WO2004070076A1 - 耐蝕性部材及びその製造方法 - Google Patents

耐蝕性部材及びその製造方法 Download PDF

Info

Publication number
WO2004070076A1
WO2004070076A1 PCT/JP2004/000652 JP2004000652W WO2004070076A1 WO 2004070076 A1 WO2004070076 A1 WO 2004070076A1 JP 2004000652 W JP2004000652 W JP 2004000652W WO 2004070076 A1 WO2004070076 A1 WO 2004070076A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
glass
resistant
group
sprayed film
Prior art date
Application number
PCT/JP2004/000652
Other languages
English (en)
French (fr)
Inventor
Masanori Abe
Koyata Takahashi
Kazuyoshi Arai
Tsutomu Takahata
Shinkichi Hashimoto
Masanori Kohgo
Original Assignee
Tosoh Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corporation filed Critical Tosoh Corporation
Priority to EP04705157A priority Critical patent/EP1589128A4/en
Priority to US10/540,839 priority patent/US20060019103A1/en
Publication of WO2004070076A1 publication Critical patent/WO2004070076A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass
    • C03C17/04Surface treatment of glass, not in the form of fibres or filaments, by coating with glass by fritting glass powder
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23DENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
    • C23D5/00Coating with enamels or vitreous layers
    • C23D5/04Coating with enamels or vitreous layers by dry methods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/78Coatings specially designed to be durable, e.g. scratch-resistant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a member used for a CVD apparatus, a plasma processing apparatus (plasma etching apparatus), and the like in the production of semiconductors and the like, and particularly to a bright member having high corrosion resistance to corrosive gas or plasma and high heat resistance. .
  • Corrosive gases are often used for plasma etching in the manufacturing process of semiconductors and cleaning applications for CVD equipment. Fluorine-based and chlorine-based gases are used for these corrosive gases.
  • CF 4 , C 2 F 6 , C 3 F 8 , CHF 3 / CF 4 , SF 6 and the like are used in fluorine-based gas (for example, see JP-A-2000-223430).
  • C 1 2, BC 1 3, CC 1 4 or the like is used in which (L. P eters, P la sma E tch Ch em istry:..
  • Th e Tj ntold S tory "S em i c I ntl, 1 5 (6), 66 ( 1992 )) Further, it has been proposed to use HF, F 2 , and NF 3 (for example, JP-A-2000-223430, JP-A-2000-248363 and JP-A-2000-248363). (See Kaihei 0 5-090 180).
  • Ceramics such as quartz, alumina, aluminum nitride-aluminum, aluminum, stainless steel, etc. are used for parts that come into contact with the above gases or plasma containing the above gases, such as containers, inner walls, parts, etc. of equipment using such corrosive gases. Metal is used.
  • these members have a problem in that they react with the fluorine-based gas to generate a fluoride to cause particles in the apparatus, and that the members are consumed in a short time.
  • quartz members consumed by sublimated to generate S i F 4 reacts with fluorine gas.
  • aluminum fluoride A 1 F 3 is difficult to sublimate, but selectively at the grain boundaries and pores of the member. Corrosion progresses, and particles are generated due to crystal particles falling off.
  • a sintered body in which the surface open porosity of alumina ceramic containing magnesia and silica is set to 0.3 ° / 0 or less has been proposed (for example, Japanese Patent Laid-Open No. 11-27889). No. 19).
  • corrosion at the crystal grain boundaries of the sintered particles was unavoidable, and the generation of particles due to the falling of the crystal particles was not avoided.
  • the above-described corrosion-resistant glass may be used by coating the base material having heat resistance by spraying. Conceivable. However, it has been difficult to form a thermal spray coating of glass using the conventional thermal spraying technique, and thus, the conventional thermal spraying has mainly used metal or ceramics to form a protective coating.
  • a method of forming a thermal sprayed glass film to prevent corrosion of a metal roll for printing is disclosed (for example, Japanese Patent Application Laid-Open No. 64-13324, Japanese Unexamined Patent Publication No. Hei 4-199 25.9 (see Japanese Unexamined Patent Publication No. Hei 11-1-24663).
  • the glass used for conventional glass thermal spraying has a softening point lower than 1000 ° C, and a glass having a softening point higher than 1000 ° C has poor adhesion, increases porosity, and provides uniform thermal spraying. No film is shown to be obtained. (See, for example, Japanese Patent Application Laid-Open No.
  • undercoat is an oxide
  • the adhesion of the glass is poor, so that the metal sprayed film layer is used as an undercoat on the sprayed surface of the substrate (undercoat treatment).
  • temperature control is important in forming a thermal spray coating on glass with a low softening point.However, in conventional temperature control, the temperature of the base material must be higher than the softening point of the glass to melt the glass material to be sprayed. It was only intended to do so (see, for example, Japanese Patent Application Laid-Open No. H11-124646).
  • the film formed by re-depositing the etched substance such as fluoropolymer or resist to be deposited becomes thicker each time the etching is repeated and the film-like substance peels off. As a result, dust is generated, which contaminates the film-forming substrate.
  • the present inventors have conducted intensive studies in view of the above-described current situation, and have found that the corrosion resistance of at least one element selected from the group consisting of groups 2a, 3a, and 4a of the periodic table of elements
  • a member made of a base material sprayed with is particularly resistant to corrosive gas and plasma containing corrosive gas. Further, they have found that they have a sufficient heat resistance as a part used for a heated part.
  • the corrosion-resistant member has a higher metabolic property against corrosive gas or plasma than a Balta glass member having the same composition. Furthermore, in order to spray a corrosion-resistant glass with a softening point exceeding 100 o ° c onto a substrate with good adhesion, not only the spraying temperature must be higher than the softening point of the material glass to be sprayed, but also the outermost surface of the substrate melts. to it it is particularly effective to spraying at temperatures, further spraying corrosion resistant glass on which is formed between layers in glass sprayed coating containing S i 0 2 on the substrate, the substrate and the corrosion resistant glass sprayed It was found that the adhesion between the films was good.
  • the present inventor has set forth that the corrosion-resistant member having a spherical projection layer in which the concentration of aluminum or zirconium and at least one of the elements of the 2a group, the 3a group and the 4a group is low is a surface of the corrosion-resistant member.
  • the present inventors have found that the amount of dust generated by peeling of the film-like substance deposited on the surface is small, and have completed the present invention.
  • FIG. 1 is a diagram showing a preferred range of the present application in a S i—A 1 _ 3a group ternary triangular diagram
  • FIG. 2 is a diagram showing a preferred range of the present application in the Si-Zr-3a group ternary triangular diagram
  • FIG. 3 is a diagram showing a preferred range of the present application in the Si-Zr-2a group ternary triangular diagram
  • FIG. 4 shows an example of a general plasma spraying apparatus.
  • FIG. 5 is a diagram showing an example of a double torch type plasma spraying apparatus
  • FIG. 6 is a photograph showing an example of the formed spherical projection layer.
  • the sprayed corrosion-resistant glass film of the present invention must be an amorphous glass. This is because, when the corrosion-resistant glass sprayed film is crystalline, the crystal grain boundaries are selectively etched in a corrosive gas atmosphere, and the dropout of the crystal grains causes the generation of particles. Whether or not the corrosion-resistant glass is amorphous can be confirmed by observing whether or not a crystalline diffraction peak is observed when the sprayed film is evaluated by X-ray diffraction.
  • composition of the corrosion-resistant glass sprayed film of the corrosion-resistant member of the present invention contains at least one element selected from the group consisting of elements of groups 2a, 3a and 4a of the periodic table.
  • the group 2a mentioned here is an alkaline earth metal element of Be, Mg, Ca, Sr, and Ba.
  • the group 3a is Sc, Y and a lanthanide element, and the group 4a. Is T i, Z r, H i.
  • Glasses containing Group 2a, 3a, and 4a elements have low reactivity with corrosive gases or their plasma, and if they react with fluorine in corrosive gases, Even if it is produced, what is produced is a high-boiling compound, which has the effect of suppressing etching by plasma or corrosive gas.
  • the corrosion-resistant glass sprayed film of the present invention is preferably an aluminosilicate glass or a zirconia silicate glass. Since aluminum and zirconium contained in aluminosilicate glass or zirconium silicate glass form only compounds with a high boiling point with fluorine, like the above-mentioned group 2a and 3a elements, fluorine-based plasma and corrosive gas This has the effect of suppressing the etching due to.
  • the glass of the corrosion-resistant glass sprayed film used in the present invention is preferably an aluminosilicate glass or a zirconium silicate glass containing at least one of Y, La and Ce among the above-mentioned compositions.
  • composition of the corrosion-resistant glass sprayed film of the present invention is such that, in terms of the atomic ratio of metal elements excluding oxygen, elements of group 2a, group 3a, and group 4a are 1 to 30 atomic% and Si element is 20 to 99 atomic%. it is preferably in the range of child 0/0.
  • Si element is in the range of 20 to 98 atomic%
  • the Y, La, and Ce elements are in the range of 1 to 30 atomic%
  • the A1 element is in the range of 1 to 50 atomic ° / 0. .
  • the atomic ratio (S i: Al: 3a group) of each metal element is 70:20:10, 50:20:30, 30:40:30, 30:50:20, 45:50: It is preferable to have the composition within the range connecting the points of 5, 70: 25: 5. This range is shown in Figure 1.
  • S i element is in the range from 20 9 8 atoms 0/0, Y, L a , the C e element from 1 to 30 atomic% and Z r elements 1 of 50 atomic% Is preferred.
  • Figure 2 shows this range.
  • the composition preferably has a composition within a range connecting the points of 30:50:20 and 50: 45: 5.
  • Figure 3 shows this range. In the above composition range, it is a glass stable region and is hardly crystallized.
  • the concentration of A1 or Zr and the element of group 2a or 3a increases, the glass tends to crystallize, forming grain boundaries and pores, from which corrosion proceeds. Particles are likely to be generated.
  • the thermal expansion coefficient of the corrosion-resistant glass sprayed coating increases, and the corrosion-resistant glass sprayed coating is easily peeled off from the substrate. Also, when the concentration of A1 or Zr and the element of group 2a or 3a is low, the sprayed powder is less likely to be melted at the time of spraying, and the sprayed film tends to contain many pores. Corrosion progresses from these pores, which is likely to cause particles.
  • the above-mentioned glass used in the present invention has a softening point in the range of 1000 to 1700 ° C., although it varies depending on the composition, and has a higher softening point than glass conventionally used for thermal spraying.
  • the substrate to be used in the present invention is not particularly limited, but it has a high heat resistance, such as quartz glass, Vycor, Pyrretous, and the like, metal such as stainless steel and inconenole, ceramics such as mullite, etc., and heat conductivity. Is preferably used.
  • the surface of the substrate to be used preferably has a surface roughness Ra of 1 to 50 / xm. By setting the surface roughness to 1 to 50 / zm, the adhesion between the corrosion-resistant glass sprayed film and the substrate is improved. If the surface roughness Ra is less than 1 ⁇ , the substrate and the corrosion-resistant glass sprayed film are easily separated, and it is difficult to uniformly coat the corrosion-resistant glass sprayed film on the substrate.
  • the thickness of the corrosion-resistant glass sprayed film of the present invention is not limited, but is preferably from 0.01 mm to 3 mm, particularly preferably from 0.01 to 0.5 mm. If the thickness of the corrosion-resistant glass spray coating is greater than this, cracks and peeling of the corrosion-resistant glass spray coating are likely to occur due to the difference in the coefficient of thermal expansion with the base material. As insufficient You.
  • the thickness of the corrosion-resistant glass sprayed film can be confirmed by observing the cross section of the member with a microscope or analyzing the cross section of the member by analyzing the composition of constituent elements using an EPMA (X-ray microanalyzer).
  • the surface roughness 1 &agr; of the corrosion-resistant glass sprayed film of the corrosion-resistant member of the present invention is preferably from 0.01 to 5111, particularly preferably less than 2 m. If the surface of the corrosion-resistant glass sprayed film has poor surface smoothness and is rough, particularly the edge portions of the projections formed on the surface of the corrosion-resistant glass sprayed film are selectively etched by the plasma or corrosive gas. Ital is easy to occur.
  • the corrosion-resistant member of the present invention has an intermediate layer of a glass-sprayed film containing Sio 2 having a softening point of 150 ° C. or higher between the substrate and the corrosion-resistant glass-sprayed film. Since the base material and the corrosion-resistant glass sprayed film have different coefficients of thermal expansion, when used at a high temperature, stress may be generated at the bonding surface between the base material and the corrosion-resistant glass sprayed film and the film may be easily peeled off. Therefore relieve S i 0 Accordingly stresses applying an intermediate layer of glass sprayed coating layer comprising 2 between the substrate and the corrosion resistant glass sprayed coating, even substrate using member at a high temperature and corrosion resistant glass sprayed coating Adhesion between them can be maintained.
  • the sprayed glass raw material is melted and rolled up by the spray gas on the substrate to easily generate bubbles, but the glass containing Si 0 2 having a softening point of 150 ° C. or more is used. If the intermediate layer of the thermal spray coating is present, the corrosion resistant glass thermal spray coating is partially melted in the intermediate layer, and the thermal spray coating is easily accumulated on the thermal sprayed surface, thereby preventing air bubbles from being mixed in and forming a dense corrosion resistant glass thermal spray coating. It is formed.
  • the corrosion-resistant member of the present invention comprises a substrate and a corrosion-resistant glass sprayed film, or a substrate and an intermediate layer of a glass-sprayed film containing SiO 2 and a corrosion-resistant glass sprayed film. It is preferable that not only the layers are laminated but also a molten layer is formed at each interface. When a corrosion-resistant glass sprayed film is laminated on a base material whose surface has been roughened with a plastic or the like without forming a molten layer, a certain amount of corrosion-resistant glass sprayed film penetrates the rough substrate surface.
  • Adhesiveness can be obtained, but when used at high temperatures, it is easy to peel off due to the difference in the coefficient of thermal expansion between the substrate and the corrosion-resistant glass sprayed film.
  • the member of the present invention not only has a corrosion-resistant glass spray coating on the surface of a substrate having a surface roughness Ra of 1 to 50 ⁇ m, but also has a particularly high adhesion by forming a molten layer at an interface. Property is obtained.
  • the thickness of the above-mentioned molten layer is not particularly limited, but is preferably from 10 to 500 tm. If the thickness of the molten layer is less than 1 ⁇ , it is insufficient to develop adhesion, and if it is more than 500 m, the thickness of the corrosion-resistant portion is undesirably thin.
  • the formation of the above-mentioned molten layer is confirmed by the composition analysis by EPMA of the joint surface between the corrosion-resistant glass sprayed film and the base material or the intermediate layer of the glass sprayed film containing SiO 2 in the cross section of the corrosion-resistant member. I can do it.
  • composition elements belonging to both the corrosion-resistant glass sprayed film and the substrate can be confirmed in the molten layer.
  • the corrosion-resistant member of the present invention is not simply a combination of a corrosion-resistant glass and a base material, but has a higher corrosion resistance to corrosive gas or plasma than the conventional corrosion-resistant glass member of Balta. .
  • the corrosion resistance of conventional Balta's corrosion-resistant glass members varied. Although the cause of the variation is not clear, for example, in the case of a bulk member, polishing is indispensable to smooth the surface of the member. Was thought to progress.
  • polishing is indispensable to smooth the surface of the member.
  • the corrosion-resistant member of the present invention since the surface is smoothed only by heating the thermal spray frame, defects that act as a starting point of corrosion are not generated by machining, and the performance exceeding that of the bulk member is exhibited. It is considered to be.
  • the corrosion-resistant member of the present invention particularly when a substrate having high thermal conductivity is used, heat diffusion on the surface of the corrosion-resistant glass sprayed film is promoted, so that the corrosion reaction on the surface of the corrosion-resistant glass sprayed film is prevented. It is considered suppressed. Furthermore, in the conventional Balta glass, when using a group 3a or the like having a large atomic weight, the group 3a element tends to sink during the melting of the glass, making it difficult to make the composition uniform, which is a source of corrosion. A portion having a uniform composition was easily formed.
  • the corrosion-resistant glass sprayed film is formed in a sufficiently molten state within the range of the thickness of the corrosion-resistant glass sprayed film, it is difficult to form a non-uniform composition. Conceivable.
  • the sprayed coating of the corrosion-resistant member of the present invention can be formed by a plasma spraying method, a flame spraying method, or a high-speed flame spraying method. Also, a very dense and transparent sprayed film It can be manufactured by forming a corrosion-resistant glass sprayed film while melting the substrate surface with a sprayed flame.
  • the temperature of the base material after spraying is in the range of 100 ° C. to 400 ° C.
  • a base material temperature range can be applied when performing thermal spraying with a turbulent flame having a plasma flame length of about 5 Omm using a general plasma spraying apparatus.
  • this thermal spraying method only the thermal spray powder is melted by a plasma flame, and the thermal spray powder melted by the thermal spray gas is sprayed on a base material to form a thick film.
  • the film sprayed under such conditions is opaque, but a relatively dense film can be obtained.
  • conditions of an output of 30 kW or more and a thermal spraying distance of about 10 Omm can be exemplified. Sprayed films formed under such conditions are hard to crack even if the film thickness is 0.2 mm or more.
  • a transparent and very dense sprayed film can be formed by spraying while dissolving the substrate surface with a laminar spray frame.
  • a laminar flow plasma frame having a length of several hundred mm can be formed, and the flame is sprayed while melting the surface of the base material using this frame. be able to.
  • the thermal sprayed film formed by such a thermal spraying method is very dense, but if the film thickness exceeds 0.2 mm, cracks may occur due to residual stress of the thermal sprayed film.
  • the thermal spraying raw material used in the present invention is a raw material having a glass composition containing at least one element of Group 2a or 3a, and it is preferable to use a powdery raw material.
  • the powdery raw material having a glass composition containing any of the elements of Group 2a, 3a or 4a is, for example, a mixture of silica and oxide powder granules of Group 2a, 3a or 4a, or glass. Is aluminosilicate or zirconium silicate, alumina or zirconia powder is mixed with silica powder and oxides of groups 2a, 3a, and 4a at a predetermined ratio, and the glass is melted by an electromelting method or the like.
  • the mixed powder of the zirconia powder can be slurried, and the mixed slurry can be obtained by forming granules by a spray-drying method and then sintering the granules.
  • the particle size of the raw material powder used for thermal spraying is not limited, but it is preferable that the average particle size is 20 to: L00 ⁇ m. It is difficult to uniformly supply the raw material in the spraying flame because there is not enough fluidity in the raw material powder itself an average particle size less than 2 0 mu m. On the other hand, when the average particle size exceeds 100 / zm, the melting of the sprayed particles becomes non-uniform, and the adhesion of the obtained sprayed film to the substrate tends to deteriorate.
  • the corrosion-resistant glass spray coating When forming the corrosion-resistant glass spray coating, it is preferable to preheat the temperature of the substrate surface before spraying. Preheating the surface of the base material in advance is effective for preventing the base material from cracking due to heat shock when melting the surface of the base material, and for obtaining a corrosion-resistant glass sprayed film having high adhesion.
  • the preheating temperature varies depending on the type of base material used, but when the surface is melted by a thermal spraying frame, for example, a quartz glass base material of 400 to 150 ° C, especially 400 to 800 ° C The range of C is preferred. If the preheating temperature is too high, crystallization of the glass proceeds, which is not preferable.
  • Preheating may be performed by heating the base material with an external heater, or by irradiating the base material with a thermal spray frame that does not supply the raw material.
  • the preheating temperature can be measured by a thermocouple from the back surface of the base material or by a non-contact radiation thermometer.
  • the distance between the thermal spraying gun and the substrate when irradiating the substrate with the thermal spray frame and the applied thermal spraying power vary depending on the apparatus used. For example, a normal plasma irradiating apparatus as shown in FIG. 4 is used. In the case of (1), the spray distance between the base material and the powder supply port at the tip of the spray gun is about 5 Omm to obtain a very dense sprayed film, and the spraying power is 30 kW or more.
  • the thermal spraying method used in the present invention is preferably plasma spraying, but flame spraying or the like can be applied in addition to plasma spraying.
  • flame spraying or the like can be applied in addition to plasma spraying.
  • thermal spraying methods it is preferable to perform thermal spraying with a laminar flow plasma flame using a double torch type plasma spraying apparatus.
  • Fig. 5 shows the outline of the double torch type plasma spraying device.
  • Double torch type plasm In the case of thermal spraying equipment, a laminar plasma frame with a length of several hundred mm (usually about 5 Omm in a turbulent state) can be formed, so even if the spraying distance is 10 Omm, a sprayed film with high adhesion to the substrate can be formed. Can be obtained.
  • flame spraying it is preferable to use a combination of a gas having a high flame temperature such as oxygen and acetylene or hydrogen.
  • the base material and the powder at the tip of the spray gun It is particularly preferable that the spraying distance of the supply port is 60 to 15 Omm and the spraying power is 10 to 25 kW.
  • the surface of the base material In the formation of the corrosion-resistant glass sprayed film in the present invention, in order to obtain a very dense sprayed film, the surface of the base material must be melted by the above-described preheating and heating of the sprayed flame.
  • the temperature of the spraying frame In the case of plasma spraying, the temperature of the spraying frame is generally 3000-20000 ° C., and in the present invention, the preheated base material surface is melted by the spraying frame.
  • the surface temperature of the base material is 1600 to 2100 ° C
  • Vycor is 1500 to 2000 ° C
  • Pyrex is 800 to 1200 ° C
  • metals such as stainless steel and Inconel are used.
  • the surface will melt. These temperatures are those of the surface of the substrate, and do not need to be the entire temperature. If the entire substrate is at the above temperature, there is a problem because the substrate itself softens and bends.
  • the substrate surface temperature it is difficult to directly measure the substrate surface temperature during thermal spraying, but when the substrate surface reaches the temperature at which it melts, the substrate surface emits a particularly bright light, which is visually checked. be able to. Whether or not it has actually melted can be confirmed by whether or not a molten layer has been formed at the interface between the base material and the sprayed film after spraying.
  • the temperature of the substrate surface is set to the above temperature
  • the temperature of the substrate is set to 200 ° C by the above-mentioned preheating or the combination with external heating other than the thermal spraying frame to prevent the substrate from cracking due to thermal shock. It is preferable to maintain the temperature at a low level of ⁇ 1000 ° C.
  • the surface of the corrosion-resistant glass sprayed film is melted by the spraying frame, so that the surface roughness Ra can be smoothed to 0.01 to 5 // 111, particularly to 0.01 to 3 m. preferable.
  • the corrosion resistance against plasma and corrosive gas is particularly increased.
  • a corrosion-resistant glass sprayed film having good corrosion resistance and adhesion can be formed in a short time.
  • the substrate used in the present invention preferably has a surface roughness Ra of 1 to 50 in. If a substrate with a smooth surface is used, the sprayed corrosion-resistant glass will not easily stay on the substrate surface, and will move on the substrate surface due to the wind pressure of the frame during thermal spraying. It may be slow and the thickness may not be uniform. On the other hand, when the surface roughness Ra of the substrate surface is set to 1 to 50 ⁇ m, a uniform thickness of the corrosion-resistant glass sprayed film without segregation can be obtained.
  • the method of setting the surface of the base material to a surface roughness Ra of 1 to 50 ⁇ is to spray a sprayed film having such a surface roughness on the base material in advance, or to apply a blast treatment or blasting to the base material itself.
  • a blast treatment or blasting for example, it is possible to exemplify the combination of the treatment and the chemical etching using hydrofluoric acid or the like.
  • the reason why it is better to form the intermediate layer of the glass sprayed film containing SiO 2 is that, in addition to the relaxation of the stress between the base material and the corrosion-resistant glass sprayed film, silica is used to form the corrosion-resistant glass and a suitable molten layer. This is because it is easy to form and the adhesion between the base material and the corrosion-resistant glass sprayed film is improved.
  • the corrosion-resistant member of the present invention is used for a container or a part of a film forming apparatus or a plasma processing apparatus, there is a part on which an etched substance such as a fluoropolymer or a resist is deposited most, in addition to a part to be etched. Such a material can be used for such a part.
  • a member in which a spherical projection layer is formed due to a lower concentration of aluminum or zirconium and at least one of the elements of groups 2a, 3a, and 4a than the inner sprayed film. is there.
  • the reason why such a spherical protrusion layer is formed is not certain, but the lower the concentration of aluminum or zirconium and at least one element from group 2a, group 3a and group 4a, the glass during thermal spraying. It is probable that, because the melting point of the thermal spraying material increases and the viscosity increases, the spherical shape is maintained even after the material collides with the base material.
  • the presence of the protruding layer on the surface enhances the retention of the film-like substance deposited on the surface of the corrosion-resistant member in addition to the inherently high corrosion resistance of the material, thereby suppressing the generation of particles.
  • the melting point of the protrusion layer on the outermost surface of the sprayed film and the melting point of the inner sprayed film are as follows. 0 ° C. or higher is preferred. When the melting point of the protruding layer exceeds 1500 ° C, the viscosity increases and the unevenness of the surface of the sprayed film increases.
  • the corrosion-resistant member of the present invention can be used for containers or parts of a film forming apparatus or a plasma processing apparatus. As a method of using the corrosion-resistant member, it can be used in a portion that comes into contact with a corrosive gas or plasma in these devices, and more specifically, as a ring-shaped focus ring or a bell jar.
  • the film forming apparatus referred to here is, for example, a CVD (Chemical 1 Vapor Desoptione) apparatus, a PVD (Physicacal Vapor Deposition) apparatus, or the like.
  • CVD Chemical 1 Vapor Desoptione
  • PVD Physical Vapor Deposition
  • the reaction tubes and bell jars of these apparatuses are cleaned with a fluorine-based gas for cleaning after use.Corrosion due to the cleaning and generation of particles due to the cleaning were problems. These problems can be solved by using a corrosion resistant member.
  • plasma processing apparatus refers to, for example, a plasma etching apparatus or a plasma cleaning apparatus, which irradiates a product installed in the apparatus with plasma to peel or clean the surface of the product. Since etching is performed by the fluorine-based plasma even in the ring-shaped force sling or bell jar of these devices, the generation of particles is a problem in parts of the device that come into contact with corrosive gas or plasma. Also in this case, similarly, when the corrosion-resistant component of the present invention is used, it is hardly corroded, and the generation of particles is small. Examples>
  • a double torch type plasma spraying device as shown in Fig. 5 on a quartz glass substrate, nitrogen gas as a plasma gas was flowed at 5 S LM, plasma was generated with a power of 21 kw, the spraying distance was set to 8 Omm, and the raw material powder was Spray gun speed of 80 mmZ without supply Moved in and preheated. The length of the plasma at this time was about 30 cm and was in a laminar state. Next, quartz powder was supplied at a rate of 4.5 gZ, and spraying was performed while moving the spray gun at a rate of 16 Omm / sec.
  • the spray gun is irradiated with plasma at a rate of 30 Omm / min to melt the powdery substance adhering to the surface, and the surface roughness Ra is 15 / zm.
  • a quartz glass substrate (substrate A) coated with a sprayed quartz film was prepared.
  • a quartz glass substrate was coated with a sprayed film of biosilk, a porous silicate glass, to prepare a quartz glass substrate (substrate B) with a surface roughness Ra of 15 // in. did.
  • Substrate (substrate D) stainless steel substrate (substrate ⁇ ) whose surface roughness was 10 ⁇ by blasting, uneven substrate (substrate F) whose surface roughness was 5 ⁇ m by blasting, Vycor A quartz glass sprayed film was coated on the substrate, and a quartz glass substrate (substrate G) having a surface roughness Ra of 15 / m was prepared.
  • each was heated and melted at 1700 ° C. to prepare a glass body of 15 Omm ⁇ X2 Ommt.
  • the glass body was ground and classified to obtain a glass sprayed powder having a particle size of 38 to 105 / ⁇ (average particle size of 60 ⁇ m).
  • the sprayed glass powder prepared by the above method was supplied once at a supply amount of 2 gZ, at a speed of 240 mm / sec, and at a pitch of 4 mm while moving the spray gun to form a corrosion-resistant sprayed glass film.
  • the spraying distance was set at 8 Omm and the spray gun was powered with a power of 21 to 25 kW without supplying the raw material powder for spraying on the corrosion resistant glass sprayed coating formed continuously.
  • Irradiation with plasma was performed at a speed of 20 to 80 mmZ seconds to melt the corrosion-resistant sprayed glass film and the substrate surface.
  • the conditions for melting the surface of each base material were such that the base material surface emitted a strong white or yellow-white light when a thermal spraying frame was applied without a corrosion-resistant glass sprayed film.
  • a measurement test of the etching rate and the particle amount when exposed to a plasma containing a fluorine-based gas was performed.
  • the composition of the surface of the corrosion resistant glass sprayed film was measured by X-ray fluorescence analysis, and the composition of the interface with the substrate was measured by EPMA.
  • the formation of a molten layer was observed at any of the interfaces.
  • the thickness of the intermediate layer in the substrate on which the intermediate layer was formed was 150 Aim.
  • the etching conditions were as follows: a pressure of 1 torr in the reaction chamber, a CF 4 Z 0 2 gas as a reaction gas, and a plasma generated by applying a high frequency power of 300 W between the electrode plates.
  • the etching thickness was measured using a step measurement method, and the generation of particles was evaluated by observing particulate matter on the surface of the corrosion-resistant member using a scanning electron microscope. The results are shown in Table 1.
  • the etching rate of the corrosion-resistant member having a deviation of V was as small as 0.2 ⁇ m / hr, excellent in corrosion resistance, and the generation of particles was small.
  • the corrosion-resistant members sprayed with the corrosion-resistant glass having various compositions prepared in 3) were heated to 800 ° C. in the air, and repeatedly cooled to room temperature.
  • the members using the base material, B and G no separation of the base material and the corrosion-resistant glass sprayed film was observed after repeated heating and cooling 10 times, but the base material by blasting or blasting and etching (Ji substrate, D, E, F) is one using a portion in peeling was observed, it was subjected to intermediate layer of glass sprayed coating containing S i 0 2 is excellent in adhesion to the thermal cycle I was
  • the quality of the sprayed film was confirmed by SEM observation of the cross section of the sprayed film. Vitrification was confirmed by X-ray diffraction. The case where the diffraction pattern was only a halo pattern showing an amorphous state was designated as “ ⁇ ”, and the case where a peak indicating the presence of crystalline material appeared was designated as “X”. The results are shown in Table 2 Nos. 21 to 35. The thickness of the formed thermal spray coating exceeded 0.30 mm. Among these sprayed films, the samples whose vitrification was confirmed were evaluated for corrosion resistance in the same manner as in Example 1, 4). Each of the corrosion resistant members had an etching rate as small as 1.0 // m / hr or less, and was excellent in corrosion resistance. In particular, the compositions of Nos. 22, 24, 25, 29, 30, 33, and 34 were dense, the etching rate was as small as 0.4 / zm / hr or less, and the corrosion resistance was extremely excellent.
  • Example 1 After spraying an internal spray coating having an internal composition of No. 36 in Table 2 on the substrate D prepared in 1) of Example 1 under the same conditions as in 1) above, the flow rate of the raw material powder was 4 g / min.
  • the No. 37 surface composition in Table 2 was sprayed under the same conditions as in 1) above, except that the number of times was changed to 5, and a projection layer was formed on the surface.
  • FIG. 6 shows the formed protrusion layer.
  • the shape of this surface projection layer was spherical, and Ra was 15 ⁇ m.
  • the sample was used at the site where the film was deposited inside the plasma etching apparatus. As a result, what was normally maintained in 50 hours could be used continuously for up to 100 hours.
  • a member in which a crystalline sprayed film was prepared No. 16
  • a composition similar to that of the sprayed coating used in the examples A material obtained by mechanically polishing the surface of a Balta glass ingot to a surface roughness Ra of 1 m (No. 17), and a quartz glass substrate without a thermal spray coating (No. 18), respectively.
  • the etching rate and the amount of particles were measured in the same manner as in the example, and a thermal cycle test was performed (the thermal cycle test was performed only on the sprayed part No. 16).
  • the etching rate of the oxide films of A1 and La was low, a large number of particles were generated due to the crystalline nature, and the corrosion resistance was poor.
  • the thermal cycle test in which the temperature was rapidly cooled from 800 ° C. to room temperature, the sprayed film was peeled off the third time.
  • the glass ingot (No. 17) had a lower etching rate, but generated more particles than the corrosion-resistant member of the example.
  • the English glass substrate (No. 18) without a corrosion-resistant glass spray coating had a large etching rate of 5 / m / hr and poor corrosion resistance.
  • the corrosion-resistant member of the present invention has the following effects, when used in an apparatus using corrosive gas or plasma such as a CVD apparatus or a plasma processing apparatus, there is no generation of particles and product contamination, and high product yield is continuous. Driving is possible.

Abstract

CVD装置、プラズマ処理装置等に用いる部材は腐食性ガスとの反応、或いはプラズマによるエッチングにより消耗し、パーティクル発生による製品の汚染、歩留まり生産性低下の問題があった。また腐食性ガス、プラズマに耐性のあるガラスは耐熱強度が弱く、用いられる用途が限られていた。耐熱性の高い基材上に、2a族及び3a族及び4a族の元素からなる群より選ばれる少なくともひとつの元素を含む耐蝕性ガラス、特にアルミノシリケート又はジルコニアシリケート系のガラス溶射膜を被覆した部材では、腐食性ガス及びプラズマに対する耐蝕性と耐熱強度が高く、パーティクルの発生が少ない。

Description

耐蝕性部材及びその製造方法
<技術分野〉
本発明は、 半導体等の製造における CVD装置、 プラズマ処理装置 (プラズマ エッチング装置) 等に用いる部材であり、 特に腐食性ガス又はプラズマに対する 耐蝕性が高く、 かつ耐熱強度の高い明部材に関するものである。
細 ぐ背景技術〉
半導体等の製造工程におけるプラズマエッチングや、 C VD装置のクリ一ニン グ用途には腐食性ガスが多用されている。 これら腐食性ガスにはフッ素系、 塩素 系ガス等が用いられている。 フッ素系ガスでは CF4、 C2F6、 C3F8、 CHF 3/CF4、 S F 6等が用いられており (例えば特開 2000— 223430号公 報参照)、 C 1系ガスでは、 C 1 2、 BC 1 3、 C C 14等が用いられている (L. P e t e r s , P l a sma E t c h Ch em i s t r y :Th e Tj n t o l d S t o r y," S em i c. I n t l ., 1 5 (6), 66 (1 992) 参 照)。 さらに HF、 F2、 NF 3を用いることも提案されている (例えば特開 20 00- 223430号公報, 特開 2000— 248363号公報および特開平 0 5 -090 1 80号公報参照)。
このような腐食性ガスを用いる装置の容器、 内壁、 部品等、 上記ガス或いは上 記ガスを含むプラズマに接触する部分には、 石英、 アルミナ、 窒化アルミ-ゥム 等のセラミックス又はアルミニウム、 ステンレス等の金属が使用されている。 し かし、 これらの部材はフッ素系ガスと反応しフッ化物を生成して装置内のパーテ ィクル発生の原因となることや、 部材が短時間に消耗するという問題があつた。 例えば、 石英の部材はフッ素ガスと反応して S i F4を生成して昇華して消耗 する。 またアルミナ、 窒化アルミニウム等のセラミックス焼結体では、 アルミ二 ゥムのフッ化物 A 1 F3は昇華はし難いが、 部材の粒界や気孔において選択的に 腐蝕が進行し、 結晶粒子脱落によりパーティクルが発生する。
この様な問題を解決する方法として、 マグネシア、 シリカを含むアルミナセラ ミックスの表面開気孔率を 0. 3 °/0以下とした焼結体が提案されている (例えば 特開平 1 1一 278 9 1 9号公報参照)。しかしこの様な焼結体でも焼結粒子の結 晶粒界での腐食は避けられず、 当該結晶粒子の脱落によるパーティクル発生は避 けられなかった。
結晶粒界を無くしてパーティクルの発生を押さえる方法として、 耐蝕性のある A 1 203、 C a O、 MgO、 Z r〇2、 B a O等を含有する非晶質のガラス材料 を用いることが提案されている(例えば特開 2002- 1 2 1 047号公報参照)。 また、 石英に 0. 1〜20w t %の金属酸化物を添加したガラス素材も提案され ている (例えば特開 2002- 1 37927号公報参照)。 しかしこれらの耐蝕性 ガラスは高価な上に、 半導体プロセスで安定性良く使用するには耐熱強度が不足 しており、 半導体製造プロセスに用いる容器、 部品として使用できる部分が限定 された。
一方、 基材を保護するため基材表面に溶射膜を形成する技術が知られているた め、 上述の耐蝕性ガラスを耐熱強度のある基材の上に溶射によって被覆して用い ることが考えられる。 しかし従来の溶射技術では、 ガラスの溶射膜形成が困難で あつたため、 従来の溶射による保護膜の形成は主に金属或いはセラミックスを用 いるものであった。
ガラス質の溶射に関する先行技術としては、 例えば、 印刷用の金属ロールの腐 蝕防止のためにガラスの溶射膜を形成する方法が開示されている (例えば特開昭 64- 1 3324号公報、 特開平 4一 99 25 9号公報おょぴ特開平 1 1— 1 2 4663号公報参照)。 し力 し、従来のガラスの溶射に用いるガラスは、軟化点が 1000°Cより低いガラスであり、 軟化点が 1000°Cを超えるガラスでは付着 性が悪く、気孔率が増加し、均一な溶射膜が得られないことが示されている。 (例 えば特開昭 64— 1 3 324号公報参照) また下地が酸化物であるとガラスの密 着性が悪いため、 基材の溶射面のアンダーコート (下地処理) として金属溶射膜 層が必要であることも示されている (例えば特開平 4一 992 59号公報参照)。 すなわち、 従来、 ガラスの溶射膜は酸化物の上には密着性良く形成できないこ とが常識であり、 1 0 0 o °c以上の高軟化点を有するガラスを基材に密着性良く 溶射する技術はなく、 特にガラスを含む酸化物上に密着性よく溶射する技術はな かった。 また低軟化点のガラスの溶射膜形成において、 温度管理が重要であるこ とが示されているが、従来の温度管理は、基材の温度をガラスの軟化点以上にし、 溶射するガラス原料を溶融することのみを目的とするものでしかなかった (例え ば特開平 1 1— 1 2 4 6 6 3号公報参照)。
また、 プラズマエッチングによって侵食される部分のほかに、 堆積するフッ素 系ポリマーやレジスト等エッチングされた物質が最堆積して形成された膜は、 ェ ツチングを繰り返すたびに厚くなって膜状物質が剥離して発塵となり、 成膜基板 を汚染するため、 メンテナンスの発生頻度が多いという問題があった。
以上説明した様に、 半導体製造プロセスにおいて腐食性ガスやプラズマを用い る工程では、 部材の腐蝕によるパーティクル発生、 それに伴う製品汚染、 歩留ま り低下等の問題があった。 またこの様な問題を抑制する耐蝕性ガラスが提案され ているが、 耐蝕性ガラスは高価な上、 耐熱強度が不十分であり、 用いることが出 来る用途が限定された。 またこの様な耐蝕性ガラスを耐熱部材の上に溶射しよう としても、 高軟化点の耐蝕性ガラスを密着性良く基材上に溶射する技術がなかつ た。 また、 成膜装置、 或いはプラズマ処理装置の使用において、 装置内の部材に 付着した膜状物質の剥離による塵芥(異物)、パーティクルの発生を防止すること も本発明の技術領域で極めて重要な課題であった。
<発明の開示 >
本発明者らは、 上述のような現状に鑑み、 鋭意検討を行なった結果、 元素周期 律表 2 a族及び 3 a族及び 4 a族の群よりなる元素の少なくとも 1つの元素を含む 耐蝕性ガラス溶射膜、特に当該ガラスが元素周期律表 2 a族及び 3 a族及び 4 a族 の群よりなる元素の少なくとも 1つの元素を含むアルミノシリケートガラス又は ジルコ二ァシリケートガラスの耐蝕性ガラス溶射膜を溶射した基材からなる部材 では、 腐蝕性ガスや腐食性ガスを含むプラズマに対する耐蝕性が特に高く、 なお かつ加熱される部分に用いる部品としても十分な耐熱強度を有することを見出し た。 また当該耐蝕部材は、 同一組成のバルタガラス部材に比べてより腐食性ガス 或いはプラズマに対して高い而 虫性となることを見出した。 さらに軟化点が 1 0 0 o °cを超える耐蝕性ガラスを密着性良く基材に溶射するには、 溶射温度を溶射 原料ガラスの軟化点以上にするだけでなく、 基材の最表面が溶融する温度で溶射 することが特に有効であり、 さらに基材の上に S i 0 2を含むガラス溶射膜の中 間層を形成した上に耐蝕性ガラスを溶射すると、 基材と耐蝕性ガラス溶射膜間の 密着性が良いことを見出した。 さらに、 本発明者は、 アルミユウム又はジルコ二 ゥム及び 2 a族及び 3 a族及び 4 a族の元素のうち少なくとも一つの濃度が低い 球状突起層を形成した耐蝕性部材は、 耐蝕性部材表面に堆積した膜状物質の剥離 によって発生する発塵が少ないことを見出し本発明を完成するに至ったものであ る。
<図面の簡単な説明 >
図 1は S i— A 1 _ 3 a族三成分系三角図における本願の好ましい範囲を示す 図であり、
図 2は S i - Z r - 3 a族三成分系三角図における本願の好ましい範囲を示す 図であり、
図 3は S i - Z r - 2 a族三成分系三角図における本願の好ましい範囲を示す 図であり、
図 4は一般的なプラズマ溶射装置の一例を示す図であり、
図 5は複トーチ型プラズマ溶射装置の一例を示す図であり、 そして
図 6は形成した球状突起層の一例を示す写真である。
図中、 符号の説明は以下の通りである。
1 0 : カソード
1 1 : アノード
1 2 :プラズマガス
1 3 :溶射粉末 (供給口) 1 4 :溶射距離
1 5 :基材
1 6 :ガラス溶射膜
1 7 :電源
2 0 :カソード
2 1 :アノード
2 2 :プラズマガス (供給口)
2 3 :溶射粉末 (供糸 1き Π )
2 4 :溶射距離
2 5 :基材
2 6 :ガラス溶射膜
2 7 :プラズマガス (供給口)
2 8 :主電源
2 9 :補助電源
<発明を実施するための最良の形態 >
以下、 本発明の耐蝕性部材について詳細に説明する。
本発明の耐蝕性ガラス溶射膜は非晶質のガラスでなくてはならない。 耐蝕性ガ ラス溶射膜が結晶質であると、 腐食性ガス雰囲気では結晶粒界が選択的にエッチ ングされ、 結晶粒の脱落によりパーティクル発生原因となるからである。 耐蝕性 ガラスが非晶質であるか否かは、 溶射膜をエックス線回折で評価した際に結晶性 の回折ピークが観測されるかどうかで確認することが出来る。
本発明の耐蝕性部材の耐蝕性ガラス溶射膜の組成は、 元素周期律表 2 a族及び 3 a族及び 4 a族の元素からなる群より選ばれる少なくとも 1つの元素を含むも のである。 ここで言う 2 a族とは、 B e、 M g、 C a、 S r、 B aのアルカリ土 類金属元素であり、 3 a族とは、 S c、 Yとランタノィド元素、 4 a族とは T i、 Z r、 H iのことである。 2 a族、 3 a族、 4 a族の元素を含むガラスは、 腐食性 ガス或いはそのプラズマとの反応性が低く、 仮に腐食性ガス中のフッ素と反応が 生じたしたとしても生成するものは高沸点化合物であり、 プラズマや腐蝕性ガス によるエッチングを抑制する効果がある。
本発明の耐蝕性ガラス溶射膜は上述の元素を含む非晶質ガラスの中でも、 特に アルミノシリケ一トガラス又はジルコニァシリケー 1、ガラスであることが好まし い。 アルミノシリケートガラス或いはジルコユアシリケ一トガラスに含まれるァ ルミ二ゥム、 ジルコニウムは上述の 2 a族、 3 a族元素と同様に弗素とは高沸点 の化合物しか形成しないため、 フッ素系プラズマゃ腐蝕性ガスによるエッチング を抑制する効果がある。
本発明に用いる耐蝕性ガラス溶射膜のガラスは、 上述の組成の中でも特に Y、 L a、 C eの少なくとも 1つ以上を含むアルミノシリケートガラス又はジルコ二 ァシリケートガラスであることが好ましい。
本発明の耐蝕性ガラス溶射膜の組成は酸素を除いた金属元素の原子比において、 2 a族、 3 a族、 4 a族の元素が 1から 30原子%、 S i元素が 20から 99原 子0 /0の範囲であることが好ましい。 特にアルミノシリケートガラスの場合、 S i 元素が 20から 98原子%、 Y、 L a、 C e元素が 1から 30原子%及び A 1元 素 1から 50原子 °/0の範囲であることが好ましい。 その中でも特に、 各金属元素 の原子比 (S i : A l : 3 a族) が 70 : 20 : 10、 50 : 20 : 30、 30 : 40 : 30、 30 : 50 : 20、 45 : 50 : 5、 70 : 25 : 5の各点を結ぶ 範囲内にその組成を有することが好ましい。 この範囲を図 1に示す。
また、 ジルコ二ァシリケートガラスの場合、 S i元素が 20から 9 8原子0 /0、 Y、 L a、 C e元素が 1から 30原子%及び Z r元素 1から 50原子%の範囲で あることが好ましい。 その中でも特に各金属元素の原子比 (S i : Z r : 3 a族) = 70 : 25 : 5、 70 : 10 : 20、 50 : 20 : 30、 30 : 40 : 30、 30 : 50 : 20、 45 : 50 : 5の各点を結ぶ範囲内にその組成を有すること が好ましい。 この範囲を図 2に示す。
さらにその中でも、 特に各金属元素の原子比 (S i : Z r : 3 a族) =70 : 25 : 5、 70 : 1 0 : 20、 50 : 22 : 28、 30 : 42 : 28、 30 : 5 0 : 20、 45 : 50 : 5の各点を結ぶ範囲内にその組成を有することが好まし い。
また、 2 a族を含むジルコユアシリケートガラスの場合、 各金属元素の原子比 (S i : Z r : 2 a族) = 70 : 25 : 5、 45 : 25 : 30、 30 : 40 : 3 0、 30 : 50 : 20、 50 : 45 : 5の各点を結ぶ範囲内にその組成を有する ことが好ましい。 この範囲を図 3に示す。 上記の組成範囲では、 ガラス安定領域 であり、 結晶化し難い。 一方、 組成がこれらの範囲から外れ、 A 1又は Z rと 2 a又は 3 a族元素の濃度が高くなると、 ガラスが結晶化し易く、 粒界、 気孔が形 成され、 そこから腐食が進行してパーティクル発生原因となり易い。 さらに耐蝕 性ガラス溶射被膜の熱膨張率が増大し、 基材から耐蝕性ガラス溶射膜が剥がれ易 い。 また、 A 1又は Z rと 2 a又は 3 a族元素の濃度が低くなると、 溶射時に溶 射粉末が溶融しにくくなり、 溶射膜中に気孔が多く含まれやすくなる。 この気孔 から腐食が進行してパーティクルの発生原因となり易い。
本発明で用いる上述のガラスは、 その組成によって差はあるが軟化点が 1 00 0〜1 700°Cの範囲であり、 従来溶射に用いられているガラスより軟化点が高 いものである。
本発明で用いる基材は特に限定はないが、 石英ガラス、 バイコール、 パイレツ タスなどの而熱ガラスやステンレス、 インコネノレ等の金属、 ムライ ト等のセラミ ックス等、 耐熱強度が高いもの、 熱伝導性が高いものを用いることが好ましい。 用いる基材の表面は、 表面粗さ R aが 1〜50 /xmであることが好ましい。 表 面粗さを l〜50 /zmとすることにより、 耐蝕性ガラス溶射膜と基材との密着性 が向上する。 表面粗さ R aが 1 μπι未満では、 基材と耐蝕性ガラス溶射膜が剥離 し易く、 基材の上に耐蝕性ガラス溶射膜を均一に被覆することが難しい。 一方、 表面粗さ R aが 50 mを超えると、 耐蝕性ガラス溶射膜の表面を平滑にするこ とが難しく、 プラズマや腐蝕性ガスによるエツチングを抑制することが難しい。 本発明の耐蝕性ガラス溶射膜の厚みに限定はないが、 0.01mmから 3mm、 特に 0. 01から 0. 5 mmであることが好ましい。 耐蝕性ガラス溶射膜の厚み がこれ以上厚くなると、 基材との熱膨張率の差によつて耐蝕性ガラス溶射膜のひ ぴ割れ、 剥離が発生し易く、 一方 0. 0 lmm未満では保護膜として不十分であ る。 耐蝕性ガラス溶射膜の厚みは、 部材の断面を顕微鏡で観察するか、 部材の断 面を E P MA ( X線マイクロアナライザー) による構成元素の組成分析を行なう こと等で確認することができる。
本発明の耐蝕性部材の耐蝕性ガラス溶射膜の表面粗さ 1 &は0 . 0 1〜5 111、 特に 2 m未満であることが好ましい。 耐蝕性ガラス溶射膜の表面平滑性が悪く 荒れたものであると、 耐蝕性ガラス溶射膜表面に形成された突起形状の特にエツ ジの部分がプラズマ或いは腐食性ガスによって選択的にェツチングされ、 パーテ イタルが発生し易い。
本発明の耐蝕性部材は基材と耐蝕性ガラス溶射膜の間に軟化点が 1 5 0 0 °C以 上の S i 0 2を含むガラス溶射膜の中間層を有することが特に好ましい。 基材と 耐蝕性ガラス溶射膜は、 熱膨張率が異なるため高温で用いた場合、 基材と耐蝕性 ガラス溶射膜の接合面に応力が発生して剥れ易くなることがある。 そこで基材と 耐蝕性ガラス溶射膜の間に S i 0 2を含むガラス溶射膜層の中間層を施すことに よって応力を緩和し、 部材を高温で用いても基材と耐蝕性ガラス溶射膜間の密着 性を維持することが出来る。 またガラスの溶射では、 溶射されたガラス原料は溶 融し、 基板上で溶射ガスに巻き上げられて気泡が発生し易いが、 軟化点が 1 5 0 0 °C以上の S i 0 2を含むガラス溶射膜の中間層が存在すると、 耐蝕性ガラス溶 射膜が当該中間層へ一部溶融して溶射面に溶射膜が溜まり易くなり、 気泡の混入 が防止され、 緻密な耐蝕性ガラス溶射膜が形成される。
本発明の耐蝕性部材は、 基材と耐蝕性ガラス溶射膜、 或いは基材と S i 0 2を 含むガラス溶射膜の中間層と耐蝕性ガラス榕射膜からなるが、 本発明ではこれら が単に積層しているだけではなく、 夫々の界面で溶融した溶融層を形成している ことが好ましい。 プラスト等で表面を荒した基材の上に、 溶融層を形成しないで 耐蝕性ガラス溶射膜を積層した場合には、 荒れた基材表面へ耐蝕性ガラス溶射膜 が嚙み込むことによってある程度の密着性は得られるが、 高温で用いると基材と 耐蝕性ガラス溶射膜の熱膨張率の違いによって剥離し易い。 本発明の部材は、 表 面粗さ R aが 1〜5 0 μ mの基材表面に耐蝕性ガラス溶射膜が嚙み込むだけでな く、 界面で溶融層を形成することによって特に高い密着性が得られる。 上述の溶融層の厚みは特に限定されないが、 1 0〜5 0 0 t mであることが好 ましい。 溶融層の厚みが 1 Ο μ πι未満では密着性を発現するに不十分であり、 5 0 0 m以上では耐蝕性を有する部分の厚さが薄くなってしまうために好ましく ない。
上述の溶融層の形成は、耐蝕性部材の断面において耐蝕性ガラス溶射膜と基材、 或いは S i 0 2を含むガラス溶射膜の中間層の接合面を E P MAによる組成分析 によつて確認することが出来る。 溶融層が形成されている場合には当該溶融層に は耐蝕性ガラス溶射膜と基材の両方に属する組成元素が確認できる。
本発明の耐蝕性部材は、 単に耐蝕性ガラスを基材と組合せたものではなく、 従 来のバルタの耐蝕性ガラス部材より腐食性ガス又はプラズマに対して耐蝕性が高 められたものである。 従来のバルタの耐蝕性ガラス部材では耐蝕性にばらつきが あった。 ばらつきの原因は定かではないが、 例えばバルク部材では、 部材の表面 を平滑化するために研磨加工が必須であるため、 ガラス表面に研磨加工による欠 陥が出来易く、 当該欠陥を起点にして腐蝕が進むことが考えられた。 それに対し て本発明の耐蝕性部材は、 表面の平滑化を溶射フレームの加熱のみによって行つ ているため、 機械加工によって腐蝕の起点となる欠陥が生成せず、 バルク部材を 超える性能が発揮されるものと考えられる。 また本発明の耐蝕性部材では、 特に 熱伝導性の高い基材を用いた場合、 耐蝕性ガラス溶射膜の表面の熱拡散が促進さ れることにより、 当該耐蝕性ガラス溶射膜表面の腐蝕反応が抑制されていると考 えられる。 さらに従来のバルタガラスでは、 原子量が大きい 3 a族等の使用にお いて、 ガラスの溶融中に 3 a族元素が沈み易く、 組成を均一にすることが困難で あり、 腐蝕の起点となる不均一組成の部分が出来易かった。 それに対して本発明 の方法では耐蝕性ガラス溶射膜の厚みの範囲で、 十分に溶融した状態で耐蝕性ガ ラス溶射膜が形成されるため、 不均一組成が出来難いことも影響していると考え られる。
次に本発明の耐蝕性部材の製造方法を説明する。
本発明の耐蝕性部材の溶射膜の形成は、 プラズマ溶射法、 フレーム溶射法、 高 速フレーム溶射法により形成できる。 また、 非常に緻密で透明化した溶射膜は、 溶射フレームによって基材表面を溶融しながら耐蝕性ガラス溶射膜を形成するこ とによって製造できる。
本発明の耐蝕性ガラス溶射被膜の形成は、 溶射後の基材温度を 1 0 0 °C〜4 0 0 °Cの範囲にすることが好ましい。 このような基材温度範囲は、 通常のプラズマ 溶射装置を用いてプラズマフレーム長さが 5 O mm程度の乱流状態のフレームに よって溶射を行う場合に適応できる。 この溶射法では、 溶射粉末のみをプラズマ 炎にて溶融し、 溶射ガスで溶融した溶射粉末を基材に対して吹きつけて厚膜を形 成する。 このような条件で溶射を行った膜は不透明ではあるが、 比較的緻密な膜 を得ることが出来る。 このような溶射フレームを得るためには、 例えば図 4に示 すような溶射装置の場合、 出力 3 0 k w以上、 溶射距離 1 0 O mm程度の条件が 例示できる。 このような条件で形成された溶射膜は膜厚が 0 . 2 mm以上でも膜 にクラックが入りにくい。
C V D装置等、 高温で使用する耐食性部材には、 透明で非常に緻密な溶射膜が 必要とされる。 そのような部位に使用するためには、 層流状態の溶射フレームに よって基材表面を溶かしながら溶射することで、 透明で非常に緻密な溶射膜を形 成することが出来る。 この溶射法は、 例えば、 図 5に示すような複トーチ型プラ ズマ溶射装置を用いると、 長さが数百 mmの層流プラズマフレームが形成でき、 このフレームによって基材表面を溶かしながら溶射することができる。 このよう な溶射法で形成された溶射膜は非常に緻密であるが、 膜厚が 0 . 2 mmを超える と溶射膜の残留応力のためにクラックが入ることがある。
本発明で用いる溶射原料は、 2 a族、 3 a族の少なくとも 1つの元素を含むガラ ス組成の原料であり、粉末形状の原料を用いることが好ましい。 2 a族、 3 a族、 4 a族のいずれかの元素を含むガラス組成の粉末原料は、 例えば、 シリカと 2 a 族、 3 a族、 4 a族の酸化物粉末顆粒の混合物や、 ガラスがアルミノシリケート 或いはジルコ二ァシリケートの場合では、 アルミナ或いはジルコユア粉末をシリ 力粉末及び 2 a族、 3 a族、 4 a族の酸化物を所定の割合で混合し、 電気溶融法 等で溶融したガラスインゴットを作成した後、 粉砕することによって調製するこ とができる。 またシリカ粉末、 2 a族、 3 a族、 4 a族の酸化物、 アルミナ粉末、 ジルコユア粉末の混合粉末をスラリー化し、 当該混合スラリーをスプレードライ 法で顆粒を作成した後、 顆粒を焼結する等の方法で得ることも出来る。
溶射に用いる原料粉末の粒径は限定はないが、 平均粒径で 2 0〜: L 0 0 μ mで あることが好ましい。 平均粒径 2 0 μ m未満では原料粉末自身に十分な流動性が ないため溶射フレーム中に原料を均一に供給することが難しい。 また、 平均粒径 が 1 0 0 /z mを超えると、 溶射粒子の溶融が不均一となり、 得られる溶射膜の基 材に対する密着性が悪くなりやすい。
耐蝕性ガラス溶射被膜の形成の際、 基材表面の温度をあらかじめ予熱して溶射 することが好ましい。 基材表面をあらかじめ予熱することは、 基材の表面を溶融 する際に、 熱ショックによる基材の割れ防止、 並びに密着性の高い耐蝕性ガラス 溶射膜を得るために有効である。 予熱温度は用いる基材の種類によっても異なる が、 溶射フレームによって表面を溶融する時は、 例えば石英ガラス基材の場合 4 0 0〜1 5 0 0 °C、 特に 4 0 0〜 8 0 0 °Cの範囲が好ましい。 予熱温度を上げす ぎるとガラスの結晶化が進行するため好ましくない。 予熱は、 基材を外部ヒータ 一で加熱する、 或いは原料を供給しない溶射フレームを基材に照射すること等で 行えば良い。 予熱温度は、 基材の裏面からの熱電対による測定、 或いは非接触の 放射温度計等で測定できる。
本発明の溶射において、 溶射フレームを基材に照射する際の溶射ガンと基材と の距離、 投入する溶射パワーは用いる装置によっても異なるが、 例えば図 4に示 すような通常のプラズマ照射装置の場合、 基材と溶射ガン先端にある粉末供給口 の溶射距離は非常に緻密な溶射膜を得るには 5 O mm程度、 溶射パワーを 3 0 k w以上とするような条件が例示できる。
本発明で用いる溶射法はプラズマ溶射であることが好ましいが、 プラズマ溶射 以外にも、フレーム溶射等も適用可能である。ガラス質の溶射膜を製造する場合、 緻密な溶射膜を得るためには通常の乱流状態のプラズマフレームにて溶射するこ とが好ましいが、 非常に緻密な溶射膜を得るためには、 プラズマ溶射法の中でも 複トーチ型プラズマ溶射装置を用いて層流のプラズマフレームで溶射することが 好ましい。 図 5に複トーチ型プラズマ溶射装置の概要を示す。 複トーチ型プラズ マ溶射装置の場合では、 長さが数百 mmの層流プラズマフレーム (通常は乱流状 態で 5 Omm程度) が形成出来るため、 溶射距離が 10 Ommでも基板との密着 性の高い溶射膜を得ることが出来る。 フレーム溶射の場合、 酸素とアセチレン又 は水素等高温のフレーム温度を有するガスの組み合わせで行なうことが好ましい , 図 5の様な複トーチ型プラズマ照射装置の場合、 基材と溶射ガン先端にある粉末 供給口の溶射距離は 60〜15 Omm、 溶射パワーは 10〜25 k wの範囲が特 に好ましい。
本発明における耐蝕性ガラス溶射膜の形成は、非常に緻密な溶射膜を得るには、 上述の予熱と溶射フレームの加熱により基材の表面を溶融しなければならない。 プラズマ溶射の場合、 溶射フレームの温度は一般に 3000〜 20000°Cであ り、 本発明では上述の予熱した基材表面を当該溶射フレームによって溶融する。 例えば、 基材として石英ガラスを用いた場合、 基材の表面温度は 1600〜2 100 °C、 バイコールでは 1 500〜 2000 °C、 パイレックスでは 800〜 1 200°C、 ステンレス、 ィンコネル等の金属では 1300〜1 900°C、 ムライ ト等のセラミッタスで 1800〜 2400°Cとすれば表面は溶融する。 これらの 温度は基材の表面の温度であり、 全体をこの温度とする必要はない。 基材全体を 上記の温度とすると、 基材自身が軟化して曲がってしまうため問題がある。
溶射時の基材表面温度は直接測定することは困難であるが、 基材表面がこれら の溶融する温度に到達した際には、 基材表面が特に明るく発光するため、 それを 目視で確認することができる。 実際に溶融していたかどうかは、 溶射後に基材と 溶射膜界面に溶融層が形成されていたかどうかで確認することができる。
また基材表面の温度を上記の温度とした際に、 熱ショックによって基材が割れ ない様、 基材の温度は上述の予熱、 或いは溶射フレーム以外の外部加熱との組合 せによって、 これより 200〜 1000°C低い程度に維持することが好ましい。 本発明では溶射フレームによつて耐蝕性ガラス溶射膜表面を溶融することによ り、 表面粗さ R aで 0. 01〜5 // 111、 特に0. 01 ~ 3 mに平滑化すること が好ましい。 耐蝕性ガラス溶射膜表面を平滑にすることにより、 プラズマ及び腐 蝕性ガスに対する耐蝕性が特に高くなる。 上述の溶融処理は、 基材表面と耐蝕性ガラス溶射膜を同時に溶融すると耐蝕性 と密着性の良い耐蝕性ガラス溶射膜を短時間に形成できる。
本発明に用いる基材は表面粗さ R aが 1〜5 0 inのものを用いることが好ま しい。 表面が平滑な基材を用いると、 溶射された耐蝕性ガラスが基材表面に留ま り難く、 溶射時のフレームの風圧によって基板表面を移動してしまうことから、 成膜の歩留まり、 速度が遅くなり、 また均一の厚さにならないことがある。 それ に対して基材表面の表面粗さ R aを 1〜 5 0 μ mにした場合、 耐蝕性ガラス溶射 膜の偏析の無い均一厚みを得ることが出来る。
基材表面を表面粗さ R aを 1〜 5 0 μ ηιとする方法としては、 その様な表面粗 さの溶射膜を基材に予め溶射する方法、 或いは基材自身をプラスト処理又はブラ スト処理とフッ酸等による化学的エッチングを併せて施すことが例示できる。 特 に軟化点が 1 5 0 0 °C以上の S i 0 2を含むガラス溶射膜を形成することが好ま しい。 S i 0 2を含むガラス溶射膜の中間層を形成した方が良い理由は、 基材と 耐蝕性ガラス溶射膜間の応力の緩和に加えて、 シリカは耐蝕性ガラスと適当な溶 融層を形成し易く、基材と耐蝕性ガラス溶射膜間の密着性が向上するからである。 本発明の耐蝕性部材を成膜装置又はプラズマ処理装置の容器或いは部品等に用 いる場合、 エッチングされる部位とは別にフッ素系ポリマーやレジスト等エッチ ングされた物質が最堆積する部位がある。 そのような部位にはこのような材料を 用いることが出来る。 すなわち、 溶射膜最表面層が内部溶射膜よりもアルミニゥ ム又はジルコニウム及び 2 a族及び 3 a族及ぴ 4 a族の元素のうち少なくとも一 つの濃度が低いことにより球状突起層を形成した部材である。 このような球状突 起層が形成する理由は確かではないが、 アルミェゥム又はジルコェゥム及び 2 a 族及び 3 a族及び 4 a族のうち少なくとも 1つの元素の濃度が低くなることによ つて溶射時にガラスである溶射原料の融点が上がると共に粘性が高くなることで、 基材に衝突した後も球状を維持したものと考えられる。 表面に突起層が存在する ことで、 材料本来の高い耐蝕性に加え、 耐蝕性部材表面に堆積した膜状物質の保 持性が高められ、 パーティクルの発生を押さえることができる。 この溶射膜最表 面の突起層と内部溶射膜の融点としては、 溶射膜最表面の突起層の融点 1 5 0 0°C以上が好ましい。 突起層の融点が 1 500°C以上になると粘性が高くなり、 溶射膜表面の凹凸が大きくなる。
本発明の耐蝕性部材は成膜装置又はプラズマ処理装置の容器或いは部品等に用 いることが出来る。 耐蝕性部材の使用方法としては、 これらの装置の中で腐食性 ガスやプラズマに接触する部位に用いることができ、 より具体的にはリング状フ オーカスリング又はベルジャーとして用いることが挙げられる。
ここでいう成膜装置とは、 例えば CVD (Ch em i c a 1 Va o r D e p o s i t i o n ) 装置や P V D (P h y s i c a l Va o r D e p o s i t i o n) 装置等である。 これらの装置の反応管やベルジャー等は、 使用後 の洗浄にフッ素系ガスによる洗浄を行なうことが一般的であり、 当該洗浄による 腐食やそれに起因するパーティクル発生が問題であつたが、 本発明の耐蝕性部材 を用いればそれらの問題が解決される。
またここでいうプラズマ処理装置とは、 例えばプラズマエッチング装置、 ブラ ズマクリーエング装置であり、 装置内に設置した製品にプラズマを照射し、 製品 の表面を剥離、 あるいは清浄化する装置をさす。 これら装置のリング状フォー力 スリング又はベルジャー等でもフッ素系プラズマによってエッチングが行なわれ るため、 装置内の部品で腐食性ガスやプラズマと接触する部位では、 パーテイク ルの発生が問題であった。 この場合も同様に、 本発明の耐蝕性部品を用いれば腐 食されにくく、 パーティクルの発生が少ない。 ぐ実施例 >
本発明を実施例に基づき詳細に説明するが本発明はこれらの実施例のみに限定 されるものではない。
実施例 1
1) 基材の調製
石英ガラス基板に図 5に示すような複トーチ型プラズマ溶射装置を用いて、 プ ラズマガスとして窒素を 5 S LM流し、 21 kwのパワーでプラズマを生成させ、 溶射距離を 8 Ommとし、 原料粉末を供給せずに溶射ガンを 80 mmZ分の速度 で移動させて予熱した。 このときのプラズマの長さは約 30 cmで層流状態であ つた。 次に石英粉末を 4. 5 gZ分の速度で供給し、 溶射ガンを 1 6 Omm/秒 の速度で移動させながら溶射した。 当該溶射面に対し原料粉末を供給せずに溶射 ガンを 30 Omm/分の速度でプラズマ照射して表面に付着している粉末状物質 を溶融し、 表面粗さ R aが 1 5 /zmの石英溶射膜を被覆した石英ガラス基材 (基 材 A) を調製した。
さらに上記と同様の方法で、 石英ガラス基材にポロシリケ一トガラスであるバ イコール溶射膜を被覆し、 表面粗さ R aを 1 5 //inとした石英ガラス基材 (基材 B) を調製した。次にブラストのみにより表面粗さ R aを 6 //mとした石英ガラス 基材 (基材 C)、 プラスト後に 24 %フッ酸で 1時間処理した表面粗さ R aを 7 mとした石英ガラス基材 (基材 D)、 ブラストによって表面粗さを 10 μπιとした ステンレス鋼基材 (基材 Ε)、 ブラストによって表面粗さを 5 μ mとしたムラィ ト 基材 (基材 F)、 バイコール基板に石英ガラス溶射膜を被覆し、 表面粗さ R aを 1 5 / mとした石英ガラス基板 (基材 G) を調製した。
2) 溶射用原料粉末の調製
表 1に示した各金属元素の酸化物をそれぞれ混合した後、 1 700°Cに加熱溶 融し、 1 5 Omm ψ X 2 Omm tのガラス体を調製した。 当該ガラス体を粉碎、 分級し、 粒径 38~105 /ζπι (平均粒径 60 μ m) のガラス溶射粉末とした。
3) 耐蝕性ガラス溶射膜の形成
1) で調製した各種基材を用い、 図 5に示す複トーチ型プラズマ溶射装置を用 いて、プラズマガスとして窒素を 5 S LM(S t a n d a r d L i t t e r p e r M i n i t e ) 流し、 溶射距離を 100 mmとし、 溶射ガンを 1 60 mm ノ秒の速度で移動させながら、 1 1〜20 kwのパワーでプラズマを生成し、 原 料粉末を供給することなく、 基材の予熱を行った。
次に上記方法で作製したガラス溶射粉末を供給量 2 gZ分とし、 速度を 240 mm/秒、 ピッチ 4mmで溶射ガンを移動させながら 1回溶射し、 耐食性ガラス 溶射膜を形成した。 続けて形成された耐蝕性ガラス溶射被膜上に溶射原料粉末を 供給せずに、 溶射距離を 8 Ommとし、 溶射ガンを 2 1〜25 kwのパワーでプ ラズマを照射し、 2 0〜 8 0 mmZ秒の速度で照射することにより耐蝕性ガラス 溶射膜と基材表面を溶融した。 各基材の表面を溶融する条件は、 耐蝕性ガラス溶 射膜のない状態で溶射フレームをあてた際に基材表面が白色、 或いは黄白色に強 く発光する条件とした。
4 ) 性能評価一 1 (耐蝕性)
3 ) で調製した各種組成の耐蝕性ガラスを溶射した耐蝕性部材を用い、 フッ素 系ガスを含むプラズマに曝した時のェッチング速度とパーティクル量の測定試験 を行なった。 耐蝕性ガラス溶射膜の表面の組成は蛍光 X線分析、 基材との界面の 組成は E P MAで測定した。 いずれの界面も溶融層の形成が認められた。 また、 中間層を作製した基材中の中間層の厚みは 1 5 0 Ai mであった。 エッチング条件 は、 反応処理室内の圧力 1 t o r r、 反応ガスに C F 4 Z 0 2ガスを用い、 電極板 間に 3 0 0 Wの高周波電力を印加することによりプラズマを発生させた。 エッチ ング厚みは段差測定法を用いて測定し、 パーティクル発生は走査型電子顕微鏡に より耐蝕性部材表面の粒状物質の観察によって評価した。 結果を表 1に示した。 V、ずれの耐蝕性部材もエッチングレートは 0 . 2 μ m/ h rと小さく、 耐食性に 優れ、 パーティクルの発生が少なかった。
5 ) 性能評価一 2 (耐熱性 (熱サイクル剥れ試験))
3 ) で調製した各種組成の耐蝕性ガラスを溶射した耐蝕性部材を、 大気中で 8 0 0 °Cに加熱し、 室温までの冷却を繰り返した。 基材 、 B、 Gを用いた部材で は、 昇温、 冷却を 1 0回繰り返した後に基材と耐蝕性ガラス溶射膜の剥離は見ら れなかったが、ブラスト又はブラストとエッチングによる基材(基材じ、 D、 E、 F ) を用いたものは、 一部で剥離が見られ、 S i 0 2を含むガラス溶射膜の中間 層を施した方が、 熱サイクルに対する密着性に優れていた。
実施例 2
1 ) 耐蝕性溶射膜の形成 ·評価
実施例 1の 1 ) で調整した基材!)に対し、 表 2に示した各金属元素の酸化物を 実施例 1の 2 ) と同様の方法で作製した溶射粉末を用い、 図 5に示すような複ト ーチ型プラズマ溶射装置を用いて、 プラズマガスとして窒素を 1 6 S L M流し、 3 2 kwのパワーでプラズマを生成させ、 溶射距離 1 0 Ommとし、 原料粉末流 量を 7 g/分とし、 速度を 4 O Omm/秒、 ピッチ 3 mmで溶射ガンを移動させ ながら 25回溶射し、 耐蝕性溶射膜を形成した。 この時のプラズマフレームの状 態は乱流であった。 この溶射膜に対し、 性能評価として溶射膜断面の SEM観察 によって膜質を確認し、 緻密なものを〇、 気孔の多いものを Xとした。 また、 X 線回折法によるガラス化の確認を行ない、 回折図形が非晶質を示すハローパター ンのみである場合を〇、 結晶質の存在を示すピークが出現した場合を Xとした。 結果を表 2の No. 21〜3 5に示す。 成膜した溶射膜の膜厚は 0. 30mmを 超えていた。 これらの溶射膜のうち、 ガラス化を確認できた試料について、 実施 例 1の 4 ) と同様の方法で耐蝕性の評価を行った。 いずれの耐蝕性部材もエツチ ングレートは 1. 0 //m/h r以下と小さく、耐食性に優れていた。特に、 No. 22、 24、 25、 29、 30、 33、 34の組成が緻密で、 エッチングレート が 0. 4 /zm/h r以下と小さく、 非常に耐食性に優れていた。
2) 表面球状突起層の形成
実施例 1の 1 )で調整した基材 Dに対し、上記 1 ) と同様の条件で表 2の N o . 36内部組成の内部溶射膜を溶射した後、 原料粉末流量を 4 g/ 分とし、 回数を 5回とした以外は上記 1) と同様の条件で表 2の No. 37表面組成の溶射を行 い、 表面に突起層を形成した。 図 6に形成した突起層を示す。 この表面突起層の 形状は球形であり、 R aは 1 5 μ mであった。
3) 付着物に対する保持性評価
上記 2) で得られた試料の付着物に対する保持性を評価するため、 試料をブラ ズマエッチング装置内部の膜が堆積する部位に使用した。 その結果、 通常 50時 間でメンテナンスを行っていたものが 100時間まで連続で使用することが出来 た。
比較例
出発原料として、 A 1 と L aの酸化物を用いて実施例と同様の方法で表面粗さ R aが 1 5 μπιの S i 02溶射膜を被覆した石英ガラス基材 (基材 A) に結晶質 の溶射膜を作製した部材 (No. 1 6)、実施例に用いた溶射被膜と同様の組成の バルタのガラスインゴットを表面粗さ R aが 1 mとなるまで表面を機械的に研 磨した部材(No. 1 7)、溶射被膜を施していない石英ガラス基材(No. 1 8) を夫々実施例と同様の方法でエッチング速度、 パーティクル量の測定、 並びに熱 サイクル試験 (熱サイクル試験は溶射部品である N o. 1 6のみ) を行った。
No. 16の部材では、 A 1 と L aの酸化物皮膜がエッチング速度は小さかつ たが、 結晶質のためパーティクルが多数発生し、 耐蝕性が不良であった。 また 8 00°Cから室温へ急冷する熱サイクル試験では、 3回目で溶射膜が剥離した。 ガ ラスインゴッ ト (N o. 1 7) はエッチング速度は小さかったが、 実施例の耐蝕 性部材に比べてパーティクルの発生が多かった。 耐蝕性ガラス溶射被膜のない石 英ガラス基材 (No. 1 8) は、 エッチング速度が 5 / m/h rと大きく、 耐食 性が不良であった。
表 1
Figure imgf000021_0001
表 1 (続き)
Figure imgf000022_0001
表 2
Figure imgf000023_0001
表 2 (続き)
Figure imgf000024_0001
本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の精神と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。 '
本出願は、 2003年 1月 28日出願の日本特許出願 (特願 2003— 1 86 34) に基づくものであり、 その内容はここに参照として取り込まれる。 ぐ産業上の利用可能性 >
本発明の耐蝕性部材は以下の効果を有するため、 CVD装置、 プラズマ処理装 置等の腐食性ガス、 プラズマを用いる装置に使用した際、 パーティクル発生、 製 品汚染がなく、 高い製品留まりで連続運転が可能である。
1) 腐食性ガス、 プラズマに対する耐蝕性が高い。
2 ) 耐熱強度と耐蝕性の両方が要求される部分に使用できる。
3) 高価な耐蝕性ガラスを基材の上に少量被覆しているため、 安価である。

Claims

1. 元素周期律表 2 a族及び 3 a族及ぴ 4 a族の元素からなる群より選 ばれる少なくとも 1つの元素を含み、 アルミノシリケ一トガラス又はジルコエア シリケートガラスである耐蝕性ガラス溶射膜を被覆した基材からなる耐蝕性部材。
2. 元素周期律表 3 a請族の元素からなる群より選ばれる 1種以上の元素 からなるアルミノシリケートガラスであって、 S i _A 1 _ 3 a族三成分系三角 図で表したときに、 各金属元素の原子比の(S i : A 1 : 3 a族) = 70 : 20 : 1 0、 5 0 : 20 : 3 0、 3 0 : 40 : 3 0、 3 0 : 5 0 : 2 0、 4 5 : 5 0 : 5、 7 0 : 2 5 : 5の各点を結ぶ範囲内にその組囲成を有することを特徴とする請 求の範囲第 1項に記載の耐蝕性部材。
3. 元素周期律表 3 a族の元素からなる群より選ばれる 1種以上の元素 からなるジルコユアシリケ一トガラスであって、 S i — Z r— 3 a族三成分系三 角図で表したときに、各金属元素の原子比 (S i : Z r : 3 a族) = 7 0 : 2 5 : 5、 70 : 1 0 : 2 0、 5 0 : 2 0 : 3 0、 3 0 : 40 : 3 0、 3 0 : 5 0 : 2 0、 4 5 : 5 0 : 5の各点を結ぶ範囲内にその組成を有することを特徴とする請 求の範囲第 1項に記載の耐蝕性部材。
4. 元素周期律表 2 a族の元素からなる群より選ばれる 1種以上の元素 からなるジルコエアシリケ一トガラスであって、 S i — Z r— 2 a族三成分系三 角図で表したときに、各金属元素の原子比 (S i : Z r : 2 a族) = 7 0 : 2 5 : 5、 4 5 : 2 5 : 3 0、 3 0 : 4 0 : 3 0、 3 0 : 5 0 : 2 0、 5 0 : 4 5 : 5 の各点を結ぶ範囲内にその組成を有することを特徴とする請求の範囲第 1項に記 載の耐蝕性部材。
5. 基材と耐蝕性ガラス溶射膜の間に S i O2を含むガラス溶射膜の中 間層を有する請求の範囲第 1項に記載の耐蝕性部材。
6. 基材と耐蝕性ガラス溶射膜、 又は基材と S i 02を含むガラス溶射 膜の中間層と耐蝕性ガラス溶射膜のいずれかの界面が相互に溶融した溶融層を形 成している請求の範囲第 1項に記載の耐蝕性部材。
7. 耐蝕性ガラス溶射膜の表面粗さ R aが 0. 0 1〜5 111であること を特徴とする請求の範囲第 1項に記載の耐蝕性部材。
8. 溶射フレームによって基材表面を溶融しながら耐蝕性ガラス溶射膜 を形成することを特徴とする請求の範囲第 1項に記載の耐蝕性部材の製造方法。
9. 溶射フレームで耐蝕性ガラス溶射膜を溶融することによって、 当該 耐蝕性ガラス溶射膜の表面粗さ R aを 0. 01〜5 /zmとすることを特徴とする 請求の範囲第 8項の耐蝕性部材の製造方法。
10. 表面粗さ R a力 1〜50 μ mの基材の上に S i 02を含むガラス 溶射膜の中間層及び/又は耐蝕性ガラス溶射膜を溶射する請求の範囲第 8項に記 載の耐蝕性部材の製造方法。
1 1. 溶射膜最表面層が内部溶射膜よりもアルミニウム又はジルコニゥ ム及ぴ 2 a族及ぴ 3 a族及び 4 a族の元素のうち少なくとも一つの濃度が低い球 状突起層を形成した請求の範囲第 1項に記載の耐蝕性部材。
PCT/JP2004/000652 2003-01-28 2004-01-26 耐蝕性部材及びその製造方法 WO2004070076A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04705157A EP1589128A4 (en) 2003-01-28 2004-01-26 CORROSION RESISTANT ELEMENT AND PROCESS FOR PRODUCING THE SAME
US10/540,839 US20060019103A1 (en) 2003-01-28 2004-01-26 Corrosion-resistant member and method forproducing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003018634 2003-01-28
JP2003-18634 2003-01-28

Publications (1)

Publication Number Publication Date
WO2004070076A1 true WO2004070076A1 (ja) 2004-08-19

Family

ID=32844093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000652 WO2004070076A1 (ja) 2003-01-28 2004-01-26 耐蝕性部材及びその製造方法

Country Status (6)

Country Link
US (1) US20060019103A1 (ja)
EP (1) EP1589128A4 (ja)
KR (1) KR20050095846A (ja)
CN (1) CN1745190A (ja)
TW (1) TW200416294A (ja)
WO (1) WO2004070076A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070221132A1 (en) * 2006-03-24 2007-09-27 General Electric Company Composition, coating, coated article, and method
US20080009417A1 (en) * 2006-07-05 2008-01-10 General Electric Company Coating composition, article, and associated method
JP4895275B2 (ja) * 2006-09-28 2012-03-14 東京エレクトロン株式会社 基板処理装置用の部品及び皮膜形成方法
US20080141938A1 (en) * 2006-12-13 2008-06-19 General Electric Company Processing apparatus, coated article and method
US20080142755A1 (en) * 2006-12-13 2008-06-19 General Electric Company Heater apparatus and associated method
US8497018B2 (en) * 2010-01-27 2013-07-30 Applied Thin Films, Inc. High temperature stable amorphous silica-rich aluminosilicates
US20120006395A1 (en) * 2010-07-08 2012-01-12 E. I. Du Pont De Nemours And Company Coated stainless steel substrate
CN101956154A (zh) * 2010-09-19 2011-01-26 大连海事大学 超低压等离子喷涂设备
JP6068849B2 (ja) * 2012-07-17 2017-01-25 東京エレクトロン株式会社 上部電極、及びプラズマ処理装置
CN103426802B (zh) * 2013-08-22 2016-03-30 上海科秉电子科技有限公司 一种蚀刻机的聚焦环和屏蔽环的用后处理方法
WO2015082508A1 (en) * 2013-12-06 2015-06-11 Oce-Technologies B.V. Scanning inkjet printing system
CN106104775B (zh) * 2014-01-31 2019-05-21 应用材料公司 腔室涂层
KR101958372B1 (ko) * 2016-12-16 2019-03-14 주식회사 쎄노텍 연속식 다단아크 용융 장치 및 이를 이용한 용융 지르콘 비드 제조방법
KR102275790B1 (ko) * 2019-11-15 2021-07-09 세메스 주식회사 석영 부재의 표면 처리 방법 및 석영 부재

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150342A (en) * 1976-06-09 1977-12-14 Tokyo Shibaura Electric Co Method of base of fluorine resin film
JPS56129632A (en) * 1980-03-12 1981-10-09 Natl Inst For Res In Inorg Mater Alkali-proof alminosilicate glass
JPS5860640A (ja) * 1981-10-01 1983-04-11 Hoya Corp 光学ガラス
JPS5969443A (ja) * 1982-10-14 1984-04-19 Natl Inst For Res In Inorg Mater Y↓2o↓3を含有するアルミノけい酸塩ガラスの製造法
JPS62128386A (ja) * 1985-11-29 1987-06-10 Omron Tateisi Electronics Co Icカ−ドリ−ド/ライトシステム
JPH02282460A (ja) * 1989-04-21 1990-11-20 Nkk Corp セラミックス表面処理金属材
JPH07197276A (ja) * 1993-12-28 1995-08-01 Fujikura Ltd 耐摩耗性軽量部材およびその製造方法
WO1996027694A1 (fr) * 1995-03-08 1996-09-12 Tocalo Co., Ltd. Element muni d'un revetement composite et son procede de production
JP2001158954A (ja) * 1999-12-01 2001-06-12 Nippon Steel Hardfacing Co Ltd 貫通気孔のない溶射皮膜の形成方法およびその溶射皮膜を有する部材

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR59196B (en) * 1976-09-08 1977-11-25 Bisch Andre Process producing glassy coverings and several objects
JPS5565545A (en) * 1978-11-13 1980-05-17 Nhk Spring Co Ltd Multilayer coating protective film board
DE3012515A1 (de) * 1980-03-31 1981-10-08 Vysoká &scaron;kola chemicko-technologická Praha, Praha Spritzauftragmaterial fuer glut- oder plasmaspritzen und verfahren zur herstellung desselben
US4578362A (en) * 1983-11-23 1986-03-25 Owens-Corning Fiberglas Corporation Precious metal vaporization reduction
DE3538390A1 (de) * 1985-10-29 1987-04-30 Deutsche Forsch Luft Raumfahrt Beschichtung fuer ein substrat und verfahren zu dessen herstellung
US5202059A (en) * 1987-06-12 1993-04-13 Lanxide Technology Company, Lp Coated ceramic filler materials
US5118581A (en) * 1990-07-26 1992-06-02 Rockwell International Corporation Protection of gamma titanium aluminides with aluminosilicate coatings
US5633090A (en) * 1993-01-21 1997-05-27 Schott Glaswerke Lead-and cadmium-free glass composition for glazing, enameling and decorating glass
US5864459A (en) * 1996-08-14 1999-01-26 Virginia Tech Intellectual Properties, Inc. Process for providing a glass dielectric layer on an electrically conductive substrate and electrostatic chucks made by the process
US6245699B1 (en) * 1999-04-30 2001-06-12 Techneglas, Inc. High strength sealing glass
US6362119B1 (en) * 1999-06-09 2002-03-26 Asahi Glass Company, Limited Barium borosilicate glass and glass ceramic composition
US6323108B1 (en) * 1999-07-27 2001-11-27 The United States Of America As Represented By The Secretary Of The Navy Fabrication ultra-thin bonded semiconductor layers
US6391809B1 (en) * 1999-12-30 2002-05-21 Corning Incorporated Copper alumino-silicate glasses
US6555232B1 (en) * 2001-11-28 2003-04-29 Corning, Incorporated High strain point glasses
TW200307652A (en) * 2002-04-04 2003-12-16 Tosoh Corp Quartz glass thermal sprayed parts and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52150342A (en) * 1976-06-09 1977-12-14 Tokyo Shibaura Electric Co Method of base of fluorine resin film
JPS56129632A (en) * 1980-03-12 1981-10-09 Natl Inst For Res In Inorg Mater Alkali-proof alminosilicate glass
JPS5860640A (ja) * 1981-10-01 1983-04-11 Hoya Corp 光学ガラス
JPS5969443A (ja) * 1982-10-14 1984-04-19 Natl Inst For Res In Inorg Mater Y↓2o↓3を含有するアルミノけい酸塩ガラスの製造法
JPS62128386A (ja) * 1985-11-29 1987-06-10 Omron Tateisi Electronics Co Icカ−ドリ−ド/ライトシステム
JPH02282460A (ja) * 1989-04-21 1990-11-20 Nkk Corp セラミックス表面処理金属材
JPH07197276A (ja) * 1993-12-28 1995-08-01 Fujikura Ltd 耐摩耗性軽量部材およびその製造方法
WO1996027694A1 (fr) * 1995-03-08 1996-09-12 Tocalo Co., Ltd. Element muni d'un revetement composite et son procede de production
JP2001158954A (ja) * 1999-12-01 2001-06-12 Nippon Steel Hardfacing Co Ltd 貫通気孔のない溶射皮膜の形成方法およびその溶射皮膜を有する部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1589128A4 *

Also Published As

Publication number Publication date
US20060019103A1 (en) 2006-01-26
EP1589128A4 (en) 2009-12-30
CN1745190A (zh) 2006-03-08
TW200416294A (en) 2004-09-01
KR20050095846A (ko) 2005-10-04
EP1589128A1 (en) 2005-10-26

Similar Documents

Publication Publication Date Title
US11279661B2 (en) Heat treated ceramic substrate having ceramic coating
US7081290B2 (en) Quartz glass thermal sprayed parts and method for producing the same
JP4571561B2 (ja) 耐プラズマエロージョン性に優れる溶射皮膜被覆部材およびその製造方法
WO2004070076A1 (ja) 耐蝕性部材及びその製造方法
US7338699B2 (en) Island projection-modified part, method for producing the same, and apparatus comprising the same
JP4546448B2 (ja) 耐プラズマエロージョン性に優れる溶射皮膜被覆部材およびその製造方法
TW201805450A (zh) 氧氟化釔熱噴塗膜及其製造方法、以及熱噴塗構件
TW202223120A (zh) 熱噴塗用釔類顆粒粉末及利用其的熱噴塗皮膜
TW202223119A (zh) 熱噴塗用釔類顆粒粉末及利用其的熱噴塗皮膜
TW202222737A (zh) 熱噴塗用釔類顆粒粉末及利用其的熱噴塗皮膜
JP4367142B2 (ja) 耐蝕性部材及びその製造方法
JP4062236B2 (ja) 島状突起修飾部品及びその製造方法並びにそれを用いた装置
JP2007081218A (ja) 真空装置用部材
JP2005097722A (ja) 耐蝕性部材及びその製造方法
US7504164B2 (en) Corrosion-resistant member and process of producing the same
JP4604640B2 (ja) 真空装置用部品及びその製造方法並びにそれを用いた装置
JP2006097114A (ja) 耐蝕性溶射膜部材
JP2004143583A (ja) 石英ガラス部品及びその製造方法並びにそれを用いた装置
JP2008248345A (ja) プラズマ処理装置用部材及びその製造方法
JP2006265619A (ja) 耐蝕性部材およびその製造方法
JP5206199B2 (ja) 真空装置用部品及びその製造方法
JP2006124825A (ja) 耐蝕性部材およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004705157

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006019103

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10540839

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057012996

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048030209

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057012996

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004705157

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10540839

Country of ref document: US