WO2004065653A1 - 表面にain域を有するアルミニウム材料及びその製造方法 - Google Patents

表面にain域を有するアルミニウム材料及びその製造方法 Download PDF

Info

Publication number
WO2004065653A1
WO2004065653A1 PCT/JP2004/000642 JP2004000642W WO2004065653A1 WO 2004065653 A1 WO2004065653 A1 WO 2004065653A1 JP 2004000642 W JP2004000642 W JP 2004000642W WO 2004065653 A1 WO2004065653 A1 WO 2004065653A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum material
gas
region
aluminum
nitriding
Prior art date
Application number
PCT/JP2004/000642
Other languages
English (en)
French (fr)
Inventor
Tatsuhiko Aizawa
Hideyuki Kuwahara
Original Assignee
Research Institute For Applied Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute For Applied Sciences filed Critical Research Institute For Applied Sciences
Priority to EP04705171A priority Critical patent/EP1591551A4/en
Priority to CA002514060A priority patent/CA2514060A1/en
Priority to US10/543,141 priority patent/US20070009661A1/en
Priority to JP2005508129A priority patent/JP4537957B2/ja
Priority to CN2004800027668A priority patent/CN1742110B/zh
Publication of WO2004065653A1 publication Critical patent/WO2004065653A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process

Definitions

  • the present invention relates to a method for producing a thick-film aluminum nitride on the surface of an aluminum material in a short time, and to an aluminum material having a thick-film aluminum nitride region on the surface obtained by the method.
  • Japanese Unexamined Patent Publication No. Sho 60-21011 discloses a process of activating the surface of a material to be treated such as aluminum and generating a glow discharge to ionize the surface of the material to be treated.
  • a method for producing an aluminum material having an aluminum nitride layer which includes a step of forming an aluminum nitride layer on the surface by nitriding.
  • Japanese Patent Application Laid-Open No. Hei 5-179420 discloses the disadvantages of Japanese Patent Application Laid-Open No. 60-210110, namely, the thinness of the A1N film and the abrasion resistance. Disclosed are methods for improving the non-uniformity of the properties and the insufficient adhesion between A 1 N and the base material. That is, Japanese Patent Application Laid-Open No. 5-179420 discloses a base material such as aluminum, an intermetallic compound layer of A 1 -Ag on the surface of the base material, and a metal tube compound layer. An aluminum material having an A 1 N layer and excellent in wear resistance is disclosed.
  • the thickness of the A 1 N layer that can be formed is at most 10 and the actual limit is about several ⁇ . I could't. Also, forming an A1N layer of several m to 10 m requires a long time, for example, more than 24 hours, which is an undesirable method in terms of cost. Since the obtained A 1 N layer is also non-uniform, desired abrasion resistance cannot be obtained. Furthermore, the adhesion to aluminum as the material to be treated was not good, and peeling was observed. In this respect, a desired product could not be obtained.
  • Reference 2 solves some of the disadvantages of Reference 1, but the film thickness of 1 is 10 There is a problem that cracks occur when the distance exceeds m (Reference 2 [0036]).
  • an object of the present invention is to solve the problems that have occurred in a conventional method for manufacturing an aluminum material having an A 1 N layer on the surface.
  • an object of the present invention is to provide a method for manufacturing an aluminum material having a thick A1N region on its surface in a short time.
  • an object of the present invention is to provide a film having a large thickness in the A 1 N region, uniform in the region, and high adhesion to the base material, separately or in addition to the above object,
  • An object of the present invention is to provide a method for producing an aluminum material having a region on the surface.
  • an object of the present invention is, in addition to or in addition to the above object, an aluminum material having a thick A 1 N region on its surface, particularly a thick A 1 N region having a thick film.
  • An object of the present invention is to provide an aluminum material having an A 1 N region on its surface, which is uniform and has high adhesion to a base material.
  • the present inventors have found that C u A 1 2 as a nucleus of generation and growth of A 1 N is valid. That is, the present inventors. Have found that that can be provided an aluminum material having an aluminum material having a C u A 1 2 a A 1 N region is used as a base material in a predetermined area of the surface. Specifically, the present inventors have found the following invention.
  • ⁇ 1> 'step of preparing an aluminum material having a C u A 1 2, and has a step of plasma-nitriding the aluminum Niumu material, thereby generating an aluminum nitride (A 1 N) range to the surface of the aluminum material
  • a method for producing an aluminum material having an A 1 N region on its surface may also include a more E of removing the A 1 2 ⁇ 3 an aluminum material spatter ring process present on the surface of an aluminum material.
  • the plasma nitriding step may be performed at a temperature of from 167 to 630 ° C, preferably from -167 to 550, more preferably from 167 to 450 ° C. .
  • the plasma nitriding step may include applying a pulse voltage of 150 V to 150 kV to the aluminum material in the activated first nitriding gas atmosphere. It has a processing step consisting of an application step of applying 1 s to 1 Oms and a subsequent application stop step of 0.1 s to 10 Oms, or a processing of applying a continuous DC voltage of -50 to -800 V It may have a step.
  • the first nitriding gas may be a gas having a gas composed of nitrogen and hydrogen and / or a gas having a gas composed of nitrogen and hydrogen. If a gas having gas consisting of nitrogen and hydrogen, NH 3 or ⁇ "11 3 in the case of a mixed gas of the inert gas is a gas having a good.
  • Nitrogen gas and hydrogen gas, nitrogen gas fraction Preferably, the pressure is 0.01 to 40 Torr and the hydrogen gas partial pressure is 0.01 to: LO OTorr More preferably, the first nitriding gas has a nitrogen gas: hydrogen gas partial pressure ratio. It is preferred that the ratio be 1: 3 and / or the molar ratio of nitrogen to hydrogen (N: H) be 1: 3.
  • a 1 N may be generated at a rate of 0.05 mZ or more, preferably 0.5 to 50 m / hour.
  • the sputtering process may be performed under a chemically activated second nitriding gas atmosphere using the aluminum material as an anode and a DC voltage of 50%.
  • the second nitriding gas is preferably nitrogen with a partial pressure of 0.01 to 20 Torr.
  • the rather 1> - rather 7> may have a C u A 1 2 in A 1 N region of the resulting aluminum material.
  • the foil 10> A 1 N zone whose thickness is 0. 1 m or more, preferably 2 to 2000 111, more preferably in the range of 4 to 200 w m.
  • the A 1 N region has a production rate of 0.05 ⁇ hours or more, preferably 0.5 to 50 ⁇ m / hour. Ray.
  • the A1N region has a Picker hardness (HV) of 4 GPa or more, preferably 7 to 15 GPa, more preferably 7 to 14 GPa. It's a.
  • HV Picker hardness
  • the A1N region may have a thermal conductivity of 10 OW / mK or more, preferably 100 to 340 WZmK.
  • the tensile breaking strength between the A 1 N region and the aluminum material is not less than the tensile breaking strength of the aluminum material and not more than 15 GPa, preferably 7 to 1. l GP a is good.
  • the plasma nitriding step may be used as one or both of the solution treatment step and the aging precipitation step, and especially the aging precipitation step, by controlling the temperature.
  • the aluminum material is subjected to a sputtering process to remove A1 2 present on the surface of the aluminum material.
  • the sputtering process controls the temperature.
  • the solution treatment step and the aging precipitation step particularly the aging precipitation step, can also be used.
  • the temperature of the sputtering treatment step may be at least 1 ° C lower than the aging deposition temperature, preferably 10 to 50 ° C lower than the aging deposition temperature. It is good to do. Thus, the C u A 1 2 precipitation forms that put the aging precipitation process can not substantially changed.
  • the plasma nitriding step is performed in a range of 167 to 630. C, preferably one 167-550. C, more preferably at 167 to 450 ° C.
  • the temperature of the plasma nitriding step is at least 1 ° C lower than the aging deposition temperature, preferably 10 to 50 ° C lower than the aging deposition temperature. It's better to set the temperature. This makes it possible to not substantially alter the precipitation form of age-precipitation step Contact Keru to CuA 1 2.
  • the plasma nitriding step may include applying a pulse voltage of 150 V to 150 kV to the aluminum material for 0.1 ws in the activated first nitriding gas atmosphere. ⁇ 1 Oms application process followed by a 0.1 ⁇ s to 10 Oms application suspension process, or a process of applying a continuous DC voltage of 150 to 800 V. Good to have.
  • the first nitriding gas may be a gas having a gas composed of nitrogen and hydrogen and / or a gas having a gas composed of nitrogen and hydrogen.
  • a gas containing a gas composed of nitrogen and hydrogen it is preferably NH 3 or a mixed gas of NH 3 and an inert gas.
  • the partial pressure of nitrogen gas is preferably 0.011 to 40 Torr and the partial pressure of hydrogen gas is preferably 0.01 to 100 Torr.
  • the first nitriding gas has a partial pressure ratio of nitrogen gas: hydrogen gas of 1: 3 and a molar ratio of nitrogen or hydrogen (N: H) of 1: 3. Good.
  • a 1 N may be generated at 0.05 hours or more, preferably 0.5 to 50 ⁇ / hour. . ⁇ 26>
  • the sputtering process may be performed under a second nitriding gas atmosphere chemically activated using the aluminum material as a cathode and a DC voltage of ⁇ 50 V to It is preferable to apply one 4000 V, and the second nitriding gas is nitrogen, and its partial pressure is preferably 0.01 to 20 Torr.
  • any one of the above rather 1 6> - ⁇ 26> may have a C u A 1 2 in A 1 N region of the resulting Arumiyuu beam material.
  • Figure 1 is a S EM images of A 1 one 6 C u indicating the presence of a C u A 1 2.
  • a 1 indicates the presence of CuA 1 2 - is a SEM image of 0. 5Mg - 6 C u.
  • Figure 3 is a S EM images of A 1- 6 Cu- 2Mg indicating the presence of a C u A 1 2.
  • Figure 4 shows the results for B-2 (sputtering time: 0.5 hours) and B-5 (sputtering time: 2 hours) prepared using A1-6Cu-0.5Mg alloy as the base metal.
  • Figure 5 shows the X-ray diffraction results (incidence angle) of B-3 prepared using A1-6Cu-0.5Mg alloy as the base metal and B-6 prepared using A1-6Cu alloy. : 1 °).
  • FIG. 9 is a view showing an X-ray diffraction result (incident angle: 1 °) of B-8 prepared using a 2Mg alloy.
  • Figure 7 shows B-1 to B-4 (time: 2, 4, 6, and 8 hours) prepared by changing the plasma nitriding time using A1-6Cu-0.5Mg alloy as the base metal. It is a figure which shows an X-ray diffraction result (incidence angle: 1 degree).
  • FIG. 8 is a diagram showing an SEM image of a cross section of B-2 (plasma nitriding time: 4 hours) prepared using an A 1-6 Cu-0.5 Mg alloy as a base material.
  • FIG. 9 is a diagram showing an SEM image of a cross section of B-3 (plasma nitriding time: 6 hours) prepared using an A 1-6 Cu-0.5 Mg alloy as a base material.
  • FIG. 10 is a diagram showing the results of measuring the hardness (Vickers hardness) of the cross sections of B-2 and B-3. l ⁇ Best mode for implementing the statement
  • the present invention includes the steps of preparing an aluminum material having a C u A 1 2, the ⁇ Pi said Al Miniumu material has a step of plasma nitriding, thereby the aluminum nitride on the front surface (A 1 N) range of aluminum material
  • a method for producing an aluminum material having an A 1 N region on its surface is provided.
  • the present inventors have, A 1 to C u A 1 2 as a nucleus of generation ⁇ Pi growth N is present in ⁇ Ruminiumu material as base material, short thick A 1 formed of N layers ⁇ Pi preform It has been found that it is effective for forming an A 1 N layer having a close contact property with Al.
  • Aluminum material used as the base material has a C u A 1 2.
  • the aluminum material used as the base material has a Cu content of 55 mass% or less, preferably 0.5 to 6 mass%, when the entire aluminum material is 100 mass%, or the entire aluminum material is used. 1 0 0 on the vo 1%, C u a 1 2 of V o 1% is 1 0 V o 1% or less, preferably 0.5 to 6. in 5 vo 1%, with a C u a 1 2 Is good.
  • the present inventors have found that the A 1 N grows the C u A 1 2 as nuclei.
  • the C u A 1 2 to be A 1 N growth nuclei in the aluminum material (base material), for example, by uniformly dispersing, A 1 N grows the C u A 1 2 that the homogeneous dispersion and nuclear Therefore, by performing the plasma nitriding treatment for a predetermined time, an A 1 N layer having a uniform thickness can be formed over the entire surface of the aluminum material.
  • the C u A 1 2 to be A 1 N growth nuclei to the aluminum material (base metal) surface for example by placing in a straight line, straight or band of A 1 N layer (A 1 N range) Arumiyuu Can be formed on the surface of the material.
  • the "step of preparing an aluminum material having a CuA l 2" are commercially available, include also the step of using as an aluminum alloy having CuA l 2.
  • step of preparing a secondary aluminum ⁇ beam material having a C u A 1 2 is the following step (1) to (4), " CuA l
  • the smelting process is a process used when the material used is A1 alone, Cu alone, or the like. This is a step of obtaining an alloy containing, for example, an A1-Cu alloy.
  • Forging and rolling process is a process of forging and Z or rolling the obtained A1 alloy.
  • the A1 alloy is heated to a temperature (solution solution temperature) that is equal to or higher than the solubility of an element other than A1 (for example, Cu in the case of an A1-Cu alloy), and the elements other than A1 are heated. Is dissolved in supersaturation, and after the solid solution is sufficiently dissolved, quenching is performed at a cooling rate that does not generate elements other than A1 or crystals containing it, and a supersaturated solid solution state is prepared at room temperature. . In the case of such A 1 one C u alloy, (4) without passing through the aging precipitation treatment step, by slowly cooling rate of the solution process Ritosuru (slow cooling), aluminum having CuA l 2 Materials can also be prepared.
  • (4) aging precipitation treatment step (3) by heating maintained at a temperature lower than the solution temperature of the solution process is a process for precipitating C u A 1 2.
  • this (4) aging precipitation treatment step it is possible to prepare an aluminum material having a C u A 1 2.
  • a sputtering process and a plasma Depending on the conditions, such as in the step of. Temperature and Roh or time, when of the step, it is possible to precipitate C u A l 2.
  • the sputtering process and / or plasma nitriding process will be described later, the process itself, aging precipitation treatment E ⁇ , i.e. it may act as a "step of preparing an aluminum material having a C u A l 2".
  • the aluminum material may be bulk or powder.
  • the powder means a chip material having an average particle size of about lmm and a powder having an average particle size of 1 ⁇ . Therefore, according to the present invention, it is possible to provide an aluminum powder material having an A1 region in a predetermined region of its surface, and to provide an aluminum bulk material having an A1N region in a predetermined region of its surface. it can.
  • a step of plasma nitriding the aluminum is performed.
  • the step of removing the A 1 2 ⁇ 3 present on the surface of an aluminum material for example, it is preferable subjected to sputtering process.
  • a 1 2 ⁇ 3 removal process can be used a process being performed conventionally. Examples include, but are not limited to, reduction with chlorine ions, argon ion sputtering, and the like.
  • the sputtering process is preferably performed under a second nitriding gas atmosphere activated by a chemical reaction.
  • the second nitriding gas is, N 2 gas alone, or N better to mix a gas with 2 gas and an inert gas (e.g., A r gas).
  • the sputtering process depending on the conditions such as the temperature and Z or time, a case serving as a "age-precipitation step", or "step of preparing an aluminum material having a C u A l 2" In some cases, it may also serve.
  • the aluminum material is subjected to a plasma nitriding step. This process forms an aluminum nitride (A 1 N) region on the surface of the aluminum material.
  • the plasma nitriding step is preferably performed under the following conditions. That is, the temperature condition is One 1 6 7-6 30. C, preferably — 167 to 550 ° C, more preferably 167 to 450 ° C. As a condition other than the temperature, the plasma nitriding step is performed by using an aluminum material as a cathode in an activated first nitriding gas atmosphere.
  • V 50 kV preferably a pulse voltage of 50 to 1 000 V for 0.1 s to
  • the plasma nitriding step may also serve as the “aging precipitation treatment step” depending on conditions such as the temperature and / or time, that is, the “step of preparing an aluminum material having CuAl 2 ”. It may also serve as
  • the deposition form of CuAl 2 in the aluminum material changes. That is, whether the temperature of the sputtering step or the plasma nitriding step is close to the temperature of the above-mentioned (4) aging precipitation step (tentatively “T j”), for example, (T j — 10) ° C When higher than, C u a 1 2 in Al Miniumu material, the precipitation morphology changes.
  • the temperature of the sputtering process and Z or bra Zuma nitriding step (4) Aging A temperature at least 10 ° C lower than the temperature of the precipitation treatment step ((Tj_10) ° C or less), preferably a temperature lower by 10 to 50 ° C ((Tj-1 10) to (Tj-1 50) ° C).
  • the atmosphere in the plasma nitriding step is preferably a first nitriding gas atmosphere.
  • the first nitriding gas is preferably a gas containing a gas composed of nitrogen and hydrogen, and a gas containing Z or a nitrogen gas and a hydrogen gas.
  • Consists of nitrogen and hydrogen Gas refers to a gas consisting of an element N and the element H such as for example NH 3 gas, the gas” having a gas consisting of a "nitrogen and hydrogen, for example NH 3 gas and an inert gas (e.g. Ar gas).
  • gas containing nitrogen gas and hydrogen gas refers to a gas consisting of only H 2 gas and N 2 gas, for example, a gas further containing an inert gas (for example, Ar gas). It may be.
  • the “gas having a gas composed of nitrogen and hydrogen” is preferably NH 3 gas or a mixed gas of NH 3 gas and Ar gas.
  • the “gas having a nitrogen gas and a hydrogen gas” is preferably a gas having a nitrogen gas partial pressure of 0.01 to 40 Torr and a hydrogen gas partial pressure of 0.01 to 100%.
  • the first nitriding gas may be, for example, a gas containing NH 3 gas, H 2 gas, and N 2 gas.
  • the first nitriding gas is a force having a partial pressure ratio of nitrogen gas: hydrogen gas of 1: 3 or a molar ratio of nitrogen: hydrogen of 1: 3.
  • a 1 N can be generated at a time of 0.05 ⁇ or more, preferably 0.5 to 100 ⁇ mZ.
  • the initial stage of the plasma nitridation process (up to 4 hours from the start of the nitridation process) is at an A 1 N formation rate of 10 to 13 mZ.
  • the next stage (4 to 6 hours after the nitridation process) is A 1 N formation rate is 10-30 ⁇ / h.
  • the present invention can provide an aluminum material having an A 1 region on its surface.
  • the thickness of the A 1 N region can be controlled by changing various parameters of the above-described method, in particular, by changing parameters of the plasma nitriding step, for example, the plasma nitriding time.
  • the thickness of the A 1 N region is at least 0.1 m, for example, 2 to 2000 m, and more preferably 4 to 200 iim.
  • the aluminum material obtained according to the present invention has an A 1 N region on its surface.
  • the A 1 N region has CuAl 2 .
  • the interface between C u A 1 2 is a vertical columnar state aluminum material table surface as a base material, and Z or fine particulate state, and / or the formed A 1 N region and the base metal and made of aluminum material surface Exists in the A 1 N region in a film state.
  • CuA 1 2 forms, .A 1 N formation conditions depend on the particular temperature conditions.
  • ⁇ beam Cu A 1 2 at the interface between the material surface is formed on the film-like substance, i.e., Arumiyuu beam material layer, CuA l 2 layer, and A
  • the substance in which the 1N layers are formed in this order can be used as a heat dissipation substrate. That, A 1 N has a thermal conductivity which is excellent in electrical insulating properties, and the interior of the Cu A 1 2 ⁇ beauty aluminum material, because of its high strength and excellent thermal conductivity, these grinding A substance combining the above can be used as a heat dissipation substrate.
  • the present invention can provide an aluminum material having a Vickers hardness (Hv) in the A 1 N region of 4 GPa or more, preferably 8 to 15 GPa.
  • Hv Vickers hardness
  • the aluminum material obtained by the present invention has a large thickness in the A 1 N region, Vickers hardness can be measured not only on the A 1 N surface but also on the A 1 N cross section.
  • the A 1 N region obtained by the present invention has high adhesion to an aluminum material as a base material.
  • the tensile rupture strength between the A 1 N region and the aluminum material serving as the base material is not less than the tensile rupture strength of the aluminum material and not more than 15 GPa, preferably from 8 to 11 GPa.
  • the “tensile breaking strength between the A 1 N region and the aluminum material serving as the base material” refers to the Vickers hardness (Hv) of the aluminum material serving as the base material and the A 1 N range. Is the difference from the Vickers hardness (Hv) of A.N, which indicates the strength required to peel the A 1.N region from the base aluminum material.
  • the aluminum material obtained by the present invention can be applied as a heat sink having an A 1 N region in a predetermined region.
  • the aluminum material having an A 1 N region on the surface obtained by the present invention can be applied to sliding machine parts, automobile engine parts, resin molding trial molds, heat dissipation substrates for semiconductors, and the like. .
  • Example 1
  • A-1 3 AI-6Cu-2Mg Each aluminum alloy was placed in a closed container, and after evacuating the container, the aluminum alloy surface was subjected to a sputtering process at 400 ° C. under 1 torr nitrogen.
  • the conditions for the sputtering process were as follows: DC voltage: 250 to -270 V; 0:! To 0.2 A; time: 0.5 hours or 2 hours, using an aluminum alloy as a cathode.
  • Figure 4 shows the X-rays of B-2 (sputtering time: 0.5 hours) and B-5 (sputtering time: 2 hours) prepared using Al-6 Cu-0.5Mg alloy as the base metal. The diffraction result (incident angle: 1 °) is shown. The presence of A 1 N was confirmed in both B-2 and B-5. Therefore, even if short Sputtering time a pretreatment for removing the A 1 2 ⁇ 3, it can be seen that form the A 1 N on the surface thereof.
  • FIG. 5 shows that B-6 (A1-6Cu) and B-3 (prepared by using A1-6Cu alloy and A1-6Cu-0.5Mg alloy as base metals, respectively). The result of X-ray diffraction (incident angle: 1 °) of A 1-6 Cu-0.5Mg) is shown. The presence of A 1 N was confirmed in both B-3 and B-6. '
  • Fig. 6 shows that B1-7Cu alloy, A1-6Cu-0.5Mg alloy and A1-6Cu-2Mg alloy were prepared as base metals, respectively.
  • X-ray diffraction results (incident angle: 1 °) of A 1-6 Cu), B-5 (A 1-6 Cu-0.5 Mg) and B-8 (Al-6 Cu-2 Mg) .
  • the presence of A 1 N was confirmed in all of B-5, B-7, and B-8.
  • FIG. 7 shows that B-1 to B- were prepared using A1-6Cu-0.5Mg alloy as the base material and plasma nitriding times of 2, 4, 6 and 8 hours, respectively.
  • the X-ray diffraction result of 4 (incident angle: 1 °) is shown. From FIG. 7, it can be seen that the peak of A 1 becomes relatively smaller and the peak of A 1 N becomes relatively larger as the processing time becomes longer. This indicates that A 1 N is formed on the base material surface.
  • the CuAl 2 peak is observed at any treatment time. This is probably because CuAl 2 exists on or near the surface regardless of the plasma nitridation time, and this CuAl 2 promotes the formation of A 1 N.
  • FIG. 8 and 9 show SEM images of cross sections of B-2 and B-3, respectively.
  • FIG. 10 shows the results of measuring the hardness (Vickers hardness) of the cross sections of B-2 and B-3.
  • the horizontal axis shows the distance (win) from the surface of B-2 and B-3
  • the vertical axis shows Vickers hardness (unit: GPa).
  • B-2 (4-hour nitridation treatment) has an A 1 N layer thickness of about 40 ⁇
  • ⁇ -3 (6-hour nitridation treatment) has an A 1 ⁇ layer thickness. It can be seen that the thickness is about 80 / ⁇ m. 8 and 9 that the base material and the A 1 N layer are in close contact with each other. 8 and 9, a white area is observed in the A 1 N layer. The white areas Make port 'that is CuA 1 2 by energy dispersive X-ray analysis 7

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

 本発明は、AlN域の膜厚が厚く、域内において均一であり、母材との密着性が高い、AlN域を表面に有するアルミニウム材料、及びその製造方法を提供する。本発明は、CuAl2を有するアルミニウム材料を準備する工程、及び該アルミニウム材料をプラズマ窒化する工程を有し、これによりアルミニウム材料の表面に窒化アルミニウム(AlN)域を生成する、AlN域を表面に有するアルミニウム材料の製造方法を提供する。

Description

― 明 細 書
表面に A 1 N域を有するアルミニウム材料及びその製造方法 技術分野
本発明は、 アルミニゥム材料の表面に短時間で厚膜の窒化アルミニゥムを製造 する方法、 及ぴ該製法によって得られる、 厚膜の窒化アルミニウム域をその表面 に有するアルミニウム材料に関する。 背景技術
従来より、 アルミニウム材料又はアルミニウム合金の表面に窒化アルミニウム を形成して、 耐摩耗性を向上させる手法が種々提案されている。 例えば、 特開昭 6 0— 2 1 1 0 6 1号公報 (文献 1 ) は、 アルミニウムなどの被処理材表面を活 性化する工程及びグロ一放電を発生させて該被処理材表面をイオン窒化して窒化 アルミ ゥム層を表面に形成する工程を有する窒化アルミニウム層を有するアル ミニゥム材料の製法を開示する。
また、 特開平 5— 1 7 9 4 2 0号公報 (文献 2 ) は、 特開昭 6 0— 2 1 1 0 6 1号公報の欠点、 即ち A 1 Nの膜厚の薄さ、 耐摩耗性の不均一性、 A 1 Nと母材 との不十分な密着性などを改善した方法を開示する。 即ち、 特開平 5— 1 7 9 4 2 0号公報は、 アルミニウムなどの母材、 該母材表面上に A 1— A gの金属間化 合物層、 及ぴ該金属管化合物層上に A 1 N層を有する耐摩耗性に優れたアルミ二 ゥム材を開示している。
しかしながら、 文献 1は、 文献 2にも記載されているように、 形成できる A 1 N層の膜厚がせいぜいで 1 0数 実際には数 μ πι程度が限界であり、 十分な 厚さを形成することができなかった。 また、 数 m〜l 0数; u mの A 1 N層を形 成するには長時間、 例えば 2 4時間超を要し、 コス ト面においても不所望の方法 であった。 得られる A 1 N層も不均一であるために、 所望の耐摩耗性を得ること ができなかつた。さらに、被処理材であるアルミニウムとの密着性も良好でなく、 剥離などが観察され、 この点においても所望のものは得ることができなかった。 また、 文献 2は、 文献 1の欠点を幾分解決しているが、 1 の膜厚が1 0 mを越えるとクラックが生じる問題 (文献 2 [0036] ) を有している。 また、 中 間層として A gを用いるため、コスト面において不所望の方法であった。さらに、 文献 2では、次のように、材料を選択する上での制限を受けることとなる。即ち、 1 ) アルミニウム材料に銀を含まなければならないこと、 2 ) 銀を含有する中間 層を「膜状」 に析出させなければならないこと。また、 これらの制限に留まらず、 該中間層を介して A 1 Nが形成されているため、 母材となるアルミニウム材料と A 1 Nとの密着強度が、 該中間層に依存し、 機械的強度の選択性が喪失するなど の問題点を有していた。 発明の開示
そこで、 本発明の目的は、 A 1 N層を表面に有するアルミニウム材料の従来の 製法に生じていた課題を解決することにある。
具体的には、 本発明の目的は、 厚膜の A 1 N域を表面に有するアルミニウム材 料を短時間で製造する方法を提供することにある。 特に、 本発明の目的は、 上記 目的とは別に、 又は上記目的に加えて、 A 1 N域の膜厚が厚く、 域内において均 —であり、 母材との密着性が高い、 A 1 N域を表面に有するアルミニウム材料の 製造方法を提供することにある。
さらに、 本発明の目的は、 上記目的の他に、 又は上記目的に加えて、 厚膜の A 1 N域を表面に有するアルミニウム材料、 特に A 1 N域の膜厚が厚く、 域内にお いて均一であり、 母材との密着性が高い、 A 1 N域を表面に有するアルミニウム 材料を提供することにある。
本発明者らは、 A 1 Nの生成及び成長の核として C u A 1 2が有効であること を見出した。 即ち、 本発明者ら.は、 C u A 1 2を有するアルミニウム材料を母材 として用いて A 1 N域をその表面の所定領域に有するアルミニウム材料を提供で きることを見出した。 具体的には、 本発明者らは、 以下の発明を見出した。
< 1 > ' C u A 1 2を有するアルミニウム材料を準備する工程、 及び該アルミ ニゥム材料をプラズマ窒化する工程を有し、 これにより前記アルミニウム材料の 表面に窒化アルミニウム (A 1 N) 域を生成する、 A 1 N域を表面に有するアル ミニゥム材料の製造方法。 く 2〉 上記 < 1〉において、 プラズマ窒化工程前に、 アルミニウム材料をス パッタリング処理しアルミニウム材料の表面に存在する A 1 23を除去するェ 程をさらに有するのがよい。
< 3 > 上記 < 1 >又はく 2〉において、 プラズマ窒化工程を一 167〜 63 0 °C、 好ましくはー 167〜550で、 より好ましくは一 167〜450 °Cで行 うのがよい。 .
< 4 > 上記く 1 >〜< 3〉のいずれかにおいて、 プラズマ窒化工程は、 活性 化した第 1の窒化性気体雰囲気下において、 一 50 V〜一 50 kVのパルス電圧 をアルミニウム材料に 0. 1 s〜1 Om s印加する印加工程とその後の 0. 1 s〜 10 Om sの印加休止工程とからなる処理工程を有するか、 又は— 50〜 - 800 Vの連続した直流電圧を印加する処理工程を有するのがよい。
く 5〉 上記 < 4〉において、 第 1の窒化性気体は、 窒素と水素とからなる気 体を有する気体、及び/又は窒素ガスと水素ガスとを有する気体であるのがよい。 窒素と水素とからなる気体を有する気体の場合、 NH3又は ^"113と不活性ガスと の混合気体であるのがよい。 窒素ガスと水素ガスとを有する気体の場合、 窒素ガ ス分圧が 0. 01〜40 T o r r及び水素ガス分圧が 0. 01〜: L O OTo r r であるのがよい。 より好ましくは、 第 1の窒化性気体は、 窒素ガス :水素ガスの 分圧比が 1 : 3であるか、 及び/又は窒素と水素のモル比 (N: H) が 1 : 3で あるのがよい。
< 6 > 上記く 1 >〜< 5〉のいずれかにおいて、プラズマ窒化工程において、 A 1 Nを 0. 05 mZ時以上、 好ましくは 0. 5〜 50 m/時で生成するの がよい。
< 7 > 上記く.2 >〜く 6〉のいずれかにおいて、スパッタ ング処理工程は、 化学的反応活性化した第 2の窒化性気体雰囲気下で、 前記アルミニウム材料を陰 極として直流電圧一 50 V〜一 4000 Vを印加して行うのがよく、 第 2の窒化 性気体は窒素でありその分圧が 0. 01〜20T o r rであるのがよい。
く 8〉 上記く 1〉〜く 7 >のいずれかにおいて、 得られたアルミニウム材料 の A 1 N域中に C u A 12を有するのがよい。
< 9 > 表面に A 1 N域を有するアルミニウム材料であって、 前記 A 1 N域に C u A 12を有するアルミニウム材料。
< 10 > 表面に A 1 N域を有するアルミニウム材料であって、 前記 A 1 N域 に C u A 12が微細分散してなるアルミニウム材料。
< 1 1 > 上記く 9〉又はく 10 >において、 A 1 N域はその厚さが 0. 1 m以上、 好ましくは 2〜2000 111、 より好ましくは 4〜200 w mであるの がよい。
< 12 > 上記く 9〉〜< 1 1 >のいずれかにおいて、 A 1 N域はその生成速 度が 0. 05 μιηΖ時以上、 好ましくは 0. 5〜 50 μ m/時であるのがよレヽ。
< 13 > 上記く 9〉〜く 12〉のいずれかにおいて、 A 1 N域はそのピツカ ース硬度 (H V ) が 4 G P a以上、 好ましくは 7〜 1 5 G P a、 より好ましくは 7〜14GP aであるのがよレヽ。
< 14 > 上記く 9 >〜< 13〉のいずれかにおいて、 A 1 N域はその熱伝導 率が 10 OW/mK以上、 好ましくは 100〜340 WZmKであるのがよい。
< 1 5 > 上記く 9〉〜く 14〉のいずれかにおいて、 A 1 N域とアルミユウ ム材料との引張破断強度が、 該アルミニウム材料の引張破断強度以上、 15GP a以下、 好ましくは 7〜1 l GP aであるのがよい。
< 16 > Cuを含む A 1合金を溶体化温度で溶体化処理を施す溶体化工程; 前記工程により得られた合金を、 前記溶体化温度よりも低い時効析出温度で加熱 処理して C u A 12を析出させて、 C u A 12を有するアルミニウム材料を得る時 効析出工程;及ぴ該アルミニウム材料をプラズマ窒化するプラズマ窒化工程を有 し、 これにより前記アルミニウム材料の表面に窒化アルミニウム (A 1 N) 域を 生成する、 A 1 N域を表面に有するアルミニウム材料の製造方法。
< 1 7 > 上記く 16〉において、 プラズマ窒化工程は、 その温度を制御する ことにより、 溶体化工程及び時効析出工程のうちのいずれか一方の工程又は双方 の工程、 特に時効析出工程を兼ねることができる。 .
< 18 > 上記く 16〉又はく 1 7〉において、 プラズマ窒化工程前に、 アル ミニゥム材料をスパッタリング処理しアルミニウム材料の表面に存在する A 12
O 3を除去するスパッタリング処理工程をさらに有するのがよい。
< 1 9 > 上記く 18〉において、 スパッタリング処理工程は、 その温度を制 御することにより、 溶体化工程及び時効析出工程のうちのいずれか一方の工程又 は双方の工程、 特に時効析出工程を兼ねることができる。
< 20 > 上記 < 18〉又はく 1 9 >において、 スパッタリング処理工程の温 度を、 時効析出温度よりも少なくとも 1 o°c低い温度、 好ましくは時効析出温度 よりも 10〜 50°C低い温度とするのがよレ、。 これにより、 時効析出工程におけ る C u A 12の析出形態をほぼ変化させないことができる。
< 2 1 > 上記く 16〉〜< 20〉のいずれかにおいて、 プラズマ窒化工程を 一 167〜630。C、 好ましくは一 167〜550。C、 より好ましくは一 167 〜450°Cで行うのがよレヽ。
< 22 > 上記く 16〉〜< 21 >のいずれかにおいて、 プラズマ窒化工程の 温度を、 時効析出温度よりも少なくとも 1 o°c低い温度、 好ましくは時効析出温 度よりも 10〜50°C低い温度とするのがよレ、。 これにより、 時効析出工程にお ける CuA 12の析出形態をほぼ変化させないことができる。
< 23 > 上記く 1 6 >〜< 22〉のいずれかにおいて、プラズマ窒化工程は、 活性化した第 1の窒化性気体雰囲気下において、 一 50V〜一 50 kVのパルス 電圧をアルミニウム材料に 0.1 w s〜l Om s印加する印加工程とその後の 0. 1 μ s〜 10 Om sの印加休止工程とからなる処理工程を有するカ 又は一 50 〜一 800 Vの連続した直流電圧を印加する処理工程を有するのがよい。
< 24 > 上記 < 23〉において、 第 1の窒化性気体は、 窒素と水素とからな る気体を有する気体、 及び/又は窒素ガスと水素ガスとを有する気体であるのが よい。 窒素と水素とからなる気体を有する気体の場合、 NH3又は NH3と不活性 ガスとの混合気体であるのがよい。 窒素ガスと水素ガスとを有する気体の場合、 窒素ガス分圧が 0 · 01〜40T o r r及び水素ガス分圧が 0. 01〜100T o r rであるのがよい。 より好ましくは、 第 1の窒化性気体は、 窒素ガス :水素 ガスの分圧比が 1 : 3であるか、及びノ又は窒素と水素のモル比 (N: H) が 1 : 3であるのがよい。
< 25 > 上記 < 16〉〜く 24 >のいずれかにおいて、 プラズマ窒化工程に おいて、 A 1 Nを 0. 05 時以上、 好ましくは 0. 5〜50 πι /時で生 成するのがよい。 < 26 > 上記く 1 8 >〜< 25 >のいずれかにおいて、 スパッタリング処理 工程は、 化学的反応活性化した第 2の窒化性気体雰囲気下で、 前記アルミニウム 材料を陰極として直流電圧— 50 V〜一 4000 Vを印加して行うのがよく、 第 2の窒化性気体は窒素でありその分圧が 0.0 1〜20 T o r rであるのがよい。
< 27 > 上記く 1 6 >〜< 26〉のいずれかにおいて、 得られたアルミユウ ム材料の A 1 N域中に C u A 1 2を有するのがよい。 図面の簡単な説明
図 1は、 C u A 1 2の存在を示す A 1一 6 C uの S EM像である。
図 2は、 CuA 12の存在を示す A 1 - 6 C u - 0. 5Mgの SEM像である。 図 3は、 C u A 1 2の存在を示す A 1— 6 Cu— 2Mgの S EM像である。 図 4は、母材として A 1 - 6 C u - 0. 5 Mg合金を用いて調製した B— 2 (ス パッタリング時間: 0. 5時間) 及び B— 5 (スパッタリング時間: 2時間) の
X線回折結果 (入射角 : 1°) を示す図である。
図 5は、 母材として A 1— 6 C u— 0. 5Mg合金を用いて調製した B— 3及 び A 1— 6 Cu合金を用いて調製した B— 6の X線回折結果 (入射角: 1°) を示 す図である。
図 6は、 母材として A 1— 6 C u— 0. 5Mg合金を用いて調製した B— 5、 A 1 - 6 C u合金を用いて調製した B— 7及び A 1一 6 C u— 2Mg合金を用い て調製した B— 8の X線回折結果 (入射角 : 1°) を示す図である。
図 7は、 母材として A 1— 6 Cu— 0. 5 Mg合金を用いてプラズマ窒化処理 時間を変えて調製した B— 1〜B— 4 (時間: 2、 4、 6、 8時間) の X線回折 結果 (入射角 : 1°) を示す図である。
図 8は、母材として A 1 - 6 Cu-0. 5 Mg合金を用いて調製した B— 2 (プ ラズマ窒化処理時間: 4時間) の断面の S EM像を示す図である。
図 9は、母材として A 1 - 6 Cu-0. 5 Mg合金を用いて調製した B— 3 (プ ラズマ窒化処理時間: 6時間) の断面の S EM像を示す図である。
図 1 0は、 B— 2及び B— 3の断面の硬度 (ビッカース硬度) を測定した結果 を示す図である。 l§明を実施するための最良の形態
以下、 本発明を詳細に説明する。
本発明は、 C u A 1 2を有するアルミニウム材料を準備する工程、 及ぴ該アル ミニゥム材料をプラズマ窒化する工程を有し、 これによりアルミニウム材料の表 面に窒化アルミニウム (A 1 N ) 域を生成する、 A 1 N域を表面に有するアルミ ニゥム材料の製造方法を提供する。
本発明者らは、 A 1 Nの生成及ぴ成長の核として C u A 1 2が母材としてのァ ルミニゥム材料に存在することが、 短時間で厚い A 1 N層の形成及ぴ母材との密 着性を有する A 1 N層の形成に有効であることを見出した。
母材として用いるアルミニウム材料は、 C u A 1 2を有する。 アルミニウム材 料 (母材) に含まれる C u A 1 2の量は、 アルミニウム材料表面上に所望となる A 1 N域の面積、 プラズマ窒化処理条件 (例えば処理時間、 処理温度)、 などに依 存する。 母材として用いるアルミニウム材料は、 アルミニウム材料全体を 1 0 0 m a s s %とした場合、 その C u量が 5 5 m a s s %以下、 好ましくは 0 . 5〜 6 m a s s %であるか、 若しくはアルミニゥム材料全体を 1 0 0 v o 1 %とした 場合、 C u A 1 2の V o 1 %が 1 0 V o 1 %以下、 好ましくは 0 . 5〜6 . 5 v o 1 %で、 C u A 1 2を有するのがよい。
上述のように、 本発明者らは、 C u A 1 2を核として A 1 Nが成長することを 見出した。 したがって、 A 1 N成長核となる C u A 1 2をアルミニウム材料 (母 材) 中に、 例えば均一分散することにより、 該均一分散した C u A 1 2を核とし て A 1 Nが成長するため、 所定時間のプラズマ窒化処理を行うことにより、 アル ミニゥム材料表面一面に均一な厚さの A 1 N層を形成することができる。 また、 A 1 N成長核となる C u A 1 2をアルミニウム材料 (母材) 表面に、 例えば直線 状に配置することにより、 直線状又は帯状の A 1 N層 (A 1 N域) をアルミユウ ム材料表面に形成することができる。
「C u A 1 2を有するアルミニウム材料を準備する工程」 には、 母材としてァ ルミニゥム材料が C u A 1 2を有しない場合、 C u A 1 2を有するように、 該アル ミニゥム母材を処理する工程も含まれる。 この際に用いられる C u A 1 2を有し ないアルミニウム母材として、 銅を含むアルミニウム合金、 及ぴ銅及び銅以外の 合金元素を含むアルミニウム合金などを挙げることができる。 また、 「CuA l 2 を有するアルミニウム材料を準備する工程」 には、 市販の、 CuA l 2を有する アルミニウム合金をそのまま用いる工程も含まれる。
C u A 1 2を有するアルミニウム材料として、 A l— 6 C u、 A 1 - 6 C u - 0. 5Mg、 A 1— 6 Cu— 2Mg、 A 1 - (0. 2- 55) C u - (0. 05 — 1) T i、 A 1 - (0. 2- 55) C u - (0. 1 - 10) Mg - (0. 05 - 1 ) T iなどを挙げることができるが、 これらに限定されない。 また、 CuA 1 2を有するようにアルミニウム母材を処理する工程により、 上述のように、 C u A 1 2を種々の形状に配置するように設計することもできる。
なお、 用いる材料が C u A 1 2を有しない場合、 「C u A 1 2を有するアルミ二 ゥム材料を準備する工程」 は、 次のような工程 (1) 〜 (4) により、 「CuA l
2を有するアルミニウム材料を準備する」 のがよい。 即ち、 (1) 。 1!を含む 1 合金 (A 1一 C u合金) の溶製 (溶解製造) 工程; (2) 鍛造 ·圧延工程; (3) 溶体化処理工程;及び (4) 時効析出処理工程;である。
ここで、 (1) 溶製工程は、 用いる材料が A 1単体、 Cu単体などの場合に用い る工程であり、 。 を含む八 1合金、 例えば A 1— C u合金を得る工程である。
(2) 鍛造 ·圧延工程は、 得られた A 1合金を鍛造及び Z又は圧延する工程であ る。
また、 (3) 溶体化工程は、 A 1合金を A 1以外の元素 (例えば A 1一 Cu合金 であれば Cu) の溶解度以上の温度 (溶体化温度) に加熱して A 1以外の元素を 過飽和に溶け込ませ、 十分に固溶し終わった後に、 A 1以外の元素又はそれを含 む結晶などが生じない冷却速度で急冷し、 常温で過飽和の固溶状態を調製するェ 程である。なお、 A 1一 C u合金などの場合、(4)時効析出処理工程を経ないで、 溶体化工程の冷却速度をゆっく りとする (徐冷する) ことにより、 CuA l 2を 有するアルミニウム材料を準備することもできる。
さらに、 (4) 時効析出処理工程は、 (3) 溶体化工程の溶体化温度よりも低い 温度で加熱保持することにより、 C u A 1 2を析出させる工程である。一般には、 この (4) 時効析出処理工程により、 C u A 1 2を有するアルミニウム材料を準 備することができる。 なお、 後述するスパッタリング工程及びノ又はプラズマ窒 化工程での.温度及びノ又は時間などの条件によっては、 該工程の際に、 C u A l 2を析出させることができる。 したがって、 後述するスパッタリング工程及び/ 又はプラズマ窒化工程は、 その工程自身が、 時効析出処理ェ禾呈、 即ち 「C u A l 2を有するアルミニウム材料を準備する工程」 として作用する場合もある。
なお、アルミニウム材料は、バルクであっても、粉体であってもよい。 ここで、 粉体とは、 平均粒径 l mm程度のチップ材から平均粒径 1 μ πι粉末を意味する。 したがって、 本発明により、 その表面の所定領域に A 1 Ν域を有するアルミニゥ ム粉体材料を提供することも、 その表面の所定領域に A 1 N域を有するアルミ二 ゥムバルク材料を提供することもできる。
アルミニウム材料の準備工程後、 該アルミニウムをプラズマ窒化する工程に付 される。 但し、 プラズマ窒化前に、 アルミニウム材料の表面に存在する A 1 23 を除去する工程、 例えばスパッタリング処理工程に付するのがよい。
A 1 23除去工程は、 従来より行われている工程を用いることができる。 例え ば、 塩素イオンによる還元、 アルゴンイオンスパッタリングなどを挙げることが できるが、 これらに限定されない。 但し、 本発明において、 後の行うプラズマ窒 化処理との関係上、 A 1 23除去工程は、 母材としてのアルミニウム材料を容器 内に配置し、 該容器内を真空下とし、 その後、 窒化性気体下、 好ましくは窒素 1 丁 o r r下で、 該アルミニウム材料を陰極として直流電圧— 5 0 V〜― 4 0 0 0 Vを印加して、 1分〜数時間、 アルミニウム材料をスパッタリング処理するのが 好ましい。
スパッタリング処理工程は、 化学的反応活性化した第 2の窒化性気体雰囲気下 で行うのがよい。 ここで、 「第 2の窒化性気体」 は、 N 2ガスのみ、 又は N 2ガス と不活性ガス (例えば A rガス) との混合気体であるのがよい。
なお、 前述のように、 スパッタリング工程は、 その温度及び Z又は時間などの 条件によっては、 「時効析出処理工程」 を兼ねる場合、 即ち 「C u A l 2を有する アルミニウム材料を準備する工程」 を兼ねる場合もある。
次いで、 アルミニウム材料は、 プラズマ窒化工程に付される。 この工程により アルミニウム材料の表面に窒化アルミニウム (A 1 N) 域が形成される。
プラズマ窒化工程は、 以下のような条件で行うのがよい。 即ち、 温度条件は、 一 1 6 7〜6 30。C、 好ましくは _ 1 6 7〜550°C、 より好ましくは一 1 6 7 〜450°Cで行うのがよい。また、温度以外の条件として、プラズマ窒化工程は、 活性化した第 1の窒化性気体雰囲気下で、 アルミニウム材料を陰極として— 50
V 50 k V、 好ましくは一 50〜一 1 000 Vのパルス電圧を 0. 1 s〜
1 Om s、 好ましくは 0. 1 μ s〜lm s印加する印加工程とその後の 0. 1 β s〜: L 00m s、 好ましくは 1 0 ^ s〜 1 00m sの印加休止工程と力、らなる処 理工程を有するか、 又は一 50〜一 800 Vの連続した直流電圧を印加する処理 工程を有するのがよい。 なお、 印加工程と印加休止工程とからなる処理工程を行 う場合、 印加工程と印加休止工程とのセットを複数セット行うのがよい。 処理工 程は、 A 1 Nの所望の厚さに依存して、 その処理時間が異なるが、 一般に処理工 程は 0. 5時間以上、 例えば 0. 5〜1 00時間行うことができる。
なお、 前述のように、 プラズマ窒化工程は、 その温度及び/又は時間などの条 件によっては、 「時効析出処理工程」 を兼ねる場合、 即ち 「CuA l 2を有するァ ルミニゥム材料を準備する工程」 を兼ねる場合もある。
スパッタリング工程及び/又はプラズマ窒化工程の温度によって、 アルミユウ ム材料中の CuA l 2は、 その析出形態が変化する。 即ち、 スパッタリング工程 及ぴ 又はプラズマ窒化工程の温度が、上述の(4)時効析出処理工程の温度(仮 に 「T j」 とする) 近傍であるか、 例えば (T j _ 1 0) °Cよりも高いと、 アル ミニゥム材料中の C u A 1 2は、 その析出形態が変化する。 したがって、 スパッ タリング工程及び 又はプラズマ窒化工程中に、 アルミニウム材料中の C u A 1 2の析出形態を変化させる意図がない場合、 スパッタリング工程及び Z又はブラ ズマ窒化工程の温度は、 (4)時効析出処理工程の温度よりも少なくとも 10°C低 い温度((T j _ 1 0) °C以下)、好ましくは 1 0〜50°C低い温度((T j一 1 0) 〜 (T j 一 50) °C) であるのがよい。 一方、 スパッタリング工程及び Z又はプ ラズマ窒化工程中に、 アルミニウム材料中の C u A 1 2の析出形態を変化させて もよい場合には、 所望の析出形態に依存した温度を選択することができる。
また、プラズマ窒化工程の雰囲気は、第 1の窒化性気体雰囲気であるのがよい。 ここで、 第 1の窒化性気体は、 窒素と水素とからなる気体を有する気体、 及び Z 又は窒素ガスと水素ガスとを有する気体であるのがよい。「窒素と水素とからなる 気体」 とは、 例えば NH3ガスなどの元素 Nと元素 Hとからなる気体をいい、 「窒 素と水素とからなる気体を有する気体」 とは、 例えば NH 3ガスと例えば不活性 ガス (例えば A rガス) との混合気体をいう。 また、 「窒素ガスと水素ガスとを有 する気体」 とは、 H2ガス及び N2ガスのみからなる気体であっても、 これに例え ば不活性ガス (例えば A rガス) をさらに有する気体であってもよい。 「窒素と水 素とからなる気体を有する気体」 は、 NH3ガス、 又は NH3ガスと A rガスとの 混合気体であるのがよい。 「窒素ガスと水素ガスとを有する気体」 は、 窒素ガス分 圧が 0. 01〜40 T o r r及び水素ガス分圧が 0. 01〜100丁 0 ででぁ る気体であるのがよい。 第 1の窒化性気体は、 例えば NH3ガス、 H2ガス及び N 2ガスを有する気体であってもよい。 好ましくは、 第 1の窒化性気体は、 窒素ガ ス :水素ガスの分圧比が 1 : 3である力、、 又は窒素:水素がモル比が 1 : 3であ るのがよい。
本発明のプラズマ窒化工程は、 A 1 Nを 0. 05 μιηΖ時以上、好ましくは 0. 5〜 100 μ mZ時で生成することができる。
特に、 プラズマ窒化工程の初期段階 (窒化工程開始から 4時間ま-で) は、 A 1 N形成速度が 10〜 13 mZ時である 、 次の段階 (窒化工程後 4〜 6時間) は、 A 1 N形成速度が 10〜30 ιη /時である。
上記方法により、 本 ¾明は、 その表面に A 1 Ν域を有するアルミニウム材料を 提供することができる。
A 1 N域の厚さは、 上述の方法の種々のパラメータを変化させることにより、 特にプラズマ窒化工程のパラメータ、 例えばプラズマ窒化時間などを変化させる ことにより、 制御することができる。 例え 、 A 1 N域の厚さは、 0. O l ^ m 以上、 例えば 2〜2000 m、 より好ましくは 4〜200 iimとすることがで さる。
本発明により得られたアルミニウム材料は、 その表面に A 1 N域を有する。 該 A 1 N域は、 CuA l 2を有する。 C u A 12は、 母材となるアルミニウム材料表 面に垂直な柱状状態、 及び Z又は微細な粒状状態、 及び/又は形成された A 1 N 域と母材となるアルミニウム材料表面との界面に膜状状態で A 1 N域内に存在す る。 CuA 12の形態は、 .A 1 Nの形成条件、 特に温度条件に依存する。 なお、 C u A 12の存在により、 A 1 Nの成長 ·形成を促すことができるものと考えら れる。
形成された A 1 N域と母材となるアルミ-ゥム材料表面との界面に Cu A 12 が膜状に形成された物質、 即ち、 アルミユウ.ム材料層、 CuA l 2層、 及び A 1 N層がこの順で形成された物質は、 放熱基板として用いることができる。 即ち、 A 1 Nは、 電気絶縁性であるが優れた熱伝導性を有し、 且つ内部の Cu A 12及 びアルミニウム材料は、 高強度且つ優れた熱伝導性を有するため、 これらの磨を 組み合わせた物質は、 放熱基板として用いることができる。
また、 本発明は、 その A 1 N域のビッカース硬度 (Hv) が 4GP a以上、 好 ましくは 8〜15GP aであるアルミニウム材料を提供することができる。特に、 本発明により得られたアルミニウム材料は、 A 1 N域の厚さが厚いため、 A 1 N 表面だけでなく、 A 1 N断面についてのビッカース硬度を測定することができる。 本発明により得られた A 1 N域は、 母材であるアルミニウム材料との密着性が 高い。 例えば、 A 1 N域と母材となるアルミニウム材料との引張破断強度が、 該 アルミニウム材料の引張破断強度以上、 15GP a以下、 好ましくは 8〜1 1 G P aである。 なお、本明細書において、 特記しない限り、 「A 1 N域と母材となる アルミニウム材料との引張破断強度」 とは、 母材となるアルミユウム材料のビッ カース硬度 (Hv) と A 1 N域のビッカース硬度 (Hv) との差をいい、 A 1.N 域を母材となるアルミニゥム材料から剥離するのに必要な強度を示している。
A 1 Nは、 ぞの熱伝導率が 100〜 340 WZmKであるため、 本発明により 得られたアルミェゥム材料は、 所定領域に A 1 N域を有する放熱板として応用す ることができる。
また、 本発明により得られた、 その表面に A 1 N域を有するアルミニウム材料 は、 摺動機械部品、 自動車エンジン部品、 樹脂成形試作用金型、 半導体用放熱基 板などとして応用することができる。 実施例 .
以下、 実施例に基づいて、 本発明をさらに詳細に説明するが、 本発明は本実施 例に限定されるものではない。 実施例 1 :
母材として、 表 1に示すアルミニウム合金 A— 1〜A— 3をそれぞれ約 1. 3 g (寸法:厚さ約 10 mmx約 8 mmx約 6 mm) 準備した。 後述の処理に付する 前に、 アルミニウム合金 A— 1〜A— 3の SEM像を観察したところ、 図 1〜図 3に示すように、 いずれも C u A'l 2を確認した。
アル ニゥム合金 組成
A一 1 A I - 6 C u
A一 2 A I -6 C u-0. 5Mg
A一 3 A I -6 C u -2Mg 各アルミニウム合金を密閉容器内に配置し、容器内を真空にした後、 400°C、 1 t o r r窒素下でアルミニウム合金表面をスパッタリング工程を行った。 スパ ッタリング工程の条件は、 アルミニウム合金を陰極として、 直流電圧一 250〜 - 270 V; 0. :!〜 0. 2A ;時間: 0. 5時間又は 2時間であった。 その後、 1 t o r r窒素 (N2) 及び 3 t o r r水素 (H2) 下、 得られたアルミニウム合 金を陰極として、パルス電圧:— 200V ; 0. 2 A;及び 673 Kの条件下で、 2時間、 4時間、 6時間又は 8時間、 プラズマ窒化処理を行い、 表面に窒化アル ミニゥム (A 1 N) 層を有するアルミニウム合金 B—:!〜 B— 8を得た。 なお、 パルス電圧は、 印加 16 m sと印加休止 32m sとを繰り返し印加した。 アルミ ニゥム合金 B— 1〜B— 8の、 用いた母材の組成、 用いたスパッタリング時間、 及びプラズマ窒化時間を表 2に示す。 表 2
Figure imgf000016_0001
図 4に、母材として A l— 6 Cu— 0. 5Mg合金を用いて調製した B— 2 (ス パッタリング時間: 0. 5時間) 及び B— 5 (スパッタリング時間: 2時間) の X線回折結果 (入射角: 1°) を示す。 B— 2、 B— 5のいずれにおいても A 1 N の存在が確認できた。 このことから、 A 123を除去する前処理であるスパッタ リング時間が短くても、 その表面に A 1 Nを形成できることがわかる。
図 5に、 母材として A 1— 6 C u合金及ぴ A 1— 6 C u— 0. 5Mg合金を用 いて調製した、それぞれ B— 6 (A 1— 6 C u)及び B— 3 (A 1 - 6 C u- 0. 5Mg) の X線回折結果 (入射角: 1°) を示す。 B— 3、 B— 6のいずれにおい ても A 1 Nの存在が確認できた。 '
また、 図 6に、 母材として A 1— 6 C u合金、 A 1— 6 C u— 0. 5Mg合金 及び A 1— 6 C u— 2Mg合金を用いて調製した、 それぞれ] B— 7 (A 1 - 6 C u)、 B- 5 (A 1 - 6 C u - 0. 5Mg) 及び B— 8 (A l—6 Cu— 2Mg) の X線回折結果 (入射角: 1°) を示す。 B— 5、 B— 7、 B— 8のいずれにおい ても A 1 Nの存在が確認できた。
図 5及ぴ図 6から、 Cu A 1 2が存在するアルミニウム又はアルミニウム合金 を用い、 且つ本実施例の方法により、 表面に A 1 Nを有する材料を調製できるこ と力 Sわカ る。 図 7に、 母材として A 1— 6 C u— 0. 5 Mg合金を用い、 プラズマ窒化処理 時間をそれぞれ 2時間、 4時間、 6時間及ぴ 8時間として調製した B— 1〜: B— 4の X線回折結果 (入射角: 1°) を示す。 図 7から、 処理時間が長くなると A 1 のピークが相対的に小さくなり、 A 1 Nのピークが相対的に大きくなつているの がわかる。このことから母材表面に A 1 Nが形成されていることがわかる。また、 CuA l 2のピークは、 どの処理時間においても確認される。 これは、 プラズマ 窒'化処理時間に依らず、 CuA 12は表面又はその近傍に存在し、 この CuA l 2 が A 1 Nの形成を促進しているものと考えられる。
図 8及び図 9はそれぞれ、 B— 2及び B— 3の断面の SEM像を示す。 また、 図 10は、 B— 2及び B— 3の断面の硬度 (ビッカース硬度) を測定した結果を 示す。 図 10中、 横軸は B— 2及ぴ B— 3の表面からの距離 (win) を示し、 縦 軸はビッカース硬度 (単位 GP a) を示す。
図 8及び図 9並びに図 10から、 B— 2 (4時間窒化処理) はその A 1 N層の 厚さが約 40 μπι、 Β— 3. (6時間窒化処理) はその A 1 Ν層の厚さが約 80 /ζ mであることがわかる。 また、 図 8及び図 9から、 母材と A 1 N層とが密着して いることがわかる。 さらに、 図 8及び図 9に、 A 1 N層中に白い領域が観察され る。 この白い領域はエネルギー分散型 X線分析により CuA 12であることを確 口' し 7
これらのことから、 本実施例により、 短時間で密着性ある A 1 N層が厚くアル ミニゥム合金表面に形成されることがわかる。 また、 CuA l 2の存在がA l N の形成を促進しているものと考えられる。

Claims

請 求 の 範 囲
1. C u A 1 2を有するアルミニウム材料を準備する工程、 及び該アルミユウ ム材料をプラズマ窒化する工程を有し、 これにより前記アルミニウム材料の表面 に窒化アルミニウム (A 1 N) 域を生成する、 A 1 N域を表面に有するアルミ二 ゥム材料の製造方法。
2. 前記プラズマ窒化工程前に、 前記アルミニウム材料をスパッタリング処理 し前記アルミニウム材料の表面に存在する A 1 203を除去する工程をさらに有 する請求項 1記載の方法。
3. 前記プラズマ窒化工程を一 1 6 7〜6 30°Cで行う請求項 1又は 2記載の 方法。
4. 前記プラズマ窒化工程は、 活性化した第 1の窒化性気体雰囲気下で、 一 5
0 V 50 kVのパルス電圧を前記アルミニウム材料に 0. 1 μ s〜1 Om s 印加する印加工程とその後の 0 · 1 μ s〜lひ Omsの印加休止工程とからなる 処理工程を有するか、 又は一 50〜一 800 Vの連続した直流電圧を印加する処 理工程を有する請求項 1〜 3のいずれか 1項記載の方法。
5. 前記第 1の窒化性気体は、 窒素と水素とからなる気体を有する気体、 及び /又は窒素ガスと水素ガスとを有する気体である請求項 4記載の方法。
6. 前記プラズマ窒化工程において、 A 1 Nを 0. 05 μ m/時以上で生成す る請求項 1〜 5のいずれか 1項記載の方法。
7. 前記スパッタリング処理工程は、 化学的反応活性化した第 2の窒化性気体 雰囲気下で、 前記アルミニウム材料を陰極として直流電圧一 50 V〜一 4000 Vを印加して行う請求項 2〜 6のいずれか 1項記載の方法。
8. 得られたアルミニウム材料の A 1 N域中に CuA 1 2を有する請求項 1〜 7のいずれか 1項記載の方法。
9. 表面に A 1 N域を有するアルミニウム材料であって、 前記 A 1 N域に Cu A 1 2を有するアルミニウム材料。
1 0. 表面に A 1 N域を有するアルミニウム材料であって、 前記 A 1 N域に C u A 1。が微細分散してなるアルミニゥム材料。
1 1. 前記 A 1 N域はその厚さが 0. 1 μπι以上である請求項 9又は 10記載 の材料。
1 2. 前記 A 1 Ν域はその生成速度が 0. 05 μ m/時以上である請求項 9〜 1 1のいずれか 1項記載の材料。
13. 前記 A 1 Ν域はそのビッカース硬度 (Hv) が 4 GP a以上である請求 項 9〜 12のいずれか 1項記載の材料。
14. 前記 A 1 N域はその熱伝導率が 10 OWZmK以上である請求項 9〜 1 3のいずれか 1項記載の材料。
1 5. 前記 A 1 N域とアルミニウム材料との引張破断強度が、 該アルミニウム 材料の引張破断強度以上、 15 GP a以下である請求項 9〜14のいずれか 1項 記載の材料。
PCT/JP2004/000642 2003-01-24 2004-01-26 表面にain域を有するアルミニウム材料及びその製造方法 WO2004065653A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04705171A EP1591551A4 (en) 2003-01-24 2004-01-26 ALUMINUM MATERIAL WITH ALN AREA ON ITS SURFACE AND METHOD OF MANUFACTURING THEREOF
CA002514060A CA2514060A1 (en) 2003-01-24 2004-01-26 Aluminum material having a1n region on the surface thereof and method for production thereof
US10/543,141 US20070009661A1 (en) 2003-01-24 2004-01-26 Aluminum material having ain region on the surface thereof and method for production thereof
JP2005508129A JP4537957B2 (ja) 2003-01-24 2004-01-26 表面にAlN域を有するアルミニウム材料及びその製造方法
CN2004800027668A CN1742110B (zh) 2003-01-24 2004-01-26 表面具有a1n区域的铝材料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003015629 2003-01-24
JP2003-015629 2003-01-24

Publications (1)

Publication Number Publication Date
WO2004065653A1 true WO2004065653A1 (ja) 2004-08-05

Family

ID=32767444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000642 WO2004065653A1 (ja) 2003-01-24 2004-01-26 表面にain域を有するアルミニウム材料及びその製造方法

Country Status (7)

Country Link
US (1) US20070009661A1 (ja)
EP (1) EP1591551A4 (ja)
JP (1) JP4537957B2 (ja)
KR (1) KR101079439B1 (ja)
CN (1) CN1742110B (ja)
CA (1) CA2514060A1 (ja)
WO (1) WO2004065653A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008004883A1 (de) 2007-01-17 2008-07-24 Jatco Ltd, Fuji Aluminium-Oberflächenbearbeitungsprozess und Aluminium-Verbundwerkstoffmaterial
JP2008308759A (ja) * 2007-06-12 2008-12-25 Korea Inst Of Industrial Technology 低電流高密度によるプラズマ窒化方法及び低電流高密度によるプラズマ窒化装置
JP2010180481A (ja) * 2010-04-12 2010-08-19 Jatco Ltd アルミニウム材料の表面処理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5283833B2 (ja) * 2005-09-29 2013-09-04 株式会社東芝 半導体装置の製造方法
JP4609777B2 (ja) 2006-06-29 2011-01-12 日立金属株式会社 アルミニウムめっき層および金属部材並びにその製造方法
DE102008051665B4 (de) * 2008-10-15 2011-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Oberflächenvergütung von metallischen Bauteilen
CN102645807B (zh) * 2012-04-10 2015-08-26 深超光电(深圳)有限公司 液晶显示面板阵列基板及其制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158271A2 (en) * 1984-04-05 1985-10-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for ion nitriding aluminum or aluminum alloys
JPH08260126A (ja) * 1995-03-24 1996-10-08 Japan Steel Works Ltd:The アルミニウム基材の表面溶融硬化方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320243B2 (ja) * 1974-04-20 1978-06-26
JPS58213868A (ja) * 1982-06-04 1983-12-12 Toyota Central Res & Dev Lab Inc アルミニウムまたはアルミニウム合金のイオン窒化方法およびその装置
JPH01319665A (ja) * 1988-06-17 1989-12-25 Toyota Central Res & Dev Lab Inc アルミニウム材のイオン窒化方法
DE4106745A1 (de) * 1991-03-02 1992-09-03 Paedagogische Hochschule Erfur Verfahren zur herstellung von aluminiumnitridschichten
US5248384A (en) * 1991-12-09 1993-09-28 Taiwan Semiconductor Manufacturing Company Rapid thermal treatment to eliminate metal void formation in VLSI manufacturing process
US5272015A (en) * 1991-12-19 1993-12-21 General Motors Corporation Wear resistant hyper-eutectic aluminum-silicon alloys having surface implanted wear resistant particles
DE19717825B4 (de) * 1997-04-26 2004-03-04 Daimlerchrysler Ag Verfahren zur Aluminiumnitrid-Beschichtung der Zylinderlauffläche eines Kurbelgehäuses aus einer Al-Basislegierung und entsprechendes Kurbelgehäuse
DE19815019B4 (de) * 1998-04-03 2007-08-16 HQM Härterei und Qualitätsmanagement GmbH Verfahren zur Herstellung von Aluminiumnitridschichten auf Bauteilen aus Aluminiumwerkstoffen auf der Grundlage des Plasmanitrierens
US6376375B1 (en) * 2000-01-13 2002-04-23 Delphi Technologies, Inc. Process for preventing the formation of a copper precipitate in a copper-containing metallization on a die
DE60310298T2 (de) * 2002-04-25 2007-03-29 Furukawa-Sky Aluminum Corp. Alu-Legierung mit guter Schneidbarkeit, ein Verfahren zur Herstellung eines geschmiedeten Artikels, und der geschmiedete Artikel
JP4649419B2 (ja) * 2007-01-17 2011-03-09 ジヤトコ株式会社 アルミニウム材料の表面処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0158271A2 (en) * 1984-04-05 1985-10-16 Kabushiki Kaisha Toyota Chuo Kenkyusho Process for ion nitriding aluminum or aluminum alloys
JPH08260126A (ja) * 1995-03-24 1996-10-08 Japan Steel Works Ltd:The アルミニウム基材の表面溶融硬化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GREDELJ S. ET AL., APPLIED SURFACE SCIENCE, vol. 199, 2002, pages 183 - 194

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008004883A1 (de) 2007-01-17 2008-07-24 Jatco Ltd, Fuji Aluminium-Oberflächenbearbeitungsprozess und Aluminium-Verbundwerkstoffmaterial
JP2008174778A (ja) * 2007-01-17 2008-07-31 Jatco Ltd アルミニウム材料の表面処理方法及びアルミニウム材料
JP4649419B2 (ja) * 2007-01-17 2011-03-09 ジヤトコ株式会社 アルミニウム材料の表面処理方法
US8734598B2 (en) 2007-01-17 2014-05-27 Jatco Ltd Aluminum surface treatment process and aluminum composite material
JP2008308759A (ja) * 2007-06-12 2008-12-25 Korea Inst Of Industrial Technology 低電流高密度によるプラズマ窒化方法及び低電流高密度によるプラズマ窒化装置
JP4644236B2 (ja) * 2007-06-12 2011-03-02 韓国生産技術研究院 低電流高密度によるプラズマ窒化方法及び低電流高密度によるプラズマ窒化装置
JP2010180481A (ja) * 2010-04-12 2010-08-19 Jatco Ltd アルミニウム材料の表面処理方法

Also Published As

Publication number Publication date
US20070009661A1 (en) 2007-01-11
JPWO2004065653A1 (ja) 2006-05-18
CN1742110B (zh) 2010-12-22
KR101079439B1 (ko) 2011-11-03
EP1591551A1 (en) 2005-11-02
KR20060003327A (ko) 2006-01-10
CN1742110A (zh) 2006-03-01
JP4537957B2 (ja) 2010-09-08
CA2514060A1 (en) 2004-08-05
EP1591551A4 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP5968479B2 (ja) スパッタリングターゲットを形成する方法
JP3631392B2 (ja) 配線膜の形成方法
JP6428899B2 (ja) Wc基超硬合金基体の改質方法
US20090078570A1 (en) Target/backing plate constructions, and methods of forming target/backing plate constructions
EP3147377B1 (en) Coated cemented carbide
EP0997546A1 (en) Aluminum alloy and method for manufacturing aluminum-alloy member
WO2000000661A1 (fr) Cible de vaporisation
WO2004065653A1 (ja) 表面にain域を有するアルミニウム材料及びその製造方法
TWI627291B (zh) 基於銀合金的濺鍍靶
EP1026284A1 (en) Sputtering target and part for thin film-forming apparatus
Leonard et al. Precipitation phenomena in a powder-processed quasicrystal-reinforced Al-Cr-Mn-Co-Zr alloy
TW201816159A (zh) 濺鍍靶材
EP3695024B1 (en) Method of manufacturing copper manganese sputtering target
JP2010007103A (ja) アルミニウム部材の製造方法
CN112424385A (zh) 镁合金板材及其制造方法
JPH116056A (ja) 金属間化合物含有ターゲット、およびこれを用いた硬質被覆部材の製造方法
EP4249628A1 (en) Sputtering target and manufacturing method therefor
JPH04337062A (ja) 表面処理部材およびその製造方法
EP3569731B1 (en) Cr alloy target material
JP2000355761A (ja) バリア材成膜用Ta系ターゲットおよびその製造方法
KR20220128268A (ko) 스퍼터링 타겟 및 그 제조방법
Kurita et al. Structure of Ti–Fe Alloy Films Prepared by Composite-Cathode Sputtering
EP3940756A1 (en) Bonding wire
JPH07258835A (ja) W−Ti合金タ−ゲット及びその製造方法
RU2398914C2 (ru) Способ получения композиционного покрытия

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508129

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2514060

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020057013532

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20048027668

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004705171

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004705171

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057013532

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007009661

Country of ref document: US

Ref document number: 10543141

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10543141

Country of ref document: US