WO2004065436A1 - 加硫可能な含フッ素エラストマーの製造方法 - Google Patents

加硫可能な含フッ素エラストマーの製造方法 Download PDF

Info

Publication number
WO2004065436A1
WO2004065436A1 PCT/JP2004/000519 JP2004000519W WO2004065436A1 WO 2004065436 A1 WO2004065436 A1 WO 2004065436A1 JP 2004000519 W JP2004000519 W JP 2004000519W WO 2004065436 A1 WO2004065436 A1 WO 2004065436A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
polymerization
containing elastomer
group
elastomer
Prior art date
Application number
PCT/JP2004/000519
Other languages
English (en)
French (fr)
Inventor
Yousuke Nishimura
Masaki Irie
Sadashige Irie
Manabu Fujisawa
Satoshi Tokuno
Mitsuru Kishine
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to US10/542,545 priority Critical patent/US7375171B2/en
Priority to EP04704326A priority patent/EP1589047B1/en
Priority to JP2005508111A priority patent/JP4013977B2/ja
Publication of WO2004065436A1 publication Critical patent/WO2004065436A1/ja
Priority to US11/892,702 priority patent/US8247505B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/28Hexyfluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride

Definitions

  • the present invention relates to a method for producing a fluorine-containing elastomer by iodine transfer polymerization under high pressure. Further, a fluorine-containing elastomer produced by this method, which has a small number of branches in the elastomer and has a high terminal iodine content, and an excellent balance of compression set and tensile elongation at break obtained by vulcanizing the elastomer. It relates to a fluorine molded product. Background art
  • This iodine-containing fluorine-containing elastomer has good crosslinking efficiency due to the iodine atom at the molecular end, and has excellent vulcanization properties.
  • a chemical substance having a metal component since it is not necessary to add a chemical substance having a metal component, it is widely used as a peroxide vulcanized molded product.
  • the peroxide vulcanization system (see, for example, Japanese Patent Application Laid-Open No. 53-12591) is excellent in chemical resistance and steam (hot water) resistance, but is resistant to compression. Since the permanent set was inferior to that of the polyol vulcanization system, it was not suitable for use as a sealing material. This problem has been solved by introducing a vulcanization site into the main chain of the elastomer (see, for example, Japanese Patent Application Laid-Open No. 62-127334). However, the increase in vulcanization density was at the expense of tensile elongation at break. Therefore, it was very difficult to have both the compression set and the tensile elongation at break.
  • a method for producing a fluorinated elastomer by high-pressure polymerization a polymerization method in which at least one kind of monomer is in a supercritical state (for example, refer to WO 00/47641 pamphlet), and a method for producing polymer particles
  • a polymerization method in which the monomer concentration is higher than the reference value for example, see WO 01/34666 pamphlet.
  • any patent document states that polymerization in the presence of R f 1 ′ I x described in the present invention is possible, there is no specific example, and the effects disclosed in the present invention are not mentioned at all. Not been.
  • Iodine-containing fluorine-containing elastomers are produced by an emulsion polymerization method such as a so-called iodine transfer polymerization method (for example, see Japanese Patent Publication No. 63-41928), but achieve a high terminal iodination rate.
  • iodine transfer polymerization method for example, see Japanese Patent Publication No. 63-41928
  • productivity cannot be increased accordingly.
  • JP-A Japanese Patent Application Laid-Open
  • a method of polymerizing at a high pressure of 1.7 MPa or more (gauge pressure; the same applies hereinafter) (for example, see Japanese Patent Application Laid-Open No. 5-222130) has been proposed.
  • a pressure in the range of 7 MPa is preferred, and in the examples, disclosures within that range are also limited.
  • the polymerization time exceeds 15 hours.
  • a microemulsion polymerization method (for example, see JP-A-63-846) has been proposed, but it is necessary to use a fluorine oil or the like in order to form a microemulsion at an early stage. However, this fluorine oil etc. remains in the product and becomes a source of contamination, so cleaning and removal is necessary.
  • Two-stage emulsion polymerization means that a large number of polymer particles are synthesized using a relatively large amount of emulsifier in the first polymerization, and then the resulting emulsion is diluted to lower the polymer particle concentration and the emulsifier concentration In this method, a second-stage polymerization is performed using the diluted emulsion.
  • the polymerization rate can be reduced by more than twice while maintaining the original characteristics with a uniform particle size without greatly changing the conventional equipment for emulsion polymerization, but it still uses iodine compounds.
  • the productivity is inferior to that of a polymerization method that does not use the polymer.
  • the elastomer obtained by this polymerization method has no particular improvement compared to the conventional iodine transfer polymerization method, and the above-mentioned problem in the sealing property remains.
  • the present invention provides a method for producing a fluorine-containing elastomer having high productivity comparable to the non-iodine transfer polymerization method by performing iodine transfer polymerization under high pressure. Furthermore, a fluorine-containing elastomer produced by this method, which has a small number of polymer branches and a high terminal oxygen content, and has an excellent balance between compression set and tensile elongation at break obtained by vulcanizing the elastomer. Fluorine-containing molded articles.
  • the critical temperature and critical pressure of each monomer in the gas phase portion in the reaction vessel, and the conversion temperature of the critical constant calculated from the respective composition ratios using the Peng-Rob ins on equation is 0.95.
  • Rf 1 is a saturated or unsaturated fluorinated hydrocarbon group or a fluorinated hydrocarbon group having 1 to 16 carbon atoms, and X is the number of bonds of R f 1 ;
  • the pressure during the polymerization depends on the type and composition ratio of the monomers to be copolymerized, but can be, for example, 4 MPa or more.
  • the pressure is, for example, that the fluorinated elastomer to be obtained is a copolymer of vinylidene fluoride and hexafluoropropylene, and the molar ratio of vinylidenefluoride: hexafluoropropylene is 9: 1. ⁇ 5: It can be suitably used when it is 5.
  • the polymerization pressure can be, for example, 3 MPa or more.
  • the pressure is, for example, that the fluorinated elastomer to be obtained is vinylidene fluoride, A copolymer comprising hexafluoropropylene and tetrafluoroethylene, wherein vinylidenefluoride: hexafluoropropylene is in a molar ratio of 9: 1 to 5: 5, and It can be suitably used when the amount of fluoroethylene is 40 mol% or less of the whole elastomer.
  • the number of fluorine-containing elastomer particles is preferably 5 ⁇ 10 13 or more per 1 g of water.
  • Xi X 3 is a hydrogen atom or a halogen atom
  • X 4 is a hydrogen atom, a halogen atom, a lipoxyl group, an ether bond having 1 to 9 carbon atoms in which some or all of the hydrogen atoms have been replaced with fluorine atoms.
  • An alkyl group which may contain a basic oxygen atom, or an alkoxy group which has 1 to 9 carbon atoms and in which some or all of the hydrogen atoms are substituted with fluorine atoms and which may contain an ether-bonding oxygen atom.
  • the olefin includes at least one fluorine atom).
  • Fluororefin is hexafluoropropylene, tetrafluoroethylene, trifluoroethylene, pentafluoropropylene, vinyl fluoride, hexafluoroisobutene, perfluoro (alkyl vinyl ether) s, polyflurole Orogens and the following formula
  • Y is wherein one CH 2 I, -OH, - COOH , - S_ ⁇ 2 F, _S0 3 M (M is hydrogen, NH 4 group or an alkali metal), carboxylates, Karupokishi ester group, an epoxy group, A nitrile group, an iodine atom, X 5 and X 6 are the same or different and are each a hydrogen atom or a fluorine atom, R f 2 is a divalent fluorinated alkylene group having 0 to 40 carbon atoms, and an ether-bonding oxygen Atom May be included), or a compound selected from the group consisting of:
  • the fluorine-containing elastomer preferably has a viscosity at 100 ° C. of 30 or more.
  • the present invention provides the fluorine-containing elastomer, wherein the vinylidene fluoride repeating unit contains 20 to 90 mol% and the hexafluoropropylene repeating unit 10 to 80 mol%,
  • the polymer has a number average molecular weight of 1,000 to 300,000
  • the present invention relates to a fluorine-containing elastomer which has a “VdF branching ratio” of 200 ppm or less and is capable of peroxide vulcanization.
  • the molded product obtained by vulcanization has a tensile elongation at break Eb of 200% or more and 550% or less, and a compression set CS at 200 ° C for 72 hours of 5% or more and 30% or less. preferable.
  • the present invention relates to a fluorinated elastomer curing composition
  • a fluorinated elastomer curing composition comprising a fluorinated elastomer and a vulcanizing agent.
  • BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a fluorinated elastomer of the present invention is based on the critical temperature, critical pressure, and composition ratio of each monomer in the gas phase in a reaction vessel. Batch copolymerization conducted under conditions where the conversion temperature of the critical constant calculated using the Rob inson equation is 0.95 or more and the conversion pressure is 0.80 or more
  • R / is a saturated or unsaturated fluorocarbon group or chlorofluorocarbon group having 1 to 16 carbon atoms, and X is the number of bonds of R f 1 ; , Which is an integer of 1 or more and 4 or less), in which at least one kind of ethylenically unsaturated compound containing fluorofluorin is copolymerized.
  • the polymerization rate is greatly increased despite the small amount of polymerization initiator, and a highly productive fluorine-containing elastomer comparable to the non-iodine transfer polymerization method. It relates to a manufacturing method. Furthermore, the elastomer produced by this method can provide an excellent fluorine-containing molded article having a small number of branches, a high content of terminal iodine, a small compression set, and a good tensile elongation at break. It is.
  • a feature of the production method of the present invention resides in that the iodine transfer polymerization method is performed under high pressure.
  • the iodine transfer polymerization method it is preferable in terms of productivity to increase the number of fluorine-containing polymer particles at the end of the polymerization, and as a means therefor, WO 00/01741 pamphlet
  • the seed polymerization method described in (1) is preferred.
  • reaction tank used in the present invention performs polymerization under pressure
  • a pressure-resistant vessel is used.
  • An aqueous medium usually pure water
  • containing the same polymer particles as the target polymer for emulsion polymerization is charged into this reaction tank to form a liquid phase portion.
  • the reaction tank is composed of the liquid phase portion and the gas phase portion. After the gas phase portion is replaced with nitrogen or the like, the polymerizable monomer is introduced. Next, the polymerizable monomer is supplied from the gas phase portion to the liquid phase portion by stirring the inside of the reaction tank, particularly the liquid phase portion. The monomer supplied to the liquid phase penetrates into the polymer particles and increases the polymerizable monomer concentration in the polymer particles. Continue supplying monomer to gas phase As a result, the monomer concentration in the polymer particle becomes saturated (it can be said that the monomer supply rate to the liquid phase becomes an equilibrium state), so that the polymerization is started by adding the polymerization initiator and the iodine compound. .
  • the monomer As the polymerization is continued, the monomer is consumed and the monomer concentration in the produced polymer particles decreases, so the monomer (additional monomer) is always supplied to the polymer particles.
  • the ratio of the additional monomer depends on the monomer to be added and the composition of the target polymer, but is preferably a ratio that keeps the monomer composition in the reaction tank constant at the beginning of the polymerization.
  • the number of fluorine-containing polymer particles during the polymerization termination becomes 5 X 1 0 1 3 or more of water per 1 g, more that the number of particles is 1. 0 X 1 0 1 4 or more per water lg preferable.
  • the number of particles is less than 5 ⁇ 10 13 , not only the reaction rate decreases, but also the particle diameter becomes large and unstable, and the polymer adhesion to the polymerization tank tends to increase.
  • microemulsion methods for increasing the number of particles at the end of polymerization are described in Japanese Patent Publication No. 63-846 and Japanese Patent Publication No. 62-88609 in addition to the seed polymerization method.
  • the microemulsion method is used, and a general method is to increase the amount of an emulsifier.
  • the microemulsion method requires the use of fluorine oil or the like to form a microemulsion at the initial stage, so the oil remains in the product and becomes a source of contamination, so it needs to be cleaned and removed.
  • increasing the amount of emulsifier is effective for simply stabilizing the polymerization system or increasing the polymerization rate.
  • the seed polymerization method does not have the above-mentioned problems, and exhibits excellent effects in an iodine transfer system.
  • the critical temperature, critical pressure From the critical temperature and critical pressure of the gas-phase monomer mixture derived from the initial monomer composition ratio and the Peng-Robin insulation equation, a reduced temperature of 0.95 or more, preferably 0.97, for correcting some errors
  • the batch polymerization is carried out under a reduced pressure of 0.80 or more, preferably 0.85 or more.
  • the monomer mixture in the gas phase exceeds both the conversion temperature and the conversion pressure, polymerization at a high monomer density becomes possible, increasing the polymerization rate and reducing the number of main chain branches and ion terminals. Since the polymer is obtained, the compression set is greatly improved.
  • the converted temperature is
  • T is the actual temperature during polymerization and T c is the critical temperature calculated using the Peng-Ro binson equation
  • Peng-Robinson equation for determining the critical temperature and critical pressure will be described.
  • the Peng-Robinsin equation was used to calculate the critical point of the mixed monomer from the critical temperature, critical pressure, and initial monomer composition ratio of each monomer alone.
  • the principle of the equation is DY Peng and DB Rob ins on, ⁇ A New Two -Constant Equ ati on ofstat e ,,, Ind. Eng. Chem. Fund., Vol. 15, (197
  • the more preferable polymerization temperature is 10 to 120 ° C, particularly preferably 30 to 100 ° C
  • the preferable polymerization pressure is 3 MPa or more. And more preferably 3.5 MPa or more, and still more preferably 4 MPa or more.
  • the upper limit of the pressure is not particularly limited, but is preferably 15 MPa or less, more preferably 12 MPa or less in consideration of the handling of the monomer and the cost of the reaction equipment. Further, it is preferable to stir. By stirring, the monomer concentration in the polymer particles can be kept high throughout the polymerization.
  • the stirring device may be a horizontal stirring device or a vertical stirring device.
  • the reaction system has a substantially monomer phase portion.
  • having substantially one phase means that the polymerization is carried out in a state where the volume occupied by a medium such as water is 90% or less with respect to the volume of the polymerization vessel, and preferably 80% or less. You. If the volume exceeds 90%, the monomer is hardly supplied to the medium, and the polymerization rate tends to decrease or the physical properties of the polymer tend to deteriorate.
  • Rf 1 of the iodine compound represented by the general formula: Rf 1 ⁇ I x used in the present invention is a saturated or unsaturated fluorocarbon group or a fluorochlorohydrocarbon group having 1 to 16 carbon atoms, and has 4 carbon atoms. It is preferably a perfluoroalkyl group of from 8 to 8. When the number of carbons exceeds 16, reactivity tends to decrease There is.
  • R f 1 ′ I x is the number of bonds of R f 1 , and is an integer of 1 or more and 4 or less, and preferably 2 or more and 3 or less. . Although X can be used even if it exceeds 4, it is not preferable in terms of synthesis cost. X is most preferably 2 in view of less polymer branching.
  • the carbon-iodine bond of the iodine compound is a relatively weak bond, and is cleaved as a radical in the presence of a radical source. Due to the high reactivity of the generated radical, the monomer causes an addition growth reaction, and then the reaction is stopped by extracting iodine from the iodine compound.
  • the thus obtained fluorine-containing elastomer in which iodine is bonded to carbon at the terminal of the molecule can be efficiently vulcanized because the terminal iodine becomes an effective vulcanization point.
  • iodine compound represented by the general formula: R f 1 'I x there are monoiodoperfluoromethane, monoiodoperfluoroethane, monoiodoperfluoropropane, monoiodoperfluorobutane [for example, 2-iodoperfluorobutane; Monoperfluoro (1,1-dimethylethane)], Monoperfluoropentane [for example, 1_Pardophoro (4-methylbutane)], 1-Perfluoron-octane, Mono 1-Dopafluorocyclobutane, 2-Dodofluoro- (1-cyclobutylene) cyclohexane, Mono-perfluorocyclohexane, Mono-trifluorotrifluorobutane, Mono-difluoromethane , Mono-monofluoromethane, 2-hydro-one perfluoroethane 3-Hydro 1-
  • the hydrocarbon group of R f 1 may contain a functional group such as an ether-bonding oxygen atom, a thioether-bonding sulfur atom, or a lipoxyl group.
  • a functional group such as an ether-bonding oxygen atom, a thioether-bonding sulfur atom, or a lipoxyl group.
  • 1,4-jodo-perfluoro-1-n-butane is preferred in view of easiness of synthesis, reactivity, economy, and stability.
  • iodine compounds can be appropriately produced by a known method.
  • 2-perfluoropropane can be prepared by reacting hexafluoropropene with iodine in the presence of potassium fluoride, and by adding 1,5-dio 2,4-dichloroperfluoro n- Pentane reacts silver salt of 3,5-dichloroperfluoro-1,7-heptanedioic acid with iodine.
  • 4-fluoro-5-chloroperfluoro-1-pentene can be produced by reacting iodine chloride with perfluoro-1,4-pentene.
  • the addition amount of the iodine compound is preferably 0.05 to 2.0% by weight based on the fluorine-containing elastomer. If the amount is less than 0.05% by weight, the vulcanization will be insufficient and the compression set (CS) tends to deteriorate. If the amount exceeds 2.0% by weight, the crosslink density becomes too high. In addition, rubber performance such as elongation tends to be impaired.
  • the monomer forming the fluorine-containing elastomer with the iodine compound includes at least one or more fluororefin, and includes, as a copolymerized monomer, an ethylenically unsaturated compound other than fluorofluorin. It may be.
  • This composition is preferable for the purpose of forming a fluorine-containing elastomer.
  • fluororefin used in the present invention those represented by CX ⁇ CX ⁇ 4 are preferable.
  • E ⁇ 3 represents a hydrogen atom or a halogen atom
  • X 4 is a hydrogen atom, a halogen atom, a force Rupokishiru group, with 1 to carbon atoms 9, part or all of the hydrogen atoms are substituted with fluorine atoms
  • perfluoro (alkylbier ether) s are also preferable in terms of cold resistance and chemical resistance.
  • Perfluoro (alkyl vinyl ether) includes perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), and perfluoro (propyl vinyl ether) (PPVE).
  • Y is one CH 2 I, - OH, - COOH, one S0 2 F, _S0 3 M
  • M is hydrogen, NH 4 group or an alkali metal
  • carboxylates force Rupokishe ester group, an epoxy group
  • a nitrile group, an iodine atom, X 5 and X 6 are the same or different and are each a hydrogen atom or a fluorine atom
  • R f 2 is a divalent fluorinated alkylene group having 0 to 40 carbon atoms, and an ether-bonding oxygen atom And the like.
  • the functional group-containing fluorofluorin / polyfluorenes represented by Fluoroolefins containing a functional group are preferred as functional monomers for surface modification, increase in crosslinking density, etc., and polyfluorogens are preferred in view of crosslinking efficiency.
  • CF 2 CF ⁇ CF 2 CF 2 CH 2 OH
  • CF 2 CFO ⁇ CF 2 + 3 C ⁇ H
  • CF 2 CFOCF 2 CF 2 COOCH 3 ,
  • CF 2 CFCF 2 CH 2 ⁇ H
  • CF 2 CFCF 2 CF 2 CH 2 CHCH 2
  • CF 2 CFCF 2 ⁇ CF 2 CF 2 CF 2 COOH
  • CF 2 CFCF 2 OCFCFCOOCH 3 ,
  • CF 2 CFOCF 2 CFOCF 2 CF 2 COOH
  • CF 2 CFOCF 2 CF 2 S0 2 F
  • CF 2 CFCF 2 CF 2 COOH
  • CF 2 CFCF 2 COOH
  • CH 2 CFCF 2 CF 2 CH 2 CH 2 OH
  • CH 2 CFCF 2 CF 2 COOH
  • CH 2 CFCF 2 CF 2 CH 2 CHCH 2
  • CH 2 CF CF 2 CF 2 + 2 COOH
  • CH 2 CFCF 2 OC F CH 2 0 CH 2 CHCH 2 ,
  • CH 2 CH CF 2 - -4 CH 2 CH 2 CH 2 ⁇ _H
  • CH 2 CH- (CF 2 - 6 CH 2 CH 2 COO CH 3,
  • CH 2 CFCO ⁇ H
  • CH 2 CHCH 2 C-OH
  • Examples of the ethylenically unsaturated compound other than fluororefin include, but are not particularly limited to, ethylene (ET), propylene, butene, pentene, and other carbon-containing 2 to 10 «-olefin monomers, methyl vinyl ether, ethyl vinyl ether, propyl Examples thereof include alkyl bier ethers having an alkyl group having 1 to 20 carbon atoms, such as vinyl ether, cyclohexyl vinyl ether, hydroxybutyl vinyl ether, and butyl vinyl ether.
  • VdF vinylidene fluoride
  • VdF vinylidene fluoride
  • VdF vinylidene fluoride
  • the Mooney viscosity of 10 of the fluorine-containing elastomer produced by the production method of the present invention is preferably 30 or more, more preferably 35 or more, and compared with the conventional product having the same viscosity by performing peroxide vulcanization. In addition, it has high elongation and is excellent in compression set (CS) and mouth workability. The higher the viscosity range, the greater the difference in compression set (CS) from conventional products.
  • the difference between the conventional product and the conventional product tends to be small because the cross-linking efficiency increases when the viscosity is the same, but it does not deteriorate compared to the conventional product.
  • novel fluorine-containing elastomer of the present invention contains 20 to 90 mol% of vinylidene fluoride repeating units and 10 to 80 mol% of hexafluoropropylene repeating units,
  • the polymer has a number average molecular weight of 1,000 to 300,000
  • the fluorine-containing elastomer of the present invention can be produced by the above method.
  • the fluorine-containing elastomer of the present invention preferably contains 20 to 90% by mole of vinylidene fluoride (VdF) repeating unit, more preferably 40 to 85% by mole, and vinylidene fluoride (VdF) and hexafluoropropylene (HFP). ) It preferably contains 10 to 80 mol% of the repeating unit, more preferably 15 to 60 mol%.
  • VdF vinylidene fluoride
  • HFP hexafluoropropylene
  • the fluorine-containing elastomer composed of a binary copolymer of VdF and HFP preferably has a VdF branching ratio, as defined below, of 200 ppm or less, more preferably 150 ppm or less. If the VdF branching ratio exceeds 200 ppm, especially in the peroxide vulcanizing elastomer containing iodine, the number of iodine terminals decreases, so the vulcanization efficiency decreases and various physical properties such as compression set (CS) Tends to worsen.
  • VdF branching ratio as defined below
  • examples of other copolymers include tetrafluoroethylene, and copolymer compositions include vinylidene fluoride (VdF) repeating units of 30 to 89 mol% and hexafluoropropylene (HFP) repeating units of 10 to 50 mol%. Mol%, tetrafluoroethylene (TFE) repeating unit in the range of 0.1 to 40 mol%.
  • high resolution refers to measurement with a spectrometer of 500 MHz or more.
  • the fluorine-containing elastomer preferably contains 0.01 to 10% by weight of iodine atom in the elastomer, and more preferably 0.05 to 2.0% by weight. If the iodine atom content is less than 0.05% by weight, vulcanization becomes insufficient and the compression set tends to deteriorate, and if it exceeds 2.0% by weight, the bridge density is too high and the elongation is small. There is a tendency for the performance as rubber to deteriorate, for example, too much.
  • the number average molecular weight of the elastomer is preferably from 1,000 to 300,000. If the molecular weight is less than '1,000, the viscosity tends to be too low to deteriorate the handleability, and if it exceeds 300,000, the viscosity tends to increase too much and the handleability tends to deteriorate.
  • the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) is preferably 1.5 or more, more preferably 1.8 or more. If the molecular weight distribution is less than 1.5, there is no problem in physical properties, but the roll processability tends to deteriorate.
  • a segmented elastomer obtained by successively polymerizing a crystalline segment with the obtained fluorine-containing elastomer is suitably used for thermoplastics and the like.
  • Examples of the crystalline segment include, but are not particularly limited to, tetrafluoroethylene, perfluoro (propyl) bierether, hexafluoropropylene, ethylene (ET), propylene, and butene.
  • an oil-soluble radical polymerization initiator or a water-soluble radical initiator can be used as the polymerization initiator.
  • oil-soluble radical polymerization initiator used in the present invention generally known oil-soluble peroxides are used, for example, dialkyl such as diisopropylpropylperoxydicarbonate and disec-butylpropyloxydicarbonate.
  • Peroxyesters such as baroxycarbonates, t-butylperoxyisobutyrate, t-butylperoxypivalate, and dialkyl peroxides such as di-t-butylperoxide are also used.
  • water-soluble radically polymerizable initiator a well-known water-soluble peroxide is generally used.
  • examples thereof include ammonium salts such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, potassium salts, and the like.
  • ammonium salts such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, potassium salts, and the like.
  • Sodium salt, t-butyl permalate, t-butyl hydroperoxide and the like can be mentioned.
  • the amount of the water-soluble radical initiator to be added is not particularly limited, but the amount that does not significantly decrease the polymerization rate (for example, a few ppm to water concentration) or more at the beginning of the polymerization, or all at once. Or it may be added continuously.
  • the upper limit is a range in which the heat of polymerization reaction can be removed from the surface of the apparatus.
  • an emulsifier, a molecular weight regulator, a pH regulator and the like may be further added.
  • the molecular weight modifier may be added all at once in the initial stage, or may be added continuously or separately.
  • Emulsifiers include nonionic surfactants, anionic surfactants, An ionic surfactant can be used, and a fluorinated anionic surfactant such as ammonium perfluorooctanoate is particularly preferable.
  • the added amount (based on the amount of the polymerization water) is preferably 50 to 500 ppm.
  • the molecular weight regulator examples include esters such as dimethyl malonate, getyl malonate, methyl acetate, ethyl acetate, butyl acetate, dimethyl succinate, isopentane, isopropanol, acetone, various mercaptans, carbon tetrachloride, cyclotetrachloride, and the like. Hexane, monoiod methane, 1-odo methane,
  • 2-Jodomethane 1,3-Jodo n-propane.
  • a buffering agent and the like may be appropriately added, but the amount is within a range that does not impair the effects of the present invention.
  • the fluorine-containing elastomer composition of the present invention comprises such a fluorine-containing elastomer and a vulcanizing agent, and may contain a vulcanization aid.
  • the vulcanizing agent that can be used in the present invention may be appropriately selected depending on the vulcanizing system to be employed.
  • the vulcanization system any of a polyamine vulcanization system, a polyol vulcanization system, and a peroxide vulcanization system can be employed, and the effect of the present invention can be remarkably exhibited, particularly when vulcanization is performed with a peroxide vulcanization system.
  • vulcanizing agent examples include polyol vulcanizing systems such as bisphenol AF, hydroquinone, bisphenol A and diaminobisphenol AF, and peroxide vulcanizing systems such as ⁇ ′-bi.
  • Organic peroxides such as di (t-butylperoxy) diisopropylbenzene, 2,5-dimethyl-1,2,5-di (t-butylvinyloxy) hexane, and dicumylperoxide are used in polyamine vulcanization systems.
  • Polyamine compounds such as xamethylene diamine carbamate and N, ⁇ 'dicinnamylidene-1,6-hexamethylenediamine. However, it is not limited to these.
  • 2,5-dimethyl-2,5-di (t-butylperoxy) hexane is preferred from the viewpoints of vulcanizability and handleability.
  • the compounding amount of the vulcanizing agent is 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight, per 100 parts by weight of the elastomer. If the amount of the vulcanizing agent is less than 0.01 parts by weight, the degree of vulcanization will be insufficient, and the performance of the fluorine-containing molded article will tend to be impaired. The vulcanization time is prolonged because the temperature is too high, and it tends to be economically unfavorable.
  • vulcanization aid for the polyol vulcanization system various quaternary ammonium salts, quaternary phosphonium salts, cyclic amines, monofunctional amine compounds, and other organic bases usually used for vulcanization of elastomers can be used. .
  • tetrabutylammonium bromide tetrabutylammonium chloride
  • benzyltriptylammonium chloride benzyltriethylammonium chloride
  • tetrabutylammonium hydrogen sulfate tetrabutylammonium sulfate
  • Quaternary ammonium salts such as luammonium hydroxide
  • benzyltriphenylphosphonium chloride, triptylarylphosphonium chloride triptyl-2-methoxypropylphosphonium chloride
  • benzylphenyl (dimethylamino) phosphonium chloride etc.
  • Quaternary phosphonium salts include monofunctional amines such as benzylmethylamine and benzylethanolamine; and cyclic amines such as 1,8-diazabicyclo [5.4.0] -indene 7-ene.
  • triaryl cyanurate As vulcanization aids for peroxide vulcanization, triaryl cyanurate, triallyl isocyanurate (TAIC), tris (diallylamine-s-triazine), triallyl phosphite, N, N-diarylacrylamide, Oxalylphosphoramide, N, N, N ', N'-tetraaryltetraphthalamide, N, N, ⁇ ', ⁇ '-tetraarylmalonamide, trivinylisocyanurate, 2,4,6 —Trivinylmethyltrisiloxane, Tri (5-norporene-12-methylene) cyanurate.
  • triallyl isocyanurate (TA IC) is preferred from the viewpoints of vulcanizability and physical properties of the vulcanizate.
  • the compounding amount of the vulcanization aid is 0.01 to 10 parts by weight, preferably 0.1 to 5.0 parts by weight, per 100 parts by weight of the elastomer. If the amount of the vulcanization aid is less than 0.01 parts by weight, the vulcanization time tends to be too long to be practically used. If the amount exceeds 10 parts by weight, the vulcanization time becomes too fast, and molding is performed. The compression set of the product also tends to decrease.
  • the method for preparing and vulcanizing the composition of the present invention are not particularly limited, and conventionally known methods such as compression molding, extrusion molding, transfer molding, and injection molding can be employed.
  • the tensile elongation at break (Eb) of a molded product obtained by vulcanizing a fluorine-containing elastomer using a vulcanizing agent is 200 to 550%. If the tensile elongation at break is less than 200%, the so-called “rubberiness” is lost, and it tends to be unsuitable as a sealing material. If it exceeds 550%, the crosslink density is too low and the compression set (CS) is too low. Tends to worsen.
  • the compression set (CS) of the molded article at 200 ⁇ for 72 hours is preferably 5 to 30%, more preferably 7 to 25%. If the compression set is less than 5%, the sealing properties are good, but generally the elongation tends to be too small, and if it exceeds 30%, the performance as a sealing material tends to deteriorate.
  • vulcanization in the present invention means vulcanization under the following standard blending and standard vulcanization conditions.
  • Kneading method Roll kneading
  • the polymerization time is significantly reduced as compared with the conventional iodine transfer polymerization reaction at a low pressure, and the processability of the obtained fluorine-containing elastomer in the mouth is improved.
  • the vulcanizing agent TAIC
  • the composition comprising the fluorine-containing elastomer and the vulcanizing agent obtained according to the present invention is a substrate-integrated gasket formed by dispensing a base material containing an inorganic material such as a coating agent, a metal, and a ceramic, a packing, It is suitably used as a multilayer product formed by coating a base material containing an inorganic material such as metal or ceramic, a gasket for a magnetic recording device, a sealing material for a fuel cell, and a sealing material for clean equipment.
  • HLC-8000 manufactured by Tosoichi Co., Ltd.
  • Measuring device MV 2000 manufactured by ALPHA TECHNOLOG IES
  • the primary press vulcanization and secondary oven vulcanization of the following standard compound are performed under the following standard vulcanization conditions to produce a 0-ring (P-24), and the primary press vulcanization is performed according to JIS-K6301. After compression and permanent set (CS) after secondary oven vulcanization (held at 200 ° C for 72 hours under 25% compression and then left in a constant temperature room at 25 for 30 minutes) Measure the sample).
  • CS compression and permanent set
  • TAIC Triallyl isocyanurate
  • Kneading method Roll kneading Press vulcanization: 10 minutes at 160 ° C
  • the standard composition is subjected to primary press vulcanization and secondary oven vulcanization under standard vulcanization conditions to form a sheet with a thickness of 2 mm, and is measured according to JIS K6251.
  • Tb melting point
  • Eb tensile breaking elongation
  • the standard mixture is subjected to primary press vulcanization and secondary oven vulcanization under standard vulcanization conditions to form a 2 mm thick sheet, and the measurement is performed according to JIS-K6251.
  • Hs Hardness
  • the standard mixture is subjected to primary press vulcanization and secondary oven vulcanization under standard vulcanization conditions to form a 2 mm thick sheet, and the measurement is performed according to JIS-K6253. ⁇ Vulcanization characteristics>
  • the vulcanization curve at 170 ° C was obtained using JSR type Curastome I-II and V-type, and the minimum viscosity (ML), degree of vulcanization (MH), induction time (T1 ( ) ) And the optimum vulcanization time ( ⁇ 9 ).
  • the particle size was measured using Microtrac 934 OUPA (manufactured by Honeywell).
  • the number of particles is calculated from the following formula using the measurement results of the average particle size of the polymer.
  • ⁇ VdF branch ratio measurement> The measurement sample was dissolved in acetone to a concentration of about 20%. This was measured by 19 F-NMR (AMX 500 manufactured by Bruker), and the branch peak area was measured using Me st Re_C2.3a (manufactured by Me St Re—C Te cno 1 ogies) as the processing software. And the total CF 2 peak area is calculated, and the branching ratio is determined from the obtained results.
  • the measurement was performed using 19 F-NMR (AC 300 P type manufactured by Bruker). However, the TFE-containing polymer was measured using 19 F-NMR (FX100, manufactured by JEOL Ltd.).
  • the weight of the obtained emulsion was 1233 g, the concentration of the polymer was 18.1% by weight, and the number of polymer particles was 1.2 ⁇ 10 16. An emulsion of 1 g of water was obtained.
  • Reference Example 1 An internal dispersion having the same electromagnetic induction stirrer and a 2.5-liter polymerization tank was charged with 1324 g of pure water and an aqueous dispersion of the polymer particles produced in Reference Example 1 3.3.58 and 10% by weight of perfume An aqueous solution of ammonium octaoctanoate (19.lg) was charged, the system was sufficiently purged with nitrogen gas, and then the pressure was reduced. This operation was repeated three times, and 171 g of VdF and 729 g of HFP were charged under reduced pressure, and the temperature was raised to 80 ° C with stirring.
  • a fluorinated elastomer was polymerized in the same manner as in Example 1 except that the APS was changed to 0.17 g.
  • the polymerization time was 1.5 hours, the weight of the obtained emulsion was 1909 g, the polymer concentration was 30.1% by weight, and the number of polymer particles was 2.9 ⁇ 10 14 Z water lg.
  • the weight of the fluorine-containing elastomer was 575 g, the weight average molecular weight Mw measured by GPC was 277,000, the number average molecular weight Mn was 103,000, and Mw / Mn was 2.7.
  • a fluorinated elastomer was polymerized in the same manner as in Example 1 except that 5.96 g of octafluoro-1,4-jodobutane was used.
  • the polymerization time was 3.4 hours, the weight of the obtained emulsion was 1899 g, the polymer concentration was 28.6% by weight, and the number of polymer particles was 2.6 ⁇ 10 14 particles / water 1 .
  • the weight of the fluorinated elastomer was 543 g, the weight-average molecular weight Mw measured by GPC was 150,000, the number-average molecular weight Mn was 563,000, and MwZMn was 1.9.
  • Reference Example 1 Polymerization of 2.5 liter in internal volume with the same electromagnetic induction stirrer
  • 1324 g of pure water and an aqueous dispersion of polymer particles prepared in Reference Example 1 (33.5 and 19.lg of a 10% by weight aqueous solution of ammonium perfluorooctanoate) were charged, and the system was sufficiently filled with nitrogen gas. After the replacement, the pressure was reduced. This operation was repeated three times. Under reduced pressure, 20 g of VdF and 57 g of HFP were charged, and the temperature was increased to 8 Ot: with stirring.
  • the weight of the obtained emulsion was 2087 g, the concentration of the polymer was 27.7% by weight, and the number of the polymer particles was 1.4 ⁇ 10 14 particles / g of water.
  • the weight of the fluorine-containing elastomer was 578 g, the weight average molecular weight Mw measured by GPC was 18,000, the number average molecular weight Mn was 13,000, and MwZMn was 1.4.
  • Triaryl isocyanurate 4 parts by weight
  • Carbon black MT—C 20 parts by weight
  • Kneading method Roll kneading
  • REFERENCE EXAMPLE 1 970 g of pure water and 27 g of an aqueous dispersion of the polymer particles produced in Reference Example 2 were charged into a 1.8-liter polymerization tank having the same electromagnetic induction stirrer, and the system was sufficiently filled with nitrogen. After the replacement, the pressure was reduced. This operation was repeated three times, and charged with 18 g of VdF, 22 g of TFE, and 537 g of HFP under reduced pressure, and the temperature was raised to 8 Ot with stirring.
  • the monomer mixture was continuously supplied, and the pressure in the gas phase was maintained at 3.5 MPa. By the end of the polymerization, 247 g of the monomer was supplied into the tank.
  • the weight of the obtained emulsion was 1368 g, the polymer concentration was 26.8% by weight, and the number of polymer particles was 9.5 ⁇ 10 14 particles / g of water.
  • the weight of the fluorine-containing elastomer was 369 g, the weight average molecular weight Mw measured by GPC was 67,000, the number average molecular weight Mn was 48,000, and MwZMn was 1.4.
  • a fluorine-containing elastomer was polymerized in the same manner as in Example 7, except that 2.4 g of octafluoro-1,4-jodobutane was used.
  • the polymerization time was 4.2 hours, the weight of the obtained emulsion was 140 lg, the polymer concentration was 28.6% by weight, and the number of polymer particles was 3.5 ⁇ 10 14 particles / water.
  • a fluorine-containing elastomer was polymerized in the same manner as in Example 7 except that
  • the polymerization time was 3.8 hours, the weight of the obtained emulsion was 139 lg, the polymer concentration was 27.3% by weight, and the number of polymer particles was 8.3 ⁇ 10 14 / lg of water.
  • the weight of the fluorine-containing elastomer was 384 g, the weight average molecular weight Mw measured by GPC was 92,000, the number average molecular weight Mn was 59,000, and MwZMn was 1.6.
  • the weight of the obtained emulsion was 1410 g, the polymer concentration was 26.2% by weight, and the number of polymer particles was 3.9 ⁇ 10 14 particles 1 g of Z water.
  • the weight of the fluorinated elastomer was 370 g, the weight average molecular weight Mw measured by GPC was 850,000, the number average molecular weight Mn was 610000, and Mw / Mn was 1.4.
  • Example 10- L2 and Comparative Example 4
  • Kneading method Roll kneading
  • the polymerization rate is greatly increased despite the small amount of polymerization initiator, and a highly productive fluorine-containing elastomer comparable to the non-iodine transfer polymerization method.
  • a manufacturing method is provided. Further, the elastomer produced by this method provides a fluorine-containing molded article having few branches, a high content of terminal iodine atoms, and an excellent balance between the fluorine-containing elastomer and the compression set and the tensile elongation at break. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、高圧下でヨウ素移動重合を行うことにより、非ヨウ素移動重合法に匹敵する生産性の高い含フッ素エラストマーの製造方法を提供する。さらに、該方法により得られる含フッ素エラストマー、および含フッ素成形品を提供する。反応槽内の気相部分における各モノマーの臨界温度、臨界圧力、およびそれぞれの組成比からPeng−Robinson式を用いて算出した臨界定数の換算温度が0.95以上、換算圧力が0.80以上の条件下で行なわれる、バッチ式共重合法による含フッ素エラストマーの製造方法であって、一般式:Rf 1・Ix(ただし、式中、Rf 1は炭素数1~16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基であり、xはRf 1の結合手の数であって、1以上4以下の整数である)の存在下に、少なくとも1種のフルオロオレフィンを含むエチレン性不飽和化合物を共重合させる。

Description

明 糸田 書 加硫可能な含フッ素エラストマ一の製造方法 技術分野
本発明は、 高圧下でヨウ素移動重合による含フッ素エラストマ一の製造 方法に関する。 さらに、 この方法によって製造したエラストマ一分岐が少 なく、 かつ末端ヨウ素含有率が高い含フッ素エラストマ一と、 エラストマ 一を加硫することにより得られる圧縮永久歪みと引張破断伸びのバランス に優れた含フッ素成形品に関する。 背景技術
ビニリデンフルオラィドーへキサフルォロプロピレン (V d F - H F P ) 系ゃテトラフルォロエチレン (T F E) —パーフルォロビニルェ一テル 系の含フッ素エラストマ一は、 それらの卓抜した耐薬品性、 耐溶剤性、 耐 熱性を示すことから、 過酷な環境下で使用される O—リング、 ガスケット、 ホース、 ステムシ一ル、 シャフトシール、 ダイヤフラムなどとして自動車 工業、 半導体工業、 化学工業などの分野において広く用いられている。 こうした用途に用いられるフッ素エラストマ一としては、 分子末端に高 活性のヨウ素原子を有するヨウ素含有フッ素エラストマ一がある。 このョ ゥ素含有含フッ素エラストマ一は、 分子末端のヨウ素原子により良好な架 橋効率が可能で、 加硫性に優れている。 また、 金属成分をもつ化学物質を 添加する必要がないことから、 パーォキサイド加硫成形品としても広く用 いられている。
パーォキサイド加硫系 (たとえば、 特開昭 5 3 - 1 2 5 4 9 1号公報参 照) は、 耐薬品性、 および耐スチーム (熱水) 性に優れているが、 耐圧縮 永久歪みは、 ポリオール加硫系と比べて劣っていたため、 シール材用途と して適切ではなかった。 この問題は、 エラストマ一主鎖中に、 加硫サイト を導入することで解決されている (たとえば、 特開昭 6 2— 1 2 7 3 4号 公報参照) 。 しかし、 加硫密度が上昇するため、 引張破断伸びが犠牲とな つていた。 よって、 耐圧縮永久歪みおよび引張破断伸びの両者を兼ね備え ることは、 非常に困難であった。
また、 高圧重合による含フッ素エラストマ一製造法としては、 モノマー の少なくとも一種が超臨界の状態での重合法 (たとえば、 国際公開第 0 0 Z 4 7 6 4 1号パンフレツト参照) や、 ポリマー粒子中のモノマー濃度が 基準値以上での乳化重合法 (たとえば、 国際公開第 0 1 / 3 4 6 6 6号パ ンフレット参照) がある。 しかし、 いずれの特許文献においても本発明で 述べる R f 1 ' I x存在下での重合が可能との記述はあるものの、 具体的な 実施例はなく、 本発明で開示する効果についても一切触れられていない。 ヨウ素含有含フッ素エラストマ一は、 いわゆるヨウ素移動重合法などの 乳化重合法により製造 (たとえば、 特公昭 6 3 - 4 1 9 2 8号公報参照) されているが、 高い末端ヨウ素化率を達成するためには重合開始剤の使用 量を抑える必要があり (たとえば、 建元 正祥 P 1 9、 8 6 / 6 ミク 口シンポジウム、 ラジカル重合におけるポリマーの構造規制、 高分子学会 ( 1 9 8 6 ) 参照) 、 その分、 生産性を上げることができない。 重合開始 剤の使用量の制約がない重合系では開始剤量を増やすことで容易に重合速 度を大きくすることが可能であるが、 ヨウ素移動重合系では開始剤末端濃 度が最終製品の物性に大きな影響を与えるため開始剤使用量の増大は望め ない。
生産性を向上させるために種々の提案がなされている。 たとえば、 乳化 重合を連続して行なうことにより、 生産性を向上させる方法 (たとえば、 特開平 3— 3 3 1 0 8号公報、 特開平 3— 2 2 1 5 1 0号公報参照) が提 案されているが、 ヨウ素含有含フッ素エラストマ一の特性である良好な引 張強度や圧縮永久ひずみ性が得られない。
また、 1 . 7 M P a以上 (ゲージ圧。 以下同様) の高圧で重合する方法 (たとえば、 特開平 5— 2 2 2 1 3 0号公報参照) が提案されているが、 2 . 6〜2. 7 MP aの範囲の圧力が好適とされており、 実施例において もその範囲内での開示にとどまつている。 また、 重合時間も 1 5時間をこ えるものである。 さらに、 マイクロエマルシヨン重合法 (たとえば、 特開 昭 6 3— 8 4 0 6号公報参照) が提案されているが、 初期にマイクロエマ ルションを形成させるためにフッ素オイルなどの使用が必要であり、 この フッ素オイルなどが製品に残留し汚染源となるので洗浄除去が必要となる。 単に重合系を安定させ、 あるいは重合速度を上げるためには乳化剤の使 用量を多くすればよいが、 乳化剤自身が加硫阻害を起すため、 これまた洗 浄除去が必要となる上に、 コスト面および環境面でも好ましくない。
これらを解決するために、 ヨウ素移動重合を二段階の乳化重合法で行う ことが提案されている (たとえば、 国際公開第 0 0 Z 0 1 7 4 1号パンフ レット参照) 。 2段階の乳化重合とは、 一段目の重合で比較的多量の乳化 剤を使用して多数のポリマー粒子を合成し、 ついで得られた乳濁液を希釈 してポリマー粒子濃度および乳化剤濃度を下げ、 この希釈乳濁液を用いて 二段目の重合を行なう方法である。 この方法では、 今までの乳化重合用の 設備を大きく変えることなく、 均一な粒径でかつ本来の特性を維持したま ま、 重合速度を 2倍以上短縮可能にしたが、 依然としてヨウ素化合物を使 用しない重合法と比較して生産性は劣っている。 また、 この重合法で得ら れたエラストマ一に関しては従来のヨウ素移動重合法と比較して特に改良 された部分はなく、 上述のシール性においての課題は残されていた。
このようにヨウ素含有含フッ素エラストマ一の生産性と特性の維持を両 立させる製造法はない。 発明の開示
本発明は、 高圧下でヨウ素移動重合を行うことにより、 非ヨウ素移動重 合法に匹敵する生産性の高い含フッ素エラストマ一の製造方法を提供する。 さらに、 この方法によって製造した、 ポリマ一分岐が少なく、 かつ末端ョ ゥ素含有率が高い含フッ素エラストマ一と、 エラストマ一を加硫すること により得られる圧縮永久歪みと引張破断伸びのバランスに優れた含フッ素 成形品を提供する。
すなわち、 本発明は、 反応槽内の気相部分における各モノマーの臨界温 度、 臨界圧力、 およびそれぞれの組成比から Peng— Rob i n s on 式を用いて算出した臨界定数の換算温度が 0. 95以上、 換算圧力が 0. 80以上の条件下で行なわれる、 バッチ式共重合法による含フッ素エラス トマ一の製造方法であって、
一 HX3¾ . ' K ' I x
(ただし、 式中、 Rf1は炭素数 1〜16の飽和もしくは不飽和のフルォ 口炭化水素基またはク口口フルォロ炭化水素基であり、 Xは R f 1の結合 手の数であって、 1以上 4以下の整数である) の存在下に、 少なくとも 1 種のフルォロォレフィンを含むエチレン性不飽和化合物を共重合させる含 フッ素エラストマ一の製造方法に関する。
重合時の圧力は共重合するモノマーの種類や組成比によるが、 たとえば 4MP a以上とすることができる。 前記圧力は、 たとえば得ようとする含 フッ素エラス卜マーが、 ビニリデンフルオラィドおよびへキサフルォロプ ロピレンからなる共重合体であって、 ビニリデンフルオラィド:へキサフ ルォロプロピレンがモル比で 9 : 1〜5 : 5である場合に好適に用いうる。 また、 重合圧力はたとえば 3MP a以上とすることができる。 前記圧力は、 たとえば得ようとする含フッ素エラストマ一がビニリデンフルオラィド、 へキサフルォロプロピレン、 およびテトラフルォロエチレンからなる共重 合体であって、 ビニリデンフルオラィド:へキサフルォロプロピレンがモ ル比で 9 : 1〜5 : 5であり、 かつテトラフルォロエチレンがエラストマ 一全体の 40モル%以下である場合に好適に用いうる。
重合終了時に含フッ素エラストマ一粒子数が水 1 gあたり 5 X 1013 個以上であることが好ましい。
フルォロォレフィンが、
Οχ!χ2 = ΟΧ3Χ4
(Xi X3は、 水素原子またはハロゲン原子、 X4は、 水素原子、 ハロゲ ン原子、 力ルポキシル基、 炭素数 1〜9で、 水素原子の一部または全部が フッ素原子で置換されたエーテル結合性酸素原子を含んでいてもよいアル キル基、 または炭素数 1〜 9で、 水素原子の一部または全部がフッ素原子 で置換されたエーテル結合性酸素原子を含んでいてもよいアルコキシ基で あり、 該ォレフインは少なくとも 1つのフッ素原子を含む) であることが 好ましい。
フルォロォレフィンが、 へキサフルォロプロピレン、 テトラフルォロェ チレン、 トリフルォロエチレン、 ペンタフルォロプロピレン、 ビニルフル オライド、 へキサフルォロイソブテン、 パ一フルォロ (アルキルビニルェ 一テル) 類、 ポリフルォロジェン類、 および下記式
X5
CX6 2 = C- f 2-Y
(式中 Yは、 一 CH2 I、 -OH, — COOH、 — S〇2F、 _S03M (Mは水素、 NH4基またはアルカリ金属) 、 カルボン酸塩、 カルポキシ エステル基、 エポキシ基、 二トリル基、 ヨウ素原子、 X5および X6は同 じかまたは異なりいずれも水素原子またはフッ素原子、 R f 2は炭素数 0 〜40の 2価の含フッ素アルキレン基であり、 エーテル結合性酸素原子を 含んでいてもよい) からなる群から選択された化合物であることが好まし い。
含フッ素エラストマ一の 100°Cにおけるム一二一粘度が 30以上であ ることが好ましい。
また、 本発明は、 含フッ素エラストマ一が、 ビニリデンフルオライド繰 り返し単位 20〜90モル%、 へキサフルォロプロピレン繰り返し単位 1 0〜80モル%を含み、
(a) エラストマ一中に 0. 01〜10重量%のヨウ素原子を含有し、
(b) ポリマー数平均分子量が 1, 000〜 300,000であり、
(c) ポリマー濃度約 20 %のアセトン溶液を高分解能19 F— NMRで 測定し、 下記式
δ F- 96. 5〜一 99. 5 ppm 間の面積
3 X (<5 F- 88. 0〜― 124. 0 p pm間の面積)
により求められる 「VdF分岐率」 が 200 p pm以下であり、 パーォキサイド加硫が可能である含フッ素エラストマ一に関する。
加硫して得られる成形体の引張破断伸び E bが 200 %以上、 550 % 以下であり、 かつ 200 °C、 72時間での圧縮永久歪み C Sが 5 %以上、 30%以下であることが好ましい。
含フッ素エラストマ一および加硫剤からなる含フッ素エラストマ一硬化 用組成物に関する。 発明を実施するための最良の形態 本発明の含フッ素エラストマ一の製造方法は、 反応槽内の気相部分にお ける各モノマーの臨界温度、 臨界圧力、 およびそれぞれの組成比から P e ng-Rob i n s o n式を用いて算出した臨界定数の換算温度が 0. 9 5以上、 換算圧力が 0. 80以上の条件下で行なわれる、 バッチ式共重合 法による含フッ素エラストマ一の製造方法であって、
一般式: R f 1 · I
(ただし、 式中、 R /は炭素数 1〜1 6の飽和もしくは不飽和のフルォ 口炭化水素基またはク口口フルォロ炭化水素基であり、 Xは R f 1の結合 手の数であって、 1以上 4以下の整数である) の存在下に、 少なくとも 1 種のフルォロォレフィンを含むエチレン性不飽和化合物を共重合させる含 フッ素エラストマ一の製造方法に関する。
本発明は、 高圧下でヨウ素移動重合を行うことにより、 重合開始剤が少 ないにもかかわらず重合速度が大幅に増大し、 非ヨウ素移動重合法に匹敵 する生産性の高い含フッ素エラストマ一の製造方法に関する。 さらに、 こ の方法によって製造したエラストマ一は、 分岐が少なく、 末端ヨウ素含有 率が高く、 また、 圧縮永久歪みが小さく、 引張破断伸びが良い、 優れた含 フッ素成形品を提供することができるものである。
本発明の製造方法の特徴は、 ヨウ素移動重合法を高圧下で行なうところ にある。 ヨウ素移動重合法に特に規定はないが、 重合終了時の含フッ素ポ リマー粒子数を多くすることが生産性の点で好ましく、 その手段として、 国際公開第 0 0 / 0 1 7 4 1号パンフレツトに記載されているシード重合 法が好ましい。
本発明に使用する反応槽は、 加圧下に重合を行なうので、 耐圧容器を使 用する。 この反応槽内に乳化重合用の目的とするポリマーと同じ糸且成のポ リマー粒子を含む水性媒体 (通常は純水) を入れ、 液相部分とする。
反応槽はこの液相部分と気相部分とから構成されており、 気相部分を窒 素などで置換したのち重合性モノマーを導入する。 ついで反応槽内、 とく に液相部分を攪拌して重合性モノマーを気相部分から液相部分に供給する。 液相部分に供給されたモノマーはポリマー粒子中に浸透し、 ポリマー粒子 内の重合性モノマー濃度を上げる。 気相部分にモノマーを供給しつづける ことにより、 ポリマ一粒子中のモノマー濃度が飽和状態となる (液相部分 へのモノマー供給速度が平衡状態になるとも言える) ので、 重合開始剤と ョゥ素化合物を投入して重合を開始する。
重合を継続していくとモノマーが消費され、 生成ポリマー粒子中のモノ マー濃度が低下していくため、 ポリマー粒子中に常にモノマー (追加モノ マ一) を供給し続ける。
追加モノマーの比率は、 追加されるモノマ一および目的とするポリマー の組成によるが、 重合初期の反応槽内モノマー組成を一定に保つ比率であ ることが好ましい。
また、 重合終了時に含フッ素ポリマー粒子数が水 1 gあたり 5 X 1 0 1 3個以上になることが好ましく、 粒子数が水 l gあたり 1 . 0 X 1 0 1 4個 以上であることがより好ましい。 粒子数が、 5 X 1 0 1 3個未満であると、 反応速度が低下するだけでなく、 粒径が大きく不安定となり、 重合槽への ポリマー付着が増加する傾向がある。
重合終了時の粒子数を多くする重合方法としては、 シード重合法の他に、 特公昭 6 3— 8 4 0 6号公報、 特公昭 6 2— 2 8 8 6 0 9号公報に記載さ れているマイクロエマルション法や、 一般的な方法として乳化剤の増量な どがあげられる。 これらのうち、 マイクロエマルシヨン法では、 初期にマ ィクロエマルションを形成させるために、 フッ素オイルなどの使用が必要 であるため、 製品にオイルが残留し、 汚染源となるので洗浄除去が必要で ある。 また、 乳化剤増量についても、 単に重合系を安定にさせ、 あるいは 重合速度を上げるためには効果的であるが、 重合前後に泡立ち現象が発生 しゃすく、 得られたエラストマ一に残留した乳化剤が加硫阻害をおこしゃ すい。 また、 コストおよび環境の面からも好ましくない方法である。 一方、 シード重合法は上記の問題がなく、 ヨウ素移動系で抜群の効果を示す。 本発明の製造方法においては、 各モノマー単独の臨界温度、 臨界圧力お よび初期モノマー組成比から P e ng— Rob i n s on式によって導い た気相モノマー混合物の臨界温度 ·臨界圧力から、 若干の誤差を補正する ための換算温度 0. 95以上、 好ましくは、 0. 97以上、 換算圧力 0. 80以上、 好ましくは、 0. 85以上の条件でのバッチ式重合をおこなう。 気相部の混合モノマーが換算温度、 換算圧力ともに上回ることにより、 高 いモノマー密度のもとでの重合が可能になり、 重合速度が速くなることに 加え、 主鎖の分岐やイオン末端が少ないポリマーが得られるため、 圧縮永 久歪みが大幅に改善される。 ここで、 換算温度とは、
換算温度 TR = TZTC
(式中、 Tは重合時の実際の温度であり、 Tcは P e n g— Ro b i n s o n式を用いて算出した臨界温度である)
により決定されるものであり、 同様に換算圧力とは、
換算圧力 PR=PZPC
(式中、 Pは重合時の実際の圧力であり、 Pcは P e n g— Ro b i n s o n式を用いて算出した臨界圧力である)
により決定されるものである。
ここで、 臨界温度および臨界圧力を決定する P e ng— Rob i n s o n式について説明する。 一般に、 重合槽内の初期モノマー密度が高いほど 得られるポリマーに組成分布が生じやすいこと、 および、 特に初期モノマ 一が臨界点付近からモノマー密度が急激に上昇することが知られている。 ところが 2成分以上のモノマーを共重合する場合、 気相モノマー混合物の 臨界点はモノマーの種類と組成比によって変動する。 これを各モノマー単 独の臨界温度、 臨界圧力および初期モノマー組成比から混合モノマーの臨 界点を算出する方法として P eng-Rob i n s on式を採用した。 同 式の原理は D. Y. Peng and D. B. Rob i n s on, " A New Two -Con s t an t Equ a t i on o f s t a t e,, , I nd. Eng. Ch em. Fund. , Vo l. 15, (197
6) , p.59— 64で述べられている。 概要としては下記の式を原理とし ており、 実際の計算には A s p e n P l u s (As p en Te c h社 製) などのプロセスシュミレー夕一が使用できる。
Peng-Rob i n s o n式の概略は下記の通りである。
P = RT/ (Vm-b) -a/[Vm (Vm+b) +b (Vm-b) ] a =∑∑ x , x j ( a; a j ) 。· 5
b =∑ x b; ここで、 上記式中の aい biは、 それぞれ以下のように定義する。
a ; i = a " , i· 0. 45724R2Tc lVPc i
ひ i (T) [1+m, . (1一 T 0. 5
c ) ]
m; = 0. 37464+ 1. 54226ω「 0 26992 ω b ; = 0. 0778 RTc i/Pc i
また、 各パラメータは下記のことを表す。
P 圧力
T 温度
vm 体積
R 気体定数
i モノマー成分 iの組成比
モノマー成分 iの臨界温度
P c i モノマー成分 iの臨界圧力
ω i モノマー成分 iの偏心因子
具体的な計算例として、 重合槽内組成が VdFZHFP=36Z64 ( モル%) であるときの Pen g— R ob i n s on式による臨界温度、 臨 界圧力計算を As pen P l u s Ve r. 11. 1を用いて行なった ところ、 Tr=87. 7°C、 P =3. 05MP aであった。 前記換算温 度 0. 95、 換算圧力 0. 80による変換を行なうと、 この場合の重合条 件は、 T=69. 7 以上、 P=2. 44MP a以上である。
換算温度が、 0. 95未満または換算圧力が、 0. 80未満であると、 ポリマー粒子中のモノマー濃度が飽和に達せず、 重合速度が低下するだけ でなく、 目的のポリマーが得られにくい傾向がある。 また、 前記式から算 出される条件式を満たす温度および圧力の中でもさらに好ましい重合温度 は、 10〜 120 °Cであり、 特に好ましくは 30〜 100 °Cであり、 好ま しい重合圧力は、 3MPa以上であり、 より好ましくは 3. 5MPa以上 であり、 さらに好ましくは 4MP a以上である。 また、 圧力の上限値は、 特に限定はないが、 モノマーの取扱いや、 反応設備コストなどを考慮する と 15MP a以下が好ましく、 12 MP a以下であることがより好ましい。 さらに、 攪拌することが好ましい。 攪拌することによって、 ポリマー粒 子中のモノマー濃度を、 重合を通して高く維持できるためである。
攪拌の手段としては、 たとえばアンカ一翼、 タービン翼、 傾斜翼なども 使用できるが、 モノマーの拡散とポリマーの分散安定性が良好な点からフ ルゾーンやマックスブレンドと呼ばれる大型翼による攪拌が好ましい。 攙拌装置としては、 横型攪拌装置でも縦型攪拌装置でもよい。
反応系は、 実質的にモノマー相部分を有する。 ここで、 実質的にモノマ 一相を有するとは、 重合容器の体積に対して、 水などの媒体が占める体積 が 90%以下の状態で重合を行うことを示し、 好ましくは 80%以下であ る。 体積が 90%を超えると、 モノマーが媒体に供給されにくく、 重合速 度が低下する、 あるいはポリマ一物性が悪化する傾向がある。
本発明で用いられる一般式: Rf1 · I xで示されるヨウ素化合物の Rf1 は、 炭素数 1〜16の飽和もしくは不飽和のフルォロ炭化水素基またはク ロロフルォロ炭化水素基であり、 炭素数 4〜 8のパ一フルォ口アルキル基 であることが好ましい。 炭素数が 16をこえると、 反応性が低下する傾向 がある。
一般式: R f 1 ' I xで示されるヨウ素化合物の Xは、 R f 1の結合手の数 であって、 1以上 4以下の整数であり、 2以上 3以下であることが好まし い。 Xが 4をこえても使用可能であるが、 合成コストの点では好ましくな い。 ポリマー分岐が少ない点で、 Xは 2が最も好ましい。
このヨウ素化合物の炭素一ヨウ素結合は、 比較的弱い結合であって、 ラ ジカル発生源の存在下にラジカルとして開裂する。 生じたラジカルの反応 性が高いために、 モノマーが付加成長反応を起こし、 しかる後にヨウ素化 合物からヨウ素を引き抜くことにより反応を停止する。 このようにして得 られた分子末端の炭素にヨウ素が結合している含フッ素エラストマ一は、 末端ョゥ素が有効な加硫点となり効率的に加硫できる。
一般式: R f 1 ' I xで示されるヨウ素化合物としては、 モノョードパー フルォロメタン、 モノョードパ一フルォロェタン、 モノョードパーフルォ 口プロパン、 モノョ一ドパーフルォロブタン 〔たとえば、 2—ョードパー フルォロブタン、 1一ョードパーフルォロ ( 1, 1ージメチルェタン) 〕 、 モノョードパーフルォロペンタン 〔たとえば 1 _ョードパールフォロ ( 4 —メチルブタン) 〕 、 1一ョードパーフルオロー n—オクタン、 モノョ一 ドパーフルォロシクロブタン、 2—ョ一ドパ一フルォロ ( 1ーシクロブチ ルェタン) シクロへキサン、 モノョードパーフルォロシクロへキサン、 モ ノョードトリフルォロシクロブタン、 モノョ一ドジフルォロメタン、 モノ ョードモノフルォロメタン、 2—ョードー 1一ハイドロパーフルォロエタ ン、 3—ョ一ドー 1一ハイド口パーフルォロプロパン、 モノョードモノク ロロジフルォロメタン、 モノョードジクロ口モノフルォロメタン、 2 - 3 一ドー 1 , 2—ジクロ口一 1, 1, 2—トリフルォロェタン、 4一ョード — 1 , 2—ジクロ口パーフルォロブタン、 6—ョードー 1 , 2—ジクロ口 パ一フルォ口へキサン、 4ーョ一ドー 1, 2, 4—トリクロ口パーフルォ ロブタン、 1—ョ一ドー 2, 2—ジハイド口パーフルォロプロパン、 1— ョード一 2—ハイドロパーフルォロプロパン、 モノョ一ドトリフルォロェ チレン、 3—ョ一ドパフルォロプロペン一 1、 4—ョードパ一フルォロぺ ンテン一 1、 4ーョードー 5—クロ口パーフルォロペンテン一 1、 2—ョ 一ドパーフルォロ ( 1—シクロブテニルェタン) 、 1 , 3—ジョ一ドパフ ルォロプロパン、 1 , 4ージョードパーフルオロー n—ブタン、 1 , 3— ジョ一ドー 2 _クロ口パーフルォロプロパン、 1 , 5—ジョードー 2, 4 ージクロ口パーフルオロー n—ペンタン、 1, 7—ジョードパ一フルォロ 一 n—オクタン、 1 , 2—ジ (ョ一ドジフルォロメチル) パーフルォロシ クロブタン、 2 -ョ一ド— 1, 1, 1 _トリフルォロェタン、 1—ョ一ド 一 1一八ィドロパ一フルォロ ( 2—メチルェタン) 、 2—ョード—2, 2 ージクロロー 1, 1 , 1一トリフルォロェタン、 2—ョ一ドー 2—クロ口 — 1, 1, 1一トリフルォロェタンなどがあげられる。 さらに、 R f 1の 炭化水素基には、 エーテル結合性酸素原子、 チォエーテル結合性硫黄原子、 力ルポキシル基などの官能基を含んでいてもよく、 2—ョードパーフルォ 口ェチルパーフルォロビニルエーテル、 2—ョードパ一フルォロェチルバ 一フルォロイソプロピルエーテル、 3 _ョード _ 2—クロロパ一フルォロ ブチルパーフルォロメチルチオエーテル、 3—ョード _ 4一クロ口パーフ ルォ口酪酸などをあげることができる。
これらの中でも、 合成の容易さ、 反応性、 経済性、 安定性の点で、 1, 4ージョードパ一フルォロ一 n—ブタンが好ましい。
これらのヨウ素化合物は、 適宜公知の方法により製造することができる。 たとえば、 2—ョ一ドパーフルォロプロパンは、 フッ化カリウムの存在下 にへキサフルォロプロペンをヨウ素と反応させることにより、 また 1, 5 一ジョ一ドー 2, 4ージクロ口パーフルオロー n—ペンタンは、 3, 5 - ジクロロパーフルオロー 1, 7—ヘプタン二酸の銀塩をヨウ素と反応させ ることにより、 さらにまた 4ーョ一ドー 5—クロ口パーフルオロー 1ーぺ ンテンは、 パーフルオロー 1, 4一ペン夕ジェンに塩化ヨウ素を反応させ ることにより製造することができる。
ヨウ素化合物の添加量は、 含フッ素エラストマ一に対して、 0. 05〜 2. 0重量%であることが好ましい。 添加量が、 0. 05重量%未満であ ると、 加硫が不充分となり、 圧縮永久歪み (CS) が悪化する傾向があり、 2. 0重量%をこえると、 架橋密度が上がり過ぎるために、 伸びなどのゴ ムとしての性能を損なう傾向がある。
上記ヨウ素化合物と含フッ素エラストマ一を形成するモノマーとしては、 少なくとも 1種以上のフルォロォレフィンを含み、 その共重合モノマ一と して、 フルォロォレフィン以外のエチレン性不飽和化合物を含んでいても よい。
この組成が、 含フッ素エラストマ一を形成する目的には、 好ましい。 本発明で用いられるフルォロォレフィンとしては、 CX^^CX^ 4で示されるものが好ましい。 式中の ェ〜 3は、 水素原子またはハロゲ ン原子、 X4は、 水素原子、 ハロゲン原子、 力ルポキシル基、 炭素数 1〜 9で、 水素原子の一部または全部がフッ素原子で置換されたアルキル基、 または炭素数 1〜 9で、 水素原子の一部または全部がフッ素原子で置換さ れたアルコキシ基であり、 該ォレフィンは少なくとも 1つのフッ素原子を 含む。
CX1X2 = CX3X4で示されるフルォロォレフィンとしては、 へキサ フルォロプロピレン (HFP) 、 ビニリデンフルオライド (VdF) 、 テ トラフルォロエチレン (TFE) 、 トリフルォロエチレン、 ペンタフルォ 口プロピレン、 ビニルフルオライド、 へキサフルォロイソブテン、 クロ口 トリフルォロエチレン (CTFE) 、 トリフルォロプロピレン、 ペンタフ ルォロプロピレン、 テトラフルォロプロピレン、 へキサフルォロイソブテ ン、 パーフルォロ (アルキルビエルエーテル) (PAVE) などがあげら れるが、 エラストマ一組成が得られやすい点から、 ビニリデンフルオラィ ド (VdF) 、 へキサフルォロプロピレン (HFP) 、 テトラフルォロェ チレン (TFE) 、 パーフルォロ (アルキルビニルェ一テル) (PAVE ) が好ましい。
また、 パーフルォロ (アルキルビエルエーテル) 類は、 耐寒性、 耐薬品 性の点でも好ましい。
パーフルォロ (アルキルビニルエーテル) としては、 パーフルォロ (メ チルビ二ルエーテル) (PMVE) 、 パーフルォロ (ェチルビニルエーテ ル) (PEVE) 、 パーフルォロ (プロピルビニルエーテル) (PPVE
) などがあげられる。
また、 CX1X2 = CX3X4以外のフルォロォレフィンとしては、
CF = CF
I \
9 、 CF2 = CFOCF2CF = CF2
I \
CF3 CF3
で示されるフルォロォレフィンゃ、
X5
CX6 2 = C-Rf 2-Y
(式中 Yは、 一 CH2 I、 — OH、 — COOH、 一 S02F、 _S03M( Mは水素、 NH4基またはアルカリ金属)、 カルボン酸塩、 力ルポキシェ ステル基、 エポキシ基、 二トリル基、 ヨウ素原子、 X5および X6は同じ かまたは異なりいずれも水素原子またはフッ素原子、 R f 2は炭素数 0〜 40の 2価の含フッ素アルキレン基であり、 エーテル結合性酸素原子を含 んでいてもよい) で示される官能基含有フルォロォレフィンゃポリフルォ ロジェン類などがあげられる。 官能基含有フルォロォレフインは、 表面改質、 架橋密度アップなどの機 能性モノマーとして好ましく、 ポリフルォロジェン類は、 架橋効率の点で 好ましい。
官能基含有フルォロォレフィンとしては、
CF2=CF〇CF2CF2CH2OH 、 CF2=CFO~ CF2+3C〇〇H 、
CF2=CFOCF2CF2COOCH3
CF2=CFOCF2CFOCF2CF2CH2OH 、 CF2=CFCF2COOH 、 CF3
CF2=CFCF2CH2〇H 、 CF2=CFCF2CF2CH2CHCH2
\ /
O
CF2=CFCF2〇CF2CF2CF2COOH 、
CF2=CFCF2OCFCFCOOCH3
I
CF3
CF2=CFOCF2CFOCF2CF2S02F 、
I
CF3
CF2=CFOCF2CFOCF2CF2COOH 、 CF2=CFOCF2CF2S02F 、
I
CF3
CF2=CFCF2CF2COOH 、 CF2=CFCF2COOH 、
CH2=CFCF2CF2CH2CH2OH 、 CH2=CFCF2CF2COOH 、
CH2=CFCF2CF2CH2CHCH2 、 CH2=CF CF2CF2+2COOH 、
、o
CH2=CFCF2OCFCH2OH 、 CH2=C F C F 2OC F COOH 、
I I
CF3 CF3
CH2=C F C F 2OC F CH20 CH2 CHCH2
I \ /
CF3 °
CH2=CFCF2OCFCF2OCFCH2OH 、
I I CF3 CF3 CH2=CFCF2OCFCF2OCFC〇OH、
I I CF3 CF3
CH2=CHCF2CF2CH2CH2COOH、
CH2=CH C F 2- -4 CH2 CH2 CH2〇H、
CH2=CH-( C F 2 -6 CH2 CH2 COO CH3
CF3
CH2=CFCO〇H、 CH2=CHCH2C - OH
CF3
などがあげられる。
また、 官能基含有フルォロォレフインとして、 特許文献 2で開示されて いるモノマー
CF2 = CFOCF2CF2CH2 I
は、 架橋密度を上昇させる目的において好ましい。
ポリフルォロジェン類としては、 CF2 = CFCF = CF2、 CF2 = C FCF2OCF = C F 2などがあげられる。
フルォロォレフィン以外のエチレン性不飽和化合物としては、 特に限定 されないが、 エチレン (ET) 、 プロピレン、 ブテン、 ペンテンなどの炭 素数 2〜10の《—ォレフィンモノマー、 メチルビニルエーテル、 ェチル ビニルエーテル、 プロピルビニルエーテル、 シクロへキシルビニルエーテ ル、 ヒドロキシプチルビニルエーテル、 プチルビニルエーテルなどの炭素 数 1〜 20のアルキル基を有するアルキルビエルエーテルなどがあげられ る。
これらは、 低コスト、 耐ァミン性の点で好ましい。
本発明の含フッ素エラストマ一を形成するモノマーの組み合わせとして は、 上記
Figure imgf000018_0001
フルォロォレフィンを 1種以上、
Figure imgf000018_0002
以外のフルォロォレフィンを 1種以上、 c x2: CX3X4で示されるフルォロォレフィンを 1種以上と CX1X2=CX3X 4以外のフルォロォレフィンを 1種以上含む組合わせがあり、 かつそれぞ れの組み合わせの共重合モノマーとして、 フルォロォレフィン以外のェチ レン性不飽和化合物を含んでいてもよい。
上記フルォロォレフィン、 およびフルォロォレフィン以外のエチレン性 不飽和化合物の中でも、 低コス卜で良好な加硫性を有する含フッ素エラス トマ一を形成する目的では、 ビニリデンフルオライド (VdF) と共重合 可能なエチレン性不飽和化合物からなることが好ましい。
本発明の製造方法により製造された含フッ素エラストマ一の 10 に おけるムーニー粘度は、 好ましくは 30以上、 より好ましくは 35以上で あり、 パーオキサイド加硫を行なうことにより、 同粘度の従来品と比較し て、 伸びが大きく、 圧縮永久歪み (CS) や口一ル加工性に優れている。 高粘度領域になるほど圧縮永久歪み (CS) に関しては、 従来品との差が 大きくなる。
ムーニー粘度が、 30未満では、 従来品においても同粘度では、 架橋効 率が上がるため、 従来品との差が小さくなる傾向があるが、 従来品より悪 化することはない。
次に、 本発明の新規含フッ素エラストマ一は、 ビニリデンフルオライド 繰り返し単位 20〜90モル%、 へキサフルォロプロピレン繰り返し単位 10〜80モル%を含み、
(a) エラストマ一中に 0. 01〜10重量%のヨウ素原子を含有し、
(b) ポリマー数平均分子量が 1 , 000〜 300, 000であり、
(c) ポリマー濃度約 20 %のアセトン溶液を高分解能19 F— NMRで 測定し、 下記式
δ F- 96. 5〜一 99. 5 p pm間の面積
3 X (δ F- 88. 0' ~— 124. 0 p pm間の面積) により求められる 「VdF分岐率」 が 200 p pm以下であり、
パーォキサイド加硫が可能である含フッ素エラストマ一である。
本発明の含フッ素エラストマ一は、 上記の方法によって製造することが できる。
本発明の含フッ素エラストマ一は、 ビニリデンフルオライド (VdF) 繰り返し単位を 20〜90モル%含むことが好ましく、 より好ましくは 4 0〜85モル%、 ビニリデンフルオライド (VdF) とへキサフルォロプ ロピレン (HFP) 繰り返し単位 10〜80モル%を含むことが好ましく、 15〜60モル%がより好ましい。
VdFと HFPの 2元共重合体からなる含フッ素エラストマ一は、 下記 に限定する VdF分岐率が 200 p pm以下であることが好ましく、 15 0 p pm以下であることがより好ましい。 VdF分岐率が、 200 ppm をこえると、 特にヨウ素を含有するパーォキサイド加硫用エラストマ一に おいて、 ヨウ素末端が減少するため、 加硫効率が低下し、 圧縮永久歪み ( CS) などの諸物性が悪化する傾向がある。
前記 VdF分岐率が、 200 p pm以下である VdF/HFPからなる 含フッ素エラストマ一に対し、 その特性を損なわない範囲で、 他の単量体 を共重合させることも可能である。 他の共重合体としては、 例えばテトラ フルォロエチレンが例示でき、 共重合体組成としては、 ビニリデンフルォ ライド (VdF) 繰り返し単位を 30〜89モル%、 へキサフルォロプロ ピレン (HFP) 繰り返し単位を 10〜50モル%、 テトラフルォロェチ レン (TFE) 繰り返し単位を 0. 1〜40モル%の範囲があげられる。
測定ポリマーのアセトン溶液 (濃度約 20%) を高分解能19 F— NM Rで測定し、 次の計算式で 「VdF分岐率」 を求める。
ά F- 96. 5〜一 99. 5 p pm間の面積
3 X (δ F- 88. 0〜― 124. 0 p pm間の面積) 上記で規定した分岐とは、
CF2CH;
CH
/ \
-H。CF2C CF2CH2
主に上記のような構造単位で分岐 CH基に隣接する CF 2基の面積を表し、 これが — 96. 5〜― 99. 5 ppm間に現れる。 このピークの面積 が、 6F— 88. 0〜― 124. 0 p pmに現れる全体の CF2基合計面 積に対して、 占める割合が分岐率である。 ところが、 一本の CF2連鎖に 対して、 3個の分岐隣接 CF2基が存在するため、 単位 VdFに対する分 岐率は、 この測定値の 1Z3と計算される。
ここで高分解能とは、 500 MHz以上のスぺクトロメータによる測定 をさす。
また、 含フッ素エラストマ一は、 エラストマ一中に 0. 01〜10重量 %のヨウ素原子を含むことが好ましく、 0. 05〜2. 0重量%がより好 ましい。 ヨウ素原子含有量が、 0. 05重量%未満であると加硫が不充分 となり、 圧縮永久歪みが悪化する傾向があり、 2. 0重量%をこえると架 橋密度が高すぎ、 伸びが小さすぎるなど、 ゴムとしての性能が悪化する傾 向がある。
さらに、 エラストマ一の数平均分子量が 1, 000〜300, 000で あることが好ましい。 分子量が、' 1, 000未満であると、 粘度が低すぎ て取り扱い性が悪化する傾向があり、 300, 000をこえると同様に粘 度が上昇しすぎて取り扱い性が悪化する傾向がある。
分子量分布 (重量平均分子量 Mw/数平均分子量 Mn) は、 1. 5以上 であることが好ましく、 1. 8以上であることがより好ましい。 分子量分 布が、 1. 5未満であると、 物性面で問題はないものの、 ロール加工性が 悪化する傾向がある。 また、 得られた含フッ素エラストマ一に、 さらに結晶性セグメントを逐 次重合して得られるセグメント化工ラストマ一は、 熱可塑性プラスチック などに好適に用いられる。
結晶性セグメントとしては、 特に限定されないが、 テトラフルォロェチ レン、 パーフルォロ (プロピル) ビエルエーテル、 へキサフルォロプロピ レン、 エチレン (E T) 、 プロピレン、 ブテンなどがあげられる。
本発明の製造方法において、 重合開始剤として油溶性ラジカル重合開始 剤、 または水溶性ラジカル開始剤を使用できる。
本発明で用いる油溶性ラジカル重合開始剤としては、 通常周知の油溶性 の過酸化物が用いられ、 たとえばジィソプロピルパーォキシジカーボネー ト、 ジ s e c一プチルパ一ォキシジカーボネートなどのジアルキルバーオ キシカーボネート類、 t -ブチルパーォキシィソプチレート、 t一ブチル パーォキシピバレ一トなどのパーォキシエステル類、 ジ t一ブチルバーオ キサイドなどのジアルキルパーォキサイド類などが、 また、 ジ (ω—ハイ ドロードデカフルォロヘプタノィル) パ一オキサイド、 ジ (ω—ハイド口 ーテトラデカフルォロヘプタノィル) パーオキサイド、 ジ (ω—ハイド口 一へキサデ力フルォロノナノィル) パーオキサイド、 ジ (パーフルォロブ チリル) パーオキサイド、 ジ (パーフルパレリル) パーオキサイド、 ジ ( パーフルォ口へキサノィル) パーオキサイド、 ジ (パーフルォロヘプタノ ィル) パーオキサイド、 ジ (パーフルォロォクタノィル) パーオキサイド、 ジ (パーフルォロノナノィル) パーオキサイド、 ジ (ω—クロローへキサ フルォロブチリル) パーオキサイド、 ジ (ω—クロローデカフルォ口へキ サノィル) パーオキサイド、 ジ (ω—クロローテトラデカフルォロォクタ ノィル) パ一オキサイド、 ω—ハイドロードデカフルォロヘプタノィル一 ω—ハイドロへキサデカフルォロノナノィルーパーォキサイド、 ω—クロ ローへキサフルォロブチリルー ω—クローデカフルォロへキサノィルーパ ーォキサイド、 ω—八ィドロドデカフルォロヘプタノィル一パーフルォロ ブチリルーパーオキサイド、 ジ (ジクロ口ペンタフルォロブタノィル) パ —ォキサイド、 ジ (トリクロ口才クタフルォ口へキサノィル) パーォキサ イド、 ジ (テトラクロロウンデカフルォロォク夕ノィル) パーオキサイド、 ジ (ペン夕クロロテトラデカフルォロデカノィル) パ一オキサイド、 ジ ( ゥンデカク口ロドトリアコン夕フルォロドコサノィル) パーォキサイドの ジ [パーフロロ (またはフルォロクロ口) ァシル] パ一オキサイド類など が代表的なものとしてあげられる。
しかし、 代表的な油溶性開始剤である、 ジーイソプロピルパーォキシ力 ーポネイト (Ι Ρ Ρ) ゃジ一 η—プロピルパ一ォキシカーポネイト (Ν Ρ Ρ ) などのパーォキシカーポネイト類は爆発の危険性がある上、 高価であ り、 しかも重合反応中に重合槽の壁面などのスケールの付着が生じゃすい という問題があるので、 水溶性ラジカル重合開始剤を使用することが好ま しい。
水溶性ラジカル重合性開始剤としては、 通常周知の水溶性の過酸化物が 用いられ、 たとえば、 過硫酸、 過ホウ酸、 過塩素酸、 過リン酸、 過炭酸な どのアンモニゥム塩、 カリウム塩、 ナトリウム塩、 t一ブチルパーマレエ ート、 t一ブチルハイドロパーォキサイドなどがあげられる。
水溶性ラジカル開始剤の添加量は、 特に限定はないが、 重合速度が著し く低下しない程度の量 (たとえば、 数 p p m対水濃度) 以上を重合の初期 に一括して、 または逐次的に、 または連続して添加すればよい。 上限は、 装置面から重合反応熱を除熱出来る範囲である。
本発明の製造法において、 さらに乳化剤、 分子量調整剤、 P H調整剤な どを添加してもよい。 分子量調整剤は、 初期に一括して添加してもよいし、 連続的または分割して添加してもよい。
乳化剤としては、 非イオン性界面活性剤、 ァニオン性界面活性剤、 カチ オン性界面活性剤などが使用でき、 とくにたとえばパーフルォロオクタン 酸アンモニゥムなどのフッ素系のァニオン性界面活性剤が好ましい。 添加 量 (対重合水) は、 好ましくは 5 0〜 5 0 0 0 p p mである。
分子量調整剤としては、 たとえばマロン酸ジメチル、 マロン酸ジェチル、 酢酸メチル、 酢酸ェチル、 酢酸プチル、 コハク酸ジメチルなどのエステル 類のほか、 イソペンタン、 イソプロパノール、 アセトン、 各種メルカプ夕 ン、 四塩化炭素、 シクロへキサン、 モノョードメタン、 1—ョードメタン、
1—ョードー n—プロパン、 ヨウ化イソプロピル、 ジョ一ドメタン、 1 ,
2—ジョ一ドメタン、 1, 3—ジョードー n—プロパンなどがあげられる。 そのほか緩衝剤などを適宜添加してもよいが、 その量は本発明の効果を 損なわない範囲とする。
本発明の含フッ素エラストマ一組成物は、 こうした含フッ素エラストマ 一および加硫剤からなり、 加硫助剤を含んでもよい。
本発明で使用可能な加硫剤としては、 採用する加硫系によって適宜選定 すればよい。 加硫系としてはポリアミン加硫系、 ポリオール加硫系、 パー ォキサイド加硫系のいずれも採用できるが、 とくにパ一ォキサイド加硫系 で加硫したときに本発明の効果が顕著に発揮できる。
加硫剤としては、 ポリオール加硫系ではたとえば、 ビスフエノール A F、 ヒドロキノン、 ビスフエノール A、 ジァミノビスフエノール A Fなどのポ リヒドロキシ化合物が、 パーオキサイド加硫系ではたとえばひ, α ' ービ ス (t一ブチルパーォキシ) ジイソプロピルベンゼン、 2 , 5—ジメチル 一 2, 5—ジ ( tーブチルバ一ォキシ) へキサン、 ジクミルパーォキサイ ドなどの有機過酸化物が、 ポリアミン加硫系ではたとえばへキサメチレン ジァミンカーバメート、 N, Ν ' ージシンナミリデン— 1, 6—へキサメ チレンジァミンなどのポリアミン化合物があげられる。 しかしこれらに限 られるものではない。 これらの中でも、 加硫性、 取り扱い性の点から、 2 , 5—ジメチル— 2 , 5—ジ (t—ブチルパーォキシ) へキサンが好ましい。
加硫剤の配合量はエラストマ一 1 0 0重量部に対して 0 . 0 1〜 1 0重 量部であり、 好ましくは 0 . 1〜 5重量部である。 加硫剤が、 0 . 0 1重 量部より少ないと、 加硫度が不足するため、 含フッ素成形品の性能が損な われる傾向があり、 1 0重量部をこえると、 加硫密度が高くなりすぎるた め加硫時間が長くなることに加え、 経済的にも好ましくない傾向がある。 ポリオール加硫系の加硫助剤としては、 各種の 4級アンモニゥム塩、 4 級ホスホニゥム塩、 環状ァミン、 1官能性ァミン化合物など、 通常エラス トマ一の加硫に使用される有機塩基が使用できる。 具体例としては、 たと えばテ卜ラブチルアンモニゥムブロミド、 テトラプチルアンモニゥムクロ リド、 ベンジルトリプチルアンモニゥムクロリド、 ベンジルトリエチルァ ンモニゥムクロリド、 テトラプチルアンモニゥム硫酸水素塩、 テトラプチ ルアンモニゥムヒドロキシドなどの 4級アンモニゥム塩;ベンジルトリフ ェニルホスホニゥムクロライド、 トリプチルァリルホスホニゥムクロリド、 トリプチルー 2—メトキシプロピルホスホニゥムクロリド、 ベンジルフエ ニル (ジメチルァミノ) ホスホニゥムクロリドなどの 4級ホスホニゥム塩 ;ベンジルメチルァミン、 ベンジルエタノールァミンなどの一官能性アミ ン; 1, 8—ジァザビシクロ [ 5 . 4. 0 ] —ゥンデクー 7—ェンなどの 環状ァミンなどがあげられる。
パーォキサイド加硫系の加硫助剤としては、 トリァリルシアヌレート、 トリアリルイソシァヌレート (T A I C) 、 トリス (ジァリルアミンー s ートリアジン) 、 トリアリルホスファイト、 N, N—ジァリルアクリルァ ミド、 へキサァリルホスホルアミド、 N, N, N ', N ' —テトラァリル テトラフタラミド、 N, N, Ν ', Ν ' —テトラァリルマロンアミド、 ト リビニルイソシァヌレート、 2 , 4 , 6—トリビニルメチルトリシロキサン、 トリ (5—ノルポルネン一 2—メチレン) シァヌレートなどがあげられる。 これらの中でも、 加硫性、 加硫物の物性の点から、 トリアリルイソシァヌ レート (TA I C) が好ましい。
加硫助剤の配合量は、 エラストマ一 100重量部に対して 0. 01~1 0重量部であり、 好ましくは 0. 1〜5. 0重量部である。 加硫助剤が、 0. 01重量部より少ないと、 加硫時間が実用に耐えないほど長くなる傾 向があり、 10重量部をこえると、 加硫時間が速くなり過ぎることに加え、 成形品の圧縮永久歪も低下する傾向がある。
さらに通常の添加剤である充填材、 加工助剤、 カーボンブラック、 無機 充填剤や、 酸化マグネシウムのような金属酸化物、 水酸化カルシウムのよ うな金属水酸化物などを本発明の目的を損なわない限り使用してもよい。 本発明の組成物の調製法および加硫法はとくに制限はなく、 たとえば、 圧縮成形、 押出し成形、 トランスファ一成形、 射出成形など、 従来公知の 方法が採用できる。
加硫剤を用いて、 含フッ素エラストマ一を加硫した成形品の引張破断伸 び (Eb) が 200〜550%であることが好ましい。 引張破断伸びが 2 00%未満であると、 いわゆる 「ゴムらしさ」 がなくなり、 シール材とし て適さない傾向があり、 550%をこえると、 架橋密度が下がり過ぎ、 圧 縮永久歪み (CS) が悪化する傾向がある。
また、 成形品の 200^、 72時間での圧縮永久歪み (CS) は、 5〜 30 %が好ましく、 7〜 25 %がより好ましい。 圧縮永久歪みが、 5 %未 満であると、 シール性は良好であるが、 一般に伸びが小さすぎる傾向があ り、 30%をこえると、 シール材としての性能が悪化する傾向がある。 ここで、 本発明における加硫とは、 下記に示す標準配合、 標準加硫条件 により加硫することをいう。
(標準配合) 含フッ素エラストマ一 100重量部 部 パーへキサ 25 B 1. 5重量部 カーボンブラック MT— C 20重量部
(標準加硫条件)
混練方法 :ロール練り
プレス加硫 : 160 で 10分
オーブン加硫: 180°Cで 4時間
本発明の製造方法では、 従来の低圧でのヨウ素移動重合反応と比較して 重合時間が大幅に短縮され、 さらに、 得られた含フッ素エラストマ一の口 —ル加工性が向上した。 このため、 低圧ヨウ素移動重合により得られた含 フッ素エラストマ一と本発明品で、 同等のム一二粘度品を比較した場合に 低圧品では練り中に加硫剤 (TAI C) が析出し、 ゴムが切れやすくなる 傾向があつたが、 本発明品では、 そのような現象はみられなくなった。 本発明により得られた含フッ素エラストマ一と加硫剤からなる組成物は コーティング剤、 金属、 セラミック等の無機材料を含む基材にデイスペン サ一成形してなる基材一体型ガスケット、 パッキン類、 金属、 セラミック 等の無機材料を含む基材にコ一ティングしてなる複層品、 磁気記録装置用 ガスケット、 燃料電池用シール材、 クリーン設備用シール材として好適に 用いられる。
評価法
<重量平均分子量 (Mw) および数平均分子量 (Mn) >
装置: HLC— 8000 (東ソ一 (株) 製)
昭和カラム: GPC KF- 806M 2本
GPC KF- 801 1本
GPC F- 801 2本 検出器:示差屈折率計
展開溶媒:テトラヒドロフラン
温度: 35
試料濃度: 0. 1重量%
標準試料:単分散ポリスチレン各種 ( (MwZMn) =1. 14 (Ma x) ) 、 TSK s t anda r d POL YS TYRENE (東ソ一 ( 株) 製)
<ム一二一粘度 >
ASTM-D 1646および J I S K6300に準拠して測定する。 測定機器: ALPHA TECHNOLOG I ES社製 MV 2000
E型
ローター回転数: 2 r pm
測定温度: 10 o :
<圧縮永久歪み (CS) >
下記標準配合物を下記標準加硫条件で 1次プレス加硫および 2次オーブ ン加硫して 0—リング (P— 24) を作製し、 J I S-K6301に準じ て、 1次プレス加硫後の圧縮永久歪みおよび 2次オーブン加硫後の圧縮永 久歪み (CS) を測定する (25%加圧圧縮下に 200°Cで 72時間保持 したのち 25での恒温室内に 30分間放置した試料を測定) 。
(標準配合)
含フッ素エラストマ一 100重量部 トリアリルイソシァヌレート (TA I C) 4重量部 パーへキサ 25 B 1. 5重量部 力一ポンプラック MT— C 20重量部
(標準加硫条件)
混練方法 :ロール練り プレス加硫 : 160°Cで 10分
オーブン加硫: 180°Cで 4時間
<100%モジュラス (Ml 00) >
一 43
標準配合物を標準加硫条件で 1次プレス加硫および 2次オーブン加硫し て厚さ 2 mmのシートとし、 J I S— K6251に準じて測定する。 <引張破断強度 (Tb) および引張破断伸び (Eb) >
標準配合物を標準加硫条件で 1次プレス加硫および 2次オーブン加硫し て厚さ 2 mmのシートとし、 J I S-K6251に準じて測定する。 <硬度 (Hs) >
標準配合物を標準加硫条件で 1次プレス加硫および 2次オーブン加硫し て厚さ 2 mmのシートとし、 J I S-K6253に準じて測定する。 <加硫特性 >
1次プレス加硫時に J SR型キュラストメ一夕 I I型、 および V型を用 いて 170°Cにおける加硫曲線を求め、 最低粘度 (ML) 、 加硫度 (MH ) 、 誘導時間 (T1()) および最適加硫時間 (Τ9。) を求める。
<ポリマーの平均粒子径測定 >
マイクロトラック 934 OUPA (HONEYWELL社製) にて粒子 径を測定した。
<粒子数計算 >
上記ポリマーの平均粒子径の測定結果を用いて、 下記式より粒子数を算 出する。
ポリソー固形分濃度
ポリソ一粒子の個数 =
100- (ポリソー固形分濃度) 平均粒子径 (nm)
x3. 14 X xlO-9 x比重 xlO6
2
<VdF分岐率測定 > 測定サンプルをアセトンに溶解し、 その濃度を約 20%とした。 これを 19F— NMR (B r u k e r社製 AMX 500型) により測定し、 処理 ソフトに Me s t Re_C2. 3 a (Me s t Re— C Te c no 1 o g i e s社製) を用いて、 分岐ピーク面積、 および全 CF2ピーク面積 を算出し、 得られた結果より分岐率を求める。
<組成分析 >
19F-NMR (B r u k e r社製 AC 300 P型) を用いて測定した。 ただし、 含 TFEポリマ一は、 19F— NMR (日本電子 (株) 製 FX 1 00型) を用いて測定をした。
<元素分析 >
横河フューレツトパッカード社 G 235 OA型を用いて測定した。 <P e ng— Rob i n s o n式計算 >
As p e n P l u s V e r . 1 1. 1 (As p e n Te c h千土製 ) を使用した。 各モノマーの臨界温度、 臨界圧力、 偏心因子は全てソフト に内蔵の値を使用した。
Tc : VdF 29. 65で、
TFE 33. 3 で、
HFP 85. 0 °C
P : VdF 4. 46 MP aZSQCM、
TFE 3. 94 MP a/SQCM,
HFP 3. 21 MP a/SQCM
ω : VdF 0. 136
TFE 0. 226
HFP 0. 382
参考例 1
(シードポリマー粒子の重合) 攪拌装置として、 電磁誘導攪拌装置を有する内容積 1. 8リツトルの重 合槽に、 純水 720 g、 10重量%のパーフルォロオクタン酸アンモニゥ ム水溶液 290 g、 およびマロン酸ジェチル 0. 6 gを仕込み、 系内を窒 素ガスで充分置換したのち減圧にした。 この操作を 3回繰り返し、 減圧状 態で VdF 20 gと HFP 51 gを仕込み、 攪拌下に 80°Cまで昇温した。 ついで、 純水 0. 6 gに溶解した過硫酸アンモニゥム塩 (APS) 0. 0
2 gを窒素ガスにて圧入して重合を開始した。 重合圧力を 2 MP aとし、 重合時の圧力低下を補うため、 VdFZHFP混合モノマー (78Z22
(モル%) ) の連続的に供給し、 攪拌下に重合を行った。 重合終了までに、 215 gのモノマーを槽内に供給した。
得られた乳濁液の重量は 1233 g、 ポリマ一濃度が 18. 1重量%で あり、 ポリマー粒子の数は、 1. 2 X 1016個 水 1 gの乳化液を得た。
30分後に攪拌を止め、 モノマーを放出して重合を停止した。
参考例 2
(シードポリマー粒子の重合)
攪拌装置として、 電磁誘導攪拌装置を有する内容積 1. 8リットルの重 合槽に、 純水 809 g、 10重量%のパーフルォロオクタン酸アンモニゥ ム水溶液 200 gを仕込み、 系内を窒素ガスで充分置換したのち減圧にし た。 この操作を 3回繰り返し、 減圧状態でイソペンタン 0. 5mL仕込み、 80ででの相内組成が VdF/TFEZHFP=29. 0/13. 0/5 8. 0モル%、 槽内圧を 1. 4MP aになるように各モノマーを仕込んだ。 昇温終了後、 純水 20 gに溶解した過硫酸アンモニゥム塩 (APS) 0. 67 gを窒素ガスにて圧入して重合を開始した。 重合圧力を 1. 4MP a とし、 重合時の圧力低下を補うため、 VdF/TFEZHFP混合モノマ ― (50/20/30 (モル%) ) を連続的に供給し、 攪拌下に重合を行 なった。 重合終了までに、 320 gのモノマーを槽内に供給した。 得られた乳濁液の重量は 1285 g、 ポリマ一濃度が 24. 8重量%で あり、 ポリマー粒子の数は、 1. 0 X 1015個 水 1 gの乳化液を得た。 360分後に攪拌を止め、 モノマーを放出して重合を停止した。
実施例 1
参考例 1同様の電磁誘導攪拌装置を有する内容積 2. 5リットルの重合 槽に、 純水 1324 gと参考例 1で製造したポリマー粒子の水性分散液 3 3. 58と10重量%のパーフルォロオクタン酸アンモニゥム水溶液 19 . l gを仕込み、 系内を窒素ガスで充分置換したのち減圧にした。 この操 作を 3回繰り返し、 減圧状態で、 VdF 171 gと HFP 729 gを仕込 み、 攪拌下に 80°Cまで昇温した。 ついでォク夕フルオロー 1, 4ージョ ードブタン 2. 98 gと純水 15 gに溶解した APS 0. 068 gを窒素 ガスにて圧入して重合を開始し、 (a) 、 (b) および (c) の条件で重 合を継続し、 4. 3時間後に攪拌を止め、 モノマーを放出して重合を停止 した。
(a) 重合槽内組成 VdFノ HFP=36Z64 (モル%) に対する Pe ng— Rob i n s o n式による臨界温度 ·臨界圧力計算を A s p e n P l u s Ve r . 1 1. 1を用いて行ったところ、 Tc= 87. 7°C、 Pc=3. 05 MP aであった。 さらに換算温度 TR0. 95、 換算圧力 PR0. 80による変換を行なうと、 T=69. 7。C、 P = 2. 44MP aとなり、 本実施例の重合条件は、 換算温度以上かつ換算圧力以上である。
(b) VdF/HFP (95/5 (モル%) ) モノマー混合物を連続的に 供給し、 気相部分の圧力を 6 MP aに維持した。 また、 重合終了までに、 302 gのモノマーを槽内に供給した。
(c) 攪拌速度を 560 r pmで維持した。
(d) 重合時間が 3時間を過ぎた時点で、 純水 15 gに溶解した APS 0 . 034 gを仕込んだ。 得られた乳濁液の重量は 1879 g、 ポリマー濃度が 29. 6重量%で あり、 ポリマー粒子の数は、 2. 7 X 1014個/水 1 gであった。 また、 含フッ素エラストマ一としては 566 gであり、 G PCで測定した重量平 均分子量 Mwは 23. 6万、 数平均分子量 Mnは 11. 3万、 Mw/Mn は 2. 1であった。 また、 19F— NMRで測定した重合体の組成は Vd F/HFP= 77/23 (モル%) であった。
実施例 2
APSを 0. 17 gとしたこと以外は、 実施例 1と同様に含フッ素エラ ストマ一を重合した。
重合時間は 1. 5時間、 得られた乳濁液の重量は 1909 g、 ポリマー 濃度が 30. 1重量%であり、 ポリマー粒子の数は、 2. 9X 1014個 Z水 l gであった。 また、 含フッ素エラストマ一 575 gであり、 GPC で測定した重量平均分子量 Mwは 27. 7万、 数平均分子量 Mnは 10. 3万、 Mw/Mnは 2. 7であった。 また、 19 F— NMRで測定した重 合体の組成は VdFZHFP = 76/24 (モル%) であった。
実施例 3
ォクタフルオロー 1, 4—ジョードブタンを 5. 96 gとしたこと以外 は、 実施例 1と同様にして含フッ素エラストマ一を重合した。
重合時間は 3. 4時間、 得られた乳濁液の重量は 1899 g、 ポリマー 濃度が 28. 6重量%であり、 ポリマー粒子の数は、 2. 6 X 1014個 /水 1 であった。 また、 含フッ素エラストマ一は 543 gであり、 GP Cで測定した重量平均分子量 Mwは 10. 5万、 数平均分子量 Mnは 5. 63万、 MwZMnは 1. 9であった。 また、 19F— NMRで測定した 重合体の組成は VdFZHFP=77Z23 (モル%) であった。
比較例 1
参考例 1同様の電磁誘導攪拌装置を有する内容積 2. 5リットルの重合 槽に、 純水 1324 gと参考例 1で製造したポリマー粒子の水性分散液 3 3. 5 と10重量%のパーフルォロオクタン酸アンモニゥム水溶液 19 . l gを仕込み、 系内を窒素ガスで充分置換したのち減圧にした。 この操 作を 3回繰り返し、 減圧状態で、 VdF 20 gと HFP 57 gを仕込み、 攪拌下に 8 Ot:まで昇温した。 ついでォク夕フルオロー 1, 4ージョード -ブタン 2. 98 gと純水 15 gに溶解した AP S 0. 068 gを窒素ガ スにて圧入して重合を開始し、 (a) 、 (b) 、 (c) および (d) の条 件で重合を継続し、 16. 5時間後に攪拌を止め、 モノマーを放出して重 合を停止した。
(a) 重合槽内組成 VdFZHFP=50Z50 (モル%) に対する Pe ng-Ro b i n s o n式による臨界温度 ·臨界圧力計算を A s p e n P l u s Ve r. 11. 1を用いて行ったところ、 Tc=57. 3t、 Pc=3. 83MP aであった。 さらに換算温度 TR0. 95、 換算圧力 PR0. 80による変換を行なうと、 T = 40. 8°C、 P= 3. 06 MP aとなり、 本比較例の重合条件は、 換算温度以上かつ換算圧力以下である。
(b) VdF/HFP (78/22 (モル%) ) モノマー混合物を連続的 に供給し、 気相部分の圧力を 1. 5MP aに維持した。 また、 重合終了ま でに、 570 gのモノマーを槽内に供給した。
(c) 攪拌速度を 560 r pmで維持した。
(d) 重合時間が 3時間を過ぎる毎に、 純水 15 gに溶解した APS 0. 034 gを仕込んだ。
得られた乳濁液の重量は 2087 g、 ポリマ一濃度が 27. 7重量%で あり、 ポリマ一粒子の数は、 1. 4X 1014個 水 1 gであった。 また、 含フッ素エラストマ一は 578 gであり、 G PCで測定した重量平均分子 量 Mwは 18. 3万、 数平均分子量 Mnは 13. 3万、 MwZMnは 1. 4であった。 また、 19F— NMRで測定した重合体の組成は VdF/H FP=77. 3/22. 7 (モル%) であった。
実施例 4〜 6および比較例 2
実施例 1〜 3および比較例 1で得られた含フッ素エラストマ一を用い、 下記の配合、 加硫条件にしたがって、 含フッ素成形品を得た。 評価結果を 表 1に示す。
(標準配合)
含フッ素エラストマ一 100重量部 トリァリルイソシァヌレート (TA I C) 4重量部 パーへキサ 25 B 1. 5重量部 カーボンブラック MT— C 20重量部
(標準加硫条件)
混練方法 :ロール練り
プレス加硫 : 160°Cで 10分
オーブン加硫: 180°Cで 4時間
表 1
Figure imgf000036_0001
実施例 7
参考例 1同様の電磁誘導攪拌装置を有する内容積 1. 8リツトルの重合 槽に、 純水 970 gと参考例 2で製造したポリマー粒子の水性分散液 27 gを仕込み、 系内を充分に窒素置換したのち減圧にした。 この操作を 3回 繰返し、 減圧状態で VdF 18 g、 TFE 22 g、 HFP 537 gを仕込 み、 攪拌下に 8 Otまで昇温した。 ついで、 ォクタフルオロー 1, 4ージ ョ一ドブタン 2. 8 gと純水 15 gに溶解した AP S 0. 05 gを窒素ガ スにて圧入して重合を開始し、 (a) 、 (b) 、 (c) の条件で重合を継 続し、 3. 6時間後に攪拌を止め、 モノマーを放出して重合を停止した。
(a) 重合槽内組成VdFZTFEZHFP = 6. 5/5. 0/88. 5 (モル%) に対する P e ng-Rob i n s o n式による臨界温度 ·臨界 圧力計算を As p e n P l u s Ve r. 11. 1を用いて行ったとこ ろ、 Tc=87. 7°C、 Pc= 3. 05MP aであった。 さらに換算温度 TR0. 95、 換算圧力 PR0. 80による変換を行なうと、 T=69. 7 、 P=2. 44MPaとなり、 本実施例の重合条件は、 換算温度以上 かつ換算圧力以上である。
(b) Vd FZTFEZHFP (68. 0/23. 8/8. 2 (モル%)
) モノマー混合物を連続的に供給し、 気相部分の圧力を 3. 5MPaに維 持した。 また、 重合終了までに、 247 gのモノマーを槽内に供給した。
(c) 攪拌速度を 560 r pmで維持した。
得られた乳濁液の重量は 1368 g、 ポリマ一濃度が 26. 8重量%で あり、 ポリマー粒子の数は、 9. 5 X 1014個/水 1 gであった。 また、 含フッ素エラストマ一としては 369 gであり、 G PCで測定した重量平 均分子量 Mwは 6. 7万、 数平均分子量 Mnは 4. 8万、 MwZMnは 1 . 4であった。 また、 19F— NMRで測定した重合体の組成は Vd FZ TFE/HFP=50. 7/19. 5/29. 8 (モル%) であった。 実施例 8
ォクタフルオロー 1, 4ージョードブタンを 2. 4 gとしたこと以外は、 実施例 7と同様にして含フッ素エラストマ一を重合した。
重合時間は 4. 2時間、 得られた乳濁液の重量は 140 lg、 ポリマー 濃度が 28. 6重量%であり、 ポリマー粒子の数は、 3. 5X 1014個/ 水 1 であった。 また、 含フッ素エラストマ一は 396gであり、 GPC で測定した重量平均分子量 Mwは 8. 7万、 数平均分子量 Mnは 5. 7万、 Mw/Mnは 1. 5であった。 また、 19 F— NMRで測定した重合体の 組成は¥(1?7丁 £7«[??=51. 0/19. 8 29. 2 (モル% ) であった。
実施例 9 (a) ォクタフルオロー 1, 4一ジョ一ドブタンを 2. 4 g,
(b) 仕込みモノマ一量の 50%時に〇 2 =〇 〇。?2。?2( 112 I を 3. 96 g、
(c) 重合時間が 3時間を過ぎる毎に、 純水 15 gに溶解した APS 0. 025 gを仕込む、
としたこと以外は、 実施例 7と同様にして含フッ素エラストマ一を重合し た。
重合時間は 3. 8時間、 得られた乳濁液の重量は 139 lg、 ポリマー 濃度が 27. 3重量%であり、 ポリマー粒子の数は、 8. 3X 1014個/ 水 l gであった。 また、 含フッ素エラストマ一は 384 gであり、 GPC で測定した重量平均分子量 Mwは 9. 2万、 数平均分子量 Mnは 5. 9万、 MwZMnは 1. 6であった。 また、 19F— NMRで測定した重合体の 組成は VdFZTFEZHFP=52. 0/20. 7/27. 3 (モル% ) であった。
比較例 3
参考例 7同様の電磁誘導攪拌装置を有する内容積 1. 83リツトルの重 合槽に、 純水 970 gと参考例 2で製造したポリマー粒子の水性分散液 2 7 gを仕込み、 系内を充分窒素置換したのち減圧にした。 この操作を 3回 繰り返し、 80°Cでの槽内組成が VdF/TFEZHFP= 1 1. 0/1 9. 0/70. 0 (モル%) 、 槽内圧を 1. 5MP aになるように各モノ マーを仕込んだ。 ついでォクタフルオロー 1, 4一ジョ一ドブタン 1. 7 gと純水 15gに溶解した APS0. 05 gを窒素ガスにて圧入して重合 を開始し、 (a) 〜 (d) の条件で重合を継続し、 15. 3時間後に攪拌 を止め、 モノマーを放出して重合を停止した。
(a) 重合槽内組成 VdFZTFE/HFP=l 1Z19Z70 (モル% ) に対する P eng-Rob i n s o n式による臨界温度 ·臨界圧力計算 を As p en P l u s Ve r. 11. 1を用いて行ったところ、 Tc = 69. 0°C、 Pc=3. 48MP aであった。 さらに換算温度 TR0. 95、 換算圧力 PR0. 80による変換を行なうと、 T=51. 9 、 P =2. 78 MP aとなり、 本実施例の重合条件は、 換算温度以上かつ換算 圧力以下である。
(b) VdF/TFE/HFP (50. 0/20. 0/30. 0 (モル% ) ) モノマ一混合物を連続的に供給し、 気相部分の圧力を 1. 5 MP aに 維持した。 また、 重合終了までに、 370 gのモノマーを槽内に供給した。
(c) 攪拌速度を 560 r pmで維持した。
(d) 重合時間が 3時間を過ぎる毎に、 純水 15 gに溶解した APS 0. 025 gを仕込んだ。
得られた乳濁液の重量は 1410 g、 ポリマー濃度が 26. 2重量%で あり、 ポリマー粒子の数は、 3. 9 X 1014個 Z水 1 gであった。 また、 含フッ素エラストマ一は 370 gであり、 G PCで測定した重量平均分子 量 Mwは 8. 5万、 数平均分子量 Mnは 6. 1万、 Mw/Mnは 1. 4で あった。 また、 19F— NMRで測定した重合体の組成は Vd FZTFE /HFP= 50. 2/19. 8/30. 0 (モル%) であった。
実施例 10〜: L 2および比較例 4
実施例 7〜 9および比較例 3で得られた含フッ素エラストマ一を用い、 下記の配合、 加硫条件にしたがって、 含フッ素成形品を得た。 評価結果を 表 2に示す。
(標準配合)
含フッ素エラストマ一 100重量部 トリアリルイソシァヌレート (TA I C) 4重量部 パ一へキサ 25 B 1. 5重量部 力一ポンプラック MT— C 20重量部 (標準加硫条件)
混練方法 :ロール練り
プレス加硫 : 1 6 で 1 0分
オーブン加硫: 1 8 0 で 4時間
表 2
Figure imgf000040_0001
産業上の利用可能性
本発明は、 高圧下でヨウ素移動重合を行うことにより、 重合開始剤が少 ないにもかかわらず重合速度が大幅に増大し、 非ヨウ素移動重合法に匹敵 する生産性の高い含フッ素エラストマ一の製造方法を提供する。 さらに、 この方法によって製造したエラストマ一は、 分岐が少なく、 末端ヨウ素原 子含有率が高く、 また、 含フッ素エラストマ一と圧縮永久歪みと引張破断 伸びのバランスが優れた含フッ素成形品を提供する。

Claims

請求の範囲
1. 反応槽内の気相部分における各モノマーの臨界温度、 臨界圧力、 およ びそれぞれの組成比から P e n g— R o b i n s on式を用いて算出し た臨界定数の換算温度が 0. 95以上、 換算圧力が 0. 80以上の条件 下で行なわれる、 バッチ式共重合法による含フッ素エラストマ一の製造 方法であって、
一般式: R f 1 · I x
(ただし、 式中、 Rf1は炭素数 1〜16の飽和もしくは不飽和のフル ォロ炭化水素基またはクロ口フルォロ炭化水素基であり、 Xは R fの結 合手の数であって、 1以上 4以下の整数である) の存在下に、 少なくと も 1種のフルォロォレフィンを含むエチレン性不飽和化合物を共重合さ せる含フッ素エラストマ一の製造方法。
2. 重合時の槽内圧力が 3 MP a以上である請求の範囲第 1項記載の含フ ッ素エラストマ一の製造方法。
3. 重合終了時に含フッ素エラストマ一粒子数が水 1 gあたり 5X 1013 個以上である請求の範囲第 1項または第 2項記載の含フッ素エラストマ —の製造方法。
4. フルォロォレフィンが、
CXXX2 = CX3X4
(Xi X3は、 水素原子またはハロゲン原子、 X4は、 水素原子、 ハロ ゲン原子、 力ルポキシル基、 炭素数 1〜9で、 水素原子の一部または全 部がフッ素原子で置換されたエーテル結合性酸素原子を含んでいてもよ いアルキル基、 または炭素数 1〜 9で、 水素原子の一部または全部がフ ッ素原子で置換されたエーテル結合性酸素原子を含んでいてもよいアル コキシ基であり、 該ォレフィンは少なくとも 1つのフッ素原子を含む) である請求の範囲第 1項、 第 2項または第 3項記載の含フッ素エラスト マーの製造方法。
5. フルォロォレフィンが、 へキサフルォロプロピレン、 テトラフルォロ エチレン、 トリフルォロエチレン、 ペンタフルォロプロピレン、 ビニル フルオラィド、 へキサフルォロイソブテン、 パ一フルォロ (アルキルビ ニルエーテル) 類、 ポリフルォロジェン類、 および下記式
X5
CX6 2 = C-Rf 2-Y
(式中 Yは、 一 CH2 I、 一〇H、 一 C〇OH、 一 S〇2F、 一 S03M (Mは水素、 NH4基またはアルカリ金属)、 カルボン酸塩、 カルボキシ エステル基、 エポキシ基、 二トリル基、 ヨウ素原子、 X 5および X 6は 同じかまたは異なりいずれも水素原子またはフッ素原子、 Rf 2は炭素 数 0〜40の 2価の含フッ素アルキレン基であり、 エーテル結合性酸素 原子を含んでもよい) 力 なる群から選択された化合物を含む請求項 1、 2または 3記載の含フッ素エラストマ一の製造方法。
6. 請求項 1、 2、 3、 4または 5記載の製造方法により得られ、 100 におけるムーニー粘度が 30以上である含フッ素エラストマ一。
7. 含フッ素エラストマ一が、 ビニリデンフルオライド繰り返し単位 20 〜90モル%、 へキサフルォロプロピレン繰り返し単位 10〜80モル %を含み、
(a) エラストマ一中に 0. 01〜10重量%のヨウ素原子を含有し、
(b) ポリマー数平均分子量が 1, 000〜 300, 000であり、
(c) ポリマー濃度約 20%のアセトン溶液を高分解能19 F— NMR で測定し、 下記式
5 F- 96. 5〜一 99. 5 ppm 間の面積
3 X (δ F- 88. 0〜一 124. 0 ppm 間の面積) により求められる 「V d F分岐率」 が 2 0 0 p p m以下であり、 パーォキサイド加硫が可能である含フッ素エラストマ一。
8. 加硫して得られる成形体の引張破断伸び E bが 2 0 0 %以上、 5 5 0 %以下であり、 かつ 2 0 0 °C、 7 2時間での圧縮永久歪み C Sが 5 %以 上、 3 0 %以下である請求の範囲第 7項記載の含フッ素エラストマ一。
9. 請求の範囲第 7項または第 8項記載の含フッ素エラストマ一および加 硫剤からなる含フッ素エラストマ一硬化用組成物。
PCT/JP2004/000519 2003-01-24 2004-01-22 加硫可能な含フッ素エラストマーの製造方法 WO2004065436A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/542,545 US7375171B2 (en) 2003-01-24 2004-01-22 Process for preparing vulcanizable fluorine-containing elastomer
EP04704326A EP1589047B1 (en) 2003-01-24 2004-01-22 Method for producing vulcanizable fluorine-containing elastomer
JP2005508111A JP4013977B2 (ja) 2003-01-24 2004-01-22 加硫可能な含フッ素エラストマーの製造方法
US11/892,702 US8247505B2 (en) 2003-01-24 2007-08-27 Process for preparing vulcanizable fluorine-containing elastomer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003016788 2003-01-24
JP2003-016788 2003-01-24
JP2003278545A JP2005104992A (ja) 2003-01-24 2003-07-23 加硫可能な含フッ素エラストマーの製造方法
JP2003-278545 2003-07-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10542545 A-371-Of-International 2004-01-22
US11/892,702 Division US8247505B2 (en) 2003-01-24 2007-08-27 Process for preparing vulcanizable fluorine-containing elastomer

Publications (1)

Publication Number Publication Date
WO2004065436A1 true WO2004065436A1 (ja) 2004-08-05

Family

ID=32775198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000519 WO2004065436A1 (ja) 2003-01-24 2004-01-22 加硫可能な含フッ素エラストマーの製造方法

Country Status (4)

Country Link
US (2) US7375171B2 (ja)
EP (2) EP1589047B1 (ja)
JP (2) JP2005104992A (ja)
WO (1) WO2004065436A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233157A (ja) * 2005-02-28 2006-09-07 Daikin Ind Ltd 含フッ素エラストマーおよび含フッ素エラストマーの製造方法
US20070299207A1 (en) * 2003-01-24 2007-12-27 Daikin Industries, Ltd. Process for preparing vulcanizable fluorine-containing elastomer
WO2010032576A1 (ja) * 2008-09-18 2010-03-25 ユニマテック株式会社 パーオキサイド架橋可能なフルオロエラストマー
JP2011510159A (ja) * 2008-01-22 2011-03-31 デュポン パフォーマンス エラストマーズ エルエルシー フルオロエラストマーの製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737088B2 (ja) * 2004-07-28 2011-07-27 ダイキン工業株式会社 過酸化物加硫可能な含フッ素エラストマー組成物
JP4924420B2 (ja) * 2005-05-02 2012-04-25 ダイキン工業株式会社 含フッ素重合体の製造方法および該製造方法により得られる含フッ素重合体
EP2460852B1 (en) * 2005-10-27 2014-03-26 Daikin Industries, Ltd. Crosslinkable composition and molded article made of same
JP5077228B2 (ja) 2006-05-10 2012-11-21 ダイキン工業株式会社 含フッ素重合体の製造方法
JP2009117063A (ja) * 2007-11-02 2009-05-28 Nok Corp 燃料電池セルシール用フッ素ゴム組成物
US9012580B2 (en) * 2008-02-15 2015-04-21 Daikin Industries, Ltd. Tetrafluoroethylene/hexafluoropropylene copolymer and the production method thereof, and electrical wire
EP2258768B1 (en) * 2008-03-27 2016-04-27 Daikin Industries, Ltd. Fluorine-containing elastomer composition
EP2651985B1 (en) 2010-12-17 2016-03-23 3M Innovative Properties Company Partially fluorinated polysulfinic acids and their salts
WO2019111824A1 (ja) * 2017-12-06 2019-06-13 Agc株式会社 含フッ素弾性共重合体及び含フッ素弾性共重合体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247608A (ja) * 1990-02-26 1991-11-05 Asahi Chem Ind Co Ltd パーオキシド加硫可能な含フッ素エラストマーの製造方法
JPH05222130A (ja) * 1990-03-01 1993-08-31 E I Du Pont De Nemours & Co フルオル弾性体及びその製造法
JPH07173204A (ja) * 1993-03-30 1995-07-11 E I Du Pont De Nemours & Co 含フッ素エラストマーの製造方法
WO2000047641A1 (fr) * 1999-02-15 2000-08-17 Daikin Industries, Ltd. Procede de production de fluoropolymere
WO2001034666A1 (fr) * 1999-11-09 2001-05-17 Daikin Industries, Ltd. Composition de fluoroelastomere vulcanisable
WO2003042259A1 (fr) * 2001-11-12 2003-05-22 Daikin Industries, Ltd. Fluorure de polyvinylidene

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091648A (en) * 1958-11-26 1963-05-28 Pennsalt Chemicals Corp Vinylidine fluoride derived cotelomer oils
US3467636A (en) * 1967-02-24 1969-09-16 Du Pont Redox catalyst system for preparing vinylidene fluoride interpolymers
JPS5341928A (en) 1976-09-29 1978-04-15 Nec Home Electronics Ltd Television multi-character broadcast receiver
JPS53125491A (en) * 1977-04-08 1978-11-01 Daikin Ind Ltd Fluorine-containing polymer easily curable and its curable composition
JPS5512478A (en) 1978-07-13 1980-01-29 Mitsubishi Electric Corp Length meter of running body
JPS5657811A (en) * 1979-10-17 1981-05-20 Daikin Ind Ltd Preparation of liquid fluorine-containing polymer
EP0199138B1 (en) * 1985-03-28 1989-02-22 Daikin Industries, Limited Novel fluorovinyl ether and copolymer comprising the same
JPS6212734A (ja) 1985-03-28 1987-01-21 Daikin Ind Ltd 新規フルオロビニルエ−テルおよびそれを含む共重合体
IT1189092B (it) 1986-04-29 1988-01-28 Ausimont Spa Processo di polimerizzazione in dispersione acquosa di monomeri fluorurati
IT1204903B (it) * 1986-06-26 1989-03-10 Ausimont Spa Processo di polimerizzazione in dispersione acquosa di monomeri florati
US4973633A (en) * 1989-05-15 1990-11-27 E. I. Du Pont De Nemours And Company Peroxide-curable fluoroelastomers having bromine an iodine curesites and the preparation thereof
US4948852A (en) 1989-10-26 1990-08-14 E. I. Du Pont De Nemours And Company Peroxide-curable fluoroelastomers and chlorofluoroelastomers having bromine and iodine curesites and the preparation thereof
WO2000001741A1 (fr) 1998-07-07 2000-01-13 Daikin Industries, Ltd. Procede de production de fluoropolymere
US6914105B1 (en) * 1999-11-12 2005-07-05 North Carolina State University Continuous process for making polymers in carbon dioxide
US6806332B2 (en) * 1999-11-12 2004-10-19 North Carolina State University Continuous method and apparatus for separating polymer from a high pressure carbon dioxide fluid stream
JP4007037B2 (ja) 2001-11-16 2007-11-14 松下電器産業株式会社 開閉装置及びこれを用いた電子機器
US6646077B1 (en) * 2002-07-11 2003-11-11 Dupont Dow Elastomers Llc Peroxide curable fluoroelastomers
EP1553104B1 (en) * 2002-07-24 2013-09-04 Daikin Industries, Ltd. Process for producing fluoropolymer
JP2005104992A (ja) * 2003-01-24 2005-04-21 Daikin Ind Ltd 加硫可能な含フッ素エラストマーの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03247608A (ja) * 1990-02-26 1991-11-05 Asahi Chem Ind Co Ltd パーオキシド加硫可能な含フッ素エラストマーの製造方法
JPH05222130A (ja) * 1990-03-01 1993-08-31 E I Du Pont De Nemours & Co フルオル弾性体及びその製造法
JPH07173204A (ja) * 1993-03-30 1995-07-11 E I Du Pont De Nemours & Co 含フッ素エラストマーの製造方法
WO2000047641A1 (fr) * 1999-02-15 2000-08-17 Daikin Industries, Ltd. Procede de production de fluoropolymere
WO2001034666A1 (fr) * 1999-11-09 2001-05-17 Daikin Industries, Ltd. Composition de fluoroelastomere vulcanisable
WO2003042259A1 (fr) * 2001-11-12 2003-05-22 Daikin Industries, Ltd. Fluorure de polyvinylidene

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070299207A1 (en) * 2003-01-24 2007-12-27 Daikin Industries, Ltd. Process for preparing vulcanizable fluorine-containing elastomer
US7375171B2 (en) * 2003-01-24 2008-05-20 Daikin Industries, Ltd. Process for preparing vulcanizable fluorine-containing elastomer
US8247505B2 (en) 2003-01-24 2012-08-21 Daikin Industries, Ltd. Process for preparing vulcanizable fluorine-containing elastomer
JP2006233157A (ja) * 2005-02-28 2006-09-07 Daikin Ind Ltd 含フッ素エラストマーおよび含フッ素エラストマーの製造方法
JP2011510159A (ja) * 2008-01-22 2011-03-31 デュポン パフォーマンス エラストマーズ エルエルシー フルオロエラストマーの製造方法
WO2010032576A1 (ja) * 2008-09-18 2010-03-25 ユニマテック株式会社 パーオキサイド架橋可能なフルオロエラストマー
JP2010070632A (ja) * 2008-09-18 2010-04-02 Unimatec Co Ltd パーオキサイド架橋可能なフルオロエラストマー
US8524835B2 (en) 2008-09-18 2013-09-03 Unimatec Co., Ltd. Peroxide-crosslinkable fluoroelastomer

Also Published As

Publication number Publication date
EP1589047B1 (en) 2012-11-07
US20060052548A1 (en) 2006-03-09
US20070299207A1 (en) 2007-12-27
EP1589047A4 (en) 2008-11-12
JP4013977B2 (ja) 2007-11-28
EP2327730B1 (en) 2013-03-13
US8247505B2 (en) 2012-08-21
US7375171B2 (en) 2008-05-20
EP2327730A1 (en) 2011-06-01
EP1589047A1 (en) 2005-10-26
JPWO2004065436A1 (ja) 2006-05-18
JP2005104992A (ja) 2005-04-21

Similar Documents

Publication Publication Date Title
JP5333442B2 (ja) パーオキサイド架橋系含フッ素エラストマー組成物
JP4737088B2 (ja) 過酸化物加硫可能な含フッ素エラストマー組成物
US8247505B2 (en) Process for preparing vulcanizable fluorine-containing elastomer
JP5321580B2 (ja) 含フッ素弾性共重合体及び製造方法
JP5131198B2 (ja) 含フッ素エラストマーの製造方法および該製造方法により得られる含フッ素エラストマー
WO2008001895A1 (fr) Procédé de fabrication d&#39;un élastomère contenant du fluor
JP5744902B2 (ja) フルオロエラストマーの製造方法
JP7160227B2 (ja) 含フッ素共重合体組成物および架橋ゴム物品
JP5682653B2 (ja) 含フッ素エラストマーの製造方法
JP4839616B2 (ja) 含フッ素ポリマーの製造方法
WO2022260138A1 (ja) 含フッ素エラストマー水性分散液の製造方法、含フッ素エラストマーおよび組成物
JP4333514B2 (ja) 加硫可能な含フッ素エラストマーの製造方法
TW202146563A (zh) 含氟共聚物組成物及交聯橡膠物品
JP2006036861A (ja) 加硫可能な含フッ素エラストマーの製造方法
JP2007231298A (ja) 加硫可能な含フッ素エラストマーの製造方法
JP7156309B2 (ja) 含フッ素弾性共重合体及び含フッ素弾性共重合体の製造方法
WO2022220180A1 (ja) 含フッ素共重合体、含フッ素共重合体の製造方法、含フッ素共重合体組成物および架橋ゴム物品
WO2022260137A1 (ja) 含フッ素エラストマー水性分散液の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508111

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006052548

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10542545

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20048024871

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004704326

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004704326

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10542545

Country of ref document: US