TEXTILES FLÄCHENGEBILDE, UND VERFAHREN ZU SEINER HERSTELLUNG UND SEINERVERWENDUNG
Die Erfindung betrifft ein textiles Flächengebilde vorzugsweise aus einem vorzugsweise ein Funktionsmittel tragenden voluminösen Faservliesstoff sowie ein Verfahren zur Herstellung des Flächengebildes und seine Verwendung.
Im Rahmen der folgenden Beschreibung und Beanspruchung der Erfindung werden auch eingebürgerte Markenbezeichnungen für mechanische Vliesverfestigungsverfahren wie Maliwatt, Malivlies, Kunit, Multiknit, Struto verwendet, die in dem Fachbuch "Vliesstoffe", Rohstoffe, Herstellung, Anwendung, Eigenschaften, Prüfung, herausgegeben von . Albrecht, H. Fuchs, . Kittelmann, Wilay-VCH-Verlag GmbH, D-69469 Weinheim, 2000, insbesondere auf Seite 305 erläutert sind.
Voluminöse Faservliesstoffe, die einseitig oder beidseitig eine verfestigende Fasermaschenschicht aufweisen, sind z.B. aus der DE 198 12 499 AI bekannt. Der einseitig maschenbeschichtete Vliesstoff weist eine Maschenschicht als Grundware und eine plüschartige Oberfläche auf, die aus abstehenden Fasern gebildet wird. Hergestellt wird der einseitig maschenbeschichtete Vliesstoff durch die Herstellung eines beidseitig maschenbeschichteten, voluminösen Vliesstoffs und mittiges Trennen in einer Flächenebene .
Die DE 42 39 469 AI befasst sich mit einem Verfahren zum Verfestigen von querorientierten Faservliesen, bei dem ebenfalls ein einseitig maschenbeschichtetes, sog. Vlies-Gewirke hergestellt wird.
Eine andere Technologie zur Herstellung eines vermaschten voluminösen Vliesstoffes ist aus der EP 1 149 882 AI bekannt. Dieser Vliesstoff ist konzipiert als textiler Träger eines Klebebandes und weist eine durch ein Nadelverfahren erzeugte, velourisierte Oberfläche auf, die u.a. für die Funktion des Abbaus von Druckkräften geeignet ist. Die velourisierte Oberfläche ist aus einer Vielzahl paralleler, senkrecht zur Vliesstoffbahn angeordneter, im Wesentlichen gleich langer Faserteile gebildet, deren Fußende in der Vliesstoffbahn verankert ist. Auf der der Velouroberfläche gegenüber liegenden Oberfläche der Vliesstoffbahn ist das Klebemittel des Klebebandes vorgesehen. Da beim Abrollen eines im Lieferzustand aufgerollten Klebebandes, bei dem die Veloursoberfläche mit dem Klebemittel in Kontakt steht, unerwünscht Fasern aus der verankernden verfestigten Vliesstoffbahn gerissen werden können, wird vorgeschlagen, während der Verfestigung des Vliesstoffes zum Vliesstoff in der Vliesstoffbahn oder während des velourisierenden Vernadelns auf der velouri- sierten Oberfläche des Vliesstoffes eine dünne, nicht textile Bahn anzuordnen.
Voluminöse einseitig oder beidseitig maschenverfertigte Vliesstoffe werden u.a. auch als druckelastische Polsterstoffe verwendet. Die Polsterstoffe werden zwischen einem z.B. aus einem Wollstoff bestehenden Überzugsmaterial und einem z.B. aus Polyurethan bestehenden Schaumstoffkern angeordnet. Sie sollen insbesondere Druckelastizität gewährleisten und feuchtigkeitsspei- chernd und feuchtigkeitsdurchlassend sein (EP 0 126 798 Bl) .
Aus der DE 44 24 636 C2 ist ein als Polsterstoff zu verwendender, mehrschichtiger voluminöser Kaschiervliesstoff bekannt, bei dem zwei Nähwirkvliesstoffe durch vertikale Faserpfropfen verbunden sind, die aus den Faserteilen der außen liegenden Fasermaschenschichten bestehen und die sich bis in die Mitte der jeweils gegenüberliegenden Faserschicht erstrecken. Damit soll durch eine dichtere Faseranordnung in der jeweiligen Faserschicht eine druckelastische Zone erzeugt werden.
Die aus der DE 4127337 AI bekannte Polsterung weist u.a. einen Vliesstoff auf, der als Funktionsstoff ein superabsorbierendes Hydrogel enthält. Das hydrophile Hydrogel soll einerseits große Feuchtigkeits- und Dampfmengen aufnehmen und andererseits leicht regenerierbar, insbesondere desorbierbar sein. Über die Art des Vliesstoffes wird keine Aussage gemacht.
Aus der WO 00/64311 ist ein Polster eines Sitzes oder eines Liegemöbels bekannt, das einen desorbierenden Feuchtigkeitsspeicher in Form einer hydrophilen Schicht zur reversiblen Aufnahme von Kδrperfeuchtigkeit aufweist. Die hydrophile Schicht besteht u.a. aus einem Vliesstoff als Trägermaterial und einem auf den Vliesstoff aufpolymerisierten Superabsorber, wobei die Fasern des Vliesstoffes zumindest anteilig vom Superabsorber überzogen sind. Der Superabsorber wird vor seiner Polymerisation auf den Vliesstoff aufgesprüht oder im Tauchbadverfahren aufgebracht. Über die Art des Vliesstoffes werden auch in dieser Druckschrift keine Angaben gemacht .
Beim Aufsprühen dringt der Superabsorber inhomogen tief in den Vliesstoff ein und verteilt sich auch inhomogen auf der Oberfläche. Die Folge ist eine extreme Oberflächenrauhigkeit und eine unerwünschte Versteifung des Vliesstoffes. Zudem ist es auch nicht möglich, definierte Mengen an Superabsorber aufzubringen, so dass die Absorptionskapazität nicht regelbar ist.
Aufgabe der Erfindung ist, ein druckelastisches, insbesonderes als Polsterstoff verwendbares textiles Flächengebilde insbesondere aus einem Vliesstoff zu schaffen, das insbesondere homogen verteilt definierte Mengen an Funktionsmittel enthalten kann, wobei definierte Vliesstoffeigenschaften wie Geschmeidigkeit und/oder Flexibilität (elastische Biegesteifigkeit) und/oder Weichheit und/oder Druckelastizität gewährleistet werden können.
Diese Aufgabe wird durch die Merkmale der Ansprüche 1, 43 und 48 gelöst. Vorteilhafte Weiterbildungen der Erfindung werden in den Unteransprüchen gekennzeichnet .
Die Erfindung betrifft insbesondere druckelastische Vliesstoffe mit dreidimensionaler Faseranordnung.
Unter Druckelastizität wird im Rahmen der Erfindung die Eigenschaft eines voluminösen textilen Flächengebildes verstanden, bei einer Druckeinwirkung bzw. Druckbelastung^äuf eine Oberfläche der Textilie die Druckkraft durch elastische Verformungen von Strukturelementen in der Volumenstruktur der Textilie aufzunehmen und bei der Entlastung zu gewährleisten, dass die verformten Strukturelemente elastisch zurückfedern. Das druckelastische Verhalten der textilen Flächengebilde wird nach dem bei elastischen Schaumstoffen bekannten Verfahren bestimmt.
Die erfindungsgemäßen textilen Flächengebilde, insbesondere in Form eines Vliesstoffes haben eine Faserpolschicht mit hoher Druckelastizität und insbesondere auch mit weiteren funktionalen Gebrauchseigenschaften und finden Einsatz z.B. als Polyurethan- schaumsubstitut in der FahrZeuginnenausstattung, in der Polstermöbelindustrie sowie als druckelastisches, funktionelles textiles Material im Bekleidungs- , Medizin- und Isolationsbereich.
Es ist allgemein bekannt, dass Vliesstoffe mit dreidimensionaler Faseranordnung durch einen strukturell bedingten Anteil von Faserteilen vertikaler bis diagonaler Anordnung zum Vliesstoffquerschnitt Druckbelastungen einen höheren Widerstand entgegensetzen als klassische Vliesstoffe mit weitgehender horizontaler Faseranordnung im Vliesstoffquerschnitt . Solche Vliesstoffe mit dreidimensionaler Anordnung sind fachlich bekannt als Struto, als ein in Längsfalten gelegter Faserflor, verfestigt durch Bindefasern, als dilourisierte Vliesstoffe mit nachträglichem Ausstoß vertikaler Faserteile aus dem Vliesstoffquerschnitt durch durchstechende Widerhakennadeln, als Kunit als ein durch Fasermaschen verfestigten, längs gestauchten Faserflor. Bei hoher Druckbeanspruchung, wie sie z.B. beim Einsatz solcher Vliesstoffe als Polyurethanschaumsubstitut im Sitzpolsterbereich in Polstermöbeln oder Fahrzeugsitzen sowie bei Innenverklei- dungsteilen im Pkw auftreten, weichen die vertikal bis diagonal
abstehenden Faserteile aus, legen sich durch die Druckbeanspruchung um und bilden in dieser horizontalen Anordnung parallel zum Vliesstoffquerschnitt keine oder wenig Erholungskräfte zur Rückstellung in die Ausgangslage nach Wegfall der Druckbelastung aus; sie zeigen somit ein geringes druckelastisches Verhalten.
Zur Verbesserung der Druckelastizität solcher dreidimensional orientierter Faservliesstoffe wird beispielsweise in der DE 202 09 709 Ul der Einsatz von thermoplastischen Bindefasern vorgeschlagen. Diese Bindefasern bilden bei thermischer Behandlung kleine Bindeflächen mit und zwischen den Faserteilen, auch den vertikal bis schräg vom Vliesstoffquerschnitt abstehenden Faserteilen, und können damit ein Umlegen bei Druckbelastungen erschweren. Allerdings sind diese verbindend wirkenden Bindepunkte in Folge der gleichmäßigen Verteilung der Bindefasern innerhalb des gesamten Bindefasergerüsts im Vliesstoff auch in demselben gleichmäßig verteilt und bei zu hohem Anteil führt eine zu große Anzahl solcher Bindepunkte zur Verhärtung und zur Versteifung des Vliesstoffes. Außerdem ist aus wirtschaftlichen und/oder funktioneilen Gründen bei solchen Vliesstoffen mit dreidimensionaler Faserorientierung oft der Einsatz solcher Bindefasern unerwünscht, z.B. wenn Gebrauchs- oder Verarbeitungstemperaturen auftreten, die über dem Schmelzbereich der Bindefasern liegen.
Aus der DE 101 39 843 AI ist ein Vliesstoff mit dreidimensionaler Faserorientierung bekannt, der aus einem durch Fadenmaschen verfestigten Vliesstoff besteht und der auf einer Seite eine Faserpolschicht besitzt, die aus vertikal zum Vliesstoffquer- schnitt abstehenden Faserteilen gebildet ist, welche über die gesamte Fläche eine hohe Dichte, Parallelität und gleichmäßige Höhe aufweisen, wobei ein oder beide Enden der Faserteile im Vliesstoffquerschnitt mechanisch eingebunden sind. Nachteil bei diesen Vliesstoffen ist neben der geringen Druckelastizität, dass nur eine maximale Faserpolhδhe von 6 mm erreicht wird und die Faserteile in der Faserpolschicht nicht untereinander abstützend verbunden sind.
In der DE 100 47 824 Cl ist ein Vliesstoff aus Fasermaterial ohne zusätzliche Fäden für den Einsatz als Unterpolstermaterial beschrieben, der eine voluminöse PolStruktur aus Faserteilen mit einer räumlich-diagonalen Anordnung besitzt, die auf einer Seite mit Maschen abgedeckt ist, um die Querfestigkeit des Vliesstoffes zu verbessern. Nachteilig ist, dass bei diesen Vliesstoffen eine starke Differenz zwischen den Polfaserhδhen vorhanden ist, die eine sehr ungleichmäßige Oberfläche der Polfaserschicht bewirkt, und die auch die Druckelastizität des Vliesstoffes negativ beeinflusst.
Entsprechend DE 42 35 858 AI kann die Polfaseroberfläche eines durch Fasermaschen verfestigten Kunit-Vliesstoffes auch zur Ausbildung von Fasermaschen verwendet werden. Der so entstandene Multiknit-Vliesstoff hat dann zwei Fasermaschenoberflächen mit gewisser Dickengleichmäßigkeit, weist allerdings zwischen diesen beiden Fasermaschenschichten diagonal orientierte Faserteile auf, deren Höhe für gute Druckelastizitätseffekte zu gering ausfällt.
Nach einer besonderen Ausführungsform der Erfindung ist ein einseitig maschenverfestigter, voluminöser Vliesstoff ausgewählt und derart verändert, dass bei der Herstellung eine vorbestimmte Druckelastizität gewährleistet und gegebenenfalls auch eine vorbestimmte Funktionsmittelmenge an Polfasern oder Polfaser- schlingen angelagert und/oder in Hohlräumen zwischen den Polfasern eingebracht werden kann.
Nach einer Ausführungsform der Erfindung wird eine neue Struktur des Vliesstoffes geschaffen in Form eines voluminösen, einseitig maschenbeschichteten bzw. maschenverfestigten Vliesstoffes mit aus der Maschenschicht senkrecht zur Flächenebene bzw. zum Vliesstoffquerschnitt aufrecht abstehenden Polfasern und/oder Polfaserschiingen, die in der Ebene des Flächengebildes mindestens drei unterschiedliche Strukturebenen aufweist, wovon eine innere Strukturschicht z.B. eine Eindringsperre für ein Funktionsmittel bildet und eine äußere Strukturschicht vorgegebene
Hohlräume zur Aufnahme von Funktionsmitteln und vorbestimmte Polfaseroberflächen zur Anlagerung von Funktionsmitteln zur Verfügung stellt .
Das Hohlraumvolumen, die Hohlraumverteilung und/oder die Größe der Anlagerungsoberflächen der Fasern können bei der Herstellung des neuen Vliesstoffes vorherbestimmbar eingestellt werden, so dass die erfindungsgemäßen Vliesstoffe auf einfache Weise an vorgegebene Anforderungen anpassbar sind.
Anhand der Figuren 1 bis 6 der Zeichnung wird die Erfindung im Folgenden beispielhaft näher erläutert. Die Figuren 1 bis 6 zeigen schematisch im Querschnitt den Aufbau von erfindungsgemäßen, voluminösen Flächengebilden.
Das textile Flächengebilde nach Fig. 1 besteht aus einem voluminösen Vliesstoff 1 und weist eine dreischichtige Struktur auf. Zuunterst ist eine Grundschicht 2 - der sogenannte Vliesstoffquerschnitt - mit im Wesentlichen in der Flächenebene ausgerichteten Faserteilen 3 angeordnet . Sie enthält unterseitig die flächig verfestigend wirkenden Faser- und/oder Fadenmaschen 4 und verankert die z.T. ebenfalls in der Flächenebene verlaufenden, in der Grundschicht 2 sitzenden Verankerungsbereiche 5, 6 von hauptsächlich senkrecht von der Grundschicht 2 abstehenden längeren Polfasern 7 und kürzeren Polfasern 8, wobei die Polfasern 7 im seitlichen Abstand von den Polfasern 8 angeordnet sind.
Die Polfasern 7 weisen mindestens überwiegend die gleiche Pol- spitzenhδhe H der Polspitzen 9, gemessen von der Unterfläche 10 des textilen Flächengebildes, auf bzw. die Polspitzen 9 der Pol- fasern 7 liegen mindestens überwiegend in einer Flächenebene 12. Ebenso weisen die Polspitzen 11 der Polfasern 8 mindestens überwiegend gleiche Polspitzenhδhe h, gemessen von der Unterfläche 10, auf bzw. liegen die Polspitzen 11 der Polfasern 8 mindestens überwiegend in einer Flächenebene 13. Die Ebene 12 der Polfaser-
spitzen 9 liegt - von der Unterfläche 10 der Maschenebene 14 betrachtet - oberhalb der Ebene 13 der Polfaserspitzen 11.
Durch diese Struktur des neuen Vliesstoffes werden relativ weite, nach oben offene Hohlräume 15 zwischen den langen Polfasern 7 gebildet und verbleiben relativ enge Räume 16 zwischen den langen und den kurzen Polfasern 7, 8. Nach der Erfindung wird die räumliche Verteilung der Kurzfasern 8 z.B. so dicht gewählt, dass z.B. fast kein Funktionsmittel, z.B. in Form eines Adsorptionsmittels in die Polfaserstruktur der Polfasern 8 bzw. in die Hohlräume 16 eindringen kann, wenn ein Funktionsmittel in die Hohlräume 16 eingefüllt wird, wobei die Polspitzen 11 sperrend gegen das Eindringen von Funktionsmittel wirken. Dadurch bleiben die Vliesstoffeigenschaften im Vliesstoffbereich 17, der aus dem Kurzfaserschichtbereich und dem Bereich der Grundschicht 2 besteht, erhalten. Dieser Schichtaufbau gewährleistet insbesondere die für viele Anwendungen erwünschte Druckelastizität und Flexibilität sowie Weichheit des Vliesstoffes. Der über der Kurzfaserschicht vorgesehene Langfaserschichtbereich 18 stellt die Hohlräume 15 z.B. für die Aufnahme von Funktionsmitteln und für das Funktionsmittel zugängige Anlagerungsoberflächen der langen Polfasern 7 zur Verfügung.
Nach der Erfindung wird auf den Vliesstoff auf der Seite der Ebene 12 eine Funktionsschicht 19 aufgebracht, deren Dicke wählbar ist und die bis zu den Spitzen 11 der kurzen Polfasern 8 reichen kann, und verfestigt ist, wobei die Hohlräume 15 zumindest teilweise ausgefüllt und die langen Polfasern 7 in diesem Bereich eingebunden sind.
Die geschlossene Funktionsschicht hat im Wesentlichen die funktioneile Aufgabe, die freien Endbereiche der Polfasern bzw. Polfaserschiingen der Polfasern 7 läge zu fixieren bzw. ortsfest einzubinden, so dass die Polfasern bzw. Polfaserschiingen zweiseitig eingespannt sind, nämlich einmal in der Grundschicht bzw. im Vliesstoffquerschnitt 2 und zum anderen in der Funktionsschicht 19. Diese Einspannung bewirkt in überraschender Weise
eine hohe Druckelastizität des Vliesstoffs. Die Polfasern können bei der Druckbelastung lediglich sich biegen oder einknicken, federn bei Druckentlastung jedoch elastisch in ihre Ausgangsstellung zurück. Selbst bei lang anhaltenden Druckbelastungen •verlieren die beidseitig eingespannten Polfasern ihre Elastizität nicht, so dass der Vliesstoff ausgezeichnetes Rückfedervermögen mit hoher Formstabilität aufweist . Dabei können die kurzen Polfasern 8 den Widerstand gegen die Druckbelastung erhöhen, wenn die FunktionsSchicht 19 auf die Polfaserspitzen 11 der Polfasern 8 trifft, wenn die Funktionsschicht 19 oberhalb der Polfaserspitzen 11 angeordnet ist. Im Falle, dass die Funktionsschicht 19 auf den Polfaserspitzen 11 aufsitzt, verstärken die kurzen Polfasern 8 die Widerstandskraft gegen Druckbelastungen und unterstützen das elastische Rückfedern.
Die Funktionsschicht kann aber auch eine zusätzliche Aufgabe übernehmen, nämlich dann, wenn sie Funktionsmittel, wie z.B. Feuchtigkeits- bzw. Flüssigkeits-Absorptionsmittel enthält, oder aus einem Funktionsmittel besteht .
Vorzugsweise wird die Funktionsschicht durch Sprühen aufgebracht . Das Aufbringen kann aber auch mit einem Tauchbadverfahren erfolgen.
Zweckmäßigerweise wird der erfindungsgemäße Vliesstoff mit einem superabsorbierenden Polymer, einem sog. Superabsorber besprüht. Superabsorber sind Elektrolyt-Netzwerke, die große Flüssigkeitsmengen aufnehmen und speichern und leicht desorbieren können.
Es liegt im Rahmen der Erfindung, Vliesstoffe mit mehr als zwei Ebenen von Polfaserspitzen und den entsprechend unterschiedlichen Hohlraumvolumina vorzusehen. Es liegt außerdem im Rahmen der Erfindung, anstelle von Polfasern Polfaserschiingen oder Polfasern in Kombination mit Polfaserschiingen vorzusehen, wobei z.B. in der einen Schicht Polfasern und in einer anderen Schicht Polfaserschiingen erzeugt werden.
Ein erfindungsgemäßes textiles Flächengebilde kann z.B. nach dem sog. Kunit-Verfahren hergestellt werden. Dabei wird aus einem Faserflor mit längsorientierten oder querorientierten Fasern ein Vliesstoff mit FaserpolStruktur auf der einen und mit Fasermaschenstruktur auf der anderen Oberflächenseite gebildet. Allgemeine Daten der Vermaschung des durch eine Bürste in die Schiebernadel eingestrichenen Faserflors sind:
Verdichtung des Faserflors 1:4 bis 1:10 Schwinghub der Bürste 80 bis 70 mm Flächenmaße des Vliesstoffes 100 bis 800 g/m2
Über spezielle Einstellung der Verdichtung und des Schwinghubes kann die erfindungsgemäße Struktur des Vliesstoffes für den Sprühauftrag von Funktionsmitteln erreicht werden.
Eine weitere Möglichkeit zur Herstellung eines erfindungsgemäßen Vliesstoffes ist ein Zweischrittverfahren mit Herstellung eines durch Faser- oder Fadenmaschen verfestigten Vlieses mit vorwiegender Querorientierung der Fasern durch Quertäfeln des Krem- pelflores vor der mechanischen Verfestigung durch Vermaschen (Malivlies) oder Übernähen (Maliwatt) . Anschließend werden bei diesem Vliesstoff mit senkrecht zur Vliesstoffoberfläche durchstechenden Widerhakennadeln die Faserpolschichten bzw. Faserpol- Strukturen durch Austragen von abstehenden Faserteilen aus dem Vliesstoffquerschnitt gebildet. Mit diesem Verfahren ist es auch möglich, einen längsorientierten Faserflor zu verwenden.
Die unterschiedlichen Höhen sowie die unterschiedliche Anzahl von abstehenden Faserteilen zur Ausbildung der erfindungsgemäßen Struktur des Vliesstoffes wird durch die Anzahl von Nadeln und die Art der Nadeln, speziell des Abstandes der Nadelspitze zum ersten Widerhaken erreicht .
Hohe Druckelastizität wird allein schon durch die verklebende Wirkung der in die Aufnahmeräume 15 eingetragenen Funktionsmit-
tel (Schicht 19) auf die langen Polfaserfäden im Bereich der Polspitzen 9 erzielt.
Bei einer Druckbelastung auf die Oberfläche des Flächengebildes verformt sich die Struktur, wobei auch die Kurzpolfasern 8 elastisch seitlich ausweichen, sich wegen entsprechend hoher Anzahl pro Quadratzentimeter gegenseitig abstützen und beim Nachlassen der Druckbelastung elastisch zurückfedern. Dabei leisten die Langpolfasern 7 eine erhebliche zusätzliche Abstützung, weil sie in die Grundschicht 2 und in die Funktionsschicht 19 eingebunden sind und einem von den Kurzpolfasern 8 ausgeübten seitlichen Druck Widerstand entgegensetzen.
Die Kurzpolfasern 8 gewährleisten insoweit einen synergistischen Effekt, indem sie einerseits eine Sperre gegen das Eindringen von Funktionsmittel bilden und andererseits in Kombination mit den Langfasern den Hohlraum 15 für Funktionsmittel bilden und Druckelastizität bzw. Druckwiderstand des Flächengebildes gewährleisten.
Ebenso kann die Funktionsschicht 19 einen synergistischen Effekt leisten. Sie gewährleistet zum einen die gewünschte Funktion, z.B. die Ab- und Desorption oder Geruchsbindung oder dergleichen, und zum anderen bildet sie durch die Einbindung der Langpolfasern 7 eine elastische membranartige Oberfläche, die Druk- kelastizität gewährleistet.
Hinzu kommt, dass die Oberfläche der FunktionsSchicht 19 relativ glatt ist, so dass das Flächengebilde z.B. bei Verwendung als Polsterstoff, ohne zusätzliche Gleitmittel auf einen Polsterkern gezogen werden kann. Bei herkömmlichen Polsterstoffen muss zu diesem Zweck häufig eine zusätzliche Gleitbeschichtung aufgebracht werden.
Die relativ glatte Oberfläche der Maschenschicht der Grundschicht 2 ist besonders gut geeignet für eine Laminierung mit einem Polsterbezugsstoff.
Beispiel 1 :
Für die Faserflorbildung wird eine Fasermischung aus 60% Polyesterfasern der Faserfeinheit 3 , 6 dtex und einer Faserlänge von 60 mm und 40% Polyesterfasern der Faserfeinheit 4,4 dtex und der Faserlänge 36 mm eingesetzt. Es wird ein Doppelflor mit einer Masse von 36 g/m2 gebildet und auf einer Nähwirkmaschine Kunit mit einer Verdichtung von 1:8 und einem Schwinghub der Bürste von 48 mm bei einer Maschenfeinheit von 18 F vermascht.
Es entsteht ein voluminöser Vliesstoff mit einer Flächenmasse von 280 g/m2 und mit einer Gesamtdicke von 4,8 mm.
Strukturell ist dieser Vliesstoff durch folgende Daten gekennzeichnet:
Von der je Flächeneinheit im Vliesstoff enthaltenen Faserlänge sind 50% in den Fasermaschen angeordnet.
Die der Vliesstoffdicke von 4,8 mm entsprechende Höhe H zuzuordnende Höhe h der Polspitzen 11 beträgt 3,2 mm. Damit ergibt sich ein Verhältnis der Höhe H zur Höhe h von 1,5 zu 1.
Die Querschnittsfläche der für die Funktionsmittel- anlagerung vorgesehenen Aufnahmeräume 15 errechnet sich bei einer mittleren Anzahl von langen Polfasern 7 von 7000 je cm2 Vliessstofffläche zu 0,98875 cm2 pro cm2. Für die Querschnittsfläche der Zwischenräume 16 ergibt sich bei einer mittleren Anzahl kurzer Polfasern 8 von 9000 je cm2 Vliesstoffflache ein Wert von 0,96085 cm2 pro cm2 Vliesstoff. Damit ist das Verhältnis der Querschnittsflächen der Aufnahmeräume 15 zu der Querschnittsfläche der Zwischenräume 16 1,021 zu 1.
.1
Die Polfasern 7 werden in eine Funktionsschicht 19 aus einem Superabsorber fest eingebettet, die eine Dicke von 1,2 mm aufweist . Vor dem Aufbringen der Funktionsschicht 19 betrug die bleibende Verformung 40,5%. Sie erniedrigte sich durch die Funktionsschicht auf 25%.
Beispiel 2 :
In einem weiteren Ausführungsbeispiel besteht der voluminöse Vliesstoff aus einem durch Fasermaschen verfestigten Querla- genvlies, der anschließend zur Erzielung der speziellen Polfaserstruktur mit langen und kurzen Polfasern mit vertikal durch den Vliesstoffquerschnitt durchstechenden Widerhakennadeln behandelt wird. Dabei besteht der auch als Malivlies bezeichnete Vliesstoff aus einer Fasermaschenunterseite und im Vliesstoffquerschnitt horizontal angeordneten Fasern aus Polyesterfasern der Faserfeinheit 3,3 dtex, der Faserlänge von 50 mm und er hat eine Flächenmasse von 240 g/m2, eine Dicke von 1,8 mm und eine Maschenreihendichte von 14 Maschenreihen je 25 mm sowie eine Maschenlänge von 1,6 mm. Dieses Malivlies wird dann auf zwei Strukturierungsnadelmaschinen mit folgenden Parametern vernadelt:
Maschine 1: Einstichseite Fasermaschenseite
Nadelart Kronennadel 15 x 18 x 42 S 111
Einstichtiefe 6 mm
Stichdichte 600 Stich je cm2
Maschine 2: Einstichseite Fasermaschenseite
Nadelart Kronennadel 15 x 18 x 42 S 111
Einstichtiefe 11 mm
Stichdichte 400 Stich je cm2
Dabei entsteht ein voluminöser Vliesstoff mit einer unterseitigen Maschengrundschicht (2) , die das Malivlies bereits aufwies, und einer durch das Vernadeln ausgebildeten Polfaserschicht aus den kurzen Polfasern (8) und aus den langen Polfasern (7) . Diese Polfasern sind durch das vertikale Austreiben aus dem ursprünglichen Vliesquerschnitt ausschließelich vertikal angeordnet und
weisen aufgrund der ausgewählten Nadel eine große Höhengleichmäßigkeit auf.
Die Gesamtdicke und damit Höhe H beträgt 3 , 6 mm, die Höhe h ist 2,4 mm und die Dicke der Fasermaschenschicht ist 1,2 mm.
In der ersten Vernadelungspassage werden ausschließlich aus den horizontal angeordneten Fasern die kurzen Polfasern (8) angeordnet, mit einer Dichte entsprechend der Nadelart und Stichdichte von 7200 Faserteilen je cm2. In der zweiten Nadelpassage erfolgt der Austrieb der langen Polfasern (7) in einer Dichte von 4000 Faserteilen je cm2 Vliesstoff.
Mit den erhaltenen Höhen errechnet sich das Verhältnis von H zu h mit einem Wert von 1,5 zu 1.
Querschnittsfläche Aufnahmeräume = 0,9908 cm2 / cm2 Material
Querschnittsfläche Zwischenräume = 0,97424 cm2 / cm2 Material
Somit ergibt sich ein Verhältnis der beiden Flächen von 1,017 zu 1.
Auch bei diesem Beispiel werden die langen Polfasern 7 in eine Funktionsschicht 19 aus einem Superabsorber fest eingebettet. Die Dicke der Schicht 19 beträgt 1,4 mm. Vor dem Aufbringen wies der Vliesstoff eine bleibende Verformung von 38% auf. Sie wurde durch die Funktionsschicht auf 26% erniedrigt.
Das Ziel der Erfindung wird durch die nicht-textile Funktionsschicht 19 erreicht, die z.B. selbst keine elastischen Eigenschaften aufweisen muss.
Die Funktionsschicht weist aber vorzugsweise auch eine eigene feder- oder gummiartige Elastizität auf, die die Elastizität der elastischen Struktur des textilen Flächengebildes unterstützt.
Nach einer besonderen Ausfuhrungsform der Erfindung erfüllt die FunktionsSchicht nicht nur die fasereinbindende Funktion und hat nicht nur ggf. Eigenelastizität, sondern sie besteht aus einem Material, das als sog. Funktionsmittel wirkt. Beispielsweise kann die Funktionsschicht gute sitzklimatische und/oder bekleidungsphysiologische Eigenschaften aufweisen, wie z.B. Wasser- speicherung und/oder Wasserdampfaufnahme und/oder Wasserdampfdurchlässigkeit und/oder Luftdurchlässigkeit und/oder Geruchs- bindung und/oder Geruchsbildung (DuftStoff) und/oder Wärmeleitung und/oder Wärmedämmung.
I.d.R. weist die FunktionsSchicht 19 Dicken zwischen 1 und 4 mm, insbesondere zwischen 1,1 und 3 mm auf.
Erreicht wird das Ziel der Erfindung nicht nur durch die Verwendung eines voluminösen textilen Flächengebildes, insbesondere in Form eines Vliesstoffs mit unterschiedlichen Polfaserlängen gemäß Fig. 1, sondern auch mit Flächengebilden, insbesondere in Form von Vliesstoffen mit einer einheitlichen Faserpolschicht. Zweckmäßigerweise sollte eine Faserpolschicht mit überwiegendem Anteil darin vertikal bis diagonal vom Vliesstoffquerschnitt abstehenden gleich langen Faserteilen vorhanden sein, die im oberen, vom Vliesstoffquerschnitt am weitesten entfernten Teil durch die flächige, verbindend wirkende, nicht-textile Funktionsschicht 19 untereinander so zusammengehalten werden, dass bei Druckbeanspruchungen zwar Ein- und Zusammendrücken des Vliesstoffs im Bereich der Faserpolschicht aber kein Umlegen der Faserteile der Faserpolschicht mit geringem Wiederholungseffekt erfolgt .
Die hohe druckelastische Wirkung einer solchen flächigen Fasereinbindung im oberen Teil der Faserpolschicht ergibt sich durch die relativ dünne, nicht textile Funktionsschicht. Wichtig für die gute Druckelastizität ist dabei der Verbleib einer gewissen freien beweglichen Höhe der einzelnen Faserteile der Faserpol- Schicht im Bereich zwischen dem Flächengebildequerschnitt bzw. dem Vliesstoffquerschnitt und Unterseite der nicht-textilen
Funktionsschicht. Außerdem ist günstig, dieser nicht-textilen, Faserteilbereiche einbindenden Funktionsschicht aufgrund einer Materialauswahl noch weitere verarbeitungs- und gebrauchetechnische Eigenschaften, wie oben beschrieben, zuzuordnen.
Die folgenden Beispiele erläutern die Erfindung anhand der Figuren 2 bis 6 bei Verwendung von voluminösen Vliesstoffen mit hohem Anteil vertikal bis diagonal abstehenden Polfaseranteilen.
Der in der Fig. 2 dargestellte druckelastische Vliesstoff besteht aus dem Vliesstoffquerschnitt 21 und der Polfaserschicht 22. Die Polfaserschicht 22 weist die vertikal bis diagonal vom Vliesstoffquerschnitt 21 abstehenden Faserteile 23 mit im vom Vliesstoffquerschnitt 21 am weitesten entfernten Bereich freien Faserteilenden 24 oder Faserteilschiingen 25 auf. Die in diesem Bereich der Faserteilenden 24 oder der Faserteilschlingen 25 angeordnete, in einem zusätzlichen Arbeitsgang eingebrachte nicht-textile FunktionsSchicht 26 bindet diese so ein, dass bei auftretenden Druckbeanspruchungen die Faserteile 23 nicht in eine horizontale Lage gedrückt werden, sondern dass sie im elastischen Strukturteilbereich 27 der Faserpolschicht 22 diese Druckkräfte elastisch aufnehmen und nach Wegfall der Druckbelastung die Faserpolschicht 22 bzw. den Strukturbereich 27 wieder in die Ausgangslage zurückbilden. Die z.B. kanalartigen Hohlräume 28 im elastischen Teilbereich 27 der Faserpolschicht 22 bieten Raum zum Weiterleiten und/oder Speichern von gasförmigen oder flüssigen Medien und Raum zum Einlagern von nicht-textilen, festen, teilchenfδrmigen Funktionsmitteln (nicht dargestellt) .
Beispiel 3 :
Der in Figur 3 im Querschnitt schematisch dargestellte druckelastische Vliesstoff besteht aus einem Kunit-Vliesstoff aus Polyesterfasern der Feinheit 3,3 dtex und mit einer Faserlänge von 90 mm. Er hat eine Masse von 380 g/m2 und eine Gesamtdicke von 5,6 mm. In der Faserpolschicht 22 sind 280 g/m2 Fasermasse enthalten, bei einer Dicke der den Vliesstoffquerschnitt 21 bildenden Fa-
sermaschenschicht 29 von 1,2 mm weist die Faserpolschicht 22 eine Dicke von 4,4 mm auf. Auf die Oberseite der Faserpolschicht
22 wurde ein Superabsorber aufgesprüht, der damit die nichttex- tile Funktionsschicht 26 bildet und eine Masse von 100 g/m2 und eine Dicke von 1,4 mm aufweist. In dieser nichttextilen Funktionsschicht sind 80% der in der Faserpolschicht 22 enthaltenen freien Faserteilenden 24 und Faserteilschlingen 25 fest eingebunden. Durch diese erfindungsgemäße Einlagerung von Faserteilen
23 der Faserpolschicht 22 in die nichttextile Funktionsschicht 26 verändern sich die druckelastischen Eigenschaften des druckelastischen Vliesstoffes gegenüber dem bekannten Kunit-Vliesstoff wie folgt :
Eigenschaft Kunit- erfinVliesdungsgemäßer stoff druckelastischer Vliesstoff
Dicke (mm) 5,4 5,6
Stauchhärte 1,2 5,7 (kPa)
Druckelastisches
Verhalten als a30 - 5H % 21,0 45,5 als a30 - 5E3 % 80,1 94,3 bleibende 39,5 28,3 Verformung %
Neben einer deutlichen Verbesserung des druckelastischen Verhaltens durch die einem flachen Umlegen der Faserteile 23 der Faserpolschicht 22 entgegenstehende Einbindung der Faserteile 23 in die nichttextile Funktionsschicht 26 ergibt die erfindungs- gemäße Vliesstoffkonstruktion durch die Art und Menge der nicht- textilen Funktionsschicht 26 eine wesentliche Erhöhung der Wasserdampfaufnähme und des Feuchtespeichervermögens als wichtige Funktionseigenschaften für den Einsatz des erfindungsgemäßen Vliesstoffes als klimatisch hervorragend geeignete Polsterkomponente für Fahrzeugsitze. Die entsprechenden Prüfwerte sind nachfolgend zusammengestellt :
Eigenschaft Kunit-Vlieserfindungs- stoff ge äßer druckelastischer Vliesstoff
Wasserdampfdurch0,11 0,16 gangs-Widerstand (g/m2 Pa h)
Wasseraufnahme (%) 842 1890
Beispiel 4 :
Der erfindungsgemäße< druckelastische Vliesstoff besteht wie im Beispiel 3 aus einem Kunit-Vliesstoff aus Polyesterfasern der Feinheit 4,0 dtex und der Länge von 70 mm. Er hat eine Masse von 290 g/m2 und eine Dicke von 4,4 m. In der Faserpolschicht 22 sind 200 g/m2 Fasermasse enthalten und diese Faserpolschicht 22 hat eine Dicke von 3,7 mm. Die Oberseite der Faserpolschicht 22 wurde mit einem thermoplastischen Klebstoffvlies aus Polyolefin mit einer Masse von 40 g/m2 verklebt, die dabei entstandene nichttextile Funktionsschicht 26 bindet bei einer Dicke von 0,8 mm 2/3 aller freien Faserteilenden 24 und Faserteilschlingen 25 fest in sich ein und bildet den erfindungsgemäßen druckelastischen Vliesstoff. Es wird eine Erhöhung der die Druckelastizität kennzeichnenden Werte wie folgt gegenüber dem bekannten Kunit- Vliesstoff ohne nicht-textile FunktionsSchicht erreicht:
Eigenschaft Kunit- erfinVliesdungsgemäßer stoff druckelastischer Vliesstoff
Dicke (mm) 4,4 4,3
Stauchhärte 1,2 4,6 (kPa)
Druckelastisches
Verhalten als a30 - 5H % 23,2 30,1 als a30 - 5E3 % 75,6 95,1 bleibende 44,2 27,6 Verformung %
Zu dieser bedeutsamen Verbesserung des druckelastischen Verhaltens durch die erfindungsgemäße Konstruktion des druckelastischen Vliesstoffes gegenüber einen vergleichbaren Kunit-Vliesstoff kommt durch die thermoplastische flächige Polymerschicht der aus einem speziellen Klebstoffvlies gebildeten nichttextilen Funktionsschicht 26 die Möglichkeit bei dem Aufbringen der nichttextilen Funktionsschicht 26 oder in einem nachfolgenden Arbeitsgang ein Dekortextil oder eine andere textile oder nichttextile Fläche anzukleben. Damit kann eine Trennkraft von 17,6 N/5 cm Breite erreicht werden.
Beispiel 5 :
Der in Figur 4 im Querschnitt schematisch dargestellte druckelastische Vliesstoff besteht aus einem durch Fasermaschen verfestigten Vliesstoff Malivlies mit einer Flächenmasse von 155 g/m2 aus Polyesterfasern der Feinheit 3,6 dtex und der Länge von 60 mm. Durch Nachnadeln auf einer Nadelmaschine mit vertikal durchstechenden Gabelnadeln ist die Faserpolschicht 22 mit den Faserteilbüscheln 31 ausgebildet worden, die jeweils freie Faserteilenden 24 und Faserteilschlingen 25 enthalten. Der Masseanteil der Faserpolschicht 22 beträgt 105 g/m2 und sie hat eine Dicke von 2,1 mm. Zwischen die einzelnen Faserbüschel 31 sind granulatförmige Aktivkohlepartikel 32 mit einer Masse von 30 g/m2 eingelagert. In einem weiteren Arbeitsgang wurde die nichttextile Funktionsschicht 26 aufgebracht, die eine wasserdampfdurchlässige Polyurethanfolie mit einer Flächenmasse von 80 g/m2 und einer Dicke von 0,7 mm ist. Der druckelastische Vliesstoff mit der dargestellten Struktur mit den eingelagerten Funktionspartikeln aus Aktivkohle 32 und der die Faserbüschel 31 fest einbindenden wasserdichten elastischen nichttextilen FunktionsSchicht 26 bildet eine hervorragende druckelastische und bekleidungsklimatisch aktive Komponente in der Schutzkleidungsherstellung.
Beispiel 6 :
Der in Figur 5 im Querschnitt schematisch dargestellte druckelastische Vliesstoff besteht aus einem Kunit-Vliesstoff aus 60% Polyesterfasern der Feinheit 3,6 dtex und einer Länge von 60 mm sowie aus 40% Viskosefasern der Feinheit 4,2 dtex und einer Länge von 80 mm. Der Vliesstoff hat eine Flächenmasse von 510 g/m2 und eine Dicke von 6,2 mm. In der Faserpolschicht 22 sind 360 g/m2 Fasermasse enthalten, die Faserpolschicht 22 hat eine Dicke von 5,4 mm. Auf die Oberseite der Faserpolschicht 22 wurde ein Superabsorber in flüssiger Form so aufgebracht, dass er einerseits die nichttextile Funktionsschicht 26 mit einer Flächenmasse von 130 g/m2 und einer Dicke von 2,0 mm bildet und zum anderen einige der den oberen Teil der Faserpolschicht 22 bildenden freien Faserteilenden 24 und Faserteilschlingen 25 aus der Oberfläche der nichttextilen Funktionsschicht 26 in einer Höhe von 0 , 5 mm herausragen.
Die zu einem Anteil von 40% an den aus der Oberfläche der nichttextilen Funktionsschicht 26 herausragenden freien Faserteilenden 24 und Faserteilschlingen 25 beteiligten Viskosefasern bilden dabei eine zusätzliche vertikale Leitung für Feuchtigkeit zur nichttextilen Funktionsschicht 26 hin oder von ihr weg. Dieser Effekt unterstützt je nach Lage und Funktion des z.B. in einen Fahrzeugsitz eingebrachten druckelastischen Vliesstoffes dessen klimatisches Verhalten in sehr positiver Weise. Die durch die erfindungsgemäße Vliesstoffkonstruktion sich einstellenden Eigenschaftsverbesserungen hinsichtlich Druckelastizität und Feuchtetransport sind anhand folgender ermittelter Eigenschaftswerte nachweisbar:
Eigenschaft Kunit- erfin- Vliesdungsgemäßer stoff druckelastischer Vliesstoff
Dicke (mm) 6,2 6,4
Stauchhärte 3,2 6,5 (kPa)
Druckelastisches
Verhalten als a30 - 5H % 28,1 46,1 als a30 - 5E3 % 86,7 94,7 bleibende Ver39,5 28,4 formung (%)
Wasserdampf- 0,10 0,16 durchgangswider- stand (g/m2 Pa h)
Wasseraufnahme 712 1383 (%)
Das erfindungsgemäße textile Flächengebilde kann ein Vliesstoff aus Fasern oder Filamenten sein, der eine Poloberfläche aus vertikal bis schräg vom Vliesstoffquerschnitt abstehenden Fasern oder Filamentteilen oder Faser- bzw. Filamentschlingen aufweist. Solche Vliesstoffe sind allgemein z.B. als Polfaltenvliesstoff Struto, als Nähwirkvliesstoff Kunit oder als durch Nachnadeln velourisierte Nadel-, Nähwirk- oder Spinnvliesstoffe bekannt. Ein erfindungsgemäßes textiles Flächengebilde kann aber auch ein textiles Flächengebilde aus Filament- und/oder Fasergarnen als Polgewebe, Polgestrick oder Polgewirke sein, die alle eine Poloberfläche aus vertikal bis schräg vom Flächengebildequerschnitt abstehenden, im Wesentlichen gleich langen Garn- oder Faserteilen und/oder Garn- oder Faserschlingen aufweisen. Es können auch Gewebe, Gewirke oder Gestricke sein, die diese Poloberfläche durch einen als Rauhen oder als Velourisieren durch Nachnadeln bezeichneten Ausrüstungsvorgang erhalten haben. Das erfindungs- gemäße druckelastische textile Flächengebilde kann auch ein Flockstoff mit einer durch Flockfasern gebildeten Poloberfläche sein. Ebenso kann es ein als Tufting bezeichnetes textiles Flächengebilde sein, dessen Poloberfläche aus Schlingen oder aufge-
schnittenen Schlingen in einen textilen oder nicht-textilen Träger aus eingetufteten Faser- oder Filamentgarnen eingebunden ist .
Anhand der folgenden Beispiele werden derartige erfindungsgemäße textile Flächengebilde beschrieben.
Beispiel 7:
Das in Figur 6 im Querschnitt schematisch dargestellte druckelastische textile Flächengebilde besteht aus einem 250 g/m2 schweren als Webvelour bezeichneten Polgewebe 21a aus Polyesterfila- mentgarnen. Die Polschicht 22 besteht aus durch spezieller Webtechnik gebildeten Polschlingen, die durch nachfolgendes Aufschneiden zu den vertikal abstehenden Filamentteilen 23 ausgebildet sind. Die Dicke des als Webvelour bezeichneten Polgewebes beträgt 3,8 mm, dabei hat die Polschicht eine Dicke von 2,9 mm. Die Oberseite der Polschicht 22 wird dann mit einem nichttextilen Funktionsmittel z.B. aus Superabsorberpolymer so besprüht, dass die freien Filamentteilenden 24 in die nichttextile Funktionsschicht 26 fest eingebunden sind. Diese nichttextile Funktionsschicht 26 hat eine Dicke von 1,1 mm und eine Masse von 110 g/m2. Diese erfindungsgemäße Konstruktion aus einem textilen Flächengebilde mit Polschicht 22 und aufgebrachter nichttextiler Funktionsschicht 26 ergibt neben dem durch den Superabsorber der Funktionsschicht 26 bedingten hohen Feuchtetransport und hoher Feuchtespeicherung eine Verringerung der ursprünglich im textilen Flächengebilde vorhandenen bleibenden Verformung nach gebrauchsnaher Druckbelastung um 65%.
Beispiel 8 :
Das erfindungsgemäße druckelastische textile Flächengebilde besteht aus einem als Wirkvelour bezeichneten Polgewirke aus Polyamidfilamentgarn und hat eine Flächenmasse von 190 g/m2 und eine Dicke von 3,0 mm. In der aus Filamentteilen 23 gebildeten Polschicht 22 sind 120 g/m2 Filamentgarnmasse enthalten und die
Polschicht 22 hat eine Dicke von 2,3 mm. Die Oberfläche der Polschicht 22 wird mit einer Polyamid-Klebstofffolie mit einer Flächenmasse von 50 g/m2 so verklebt, dass diese Klebstoff-Folie mit einer Dicke von 0,7 mm die nichttextile Funktionsschicht 26 bildet und dabei 85% aller freien Fila entteilenden 24 der Polschicht 22 fest einbindet. Diese erfindungsgemäße Einbindung in Kombination mit der textilen Konstruktion ergibt im Hinblick auf einen Einsatz des druckelastischen textilen Flächengebildes als Sitzpolsterkomponente eine hohe Druckelastizität und geringe bleibende Verformung.