WO2004064640A1 - 放射線画像撮像装置 - Google Patents

放射線画像撮像装置 Download PDF

Info

Publication number
WO2004064640A1
WO2004064640A1 PCT/JP2004/000577 JP2004000577W WO2004064640A1 WO 2004064640 A1 WO2004064640 A1 WO 2004064640A1 JP 2004000577 W JP2004000577 W JP 2004000577W WO 2004064640 A1 WO2004064640 A1 WO 2004064640A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
row
ray
line
image data
Prior art date
Application number
PCT/JP2004/000577
Other languages
English (en)
French (fr)
Inventor
Ken Ishikawa
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Publication of WO2004064640A1 publication Critical patent/WO2004064640A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material

Definitions

  • the present invention relates to a radiation imaging apparatus, and more particularly to a radiation imaging apparatus that performs correction based on leak signal information on image data during continuous fluoroscopy.
  • a radiographic imaging device irradiates a subject with X-rays and detects transmitted X-rays with a flat panel detector to obtain X-ray image data of the subject.
  • the X-ray flat panel detector includes a pixel array in which detection elements for converting an X-ray image signal into signal charges are two-dimensionally arranged, a signal readout line provided for each pixel column, and a detection element for each detection element. Switching means for closing and opening signal reading from each detection element via a signal reading line, and controlling the switching means to control the signal of the detection element included in each row of the pixel array. The charge is read out.
  • the charge thus accumulated leaks to another row via a signal readout line or the like. That is, when a signal is read from the detection element in each row of the pixel array, the signal is read from another detection element belonging to the pixel column to be read through a signal read line passing through the detection element in a certain area where such charges are accumulated.
  • the leakage charge is superimposed on the signal.
  • the direct X-ray refers to, for example, a strong X-ray that is not attenuated because it does not pass through the subject.
  • an object of the present invention is to provide a radiographic image capturing apparatus capable of acquiring a correct X-ray image by eliminating an artefact caused thereby and enabling an X-ray observer to easily read a captured image. Disclosure of the invention
  • an X-ray source for irradiating a subject with X-rays, and a detection element for converting the X-rays emitted from the X-ray source into signal charges
  • a readout unit that outputs image signal charges from the detection elements included in the pixel array as image data via a readout line during X-ray irradiation, for each row of the pixel array
  • An X-ray flat panel detector having a readout row selection unit including a switch control line for instructing the detection element to read out, and image data for instructing to read out the image data and the leakage signal for each row under X-ray irradiation
  • the acquisition control means instructs a read target row via the read row selection unit to acquire the read data from the read unit, and the leak signal leaks from the detector to the signal read line.
  • the leakage signal is emptied by the read section via the read line without instructing the read by the read row selecting section. It is characterized by reading and acquiring.
  • the X-rays when X-rays emitted from the X-ray source enter the X-ray flat panel detector, the X-rays are converted into signal charges by each detection element of the pixel array of the X-ray flat panel detector. Then, prior to capturing the image data of each frame constituting the continuous fluoroscopic image, the readout unit reads the signal charges of the pixel array in an empty manner and outputs at least one row of leak signal information.
  • the correction data for one row based on the leak signal information is stored in the correction data storage means.
  • the blank reading of the signal charges may be performed for at least one row, but the blanking of the signal charges for a plurality of rows is performed, and the correction data is calculated and stored based on the leak signal information for the plurality of rows. Is also good.
  • the readout unit reads out signal charges (image data before correction) of the detection elements included in each row of the pixel array for each row of the pixel array, and outputs the readout as image data.
  • the image data correcting means corrects the image data by subtracting the correction data from the image data corresponding to each row of the pixel array
  • the image display means converts an image based on the image data to a continuous fluoroscopic image. Display as one frame.
  • the leak signal information is acquired from the pixel array of the X-ray flat panel detector, and the X-ray image data is corrected based on the leak signal information. Even if X-rays are incident, artifacts caused by the X-rays can be eliminated to obtain correct image data, and a correct image with no artifacts is displayed, so that the observer can easily read the captured image.
  • the first aspect of the present invention in the first aspect of the present invention, at least one row of the pixel array is shielded so that X-rays do not enter, thereby preventing generation of signal charges. And the leakage signal is sent to the The X-ray incident shielding line is designated and obtained from there.
  • the X-rays emitted from the X-ray source enter the X-ray flat panel detector, the X-rays are converted into signal charges by each detection element of the pixel array of the X-ray flat panel detector.
  • the read-out unit when reading out the signal of the image data constituting each frame of the continuous fluoroscopic image, the read-out unit performs the processing in the pixel row (mask) of the pixel array, which has been subjected to the processing for preventing the generation of the signal charges due to the X-ray irradiation. ), And outputs the leak signal information for at least one row.
  • the correction data based on the leak signal information is stored in the correction data calculating means.
  • the reading of the signal charges from the mask row may be performed for at least one row.1
  • the signal charges for a plurality of rows are read, and correction data is calculated and stored based on the leakage signal information for the plurality of rows. Is also good.
  • the readout unit also reads out signal charges (image data before correction) from other pixel rows of the pixel array and outputs them as image data.
  • the image data correction means subtracts the correction data from the image data corresponding to each pixel row of the pixel array to correct the image data
  • the image display means converts the image based on the image data into a continuous fluoroscopic image. Display as one frame.
  • leakage signal information is obtained. Since X-ray image data is acquired based on the acquired leak signal information, even if excessive X-rays due to X-rays are directly incident on a part of the pixel array, artifacts caused by the X-rays are eliminated and correct. Observation of the captured image is easy because the image data can be obtained and a correct image with no artifacts is displayed.
  • the leakage signal is obtained for at least two lines, and the average is obtained by averaging the leakage signals.
  • the apparatus further includes a correction data creating unit that converts the signal into a signal.
  • the X-ray incident shielding row is configured by applying a radiopaque agent to an upper part of the row to be shielded on the pixel array. Is done.
  • the line incident shielding row is configured by applying a light non-transmissive agent to the upper part of the row to be shielded on the pixel array.
  • the detecting elements each include a photodiode and a FET switch.
  • the X-ray emitted from the X-ray source is applied to the intersection of a matrix formed by a switch control line extending a large number in the row direction and a readout circuit line extending a large number in the column direction.
  • a Tetsupu provides a positive method capturing the X-ray image display to Toku ⁇ .
  • the leak signal in the thirteenth feature of the present invention, in the leak signal acquiring step, the leak signal is transmitted via the read line without instructing reading by the switch control line. And read it empty.
  • the leak signal obtaining step at least one of the detection elements is shielded so that X-rays do not enter.
  • the leakage signal is obtained from the X-ray shielded row in a state where the generation of the signal charge is prevented.
  • the leak signal obtaining step in the leak signal obtaining step, the leak signal is obtained for at least two rows, and the leak signal is averaged in the column correction data creating step. Into one row of correction data.
  • FIG. 1 is a block diagram illustrating an overall configuration of a radiographic image capturing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram illustrating a main configuration of an X-ray flat panel detector according to the first embodiment of the present invention.
  • FIG. 3 is a conceptual diagram showing the influence of superimposed leakage charge according to the first embodiment of the present invention.
  • FIG. 4 is a time chart showing processing in the radiographic image capturing apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a diagram showing a main configuration of an X-ray flat panel detector according to Embodiment 2 of the present invention.
  • FIG. 6 is a time chart showing processing in the radiographic image capturing apparatus according to Embodiment 2 of the present invention.
  • FIG. 7 is a plan view showing the relationship between the X-ray detector and the stop.
  • FIG. 1 is a block diagram illustrating an overall configuration of a radiation image capturing apparatus 10 to which the first embodiment is applied.
  • the radiation image capturing apparatus 10 includes an X-ray control circuit 12. X-rays are emitted from the X-ray source 16 under the control of the X-ray control circuit 12, and the X-rays transmitted through the subject 14 are detected by the X-ray flat panel detector 18, and the X-rays are controlled by the image data acquisition control unit 20. It is stored in the X-ray image memory 22 as line image data. The X-ray image data stored in the X-ray image memory 22 is subjected to the correction of the leakage signal by the image data correction unit 28 and stored in the image data memory 30 after correction, and the display control unit 32 It is displayed as an image on the display monitor 34 via. -The X-ray source 16 and the X-ray flat panel detector 18 may be movable relative to the subject 14 in accordance with the use state of the radiation image capturing apparatus 10.
  • the operation unit 36 is used to operate the radiation image capturing apparatus 10, and includes a button (not shown) and a switch. Is configured to be settable.
  • the image data acquisition control unit 20 acquires the image data output from the X-ray flat panel detector 18 and converts the image data into an X-ray It is stored in the image memory 22. Further, the image data acquisition control unit 20 acquires the leak signal information from the X-ray flat panel detector 18 and stores the leak signal information in the leak signal information memory 24 before the capture of the image data. This will be described later.
  • a column correction data calculation unit 26 is connected to the leak signal information memory 24, and the column correction data calculation unit 26 calculates column correction data from the leak signal information stored in the leak signal information memory 24, Remember.
  • the leak signal information memory 24 and the column correction data calculator 26 function as the correction data generator 23. This will be described later.
  • An image data correction unit 28 is connected to the column correction data calculation unit 26, and the image data correction unit 28 stores the column correction data stored in the column correction data calculation unit 26 in the X-ray image memory 22.
  • the leak signal is corrected by subtracting each line from the X-ray image data. With this correction, image data corrected for the leakage signal is obtained.
  • the display control unit 32 can control the X-ray image data before the correction of the leak signal stored in the X-ray image memory 22, the leak signal stored in the leak signal information memory 24, and the corrected image according to the settings of the operation unit 36.
  • An image based on the image data after the leakage signal correction stored in the data memory 30 can be displayed on the display monitor 34.
  • the radiation imaging apparatus 10 includes a CPU (not shown) in addition to the above, and the CPU controls processing of the radiation imaging apparatus 10.
  • FIG. 2 shows a main configuration of the X-ray flat panel detector 18.
  • the X-ray flat panel detector 18 is provided with a phosphor layer 42 that emits light when irradiated with X-rays.Under the phosphor layer 2, the phosphor layer 42 is emitted on a substrate 40.
  • a pixel array 44 in which detection elements for accumulating electric charges (signal charges) corresponding to light are arranged in a two-dimensional array is provided.
  • Each detection element of the pixel array 44 includes a photodiode 54 and an FET switch 56 as shown in the enlarged view. Each detection element is connected to a switch control line 46 provided for each row and a signal readout line 48 provided for each column, and the switch control line 46 of each row is connected to a read row selection circuit 50. The signal read lines 48 of each column are connected to a read circuit 52.
  • the readout row To read out the signal charge data of each detection element from the pixel array 44, select the readout row. In a state where only the switches of the pixel rows to be read out are turned on by the separate circuit 50 and the other switches are turned off, the signal charge of the pixels in each column included in the readout row is read out by the readout circuit 52. Read in order.
  • FIG. 3 is a conceptual diagram showing the effect of leakage charge superposition. As shown in FIG. 3 (a), when excessive X-rays are directly incident on a certain region in the pixel array 44 by X-rays, all columns passing through that region are affected by the X-rays, and As shown in (b), excessive signal charges are generated and superimposed on the signal charges in each column as leakage charges. By subtracting such leak signal information, that is, leak charge from the read signal charge, it is possible to perform leak signal correction on image data.
  • FIG. 4 shows a flowchart of the processing performed by the radiation image capturing apparatus 10 and a time chart showing the timing at which the processing of each item is executed in parallel.
  • X-rays are irradiated in S111.
  • X-ray irradiation is continued at least between S112 and S113.
  • the description is made so as to be continued during the sequence repetition of S112 to S117, but the present invention is not limited to this.
  • leak signal information is obtained. Prior to the acquisition of the signal charges, that is, the image data before correction, the signal charges q in the first to fourth rows are read in an empty state with all the switch control lines 46 of the pixel array 44 closed (OFF). As a result, leak signal information for four rows is obtained and stored in the leak signal information memory 24 of the correction data creating means 23.
  • the calculation and storage of the column correction data are performed in parallel with the acquisition of the following signal charge (image data before capture) S114.
  • the column correction data can be obtained by averaging the leak signal information of, for example, four rows stored in the leak signal information memory 24 and the column correction data calculating section 26 of the correction data creating means 23.
  • the obtained column correction data is stored in the column correction data calculation unit 26.
  • the switch control line 46 in the first row is opened (ON), and the signal charges in the first row are acquired and stored in the X-ray image memory 22. Then, switch control on the first line The line 46 is closed (OFF), the switch control line 46 in the second row is opened (ON), and the signal charge in the second row is acquired and stored.
  • the acquisition and storage of signal charges are repeated until the last row.
  • the column correction data is obtained by averaging the leakage signal information of four rows, but the column correction data may be calculated from the leakage signal information of at least one row.
  • S113 and S114 are arranged in parallel, as long as it is after S112 and before S115, the order may be either.
  • the synthesized noise after the above correction takes into account the increase in noise for the correction
  • N l
  • the combined noise is 1.4 ⁇ , which is an increase of about 3 dB.
  • N 4
  • IdB an increase in noise is hardly recognized, so N is preferably 4 or more.
  • the image data correction unit 28 before force correction is performed in S115.
  • the leak signal is corrected by subtracting the column correction data from the data of each row of the image data. This process is similarly performed for each row of the pixel array 44 as shown in FIG.
  • Steps S112 to S117 describe processing for one frame that forms a continuous perspective image.
  • the processing from S112 to S117 is performed after the Xs ray irradiation is started in S111, but when the S113 and S114 are completed, the X-ray irradiation is stopped. Good.
  • the signal charges are read in a state where all the switch control lines 46 of the X-ray flat panel detector 18 are closed (OFF). And obtains the leaked signal information by averaging the obtained leaked signal information.
  • the column correction data is subtracted from the data in each row of the X-ray image data to correct the leakage signal charge.
  • FIG. 5A shows a configuration of a main part of the X-ray flat panel detector 18 of the radiation image capturing apparatus 10 ′ according to the second embodiment.
  • the basic configuration of the X-ray flat panel detector 18 ' is the same as that of the X-ray flat panel detector 18 shown in FIG. A process for preventing generation of signal charges has been performed.
  • FIG. 5A two rows are masked.
  • This masking is performed by covering the portion of the phosphor layer 42 corresponding to the pixel row with an X-ray non-transmissive material 60 such as lead which does not transmit X-rays, as shown in FIG. 5 (b). .
  • the process of preventing the generation of signal charges by X-ray irradiation can be realized in addition to the above.
  • light that does not transmit light through some pixel rows so that light generated when X-rays enter the phosphor layer 42 does not enter the pixel array 44. It may be performed by covering with a non-transmissive material 62 and covering the remaining pixel rows with a light transmitting material 64 that transmits light.
  • a non-transmissive material 62 covering the remaining pixel rows with a light transmitting material 64 that transmits light.
  • colored plastic, glass, metal, or the like can be used as the light non-transmissive material 62
  • transparent plastic, glass, or the like can be used as the light transmissive material 64.
  • FIG. 6 shows a flowchart of the processing performed by the radiation image capturing apparatus 10 and a time chart showing the timing at which the processing of each item is executed, similarly to FIG.
  • a case will be described in which the first row and the second row of the pixel array 44 are masked, and leak signal information is acquired from these two rows.
  • X-ray irradiation is started for continuous X-ray fluoroscopy.
  • the column correction data is calculated and stored in parallel with the acquisition of the following signal charges.
  • the column correction data is obtained by the column correction data calculating unit 26 of the correction data creating unit 23 dividing the leakage signal information of two rows stored in the leakage signal information memory 24 by 2 and averaging the divided information.
  • the obtained column correction data is stored in the column correction data calculation unit 26. Note that division is not necessary if only one row of leaked signals is acquired.
  • signal charge that is, image data before capture is obtained.
  • the image data before correction is obtained from the unmasked pixel rows up to the third row ⁇ last row.
  • the column correction data is obtained by averaging the leakage signal information for two rows, but the column correction data is calculated according to the number of masked pixel rows in the pixel array 44. What is necessary is just to calculate from the leak signal information of at least one line.
  • S123 and S124 are arranged in parallel, the order may be changed as long as it is after S122 and before S125.
  • the processing of the correction and display of the X-ray image data is performed from S125 to S128 in the same manner as in the first embodiment, and thus the description is omitted.
  • the steps from S122 to S127 describe the processing for one frame that constitutes a continuous fluoroscopic image.In the continuous fluoroscopy performed using the radiation image capturing device 10 ′, after the X-ray irradiation is started in S121, X-ray irradiation is continued at least between S122 and S123.
  • leak signal information is acquired by reading out the signal charges of the masked row of the pixel array 44, and the acquired The leak charge is corrected by subtracting the column correction data obtained by averaging the leak signal information from the data of each row of the X-ray image data.
  • the acquisition of the leak signal information from the X-ray flat panel detector is described to be performed prior to the reading of the signal charge, but the acquisition of the leak signal information is performed after the reading of the signal charge. It may be performed.
  • the first embodiment after reading out the signal charges from the first row to the Kth row of the X-ray flat panel detector 18 and storing them as X-ray image data in the X-ray image memory 22, all the pixel rows are read out.
  • the leak signal information is obtained, the column correction data is calculated based on the leak signal information, and the X-ray image data is obtained. Can be captured.
  • the (K-1) th row of the X-ray flat panel detector 18 ′ and the Kth row are used as mask rows, and the mask rows are subjected to a process for preventing generation of signal charges due to X-ray irradiation.
  • the data of the (K-1) th row and the Kth row are obtained and used as leakage signal information, X-ray image data can be corrected by calculating column correction data based on the signal information.
  • the case where an image based on the corrected image data is displayed on the display monitor 34 is described.
  • an image based on the image data before correction and leakage signal information are displayed.
  • the image data may be compared with an image based on the corrected image data.
  • the case where the image data on which the leaked electric charge is corrected is displayed as an image on the display monitor 34 is described.
  • a recording device such as a magnetic disk may be used.
  • a continuous perspective image may be recorded as image data so that the image can be repeatedly displayed.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

X線平面検出器の画素アレイからの信号電荷の読み出しに先立って信号電荷の空読みをすることにより漏洩信号情報を取得し、放射線画像撮像装置で連続透視によるX線画像の撮像を行う場合に、X線平面検出器の画素の一部に直接X線によるハレーションのような過剰なX線が入射しても、それによって生じるアーチファクトを解消して正しいX線画像を取得し、観察者が撮影画像を容易に判読できるようにする。

Description

放射線画像撮像装置 技術分野
本発明は放射線画像撮像装置に係り、特に連続透視時の画像データに対して漏洩 信号情報に基づく補正を行う放射線画像撮像装置に関するものである。
背景技術
放射線画像撮像装置は、被検体に X線を照射し、透過 X線を平面検出器で検出 することで被検体の X線画像データを得ている書。 この X線平面検出器は、 X線画 像信号を信号電荷に変換する検出素子を二次元状に配列した画素アレイと、 各画 素列ごとに設けられた信号読み出し線と、 各検出素子ごとに設けられ、 各検出素 子からの信号読出し線を介した信号読出しを閉開するスイッチング手段とを有し、 該スィツチング手段を制御して画素ァレイの行ごとに該行に含まれる検出素子の 信号電荷を読み出すようになっている。
特開 2002-301053号に開示されるように、 このような X線平面検出器(FPD) で X線を連続照射して透視画像を取得する場合には、オフセット電圧がゆらぐた めに画像データが劣化することがある。 この問題を解消するために、 画像データ 読み出し後の X線が照射されない期間に X線平面検出器で校正用データを収集し てオフセット捕正データを作り、 透視画像をこれにより捕正して良好な画像を得 ていた。 ここでいう校正用データは、暗電流など X線照射がない状態でデータ読 み出しが終わった後にも検出器から継続して得られる出力である。
し力 し、 このような X線平面検出器に特徴的なオフセット電圧のゆらぎのほか にも、連続透視のように X線照射と信号読み出しが時間的に重なる X線画像の撮 像を行う場合には問題点がある。 従来の X線平面検出器で連続透視をすると、画 素ァレイを構成する検出素子には、 その素子内のデータ読み出しが行われていな い時でも X線が入射する。 検出素子に直接 X線などによる過剰な X線が入射す ると、 信号容量を超える過剰な信号電荷が蓄積される。 この信号電荷は、 例えば FET などのスィツチング手段の浮遊容量や信号読み出し線自体の容量に蓄積さ れると考えられる。 こうして蓄積された電荷は、 .信号読み出し線などを経由して 他の行に漏洩する。 すなわち、 画素アレイの各行の検出素子からの信号読み出し 時に、 このような電荷が蓄積されたある領域内の検出素子を通る信号読出し線を 経由して、 読み出される画素列に属する他の検出素子の信号に該漏洩電荷が重畳 される。 なお、 ここで直接 X線とは、 例えば被検体を通過しないために減衰して いない強い X線をいう。
これにより、 例えば画素アレイ中に、 図 7の X線絞り 70の影 71のように X 線が当たらな!/、部分があると、 漏洩電荷が重畳した列の部分とそうでなレ、部分と で見かけの信号量が異なり、 列方向を区分するようなアーチファクト (偽像) が 生じる。 このようなアーチファタトが生じると正しい X線画像が得られず、観察 者が撮影画像を判読することが困難になる。
本発明は、 上記事情を鑑みてなされたものであり、連続透視による X線画像の 撮像を行う場合に、 X線平面検出器の画素の一部に直接 X線による過剰な χ·線が 入射しても、それによつて生じるアーチファタトを解消することで正しい X線画 像を取得して、 X線観察者が撮影画像を容易に判読できる放射線画像撮像装置を 提供することを目的とする。 発明の開示
上記目的を達成するために、本願発明の第 1の特徴によれば、被検体に X線を 照射する X線源と、 前記 X線源から照射された X線を信号電荷に変換する検出 素子を二次元状に配列した画素ァレイと、 該画素ァレイの各行ごとに当該 に含 まれる検出素子からの画像信号電荷を X線照射中に読出し線を介して画像データ として出力する読出し部と、 前記検出素子に読出しを指示するためのスィツチ制 御線を含む読み出し行選別部を有する X線平面検出器と、上記画像データと漏洩 信号とを X線照射下で行毎に読み出し指示する画像データ取得制御手段で、上記 画像データの読み出しにあたっては読み出し対象行を上記読み出し行選別部経由 で指示して上記読出し部から取得させ、 また上記漏洩信号は上記検出器から上記 信号読出し線に漏洩する少なくとも 1行の信号として上記漏洩信号を上記読出し 部から取得させる手段と、 上記中 1行分の漏洩信号を上記各行毎の画像データか ら減算することにより、 補正画像データを作成する画像データ補正手段と、 上記 補正画像データに基づいて連続透視画像を表示する画像表示手段と、 を備えたこ とを特徴とする放射,線画像撮像装置を提供する。
本願発明の第 2の特徴によれば、 上記本願発明第 1の特徴において、 上記漏洩 信号は、 上記読み出し行選別部により読出しの指示をすることなく、 上記読出し 線を介して上記読み出し部で空読みして取得することを特徴とする。 この特徴で は、 X線源から照射された X線が X線平面検出器に入射すると、 X線平面検出器 の画素アレイの各検出素子によって X線が信号電荷に変換される。 その後、連続 透視画像を構成する各フレームの画像データを捕正するのに先立って、 読出.し部 が画素アレイの信号電荷を空読みし、 少なくとも 1行分の漏洩信号情報を出力す る。 この漏洩信号情報に基づく 1行分の補正データを補正データ記憶手段が記憶 する。
なお、 信号電荷の空読みは少なくとも 1行について行えばよいが、 複数行分の 信号電荷を空読みし、 当該複数行分の漏洩信号情報に基づいて補正データを算出 し、 記憶するようにしてもよい。
捕正データが記憶されると、 読出し部が画素アレイの各行毎に当該行に含まれ る検出素子の信号電荷 (補正前の画像データ) を読出し、 画像データとして出力 する。 この画像データに対し、 画像データ補正手段が画素アレイの各行に対応す る画像データから捕正データを減算して画像データの補正を行い、 画像表示手段 が上記画像データに基づく画像を連続透視画像の 1フレームとして表示する。 このように、 X線平面検出器の画素アレイから漏洩信号情報を取得し、 この漏 洩信号情報を基に X線画像データの補正を行うので、画素アレイの一部に直接 X 線による過剰な X線が入射しても、それによって生じるアーチファタトを解消し て正しい画像データを得ることができ、 またアーチファクトの解消された正しい 画像を表示するので、 観察者は撮影画像を容易に判読できる。
本願発明の第 3の特徴によれば、 上記本願発明第 1の特徴において、 上記画素 アレイのうち少なくとも 1行は、 X線が入射しないように遮蔽されることで信号 電荷の発生が防止されており、 上記漏洩信号は、 上記読み出し行選別部経由で該 X線入射遮蔽行を指示してそこから取得される。 この特徴では、 X線源から照射 された X線が X線平面検出器に入射すると、 X線平面検出器の画素ァレイの各検 出素子によって X線が信号電荷に変換される。 その後、連続透視画像の各フレー ムを構成する画像データの信号を読み出す際に、 読出し部が、 画素アレイのうち X線の照射による信号電荷の発生を防止する処理が施された画素行 (マスク行) の信号電荷を読出し、 少なくとも 1行分の漏洩信号情報を出力する。 この漏洩信 号情報に基づく補正データを、 補正データ算出手段が記憶する。
なお、 マスク行からの信号電荷の読出しは少なくとも 1行について行えばよい 1 複数行分の信号電荷を読出し、 当該複数行分の漏洩信号情報に基づいて補正 データを算出し、 記憶するようにしてもよい。
また、 読出し部は画素アレイの他の画素行からも信号電荷 (補正前の画像デー タ) を読出し、 画像データとして出力する。 この画像データに対し、 画像データ 補正手段が画素ァレイの各画素行に対応する画像データから補正データを減算し て画像データの補正を行い、 画像表示手段が上記画像データに基づく画像を連続 透視画像を構成する 1フレームとして表示する。
このように、 X線平面検出器の画素アレイのうち、 X線の照射による信号雩荷 の発生を防止する処理が施された画素行 (マスク行) の信号電荷を読み出すこと により漏洩信号情報を取得し、この漏洩信号情報を基に X線画像データの捕正を 行うので、画素アレイの一部に直接 X線による過剰な X線が入射しても、それに よって生じるアーチファクトを解消して正しい画像データを得ることができ、 ま たアーチファタトの解消された正しい画像を表示するので、 観察者は撮影画像を 容易に判読できる。
本願発明の第 4カゝら 6の特徴によれば、それぞれ上記本願発明第 1から 3の特 徴において、 上記漏洩信号は少なくとも 2行分得て、 これを平均化して上記 1行 分の漏洩信号とする補正データ作成手段をさらに備えた。
本願発明の第 7の特徴によれば、 上記本願発明の第 3の特徴において、 上記 X 線入射遮蔽行は、 上記画素ァレイ上の遮蔽すべき行の上部に放射線非透過剤を施 して構成される。
本願努明の第 8の特徴によれば、 上記本願発明の第 3の特徴において、 上記 X 線入射遮蔽行は、 上記画素ァレイ上の遮蔽すべき行の上部に光非透過剤を施して 構成される。
本願発明の第 9の特徴によれば、 上記本願発明の第 8の特徴にぉ 、て、 上記 X 線入射遮蔽行以外の行の上部に光透過材を施して構成される。 ' 本願発明の第 10から 12の特徴によれば、 それぞれ上記本願発明の第 1から 3 の特徴において、 上記検出素子は各々フォトダイオードと FETスィッチからな る。
本願発明の第 13の特徴によれば、 X線源から照射される X線を、 行方向に多 数伸長するスイツチ制御線と列方向に多数伸長する読み出し回路線とからなるマ トリッタスの交点に多数の検出素子を並べて構成した X線平面検出器で検出して、 これをもとに連続透視画像を作成するにおいて、 X線を照射開始するステップ、 少なくとも 1行分の漏洩信号を取得するステップ、前記 X線平面検出器から行ご とに信号電荷の取得を繰り返し捕正前データを取得するステップ、 上記漏洩信号 をもとに列補正データを作成するステツプ、 上記列捕正データを上記取得した補 正前データに対して補正するステップ、 上記補正されたデータを捕正後画像デー タメモリに記憶するステップ、 上記補正後画像データメモリに記憶された画像デ 一タを表示するステツプとからなることを特舉とする X線画像表示の捕正方法を 提供する。
本願発明の第 14の特徴によれば、上記本願発明の第 13の特徴において、上記 漏洩信号取得ステップでは、 上記スィッチ制御線による読出しの指示をすること なく、 上記漏洩信号を上記読出し線を介して空読みして取得する。
本願発明の第 15の特徴によれば、上記本願発明の第 13の特徴において上記漏 洩信号取得ステップでは、 上記検出素子中のうち少なくとも 1行には、 X線が入 射しないように遮蔽することで信号電荷の発生を防止しておいた状態で、 上記漏 洩信号を該 X線遮蔽行から取得する。 '
本願発明の第 16の特徴によれば、上記本願発明の第 13の特徴において、上記 漏洩信号取得ステップでは、 上記漏洩信号を少なくとも 2行分得て、 上記列補正 データ作成ステップでは漏洩信号を平均化して 1行分の捕正デ タとする。 図面の簡単な説明
図 1は、本発明の実施例 1に係る放射線画像撮像装置の全体構成を示すプロッ ク図である。 図 2は、 本発明の実施例 1に係り、 X線平面検出器の要部構成を示 す図である。 図 3は、 本発明の実施例 1に係り、 漏洩電荷重畳の影響を示す概念 図である。 図 4は、 本発明の実施例 1に係り、 放射線画像撮像装置での処理を示 すタイムチャートである。 図 5は、 本発明の実施例 2に係り、 X線平面検出器の 要部構成を示す図である。 図 6は、 本発明の実施例 2に係り、 放射線画像撮像装 置での処理を示すタイムチャートである。 図 7は、 X線検出器と絞りの関係を示 す平面図である。 発明を実施するための最良の形態
以下、 添付図面に従って本発明に係る放射線画像撮像装置の実施の形態につい て詳説する。'
[実施例 1]
図 1は、 第一の実施の形態が適用された放射線画像撮像装置 10の全体構成を 示すブロック図である。
放射線画像撮像装置 10は、 X線制御回路 12を備えている。 この X線制御回路 12の制御により X線源 16から X線が照射され、被検体 14を透過した X線が X 線平面検出器 18によって検出されて、画像データ取得制御部 20の制御により X 線画像データとして X線画像メモリ 22に記憶される。 上記 X線画像メモリ 22 に記憶された X線画像データは、 画像データ捕正部 28によつて漏洩信号分の捕 正が施されて捕正後画像データメモリ 30に記憶され、表示制御部 32を介して表 示モニタ 34に画像として表示される。 - なお、 X線源 16および X線平面検出器 18は、 放射線画像撮像装置 10の使用 状態に応じ、 被検体 14に対して相対的に移動できるようにしてもよい。
操作部 36は放射線画像撮像装置 10の操作を行うもので、図示しないボタンゃ スィッチを含み、 X線の照射 Z非照射、 列捕正データ算出時の漏洩信号情報取得 数、画像データの表示等が設定可能に構成されている。画像データ取得制御部 20 は、 X線平面検出器 18から出力される画像データを取得し、 画像データを X線 画像メモリ 22に記憶させる。 また、 画像データ取得制御部 20は、 画像データの 捕正に先立って、 X線平面検出器 18力 ら漏洩信号情報を取得し、 漏洩信号情報 メモリ 24に記憶させる。 この点は後述する。
漏洩信号情報メモリ 24には列補正データ算出部 26が接続されており、この列 補正データ算出部 26は、漏洩信号情報メモリ 24に記憶されている漏洩信号情報 力 ら列補正データを算出し、 記憶する。 漏洩信号情報メモリ 24 と列補正データ 算出部 26は補正データ作成手段 23として機能する。 この点は後述する。
列補正データ算出部 26には画像データ補正部 28が接続されており、画像デー タ捕正部 28は、列補正データ算出部 26に記憶されている列補正データを X線画 像メモリ 22に記憶されている X線画像データから行毎に減ずることにより、 漏 洩信号分の捕正を行う.。 この補正により、 漏洩信号分の補正の施された画像デー タが得られる。
表示制御部 32は、 操作部 36の設定により、 X線画像メモリ 22に記憶されて いる漏洩信号補正前の X線画像データ、 漏洩信号情報メモリ 24に記憶されてい る漏洩信号、 および補正後画像データメモリ 30に記憶されている漏洩信号補正 後の画像データに基づく画像を表示モニタ 34に表示できるように構成されてい る。
なお、放射線画像撮像装置 10は、上記の他、図示しない CPUを含み、該 CPU により放射線画像撮像装置 10の処理制御を行うようになっている。
図 2に、 X線平面検出器 18の要部構成を示す。 X線平面検出器 18には、 X線 が照射されると光を発する蛍光体層 42が設けられおり、 蛍光体層 2の下には、 基盤 40の上に、 蛍光体層 42が発した光に対応する電荷 (信号電荷) を蓄積する 検出素子を二次元アレイ状に配列した画素アレイ 44が設けられている。
画素アレイ 44の各検出素子は、拡大図に示すように、 フォトダイォード 54と FETスィッチ 56とから構成されている。 また、 各検出素子は行ごとに備えられ ているスィツチ制御線 46と列ごとに備えられている信号読出し線 48とに接続さ れており、各行のスィッチ制御線 46は読出し行選別回路 50に、各列の信号読出 し線 48は読み出し回路 52に接続されている。
画素アレイ 44力 ら各検出素子の信号電荷のデータを読出すには、 読出し行選 別回路 50により読出しの対象となる画素行のスィッチのみを ONとし、 それ以 外のスィツチを OFFとした状態で、読出し回路 52により、読み出し対象行に含 まれる各列の画素の信号電荷を順番に読み出す。
読出し行選別回路 50が全ての画素行のスィツチを OFFにした状態で読出し回 路 52が任意行のデータを読取ると (データの空読み) 、 漏洩信号情報が得られ る。 図 3は、 漏洩電荷重畳の影響を示す概念図である。 図 3 (a) に示すように、 画素アレイ 44中のある領域に直接 X線により過剰な X線が入射した場合、 その 領域を通過する全ての列が該 X線の影響を受け、 図 3 (b) に示すように過剰な 信号電荷が発生し漏洩電荷として各列の信号電荷に重畳されてしまう。 このよう な漏洩信号情報すなわち漏洩電荷を、読出された信号電荷から減じることにより、 画像データに対する漏洩信号補正を行うことができる。
次に、 上記実施の形態の作用を図 4に基づいて説明する。 図 4は放射線画像撮 像装置 10で行われる処理のフローチヤ一トと各項目の処理が実行されるタイミ ングを示したタイムチャートを並列表記したものである。 まず S111にて X線が 照射される。 X線の照射は少なくとも以下 S112と S113の間は継続される。 こ の図では以下 S112から S117のシークェンス繰り返しの間継続されるように表 記したが、 これに限られる訳ではない。
S112 において、 漏洩信号情報を取得する。 信号電荷すなわち補正前の画像デ ータの取得に先立ち、画素アレイ 44の全てのスィッチ制御線 46が閉 (OFF) の 状態で、 1行目力 ら 4行目の信号電荷 qを空読みする。 これにより 4行分の漏洩 信号情報を取得し、補正データ作成手段 23の漏洩信号情報メモリ 24に記憶させ る。
S113において、下記信号電荷 (捕正前の画像データ)の取得 S114と並行して、 列補正データの算出および記憶を行う。列捕正データは、補正データ作成手段 23 の列捕正データ算出部 26力、 漏洩信号情報メモリ 24に記憶されている例えば 4 行分の漏洩信号情報を平均化することにより得られる。得られた列補正データは、 列補正データ算出部 26·が記憶する。
S114において、 1行目のスィツチ制御線 46を開' (ON) にして、 1行目の信号 電荷を取得し X線画像メモリ 22に記憶させる。 その後、 1行目のスィツチ制御 線 46を閉 (OFF) にして 2行目のスィツチ制御線 46を開 (ON) にし、 2行目 の信号電荷を取得し記憶する。 以下、 同様に最終行まで、 信号電荷の取得および 記憶を繰り返す。
なお、 本実施の形態では 4行分の漏洩信号情報を平均化することにより列補正 データを得ているが、 列捕正データは少なくとも 1行以上の漏洩信号情報から算 出すればよい。 また、 S113と S114は並列すると記載したが、 S112の後でかつ S115の前であれば、 順序はどちらが先になつても構わない。
もともとのノイズの大きさを nとしたとき、空読する行の平均本数を Nとする と、 上記捕正後の合成ノイズは、 捕正分のノイズの増加を加味して、
合成ノイズ = {n2+ (n/Ni/2) 2} ι/2 + (1/N) } ゾ2
となるので、例えば N=lのとき、合成ノィズは 1.4ηとなり約 3dBの増加となる。 N=4のとき、 おおよそ l.lnとなり約 IdBの増加となる。 IdB程度の場合には ノイズの増加はほとんど認識できないので、 Nは 4以上が望ましい。
補正前画像データが取得されて X線画像メモリ 22に記憶され、 列捕正データ が算出されて列補正データ算出部 26に記憶されると、 S115にて、画像データ補 正部 28力 補正前画像データの各行のデータから列補正データを減ずることに より漏洩信号分の捕正を行う。 この処理は、 図 4に示すように、 画素アレイ 44 の各行に対して同様に行われる。
S116 にて、 上記処理の終了により後の画像データが得られ、 各行ごとに順次 捕正後画像データメモリ 30に記憶される。
S117にて、捕正後画像データメモリ 30に記憶された画像データは、表示制御 部 32の制御により表示モニタ 34に画像として表示される。
S112から S117までは、連続透視画像を構成する 1フレームについての処理を 説明したものである。 放射線画像撮像装置 10を用いて行われる連続透視では、 S111で Xs線照射が開始されてから S112から S117までの処理が行われるが、 S113と S114が完了すれば X線の照射を停止させてよい。
以上説明したように、 実施例 1によれば、 画像データの取得に先立って、 X線 平面検出器 18の全スィツチ制御線 46を閉(OFF) にした状態で信号電荷の空読 みをして漏洩信号情報を取得し、 この取得した漏洩信号情報を平均化して得られ た列補正データを X線画像データの各行のデータから減ずることにより、漏浪信 号電荷の捕正を行う。
したがって、 X線平面検出器 18の画素ァレイの一部に直接 X線による過剰な X線が入射しても、それによつて生じるアーチプアクトを解消して正しい X線画 像を取得可能であり、 また観察者は撮影画像を容易に判読できる。
[実施例 2]
次に、 本発明に係る放射線画像撮像装置の別の実施の形態について説明する。 なお、 実施例 2の放射線画像撮像装置 10'の全体構成は、 図 1に示される通りで 実施例 1のそれと同様なので省略する。
図 5 (a) に、 実施例 2に係わる放射線画像撮像装置 10'の X線平面検出器 18, の主要部の構成を示す。 X線平面検出器 18'の基本的な構成は、 図 2に示す X線 平面検出器 18と同様であるが、特に、画素アレイ 44の.うち一部の画素行に対し X線の照射による信号電荷の発生を防止する処理が施されている。 図 5 (a) では 2行がマスクされている。
このマスク処理は、 図 5 (b) に示すように、 蛍光体層 42の上記画素行に対応 する部分を、 X線を透過.させない鉛などの X線非透過材 60で覆うことにより行 われる。
なお、 X線の照射による信号電荷の発生防止処理は、 上記の他にも実現可能で ある。 例えば、 図 5 (c) に示すように、 X線が蛍光体層 42に入射することによ り発生する光が画素アレイ 44に入射しないよう、 一部の画素行を光を透過させ ない光非透過材 62で覆い、残りの画素行を光を透過させる光透過材 64で覆うこ とにより行うようにしてもよい。 ここで、 光非透過材 62 としては着色したブラ スチックやガラス、 金属などを用いることができ、 光透過材 64 としては透明な プラスチックやガラス等を用いることができる。
次に、 上記実施の形態の作用を図 6に基づいて説明する。 図 6は、 図 4と同様 に、 放射線画像撮像装置 10,で行われる処理のフローチャートと各項目の処理が 実行されるタイミングを示したタイムチャートを示すものである。本実施例では、 画素ァレイ 44の 1行目おょぴ 2行目がマスクされ、 この 2行から漏洩信号情報 を取得する場合について説明する。 S121で連続 X線透視のために X線照射が鬨始される。
S122で、 画素アレイ 44の全てのスィッチ制御線 46をまず閉 (OFF) の状態 とし、次に、 マスクをされた 1行目のスィッチ制御線 46を開 (ON) にして 1行 目の電荷を取得し、捕正データ作成手段 23の漏洩信号情報メモリ 24に記憶させ る。 その後、 1行目のスィッチ制御線 46を閉 (OFF) にして同じくマスクをさ れた 2行目のスイツチ制御線 46を開 (ON) にし、 2行目の電荷を取得して 1行 目と同様に漏洩信号情報メモリ 24に記憶させる。 このようにしてマスクをされ た 1行目および 2行目から読取つた電荷が漏洩信号情報となる。
漏洩信号情報の取得が終了すると、 S123で、下記信号電荷の取得と並行して、 列補正データの算出および記憶を行う。列補正データは、補正データ作成手段 23 の列補正データ算出部 26が、漏洩信号情報メモリ 24に記憶されている 2行分の 漏洩信号情報を 2で除算して平均化することにより得られる。 得られた列補正デ ータは、 列補正データ算出部 26で記憶する。 なお、 漏洩信号を 1行分だけ取得 する場合は除算は不要である。
S124では、信号電荷つまり捕正前の画像データの取得を行う。 つまり、 3行目 力 ^最終行までのマスクされていない画素行より補正前の画像データを取得する。 なお、本実施の形態では 2行分の漏洩信号情報を平均化することにより列補正 データを得ているが、 列補正データは、 画素アレイ 44のうちマスクされた画素 行の数に応じて、少なくとも 1行以上の漏洩信号情報から算出すればよい。また、 S123と S124は並列すると記載したが、 S122より後で S125より前であれば順 序が前後しても差し支えない。
実施例 1で記載したように 4行以上が理想的である。
なお、 X線画像データの補正おょぴ表示の処理は、 実施例 1と同様に S125か ら S128まで行われるので説明を省略する。以上 S122から S127までのステップ は連続透視画像を構成する 1フレームについての処理を説明したものであり、放 射線画像撮像 置 10'を用いて行われる連続透視では、 S121で X線照射開始後は、 少なくとも以下 S122と S123の間は X線照射が継続される。
本実施例が適用された放射線画像撮像装置 10'では、画素ァレイ 44のうちマス クされた行の信号電荷を読出すことにより'漏洩信号情報を取得し、 この取得した 漏洩信号情報を平均化して得られた列捕正データを X線画像データの各行のデー タから減ずることにより、 漏洩電荷の捕正を行う。
したがって、 実施例 1の場合と同様に、 X線平面検出器 18,の画素アレイの一 部に直接 X線による過剰な X線が入射しても、それによって生じるアーチファタ トを解消して正しい X線画像を取得でき、また観察者が撮影画像を容易に判読で さる。
実施例 1と 2においては、 X線平面検出器からの漏洩信号情報の取得を信号電 荷の読出しに先立って行うように記載しているが、 漏洩信号情報の取得は信号電 荷の読出し後に行うようにしてもよい。 例えば、 実施例 1においては、 X線平面 検出器 18の 1行目から K行目までの信号電荷を読み出して X線画像データとし て X線画像メモリ 22に記憶した後、 全ての画素行のスィツチを OFFにして 1 行目から 4行目までのデータを読み取る (空読みする) ことにより漏洩信号情報 を取得し、該漏洩信号情報に基づいて列補正データを算出して X線画像データを 捕正することができる。
また、 実施例 2においては、 X線平面検出器 18'の (K一 1) 行目おょぴ K行目 をマスク行として該マスク行に X線照射による信号電荷の発生防止処理を施し、 1行目から (K一 2)行目までについて信号電荷を読み出し X線画像データとして 記憶した後、 (K一 1)行目および K行目のデータを取得して漏洩信号情報とし、 該漏洩信号情報に基づいて列補正データを算出して X線画像データを補正するこ とができる。
なお、 実施例 1と 2においては、 表示モユタ 34に補正後の画像データに基づ く画像が表示される場合について説明しているが、 補正前の画像データに基づく 画像や漏洩信号情報を表示し、 補正後の画像データによる画像と比較できるよう にしてもよい。
また、 実施例 1と 2においては、漏洩電荷の捕正がなされた画像データの出力 として、 表示モニタ 34に画像として表示する場合について説明しているが、 こ の他磁気ディスク等の記録装置を設けて連続透視画像を画像データとして記録し、 くり返し画像表示できるようにしてもよい。

Claims

請 求 の 範 囲 被検体に X線を照射する X線源と、
前記 X線源から照射された X線を信号電荷に変換する検出素子を二 次元状に配列した画素ァレイと、該画素ァレイの各行ごとに当該行に含 まれる検出素子からの画像信号電荷を X線照射中に読出し線を介して 画像データとして出力する読出し部と、前記検出素子に読出しを指示す るためのスィツチ制御線を含む読み出し行選別部を有する X線平面検 出器と、
上記面像データと漏洩信号とを X線照射下で行毎に読み出し指示す る画像データ取得制御手段で、上記画像データの読み出しにあたっては 読み出し対象行を上記読み出し行選別部を経由し指示して上記読出し 部から取得させ、また上記漏洩信号は上記検出器から上記信号読出し線 に漏洩する少なくとも Γ行の信号として上記漏洩信号を上記読出し部 から取得させる手段と、
上記中 1行分の漏洩信号を上記各行毎の画像データから減算するこ とにより、 補正画像データを作成する画像データ捕正手段と、
上記補正画像データに基づいて連続透視画像を表示する画像表示手 段と、
を備えたことを特徴とする放射線画 ί象撮像装置。
上記漏洩信号は、上記読み出し行選別部により読出しの指示をするこ となく、上記読出し線を介して上記読み出し部で空読みして取得するこ とを特徴とする請求項 1に記載の放射線画像診断装置。
上記画素アレイのうち少なくとも 1行は、 X線が入射しないように遮 蔽されることで信号電荷の発生が防止されており、上記漏洩信号は、上 記読み出し行選別部経由で該 X線入射遮蔽行を指示してそこから取得 されることを特徴とする請求項 1に記載の放射線画像診断装置。
上記漏洩信号は少なくとも 2行分得て、 これを平均化して上記 1行 分の漏洩信号とする補正データ作成手段をさらに備えたことを特徴と する請求項 1に記載の放射線画像診断装置。
5. 上記漏洩信号は少なくとも 2行分得て、 これを平均化して上記 1行 分の漏洩信号とする捕正データ作成手段をさらに備えたことを特徴と する請求項 2に記載の放射線画像診断装置。
6. 上記漏洩信号は少なくとも 2行分得て、 これを平均化して上記 1行 分の漏洩信号とする捕正データ作成手段をさらに備えたことを特徴と する請求項 3に記載の放射線画像診断装置。
7. 上記 X線入射遮蔽行は、 上記画素アレイ上の遮蔽すべき行の上部に 放射線非透過剤を施して構成されることを特徴とする請求項 3 に記載 の放射線画像診断装置。
8. 上記 X線入射遮蔽行は、 上記画素アレイ上の遮蔽すべき行の上部に 光非透過剤を施して構成されることを特徴とする請求項 3 に記載の放
9. 上記 X線入射遮蔽行以外の行の上部に光透過材を施して構成される ことを特徴とする請求項 8に記載の放射線画像診断装置。
10. 上記検出素子は各々フォトダイォードと FETスィッチからなること を特徴とする精求項 1に記載の放射線画像診断装置。
11. 上記検出素子は各々フォトダイオードと FETスィッチからなること を特徴とする精求項 2に記載の放射線画像診断装置。
12. 上記検出素子は各々フォトダイォードと FETスィッチからなること を特徴とする精求項 3に記載の放射線画像診断装置。
13. X線源から照射される X線を、 行方向に多数伸長するスィツチ制御 線と列方向に多数伸長する読み出し回路線とからなるマトリックスの 交点に多数の検出素子を並べて構成した X線平面検出器で検出して、 これをもとに連続透視画像を作成するにおいて、
X線を照射開始するステップ、
少なくとも 1行分の漏洩信号を取得するステップ、
前記 X線平面検出器から行ごとに信号電荷の取得を繰り返し補正前 データを取得するステップ、 上記漏洩信号をもとに列捕正データを作成するステップ、
上記列補正データを上記取得した補正前データに対して補正するス テツプ、
上記捕正されたデータを補正後画像データメモリに記憶するステツ プ、
上記補正後画像データメモリに記憶された画像データを表示するス テツプ、
とからなることを特徴とする X線画像表示の補正方法。
14. 上記漏洩信号取得ステップでは、上記スィッチ制御 Hによる読出しの 指示をすることなく、上記漏洩信号を上記読出し線を介して空読みして 取得することを特徴とする請求項 13に記載の X線画像表示の捕正方法。
15. 上記漏洩信号取得ステップでは、上記検出素子中のうち少なくとも 1 行には、 X線が入射しないように遮蔽することで信号電荷の発生を防止 しておいた状態で、 上記漏洩信号を該 X線遮蔽行から取得することを 特徴とする請求項 13に記載の X線画像表示の捕正方法。
16. 上記漏洩信号取得ステップでは、上記漏洩信号を少なくとも 2行分得 て、上記列捕正データ作成ステップでは漏洩信号を平均化して 1行分の 捕正データとすることを特徴とする請求項 13に記載の X線画像表示の 捕正方法。
PCT/JP2004/000577 2003-01-24 2004-01-23 放射線画像撮像装置 WO2004064640A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-015641 2003-01-24
JP2003015641A JP4029337B2 (ja) 2003-01-24 2003-01-24 放射線画像撮像装置

Publications (1)

Publication Number Publication Date
WO2004064640A1 true WO2004064640A1 (ja) 2004-08-05

Family

ID=32767447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000577 WO2004064640A1 (ja) 2003-01-24 2004-01-23 放射線画像撮像装置

Country Status (2)

Country Link
JP (1) JP4029337B2 (ja)
WO (1) WO2004064640A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107997773A (zh) * 2016-11-02 2018-05-08 富士胶片株式会社 放射线图像摄影装置、放射线图像摄影方法及程序存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224282B2 (ja) * 2008-11-05 2013-07-03 富士フイルム株式会社 放射線画像取得装置およびそのプログラム
JP2012090032A (ja) * 2010-10-19 2012-05-10 Toshiba Corp ラインアーチファクト検出器及びその検出方法
WO2018079550A1 (ja) * 2016-10-25 2018-05-03 富士フイルム株式会社 放射線画像撮影装置、放射線画像撮影方法、及び放射線画像撮影プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962272A (ja) * 1982-10-01 1984-04-09 Sony Corp スミアリデユ−サ
JPH11205690A (ja) * 1998-01-13 1999-07-30 Fuji Photo Film Co Ltd デジタルスチルカメラ
JP2001061823A (ja) * 1999-08-24 2001-03-13 Konica Corp 放射線画像処理方法及び放射線画像処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962272A (ja) * 1982-10-01 1984-04-09 Sony Corp スミアリデユ−サ
JPH11205690A (ja) * 1998-01-13 1999-07-30 Fuji Photo Film Co Ltd デジタルスチルカメラ
JP2001061823A (ja) * 1999-08-24 2001-03-13 Konica Corp 放射線画像処理方法及び放射線画像処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107997773A (zh) * 2016-11-02 2018-05-08 富士胶片株式会社 放射线图像摄影装置、放射线图像摄影方法及程序存储介质

Also Published As

Publication number Publication date
JP4029337B2 (ja) 2008-01-09
JP2004261209A (ja) 2004-09-24

Similar Documents

Publication Publication Date Title
JP5776693B2 (ja) 放射線画像撮影装置および放射線画像撮影システム
US9931092B2 (en) Radiation imaging system and operation method thereof, and radiation image detecting device and storage medium storing operation program therefor
EP1139118B1 (en) Method and apparatus for imaging and storage medium
US6952464B2 (en) Radiation imaging apparatus, radiation imaging system, and radiation imaging method
JP3415348B2 (ja) X線撮像装置
CN105030261B (zh) 放射线成像装置和放射线成像系统
JP5816316B2 (ja) 放射線画像検出装置およびその作動方法、並びに放射線撮影装置
US7412031B2 (en) Radiation imaging apparatus, radiation imaging system and radiation imaging method
CN107005660B (zh) Dr检测器以及操作其的方法
EP1760793B1 (en) Energy selective X-ray radiation sensor
JP4155921B2 (ja) X線画像診断装置
JP4152748B2 (ja) 二重エネルギ撮像のためのディジタル検出器の方法
JP2004521721A (ja) 固体x線検出器においてラインアーチファクトを識別し、修正する方法及び装置
JP2003299641A (ja) 半導体x線検出器内の過剰ピクセル・ラグを有するピクセルを特定し補正する方法
KR20090087067A (ko) 촬상장치
JP2006267093A (ja) 放射線撮像装置、放射線撮像システム、及びその制御方法
US7792251B2 (en) Method for the correction of lag charge in a flat-panel X-ray detector
JPH09289985A (ja) X線画像表示方法及び装置
JP5844517B2 (ja) 画像アーティファクトを消去するシステム及び方法
US7496223B2 (en) Imaging device including optimized imaging correction
JP2020031961A (ja) 放射線画像撮影システム
WO2004064640A1 (ja) 放射線画像撮像装置
US5818900A (en) Image spot noise reduction employing rank order
JP2002250772A (ja) 撮像装置及び撮像方法
JP2011117930A (ja) 放射線画像形成装置及び放射線画像形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase