レイ ンに対する分子状酸素の使用割 合はモル比で 0 . 5 〜 2 0 の範囲が好ま し く 、 特に 1 〜 1 0 の 範囲が好ま しい。 反応を円滑に進行させる こ と を 目 的と して、 原料ガス中に水をメ タ ク 口 レイ ンに対 しモル比で 1 ~ 2 0 の範 囲で添加する こ と が好ま しい。
原料ガスは酸素、 必要によ り 水 (通常水蒸気と して含む) の 他に窒素、 炭酸ガス 、 飽和炭化水素等の反応に不活性なガス等 を含んでいても よい。
また、 メ タ ク ロ レイ ンはイ ソプチレ ン、 第三級プタ ノ ール及 びメ チルターシャ リ一ブチルエーテルを酸化 して得 られたガス をそのまま供給しても よい。
気相接触酸化反応における反応温度は通常 2 0 0〜 4 0 0 °C 好ま し く は 2 6 0〜 3 6 0 °C、原料ガス の供給量は空間速度( S V ) に して、 通常 1 0 0〜 6 0 0 0 h r — 1、 好ま し く は 4 0 0 ~ 3 0 0 0 h r _ 1である。
本発明に よ る触媒を用いた場合、 S Vを上げても反応成績に は大き な変化はな く 、 高空間速度にて反応を実施する こ と が可 能である。
また、 接触酸化反応は加圧下または減圧下でも可能であるが、 一般的には大気圧付近の圧力が適 している。 実施例 以下に本発明を実施例及び比較例に よ り 更に具体的に説明す る。
なお、 以下の例中の転化率、 選択率及び収率は次の通 り に定 義される。
転化率 =反応したメタクロレイ ンのモル数ノ供給したメタク口 レイ ンのモノレ数 X 1 0 0
選択率 =生成したメタク リ ル酸のモル数 Z反応したメタク 口 レイ ンのモノレ数 X 1 0 0
収率 =生成したメタク リル酸のモル数 Z供給したメタク口 レイ ンのモノレ数 X I 0 0
なお、 実施例中の触媒活性成分組成はいずれも仕込み原料か ら算出 した比率である。 また式において酸素は省略 して表示 し た。
実施例 1 :.
1 ) 触媒の調製
純水 1 2 0 0 m 1 に三酸化モ リ プデン 2 0 0 g と 五酸化バナ ジゥム 8 . 8 4 g 、 及ぴ 8 5 質量。/。正燐酸 1 7 . 6 1 g を添加 し、 9 0 〜 1 0 0 °Cで 5 時間加熱還流 して赤褐色の透明溶液を 得た。 続いて、 そこ に三酸化アンチモ ン 6 . 0 7 を添カ11 し、 さ ら に 9 0〜 1 0 0 °Cで 2時間加熱還流 して三酸化ア ンチモ ンの溶 解 した濃紺色の溶液を得た。
続いて、 この溶液を 1 5〜 2 0 °Cに冷却 して、 撹拌しなが ら 純水 1 5 O m l に酢酸セ シ ウ ム 1 3 . 3 3 g を溶解した溶液と 、 純水 1 5 O m l に酢酸ア ンモニ ゥム 1 6 . 0 6 g を溶解 した溶 液を同時に徐々 に添カ卩 し、 続いて、 さ らにそのス ラ リ ー液に純 水 1 7 0 m l に酢酸第二銅 ' 一水和物 1 1 . 0 9 g を溶解 した 溶液を添加 し、 1 5〜 2 0 °Cで 1 時間熟成させ緑青色のス ラ リ' 一液を得た。
続いて、 このス ラ リ ー液を湯煎によ る蒸発乾固で乾燥し、 乳 鉢で 3 0 0 /i m以下に粉砕してスラ リ ー乾燥体を得た。 得られ たス ラ リ一乾燥体の組成は
o i o V o ^ P ^ i C u o ^ S b o . s C s o . g ( N H 4 ) 1 , 5である。
続いて、 得られたス ラ リ ー乾燥体 2 1 5 . 9 g を用い、 強度 向上材 (セラ ミ ッ ク繊維) 2 9 . 8 g と均一に混合 して、 球状 多孔質アル ミ ナ担体 (粒径 3 . 5 m m , 気孔率 2 5 . 5 % ) 2 0 0 g に 9 0 質量%エタ ノ ール水溶液をバイ ンダー と して、 転 動造粒法によ り 被覆成型 し、 被覆成型物を得た。 こ の間 の粉末 の損失はほと んど認め られなかった。
次いで、 得られた被覆成型物を空気流通下において 3 1 0 °C で 5 時間焼成 して本発明の被覆触媒を得た。 得られた被覆触媒 の粒径は 4 . 3 m m (平均値) であった。
2 ) メ タ ク ロ レイ ンの触媒酸化反応
得られた被覆触媒 1 0 . 3 m l を内径 1 8 . 4 m mのステ ン レス反応管に充填 し、 原料ガス組成 (モル比) =メ タ ク ロ レイ' ン : 酸素 : 水蒸気 : 窒素 = 1 : 2 . 0 : 4 . 0 : 1 8 . 6 、 空' 間速度 ( S V ) 1 2 0 0 h r - 1 , 反応浴温度 3 1 0 °Cの条件で メ タ ク ロ レイ ンの酸化反応を実施 した。 最初、 反応浴温度 3 1 0 °Cで反応成績の測定を した後、 反応浴温度を 3 5 0 °Cに上げ 1 5 時間反応を続けた。 次いで、 反応浴温度を 3 1 0 °Cに下げ 反応成績の測定を行った。 その反応結果を表 1 に示す。
表 1
Figure imgf000031_0001
* PT;ピーク温度(以下の表において同じ)
*転化率;メタクロレインの転化率 (以下の表において同じ)
*選択率:メタクリル酸の選択率(以下の表において同じ)
*収率 ;メタクリル酸の収率(以下の表において同じ〉
実施例 2
1 ) 触媒の調製
純水 2 5 0 0 m 1 に三酸化モ リ プデン 3 5 0 g と五酸化バナ ジゥム 1 7 . 6 9 g 、 及び 8 5 質量%正燐酸 3 2 . 2 7 g を添. 加 し、 9 0 ~ 1 0 0 °Cで 5 時間加熱還流して赤褐色の透明溶液 を得た。
続いて、 そこ に三酸化アンチモ ン 1 7 . 7 1 g を添加 し、 さ ら に 9 0 〜 1 0 0 °Cで 2 時間加熱還流 して三酸化ア ンチモ ンの 溶解した濃紺色の溶液を得た。
続いて、 この溶液を 1 5 〜 2 0 °Cに冷却 して、 撹拌しなが ら 純水 1 7 O m l に酢酸セシウム 2 3 . 3 3 g を溶解 した溶液と 、 純水 1 7 0 m l に酢酸ア ンモニゥム 3 3 . 7 3 g を溶解 した溶 液を同時に徐々 に添加 し、 1 5 〜 2 0 °Cで 1 時間熟成させて緑 青色のス ラ リ ー液を得た。 続いて、 こ のス ラ リ ー液を湯煎によ る蒸発乾固で乾燥 し、 乳 鉢で 3 0 0 /X m以下に粉碎 して粉体を得た。 得られた粉体の組 成は
M o i 0 V 0. 8 P i . i 5 S b 0. 4 C s 0. 5 ( N H 4 ) 8であ る。
続いて上記粉体に原子比で M o 1 0 に対 して C u 0 . 4 にな る量の酢酸第二銅 · 一水和物の粉末 1 9 . 4 1 g と 強度向上材 (セラ ミ ッ ク繊維) 6 6 . 1 g と を均一に添加混合 して、 球状 多孔質アル ミ ナ担体 (粒径 3 . 5 m m、 気孔率 2 5 . 5 % ) 4 4 4 . 1 g に 9 0 質量。 /0エタ ノ ール水溶液をバイ ンダー と して 転動造粒法によ り 被覆成型 し、 被覆成型物を得た。 得られた被 覆触媒の粒径は 4 . 3 m m (平均値) であった。
得られた被覆成型物を、 箱形熱風循環焼成炉を用いて窒素流 通 ( S L Zm i n . ) 下で還元剤 と してエタ ノ ール ( 2 0 g Z h ) を使用 し 3 8 0 °Cで 1 0 時間焼成 して本発明の被覆触媒を 得た。 得られた被覆触媒の活性成分組成は、
M o ! 0 V 0. 8 P ! . ! 5 C u 0. 4 S b 0. 4 C s 0. 5 ( N H 4 ) ! . 8である。
2 ) メ タ ク ロ レイ ンの触媒酸化反応 得られた被覆触媒を用いた以外は実施例 1 と 同様に して、 酸 化反応を行った。 反応結果を表 2 に示す 表 2
Figure imgf000033_0001
実施例 3
1 ) 触媒の調製
純水 1 4 0 0 m 1 に三酸化モ リ ブデン 2 0 0 g と 五酸化バナ ジゥム 1 0 . l l g 、 及び 8 5 質量%正燐酸 1 8 . 4 2 g を添 加 し、 9 0 〜 1 0 0 °Cで 5 時間加熱還流 して赤褐色の透明溶液 を得た。
続いて、 この溶液を 1 5 〜 2 0 °Cに冷却 して、 撹拌しなが ら 純水 1 0 0 m 1 〖こ酢酸セ シ ウ ム 1 3 . 3 3 g を溶解 した溶液と 、 純水 1 0 0 m 1 に酢酸ア ンモ - ゥム 1 9 . 2 7 g を溶解 した溶 液を同時に徐々 に添加 し、 1 5 °C ~ 2 0 °Cで 1 時間熟成させて 緑青色のス ラ リ ー液を得た。
続いて、 こ のス ラ リ ー液を湯煎によ る蒸発乾固で乾燥し、 乳 鉢で 3 0 0 μ m以下に粉砕 して粉体を得た。 得られた粉体の組 成は
M o 1 0 V 0. 8 Ρ ! . 1 5 C S 0. 5 ( N H 4 ) . 8である。
続いて上記粉体に原子比で M o 1 0 に対 して C u 0 . 4 にな る量の酢酸第二銅 · 一水和物の粉末 1 1 . 0 9 g と 強度向上材 (セラ ミ ッ ク繊維) 2 8 . 9 g と を均一に添加混合 して、 球状 多孔質アル ミ ナ担体 (粒径 3 . 5 m m , 気孔率 2 5 . 5 % ) 2 0 0 g に 9 0 質量%エタ ノ ール水溶液をバイ ンダー と して転動 造粒法によ り 被覆成型 し、 被覆成型物を得た。 得られた被覆触. 媒の粒径は 4 . 3 m m (平均値) であった。
得られた被覆成型物を、 箱形熱風循環焼成炉を用いて窒素流 通 ( 5 L / m i n . ) 下で還元剤と してエタ ノ ール ( 2 0 g Z h ) を使用 し、 3 8 0 °Cで 1 0 時間焼成 して本発明の被覆触媒 を得た。 得られた被覆触媒の活性成分組成は
o 1 0 V 0. 8 P i . 1 5 C u 0. 4 C s 0. s ( N H 4 ) uであ る。
2 ) メ タ ク ロ レイ ンの触媒酸化反応
得られた被覆触媒を用いた以外は実施例 1 と 同様に して、 酸 化反応を行った。 反応結果を表 3 に示す。 表 3
Figure imgf000035_0001
比較例
) 触媒の調製
純水 1 5 0 O m l に三酸化モ リ ブデン 2 0 0 g と五酸化バナ ジゥム 8 . 8 4 g 、 及び 8 5 質量。/。正憐酸 1 8 . 4 2 g を添加 し、 9 0 0 0 °Cで 5 時間加熱還流 して赤褐色の透明溶液を' 得た
続いて、 そこ に三酸化アンチモ ン 6 . 0 7 § を添カ[] し、 さ ら に 9 0 ~ 1 0 0 °Cで 2時間加熱還流 して三酸化ア ンチモ ンの溶 解した濃紺色の溶液を得た
続いて、 こ の溶液を 1 5〜 2 0 °Cに冷却 して、 撹拌しなが ら 純水 2 0 0 m 1 に硝酸セ シ ウ ム 1 3 . 5 4 g を溶解した溶液と 、
2 8 %ア ンモニア水溶液 2 6 . 0 8 g を純水 1 5 0 m 1 に希釈 したも のを同時に徐々 に添加 し、 1 5〜 2 0 °Cで 1 時間熟成さ せて緑青色のスラ リ一液を得た
続いて、 このス ラ リ ー液を湯煎によ る蒸発乾固で乾燥 し、 乳 鉢で 3 0 0 m以下に粉砕 して粉体を得た。 得られた粉体の組 成は
o 1 0 V 0. 7 P X . i 5 S b 0. 3 C s 0. 5 ( N H 4 ) 5であ る。
続いて上記粉体に原子比で M o 1 0 に対 して 0 . 4 になる量 の酢酸第二銅 · 一水和物の粉末 1 1 . 0 9 g と強度向上材 (セ ラ ミ ッ ク繊維) 3 4 . 7 g と を均一に添加混合 して、 球状多孔 質アル ミ ナ担体 (粒径 3 . 5 m m、 気孔率 2 5 . 5 % ) 2 3 2 , 6 g に 9 0 質量。 /0エタ ノ ール水溶液をバイ ンダーと して転動造 粒法によ り 被覆成型 し、 被覆成型物を得た。 得られた被覆成型 物の粒径は 4 . 3 m m (平均値) であった。
得られた被覆成型物は、 空気流通下において 3 1 0 °Cで 5 時 間焼成 して比較用の被覆触媒を得た。 得られた被覆触媒の組成 は
M O ! 0 V 0 . 7 P 1 . 1 5 C u 0 . 4 S b 0 . 3 C s 0 . 5 ( N H 4 ) 1. 5である。
2 ) メ タ ク ロ レイ ン の触媒酸化反応
得られた被覆触媒を用い、 反応浴温度を 3 1 0 °Cでのみ行つ た以外は実施例 1 と 同様に して、 酸化反応を行った。 反応結果 を表 4 に示す
表 4
Figure imgf000037_0001
実施例 4
三酸化アンチモ ン の量を 2 2 . 1 4 g に、 酢酸ア ンモ ニ ゥム の量を 2 6 . 2 3 g に、 また焼成工程を空気流通下 3 1 0 °C、 5 時間にそれぞれ変えた以外は、 実施例 2 と 同様に して本発明 の被覆触媒を得た。 得られた被覆触媒の粒径は 4 . 3 m m (平 均値) であった。
実施例 5
五酸化バナジウムの量を 1 5 . 4 8 g に、 8 5 質量。/。正燐酸 の量を 3 1 . 7 1 g に、 酢酸アンモニ ゥムの量を 3 1 . 8 6 g に、 また焼成工程を空気流通下 3 1 0 °C、 5 時間にそれぞれ変 えた以外は、 実施例 2 と 同様に して本発明の被覆触媒を得た。 得られた被覆触媒の粒径は 4 . 3 m m (平均値) であった。 実施例 6
酢酸セシウム 2 3 . 3 3 g Z水 1 7 0 m l 水溶液を、 水酸化 セ シ ウ ム ' 一水和物 2 0 . 4 l g /水 1 7 5 m l 水溶液 (M o 1 0 に対 し、 C s O . 5 ) に変えた他は実施例 2 と 同様に して 本発明の被覆触媒を得た。 得られた被覆触媒の粒径は 4 . 3 m m (平均値) であった。
実施例 7
酢酸セシ ウ ム 2 3 . 3 3 g Z水 1 7 0 m 1 水溶液を、 水酸化 セシウム . 一水和物 2 0 . 4 1 g Z水 1 2 3 m l に酢酸 7 . 3 0 g Z水 5 2 . 5 m 1 を力 Πえたものに変えた他は実施例 2 と 同 様に して本発明の被覆触媒を得た。 得 られた被覆触媒の粒径は 4 . 3 m m (平均値) であった。
実施例 8
三酸化ア ンチモ ンの量を 2 . 2 1 g に変えた他は実施例 2 と 同様に して本発明の被覆触媒を得た。 得られた被覆触媒の粒径 は 4 . 3 m m (平均値) であった。
実施例 9
酢酸ア ンモニ ゥ ム の量を 2 1 . 4 l g に変え、 三酸化ア ンチ モ ンを使用 しなかった以外は実施例 3 と同様に して本発明の被 覆触媒を得た。 得られた被覆触媒の粒径は 4 . 3 m m (平均値) であった。
実施例 1 0
三酸化ア ンチモ ンの溶解した濃紺色溶液の冷却温度を 2 6 〜 3 0 °Cに変えた以外は実施例 2 と 同様に して本発明の被覆触媒 を得た。 得られた被覆触媒の粒径は 4 . 3 m m (平均値) であ つた。
比較例 2
酢酸アンモ ニゥムを使用せず、 8 5 質量%正燐酸の量を 2 0 . 0 9 g に、 三酸化ア ンチモ ン の量を 8 . 0 9 g にそれぞれ変え た他は比較例 1 と 同様に して比較用の被覆触媒を得た。 得られ た被覆触媒の粒径は 4 . 3 m m (平均値) であった。
比較例 3
酢酸セシ ウ ム と酢酸ア ンモニ ゥムを使用せず、 酢酸第二銅 - 一水和物の量を 2 4 . 2 6 g に変えた他は実施例 2 と 同様に し て比較用の被覆触媒を得た。 得られた被覆触媒の粒径は 4 . 3 m m (平均値) であった。 ' 比較例 4
酢酸セシ ウ ムを使用 しなかった他は実施例 2 と 同様に して比 較用の被覆触媒を得た。 得られた被覆触媒の粒径は 4 . 3 m m
(平均値) であった。
比較例 5
8 5 質量%正燐酸の量を 1 9 . 2 2 g に、 硝酸セシウム 1 3 . 5 4 g を酢酸カ リ ゥム 7 . 0 2 g にそれぞれ変えた他は比較例 1 と 同様に して比較用の被覆触媒を得た。 得られた被覆触媒の 粒径は 4 . 3 m m (平均値) であった。
比較例 6
8 5 質量%正燐酸の量を 1 9 . 2 2 g に、 硝酸セ シ ウ ム 1 3 . 5 4 g を酢酸ルビジウム 1 0 . 2 5 g にそれぞれ変えた他は比 較例 1 と 同様に して比較用の被覆触媒を得た。 得られた被覆触 媒の粒径は 4 . 3 m m (平均値) であった。
試験例
実施例 4 〜 1 0 及び比較例 2 〜 6 で得られた被覆触媒につき 浴温 3 5 0 °C X 1 5 時間の条件で実施例 1 と 同様に酸化反応を 行った後、 浴温を 3 1 0 °Cに下げ反応成績を測定 した。 結果を 表 5 に被覆触媒の各触媒活性成分の原子比 と共に示す。
表 5
触媒活性成分組成 触媒性能
PT(°C)
Mo V P Cu Cs NH4 Sb 転化率 (¾)選択率 (¾·) 収率 (¾〉 実施例 4 10 0.8 1.15 0.4 0.5 1.4 0.5 323 85.0 83.9 71.4 実施例 5 10 0.7 1.13 0.4 0.5 1.7 0.4 317 89.0 79.7 70.9
10 0.8 1.15 0.4 0.5 1.8 0.4 322 81.9 86.4 70.8 実施例 7 10 0.8 1.15 0.4 0.5 1.8 0.4 323 83.6 85.1 71.1 実施例 8 10 0.8 1.15 0.4 0.5 1.8 0.05 321 80.6 85.6 69.0 実施例 9 10 0.8 1.15 0,4 0.5 2.0 322 80.2 86.3 69.2 施例 1 C 10 β 1.15 0.4 0.5 1.8 0.4 323 83.7 85.0 71.2 比較例 2 10 0J 1.2 0.4 0.5 0.4 331 88.7 70.8 62.8 比較例 3 10 0.8 1.15 0:5 0.4 320 60.7 79.2 48.1 比較例 4 10 0.8 1.15 0.4 1.8 0.4 31 1 10.1 53.0 5.3 比較例 5 10 0.7 1.2 0.4 0.5(K) 1.5 0.3 312 1 1.1 65.4 7.2 比較例 6 10 0.7 1.2 0.4 0.5(Rb) 1.5 0.3 314 35.6 85.5 30.5

Claims

求 の
1 . M o 、 V、 P、 C u、 C s 及び N H 4 を必須の活性成分とす るへテ ロ ポ リ 酸を含むヘテロ ポ リ 酸塩を触媒活性成分とする触 媒であって、 該触媒活性成分の う ち C s 原料と してセシ ウ ム弱 酸塩または水酸化セ シ ウ ムを、 また、 N H 4原料と して酢酸ア ン モニ ゥムをそれぞれ使用 して得られる ものである こ と を特徴と する メ タ ク ロ レイ ン、 イ ソプチルアルデヒ ドまたはイ ソ酪酸を 気相接触酸化 してメ タ ク リ ル酸を製造するための触媒。
2 . C s 原料が酢酸セシ ウ ムまたは水酸化セ シ ウ ムである請求 の範囲第 1 項記載の触媒。
3 . 活性成分と して砒素を含有 しない請求の範囲第 1 または 2 項記載の触媒。
4 . C u原料と して酢酸銅または酸化第二銅を使用 した請求の 範囲第 1 項〜 3項のいずれか一項に記載の触媒。
5 . 触媒活性成分の組成が下記式 ( 1 )
M o 1 0 V a P b C u c C s d ( N H 4 ) e X f O g ( 1 )
(式中 M o はモ リ プデン、 Vはバナジウム、 P は リ ン、 C u は 銅、 C s はセシウム、 ( N H 4 ) はアンモニ ゥム基を、 Xは S b A s 、 A g 、 M g 、 Z n 、 A l 、 B 、 G e 、 S n 、 P b 、 T i 、 Z r 、 C r 、 R e 、 B i 、 W、 F e 、 C o 、 N i 、 C e 、 T h 、 K及び R b からなる群か ら選ばれた 1 種以上の元素をそれぞれ 表 し、 a 〜 g は、 それぞれの元素の原子比を表 し、 a は 0 . 1 ≤ a ≤ 6 . 0 の正数、 b は 0 . 5 ≤ b ≤ 6 . 0 の正数、 c は 0 < c ≤ 3 . 0 の正数、 d は 0 . 0 1 ≤ d ≤ 3 . 0 の正数、 e は 0 . 1 ≤ e ≤ 3 . 0 の正数、 f は 0 ≤ f ≤ 3 . 0 の正数をそれ ぞれ表す。 g は各元素の酸酸価数によ って定ま る値である。 ) で表される請求の範囲第 1 〜 4項のいずれか一項に記載の触媒。
6 . a 力 S O . 5 ≤ a ≤ 1 . 2 の正数、 b 力 0 . 9 ≤ b ≤ 1 . 5 の正数、 c 力 S O . 2 ≤ c ≤ 0 . 8 の正数、 d 力 0 . 2 ≤ d ≤ 0 . 8 の正数、 e 力 S 1 . 0 ≤ e ≤ 2 . 2 の正数、 f 力 0 ≤ ί ≤ 0 . 8 である請求の範囲第 5 項記載の触媒。
7 . S b を必須成分とする請求の範囲第 5 または 6 項記載の触
8 . '
工程 ( A )
下記化合物 A— 1 〜 A _ 3 及び必要によ り ィヒ合物 A — 4 を水と混合 し、 これ らの化合物の水溶液または水分散体 (以下、 両 を含めてス ラ リ ー液 と い う ) を調製するェ 程、 ィ匕合物 A— 1 ; M o を有する化合物、 Vを有する化合物、 P を有する化合物及び C u を有する化合物
化合物 A _ 2 ; セ シ ウ ム弱酸塩または水酸化セ シ ウ ム ィ匕合物 A— 3 ; 酢酸アンモ ニゥム
ィ匕合物 A— 4 ; S b 、 A s 、 A g 、 M g 、 Z n 、 A l 、 B 、 G e 、 S n 、 P b 、 T i 、 Z r 、 C r 、 R e 、 B i 、 W、 F e 、 C o 、 N i 、 C e 、 T h 、 Kまたは R b を有 する化合物からなる群から選ばれた 1 種以上の化合物 工程 ( B )
工程 ( A ) で得られたス ラ リ ー液を乾燥してス ラ リ ー乾 燥体を得る工程
からなる こ と を特徴とする メ タ ク ロ レイ ン、 イ ソプチルアルデ ヒ ドまたはィ ソ酪酸の気相接触酸化に よ る メ タ ク リ ル酸製造用 触媒の製法。
9 . 化合物 A — 4 を必須成分と して使用する請求の範囲第 8 項 記載の触媒の製法。
1 0 .
工程 ( a )
下記化合物 a - l 〜 a _ 3 及び必要に よ り 化合物 a - 4 を水と混合 し、 これ らの化合物の水溶液または水分散体 (以下、 両者を含めてス ラ リ ー液と い う ) を調製するェ 程、 ィ匕合物 a — 1 ; M o を有する化合物、 Vを有する化合物、. P を有する化合物及び C u を有する化合物
ィ匕合物 a — 2 ; セ シ ウ ム弱酸塩または水酸化セシ ウ ム ィ匕合物 a - 3 ; 酢酸ア ンモニゥムまたは水酸化ア ンモニ ゥム
ィ匕合物 a — 4 ; S b 、 A s 、 A g 、 M g 、 Z n 、 A l 、 B 、 G e 、 S n 、 P b 、 T i 、 Z r 、 C r 、 R e 、 B i 、 W、 F e 、 C o 、 N i 、 C e 、 T h 、 Kまたは R b を有 する化合物からなる群から選ばれた 1 種以上の化合物 工程 ( b )
工程 ( a ) で得られたス ラ リ ー液を乾燥 してス ラ リ ー乾 燥体を得る工程、
工程 ( c )
工程 ( b ) で得られたス ラ リ ー乾燥体を、 バイ ンダーを 用いて担体に被覆し、 被覆成型物を得る工程、
工程 ( d )
工程 ( c ) で得られた被覆成型物を焼成する工程、 力 らなる こ と を特徴とする メ タ ク ロ レイ ン、 イ ソプチルァルデ ヒ ドまたはイ ソ酪酸の気相接触酸化に よ る メ タ ク リ ル酸製造甩 被覆触媒の製法。
1 1 .
工程 ( a )
下記化合物 a — 1 〜 a - 3 及ぴ必要によ り 化合物 a - 4 を水 と混合 し、 これらの化合物のス ラ リ ー液を調製する ェ程、 化合物 a — 1 ; M o を有する化合物、 Vを有する化合物 P を有する化合物及び C u を有する化合物
化合物 a — 2 ; セ シ ウ ム弱酸塩または水酸化セシ ウ ム 化合物 a — 3 ; 酢酸ア ンモニ ゥムまたは水酸化ア ンモニ ゥム
ィ匕合物 a _ 4 ; S b 、 A s 、 A g 、 M g 、 Z n 、 A l 、 B 、 G e 、 S n、 P b 、 T i 、 Z r 、 C r 、 R e 、 B i 、 W、 F e 、 C o 、 N i 、 C e 、 T h 、 Kまたは R b を有 する化合物からなる群か ら選ばれた 1 種以上の化合物 工程 ( b )
工程 ( a ) で得られたス ラ リ ー液を乾燥してス ラ リ ー乾 燥体を得る工程、
工程 ( b ' )
工程 ( b ) で得られたス ラ リ ー乾燥体に固体の銅を有す る化合物を混合して粉体を得る工程、
工程 ( c )
工程 ( b ' ) で得られた粉体を、 バイ ンダーを用いて担 体に被覆し、 被覆成型物を得る工程、
工程 ( d )
工程 ( c ) で得られた被覆成型物を焼成する工程、 力 らなる こ と を特徴とするメ タ ロ レイ ン、 イ ソプチルァルデ ヒ ドまたはィ ソ酪酸の気相接触酸化によ る メ タ ク リ ル酸製造用 被覆触媒の製法。
1 2 . 化合物 a — 4 を必須成分と して使用する請求の範囲第 1 0 または 1 1 項記載の被覆触媒の製法。
1 3 . パイ ンダ一と して、 水及び 1 気圧下での沸点が 1 5 0 °C 以下である有機化合物か らなる群か ら選ばれる少な く と も 1 種 を用いる請求の範囲第 1 0 〜 1 2 項のいずれか 1 項に記載の被 覆触媒の製法。
1 4 . バイ ンダーがエタ ノールである請求の範囲第 1 3 項記載 の被覆触媒の製法。
1 5 . バイ ンダーがエタ ノーノレ/水 = 1 0 / 0 〜 5 / 5 (質量 比) である請求の範囲第 1 3項記載の被覆触媒の製法。
1 6 . 工程 ( d ) において、 被覆成型物を還元剤共存下で焼成 する請求の範囲第 1 0 〜 1 5 項のいずれか 1 項に記載の被覆触 媒の製法。
1 7 . 還元剤がエタ ノ ールである請求の範囲第 1 6 項記載の被 覆触媒の製法。
1 8 . 請求の範囲第 1 0 〜 1 7項のいずれか 1 項に記載の製法 によ り 得られる メ タ ク ロ レイ ン、 イ ソプチルアルデヒ ドまたは イ ソ酪酸の気相接触酸化によ るメ タ ク リ ル酸製造用被覆触媒。
PCT/JP2004/001999 2003-02-20 2004-02-20 メタクリル酸製造用触媒及びその製法 WO2004073857A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/545,699 US7825061B2 (en) 2003-02-20 2004-02-20 Catalyst for producing methacrylic acid and preparation method thereof
EP04713199.0A EP1595600B1 (en) 2003-02-20 2004-02-20 Process for producing a catalyst for methacrhylic acid synthesis
MXPA05008754A MXPA05008754A (es) 2003-02-20 2004-02-20 Catalizador para producir acido metacrilico y metodo de preparacion del mismo.
JP2005502792A JP4478107B2 (ja) 2003-02-20 2004-02-20 メタクリル酸製造用触媒及びその製法
BR0407442-4A BRPI0407442A (pt) 2003-02-20 2004-02-20 Catalisador para produzir ácido metacrìlico e método para sua preparação

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003042259 2003-02-20
JP2003-042259 2003-02-20

Publications (1)

Publication Number Publication Date
WO2004073857A1 true WO2004073857A1 (ja) 2004-09-02

Family

ID=32905345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001999 WO2004073857A1 (ja) 2003-02-20 2004-02-20 メタクリル酸製造用触媒及びその製法

Country Status (11)

Country Link
US (1) US7825061B2 (ja)
EP (2) EP2374538A1 (ja)
JP (1) JP4478107B2 (ja)
KR (1) KR100972813B1 (ja)
CN (1) CN100457264C (ja)
BR (1) BRPI0407442A (ja)
MX (1) MXPA05008754A (ja)
MY (1) MY144325A (ja)
TW (1) TWI341219B (ja)
WO (1) WO2004073857A1 (ja)
ZA (1) ZA200507363B (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121100A1 (ja) * 2005-05-12 2006-11-16 Nippon Kayaku Kabushiki Kaisha メタクリル酸製造用触媒の製造方法
JP2008302313A (ja) * 2007-06-08 2008-12-18 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒及びその製造方法並びにメタクリル酸の製造方法
JP2009502481A (ja) * 2005-07-25 2009-01-29 サウディ ベーシック インダストリーズ コーポレイション メタクロレインを酸化するための触媒およびその製造方法と使用方法
WO2010052909A1 (ja) * 2008-11-06 2010-05-14 日本化薬株式会社 メタクリル酸の製造方法及びメタクリル酸製造用触媒
JP2011152543A (ja) * 2011-04-28 2011-08-11 Nippon Kayaku Co Ltd メタクリル酸製造用触媒の製造方法
US8716523B2 (en) 2005-03-29 2014-05-06 Nippon Kayaku Kabushiki Kaisha Catalyst for use in production of methacrylic acid and method for manufacturing the same
JPWO2013073691A1 (ja) * 2011-11-17 2015-04-02 日本化薬株式会社 メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法
WO2015163020A1 (ja) * 2014-04-22 2015-10-29 株式会社ダイセル アルデヒド類製造用固体触媒、及びアルデヒド類の製造方法
JP2018111720A (ja) * 2013-10-10 2018-07-19 日本化薬株式会社 不飽和カルボン酸の製造方法、及び担持触媒
EP3892367A1 (en) 2020-04-09 2021-10-13 Röhm GmbH A tube bundle reactor and method for the production of methacrylic acid through the partial oxidation of methacrolein
CN115999610A (zh) * 2022-12-28 2023-04-25 陕西科技大学 一种具有不饱和中心的nc负载渗碳体aop催化剂及制备方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY144325A (en) * 2003-02-20 2011-08-29 Nippon Kayaku Kk Catalyst for producing methacrylic acid and preparation method thereof
US7273829B2 (en) * 2005-12-22 2007-09-25 Saudi Basic Industries Corporation Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
JP5570142B2 (ja) * 2009-05-26 2014-08-13 日本化薬株式会社 メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法
US8481448B2 (en) * 2010-07-19 2013-07-09 Saudi Basic Industries Corporation Catalyst for oxidation of saturated and unsaturated aldehydes to unsaturated carboxylic acid, method of making and method of using thereof
JP2012110806A (ja) * 2010-11-22 2012-06-14 Nippon Kayaku Co Ltd メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法
CN104302391A (zh) * 2012-05-18 2015-01-21 日本化药株式会社 甲基丙烯酸制造用催化剂、其制造方法及使用该催化剂的甲基丙烯酸的制造方法
CN104001543B (zh) * 2014-06-09 2016-08-03 中国科学院过程工程研究所 一种甲基丙烯醛氧化制甲基丙烯酸的催化剂及其制备方法
CN111871418B (zh) * 2020-06-29 2023-05-26 润泰化学(泰兴)有限公司 一种用于甲醇乙醇一步法合成异丁醛的包覆型纳米催化剂及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238052A (ja) * 1990-02-15 1991-10-23 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の調製法
JPH11226412A (ja) * 1998-02-17 1999-08-24 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
JP2000296336A (ja) * 1999-02-08 2000-10-24 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒およびメタクリル酸の製造方法
JP2001246260A (ja) * 2000-03-07 2001-09-11 Nippon Shokubai Co Ltd ヘテロポリ酸系触媒の製造方法およびメタクリル酸の製造方法
JP2002233760A (ja) * 2000-09-21 2002-08-20 Nippon Kayaku Co Ltd メタクリル酸製造用触媒、被覆触媒及びその製法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460541C3 (de) * 1973-12-29 1979-10-18 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka (Japan) Phosphor, Molybdän und Vanadium sowie gegebenenfalls Kupfer, Kobalt, Zirkon, Wismut, Antimon und/oder Arsen enthaltender Oxydkatalysator und dessen Verwendung zur Herstellung von Methacrylsäure
US4136110A (en) * 1975-08-18 1979-01-23 The Standard Oil Company Process for the preparation of unsaturated acids from unsaturated aldehydes
JPS552619A (en) * 1978-06-21 1980-01-10 Nippon Kayaku Co Ltd Preparation of methacrylic acid and catalyst
JPS55124734A (en) * 1979-03-22 1980-09-26 Nippon Kayaku Co Ltd Preparation of methacrylic acid
JPS5811416A (ja) 1981-07-15 1983-01-22 Shinko Electric Co Ltd 移送装置
JPS5924140A (ja) 1982-07-29 1984-02-07 Matsushita Electric Ind Co Ltd 熱交換器
JPS59115750A (ja) * 1982-12-22 1984-07-04 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸合成用触媒
GB2177875A (en) 1985-07-08 1987-01-28 Philips Electronic Associated Radio transmission system
JPS6230177A (ja) 1985-07-31 1987-02-09 Nitto Electric Ind Co Ltd 樹脂製補強材
JPH047037A (ja) 1990-04-23 1992-01-10 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の調製法
JPH0531368A (ja) 1990-11-14 1993-02-09 Mitsui Toatsu Chem Inc メタクリル酸製造用触媒及びメタクリル酸の製造方法
JP3120484B2 (ja) * 1991-08-28 2000-12-25 株式会社日立製作所 受変電装置
JPH08196908A (ja) 1995-01-24 1996-08-06 Mitsui Toatsu Chem Inc メタクリル酸製造用触媒及びメタクリル酸の製造方法
US6043184A (en) * 1998-01-05 2000-03-28 Sunoco, Inc. (R&M) Heteropoly acids supported on polyoxometallate salts and their preparation
JP3765664B2 (ja) * 1998-02-13 2006-04-12 三井化学株式会社 メタクリル酸製造用触媒及びメタクリル酸の製造方法
JP3763246B2 (ja) * 2000-04-06 2006-04-05 住友化学株式会社 ヘテロポリ酸系触媒の再生方法およびメタクリル酸の製造方法
CN1270824C (zh) 2000-09-21 2006-08-23 日本化药株式会社 生产甲基丙烯酸的催化剂、涂层催化剂及其制造方法
MY144325A (en) * 2003-02-20 2011-08-29 Nippon Kayaku Kk Catalyst for producing methacrylic acid and preparation method thereof
US20070010394A1 (en) * 2003-05-30 2007-01-11 Sudo Atsushi Process for producing catalyst for methacrylic acid production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238052A (ja) * 1990-02-15 1991-10-23 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の調製法
JPH11226412A (ja) * 1998-02-17 1999-08-24 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒の製造方法およびメタクリル酸の製造方法
JP2000296336A (ja) * 1999-02-08 2000-10-24 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒およびメタクリル酸の製造方法
JP2001246260A (ja) * 2000-03-07 2001-09-11 Nippon Shokubai Co Ltd ヘテロポリ酸系触媒の製造方法およびメタクリル酸の製造方法
JP2002233760A (ja) * 2000-09-21 2002-08-20 Nippon Kayaku Co Ltd メタクリル酸製造用触媒、被覆触媒及びその製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1595600A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716523B2 (en) 2005-03-29 2014-05-06 Nippon Kayaku Kabushiki Kaisha Catalyst for use in production of methacrylic acid and method for manufacturing the same
US8148291B2 (en) 2005-05-12 2012-04-03 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
JP2006314923A (ja) * 2005-05-12 2006-11-24 Nippon Kayaku Co Ltd メタクリル酸製造用触媒の製造方法
WO2006121100A1 (ja) * 2005-05-12 2006-11-16 Nippon Kayaku Kabushiki Kaisha メタクリル酸製造用触媒の製造方法
US8017547B2 (en) 2005-05-12 2011-09-13 Nippon Kayaku Kabushiki Kaisha Method for manufacturing catalyst for use in production of methacrylic acid
JP2009502481A (ja) * 2005-07-25 2009-01-29 サウディ ベーシック インダストリーズ コーポレイション メタクロレインを酸化するための触媒およびその製造方法と使用方法
JP2008302313A (ja) * 2007-06-08 2008-12-18 Mitsubishi Rayon Co Ltd メタクリル酸製造用触媒及びその製造方法並びにメタクリル酸の製造方法
WO2010052909A1 (ja) * 2008-11-06 2010-05-14 日本化薬株式会社 メタクリル酸の製造方法及びメタクリル酸製造用触媒
JP5574434B2 (ja) * 2008-11-06 2014-08-20 日本化薬株式会社 メタクリル酸の製造方法及びメタクリル酸製造用触媒
JP2011152543A (ja) * 2011-04-28 2011-08-11 Nippon Kayaku Co Ltd メタクリル酸製造用触媒の製造方法
JPWO2013073691A1 (ja) * 2011-11-17 2015-04-02 日本化薬株式会社 メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法
JP2018111720A (ja) * 2013-10-10 2018-07-19 日本化薬株式会社 不飽和カルボン酸の製造方法、及び担持触媒
WO2015163020A1 (ja) * 2014-04-22 2015-10-29 株式会社ダイセル アルデヒド類製造用固体触媒、及びアルデヒド類の製造方法
JPWO2015163020A1 (ja) * 2014-04-22 2017-04-13 株式会社ダイセル アルデヒド類製造用固体触媒、及びアルデヒド類の製造方法
EP3892367A1 (en) 2020-04-09 2021-10-13 Röhm GmbH A tube bundle reactor and method for the production of methacrylic acid through the partial oxidation of methacrolein
CN115999610A (zh) * 2022-12-28 2023-04-25 陕西科技大学 一种具有不饱和中心的nc负载渗碳体aop催化剂及制备方法

Also Published As

Publication number Publication date
EP1595600B1 (en) 2014-06-25
KR20050098919A (ko) 2005-10-12
EP1595600A1 (en) 2005-11-16
JP4478107B2 (ja) 2010-06-09
CN100457264C (zh) 2009-02-04
US7825061B2 (en) 2010-11-02
EP2374538A1 (en) 2011-10-12
MXPA05008754A (es) 2005-10-05
BRPI0407442A (pt) 2006-01-31
ZA200507363B (en) 2006-10-25
TWI341219B (en) 2011-05-01
TW200425951A (en) 2004-12-01
US20060154811A1 (en) 2006-07-13
KR100972813B1 (ko) 2010-07-28
EP1595600A4 (en) 2007-03-21
JPWO2004073857A1 (ja) 2006-06-01
CN1750878A (zh) 2006-03-22
MY144325A (en) 2011-08-29

Similar Documents

Publication Publication Date Title
WO2004073857A1 (ja) メタクリル酸製造用触媒及びその製法
JP5570142B2 (ja) メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法
JP6077533B2 (ja) メタクリル酸製造用触媒、その製造方法及び該触媒を用いるメタクリル酸の製造方法
JP4756890B2 (ja) メタクリル酸製造用触媒及びその製造方法
JP5973999B2 (ja) メタクリル酸製造用触媒及びそれを用いたメタクリル酸の製造方法
JP4421558B2 (ja) メタクリル酸製造用触媒の製造方法
KR100841594B1 (ko) 메타크릴산 제조용 촉매, 피복 촉매 및 그의 제조방법
WO2006121100A1 (ja) メタクリル酸製造用触媒の製造方法
JP6387341B2 (ja) メタクリル酸製造用触媒及びその製造方法並びにメタクリル酸の製造方法
JP2020015043A (ja) メタクリル酸製造用触媒の製造方法
JP4671320B2 (ja) メタクリル酸製造用被覆触媒の製法
KR101431578B1 (ko) 메타크릴산 제조 촉매의 제조 방법 및 메타크릴산의 제조 방법
JP2012110806A (ja) メタクリル酸製造触媒の製造方法およびメタクリル酸の製造方法
JP2011152543A (ja) メタクリル酸製造用触媒の製造方法
JP6628386B1 (ja) 不飽和カルボン酸製造用触媒
JP5269046B2 (ja) メタクリル酸製造用触媒の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005502792

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057014828

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/008754

Country of ref document: MX

Ref document number: 2004713199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20048044856

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2005/07363

Country of ref document: ZA

Ref document number: 200507363

Country of ref document: ZA

ENP Entry into the national phase

Ref document number: 2006154811

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10545699

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057014828

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004713199

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0407442

Country of ref document: BR

WWP Wipo information: published in national office

Ref document number: 10545699

Country of ref document: US