WO2004051098A1 - マルチピッチねじ及びマルチピッチナット並びにそれを用いた送りねじ装置並びにマルチピッチナット製造方法 - Google Patents

マルチピッチねじ及びマルチピッチナット並びにそれを用いた送りねじ装置並びにマルチピッチナット製造方法 Download PDF

Info

Publication number
WO2004051098A1
WO2004051098A1 PCT/JP2003/013508 JP0313508W WO2004051098A1 WO 2004051098 A1 WO2004051098 A1 WO 2004051098A1 JP 0313508 W JP0313508 W JP 0313508W WO 2004051098 A1 WO2004051098 A1 WO 2004051098A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw
thread
pitch
nut
section
Prior art date
Application number
PCT/JP2003/013508
Other languages
English (en)
French (fr)
Inventor
Hiroshi Fujii
Katsuhiro Sugiyama
Masashi Mitsukuchi
Kenichi Katayama
Yoshinori Moriguchi
Original Assignee
Kabushiki Kaisha Imasen Denki Seisakusho
Nagoya Industrial Science Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Imasen Denki Seisakusho, Nagoya Industrial Science Research Institute filed Critical Kabushiki Kaisha Imasen Denki Seisakusho
Priority to EP03812279A priority Critical patent/EP1566555B1/en
Priority to DE60319414T priority patent/DE60319414T2/de
Priority to US10/508,773 priority patent/US7246979B2/en
Priority to AU2003277511A priority patent/AU2003277511A1/en
Publication of WO2004051098A1 publication Critical patent/WO2004051098A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B33/00Features common to bolt and nut
    • F16B33/02Shape of thread; Special thread-forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B39/00Locking of screws, bolts or nuts
    • F16B39/22Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening
    • F16B39/28Locking of screws, bolts or nuts in which the locking takes place during screwing down or tightening by special members on, or shape of, the nut or bolt
    • F16B39/30Locking exclusively by special shape of the screw-thread
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/24Elements essential to such mechanisms, e.g. screws, nuts
    • F16H25/2454Brakes; Rotational locks

Definitions

  • the present invention relates to a screw and a nut, and in one aspect relates to a screw and a nut having a function of preventing loosening as a screw and a nut for fastening members, and two converts a rotary motion into a linear motion.
  • the present invention relates to a lead screw device having a self-locking function.
  • Screws and nuts are basic elements of machines, and various proposals have been made. One of them concerns the locking of screws.
  • Japanese Utility Model Laid-Open No. 58-99513 proposes a female or male screw thread having a corrugated shape. When the screw is screwed, the protruding part of the waveform is elastically deformed and strongly pressed in the axial direction, so that the screw is prevented from loosening due to vibration or the like.
  • Japanese Patent Application Laid-Open No. 6-333028 proposes a screw in which the screw thread alternately has a large pitch and a small pitch every pitch. By screwing with the nut of the standard pitch, a part of the flank of the screw thread is strongly pressed and deformed, thereby preventing the screw from loosening.
  • Hiroshi Fujii one of the inventors of the present invention, has announced a step lock bolt as shown in FIG.
  • the flank of the thread of the bolt is provided with fine step portions and inclined portions, and the bolt is prevented from loosening by plastic deformation of the thread or the mating member accompanying the screwing of the port.
  • Non-Patent Document 2 Transactions of the Japan Society of Mechanical Engineers, Volume C, Volume 62 (No. 597), p1963 — 1996, “Development of screw fasteners that are extremely difficult to loosen”, Hiroshi Fujii, et al., 1996.
  • Non-Patent Document 3 Transactions of the Japan Society of Mechanical Engineers, Volume C, Volume 62 (Vol. 596), p 1 5 2 7
  • Japanese Utility Model Registration No. 25777786 discloses an automobile power seat in which a screw is rotated by a motor with a worm reducer to feed a nut member. Locking when the motor is not driven is realized by self-locking of the lead screw itself or self-locking of the worm reducer.
  • Japanese Unexamined Patent Publication No. 5-2888253 describes the conventional lead screw devices in one of three categories for easy understanding.
  • the first group converts rotary motion into linear motion by sliding rotation of a nut such as a triangular screw or trapezoidal screw with a screw shaft.
  • power is transmitted by interposing a large number of steel balls in a thread groove like a ball screw.
  • a roller is pressed against both flanks of the thread of the large lead screw shaft, and the member supporting the mouth roller is used like a nut.
  • the above conventional screw and nut assume that the relative rotation of both is continuous.
  • the screws can be tightened at any relative rotation position of 360 ° for one rotation, and locking is possible. It is assumed that you can do it. While this is a desirable feature, it imposes a severe burden on the locking mechanism. For this reason, the deformed portion of the screw thread when the screw is tightened may not be elastically deformed but plastically deformed. This means that once a screw has been tightened, it cannot be re-tightened.
  • a first object of the present invention is to provide a screw and a nut that can be locked only discontinuously, but that can securely prevent loosening without applying excessive stress to the member.
  • the conventional device implicitly required its continuity and linearity in converting rotary motion into linear motion.
  • the conventional invention seeks higher accuracy or higher speed. Changing the idea here, some applications do not require continuity or linearity depending on the application of the lead screw device. For example, to adjust the seat position and seat height in an automobile power seat, it is generally not required to adjust the pitch at 1 mm or less. Also, the linearity of the linear movement with respect to the rotation angle of the driving motor is not required much differently. Nevertheless, since a feed screw device with continuity and linearity is used, the feed screw device requires extra functions than originally intended.
  • the second object of the present invention is to achieve comfortable high-speed feed without burdening the motor and gear pox, and even when the torque from the drive source is cut off, although not continuous.
  • An object of the present invention is to provide a feed screw device that operates with a self-locking function. Disclosure of the invention
  • the invention according to the first embodiment of the present invention is directed to a section in which the thread of the screw has a loose lead angle and a lead angle during one rotation along the helix.
  • This is a multi-pitch screw characterized in that it is formed so as to alternate with a steep section and alternately continue.
  • the effective lead of the entire screw is the average value of the section with a small lead angle and the section with a steep lead angle. Since the frictional force with the mating member in the section where the lead angle is small due to the axial force is dominant, the counterforce against the loosening of the screw is large. A strong anti-loosening effect is exerted by the frictional force of.
  • a multi-pitch screw characterized in that the lead angle in the section where the lead angle is gentle is zero (flat).
  • a multi-pitch screw characterized in that the lead angle in the section where the lead angle is steep is steeper than the self-mouth angle.
  • the multi-pitch screw may be a multi-pitch screw.
  • the inventions of the ninth to sixteenth embodiments which are the inventions of the nuts, will be described for easier understanding.
  • Screws and nuts are in a complementary relationship, and screw threads and nut threads can be interchanged as completely equivalent.
  • those that have an effective function and effect as a screw thread should have the same function and effect when applied to a nut thread.
  • the inventions of the ninth to twelve embodiments correspond to the inventions of the first to fourth embodiments, respectively.
  • the invention of the ninth embodiment is characterized in that the section of the loose lead angle and the section of the steep lead angle alternate while the thread of the internal thread makes one rotation along the helix line, and are alternately continuous.
  • a multi-pitch nut characterized in that it is formed so that
  • the effective lead of the entire nut is the average value of the section with a small lead angle and the section with a steep lead angle.
  • the counterforce to loosening of the nut is dominated by the frictional force with the opponent member in the section where the lead angle is small due to the axial force. It exerts a strong locking effect due to frictional force.
  • a multi-pitch nut characterized in that the lead angle in the section where the lead angle is gentle is zero (flat).
  • a multi-pitch nut characterized in that a lead angle in a section where the lead angle is steep is steeper than a self-mouth angle. can do.
  • the multi-pitch nut may be characterized in that the internal thread is a multi-start thread.
  • the width of the thread of the screw is equal to the width of the thread groove of the nut, in other words, if both sides of the flank are always in sliding contact with both sides of the flank of the mating side, as long as the thread is not plastically deformed, And nuts cannot be screwed together. Therefore, in these screws and nuts, the width of the thread groove is wider than the width of the thread, in other words, only the pressure side flank of each flank slides, and the play side flank is completely the other side. It is assumed that you are away from Frank.
  • the relative rotation position at which both parts are tightened and the other is in a stable state is not 360 ° every rotation, This is the only rotation position where the flank of the section with a loose lead angle and the flank of the section with a loose lead angle of the nut can make close contact.
  • This is a unique point that differs greatly from ordinary screw nuts. Focusing on the fact that the flanks in the section with a small lead angle are fastened by contacting each other, this means that it is sufficient if the thread of either the screw or the nut exists only in the section with a small lead angle. We come to the conclusion. This is because a section with a steep lead angle has only the function of guiding the other thread. Therefore, a multi-pitch nut lacking a part of the thread is presented as the invention of the thirteenth to sixteenth embodiments.
  • the thread of the female screw is present only in a part of the section during one rotation along the helix line and has a section where the thread is missing.
  • a multi-pitch nut characterized by the following.
  • the manufacture of the multi-pitch nut becomes easy. This is because tools can be taken in and out of the missing section.
  • the presence of the missing section means that only a part of the female thread is present, and it is only necessary to perform precise thread processing on only a part of the thread. Play.
  • a multi-pitch nut characterized in that the thread of the female screw is located only at a rotationally symmetric position about the axis of the screw. Can be.
  • the force from the screw thread acting on the screw is applied in a symmetrical state, and the effect is exerted that the force applied to the screw is not biased.
  • the force is necessarily biased, and a force that tilts the screw or nut acts. This is not desirable. Therefore, if the thread is in a symmetrical position, the acting force will be symmetrical.
  • the present invention assumes a multi-start thread and a multi-start nut.
  • each of the nut threads when applied to a double-start thread, if the nut threads are 180 ° apart from each other, each of the nut threads will abut the flank of the thread on a different thread of the screw In other words, it is easy to balance the power.
  • a three-start thread if the threads of the nut are located 120 ° apart from each other, each thread of the nut will come into contact with the flank of the thread of a different thread of the screw, Is easy to balance.
  • the thread of the female screw is formed only of a section where the lead angle is zero (flat), and the flank of the female thread is a male screw thread.
  • the lead angle of the female screw is in surface contact with the pressure side flank, one end of the female screw thread is in line contact with the position where the play side flank of the male screw is out of phase (positions with different rotation angles).
  • a multi-pitch nut characterized by being formed so as to have
  • the thread of the female screw has a shape in which a section where the lead angle is zero (flat) and a section where the lead angle is steep are continuous.
  • the phase at which the flank of the internal thread and the flank of the external thread come into contact with each other has a phase contact between the pressure side flank and the play side flank of the external thread at different positions (positions with different rotation angles).
  • a multi-pitch nut characterized in that it is formed so that
  • the end face of the internal thread is not rectangular, and the slope corresponding to the section where the lead angle is steep is shifted to the phase-shifted portion (either the advanced phase or the delayed phase, or both).
  • the thread of the screw and the thread of the nut have complementarity, and their functions can be interchanged with each other.
  • the aspect in which the thread of the nut is intermittent has been described as the thirteenth to sixteenth embodiments.
  • the thread of the nut is continuous, and the thread of the screw is It is theoretically possible to make the mountains intermittent. Therefore, fifth to eighth embodiments are provided as corresponding to the thirteenth to sixteenth embodiments.
  • a multi-pitch screw wherein the screw thread of the screw is only at a rotationally symmetric position about the axis of the screw.
  • the thread of the screw is formed only of the section where the lead angle is zero (flat), and the flank of the thread of the screw is the thread of the female screw.
  • the thread of the screw makes line contact with the position where the play side flank of the female screw is out of phase (position where the rotation angle is different).
  • the thread of the screw has a shape in which a section where the lead angle is zero (flat) and a section where the lead angle is steep are continuous,
  • the phase at which the flank of the thread of the screw and the flank of the thread of the female thread come into contact is in phase contact with the pressure side flank and the play side flank of the female thread at positions out of phase (positions with different rotation angles).
  • a multi-pitch screw characterized in that it is formed so that
  • a feed screw device can be configured.
  • both the threads of the multi-pitch screw and the threads of the multi-pitch nut must be continuous, or at least one of the threads must be continuous. Therefore, the multi-pitch screw having continuous threads and the multi-pitch nut having continuous threads and the multi-pitch nut having intermittent threads are described in the invention of the 17th embodiment.
  • a multi-pitch screw having intermittent threads and a multi-pitch nut having continuous threads are defined as the invention of the eighteenth embodiment. It is practically important that the multi-pitch nut has continuous threads and the multi-pitch nut has intermittent threads in the seventeenth embodiment.
  • a multi-pitch screw having a continuous thread and a multi-pitch nut having a continuous or intermittent thread can be screwed together, and a feed screw device can be configured.
  • the presence of a section with a steep lead angle increases the average lead, enabling high-speed and comfortable feeding, while enabling intermittent self-locking by abutting a section with a small lead angle. Therefore, it is particularly suitable as a feed screw device for a power seat of an automobile.
  • the play-side flank of the thread of the nut has a line play or a face contact to play the screw. Since the nuts are guided continuously by sliding in contact with the side flank, it is possible to smoothly feed the nuts without using additional biasing means such as a panel.
  • a feed screw device characterized by combining any one of the multi-pitch nuts described in any of the above embodiments can be provided.
  • This is a screw feeder in which screws and nuts are exchanged.
  • a multi-pitch nut manufacturing method for manufacturing a nut comprising: an element process of forming an element plate having a thread protrusion; and a lamination step of laminating and integrally fixing the element plates. . -In this way, a nut can be manufactured from a nut blank with a pre-threaded hole without complicated cutting of the hole. For example, first, as shown in FIG.
  • an element plate material having a thread protrusion corresponding to a part of a thread of a female screw protruding from the periphery of the hole toward the center of the hole is formed.
  • An element plate as shown in Fig. 15 is not a hole in a nut blank but a plate, and can be easily formed by pressing.
  • the element plate members are laminated via a spacer as shown in FIG. 10 and fixed integrally. As means for fixing, it is possible to tighten with a normal port nut, weld, or bond with an adhesive. By laminating in this manner, a multi-pitch nut having a multi-layered female screw thread that is merely laminated can be manufactured.
  • the element plate material can be manufactured basically by processing the plate material and can be manufactured by press working, and does not require complicated cutting such as grooving. It has an excellent effect of providing nuts.
  • FIG. 1 is a perspective view showing a multi-pitch screw according to a first embodiment.
  • FIG. 2 is a perspective view showing a multi-pitch nut screwed into the multi-pitch screw shown in FIG.
  • FIG. 3 is a front view conceptually showing only the threads of the multi-pitch nut shown in FIG.
  • FIG. 4 is a front view showing a state where the multi-pitch nut shown in FIG. 2 is screwed into the multi-pitch screw shown in FIG.
  • FIG. 5 is a perspective view showing a second multi-pitch nut.
  • FIG. 6 is a front view showing a multi-pitch feed screw screwed into the second multi-pitch nut.
  • FIG. 7 is a developed view showing the shape of the thread and leads of the multi-pitch feed screw expanded by 360 °.
  • FIG. 8 is a front view showing a state in which a multi-pitch feed screw is screwed with various multi-pitch nuts.
  • FIG. 9 is a perspective view showing an element plate of a fourth multi-pitch nut.
  • FIG. 10 is a perspective view showing a spacer as an element of the multi-pitch nut.
  • FIG. 11 is a developed view showing, in an unfolded manner, how a thread of a multi-pitch feed screw is screwed with a thread projection of a fourth multi-pitch nut.
  • FIG. 12 is a perspective view showing a multi-pitch screw having two threads.
  • FIG. 13 is a front view showing a multi-pitch double thread feed screw in which a multi-pitch double thread screw is applied to a feed screw.
  • FIG. 14 is a developed view showing the shape and lead of the two threads of the multi-pitch double feed screw expanded 360 °.
  • FIG. 15 is a perspective view showing a multi-pitch double-nut element plate to be screwed to the multi-pitch double-lead screw.
  • FIG. 16 is a developed view showing, in an exploded manner, a state of screwing of a multi-pitch double-row nut made of a multi-pitch double-row nut element plate and a multi-pitch double-row feed screw.
  • FIG. 17 is a perspective view showing a second multi-pitch double-nut element plate.
  • FIG. 18 is an exploded view showing, in an unfolded manner, how a multi-pitch double-row nut composed of a second multi-pitch double-row nut element plate and a multi-pitch double-row feed screw are screwed together.
  • FIG. 19 is a front view showing a conventional step lock port. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a perspective view showing a multi-pitch screw 10 according to the first embodiment.
  • a thread 12 is formed on the cylindrical shaft 11 along the helix.
  • the thread ridge 12 is a trapezoidal screw, and its flank has a section with a partially zero lead angle, that is, a section 1 2a having a flat lead angle and a section 12 having a steep lead angle alternately and continuously.
  • the flat section 12a is referred to as the flat section 12a
  • the steep section 12 is referred to as the oblique section 12b.
  • the trailing flank also has a flat portion 12c and an inclined portion 12d.
  • the flat part 1 2a and the inclined part 1 2b divide one rotation of the helix line into 16 equal parts,
  • the flat portion 12a and the inclined portion 12b alternate every 1/16 rotation, that is, every 22.5 °. Therefore, the average lead angle of the screw is half the slope of the slope 12b.
  • the width of the thread groove is abnormally large compared to the width of the screw thread 12. This is to make it possible to screw a nut having a continuous thread with a flat portion and a slant portion alternately described later.
  • the diameter of the shaft 11 is 13.7 mm
  • the width of the thread 12 is 4 mm
  • the height of the thread 12 is 3 mm
  • the width of the thread groove is 12 mm
  • the average lead of the screw 10 is 16 mm .
  • Such a multi-pitch screw 10 can be easily manufactured by rolling.
  • FIG. 2 is a perspective view showing a multi-pitch nut 20 screwed to the multi-pitch screw 10 shown in FIG.
  • the multi-pitch nut 20 is a square nut and has a screw hole 21 in the center. In the screw hole 21, a screw groove is carved, and a screw thread 22 of a female screw is formed.
  • FIG. 3 is a front view conceptually showing only the threads 22 of the multi-pitch nut 20 shown in FIG.
  • the thread 22 is a trapezoidal thread, and its flank has a part where the lead angle is partially zero, that is, a flat section 22a and a section 22b where the lead angle is steep are alternately continuous.
  • the flat section 22a is referred to as a flat section 22a
  • the steep section 22b is referred to as an oblique section 22b.
  • the trailing flank also has a flat portion 22c and an inclined portion 22d.
  • the flat part 22a and the inclined part 22b divide one rotation of the helix line into 16 equal parts, and the flat part 22a and the inclined part 22b alternate every 1/16 rotation, that is, every 22.5 °. Therefore, the average lead angle of the female screw is half the slope of the slope 22b.
  • the flat portions 22a, 22c, and beveled portions 22b, 22d of the female screw have shapes and dimensions corresponding to the flat portions 12a, 12c, and beveled portions 12b, 12d of the thread 12 of the multi-pitch screw 10.
  • the abstract outer diameter of the thread 22 of the nut 20 (specifically, the inner diameter of the thread groove) is ⁇ 20.3 mm, and the height of the thread 22 is 3 mm.
  • the width of the thread 22 is 9.4 mm, and the width of the thread groove is 6.6 mm.
  • the thickness (height in the figure) of the nut 20 is 38.6 mm.
  • the width (6.6 mm) of the thread groove is set larger than the width (4 mm) of the thread 12 of the male screw 10.
  • multi-pitch nut 20 and the multi-pitch nut 20 having a flat portion can be screwed together.
  • a multi-pitch nut 20 can be created by subjecting a nut blank with a prepared hole to grooving cutting by numerical control.
  • the rank may be halved in the axial direction, and the halved nut blank may be subjected to a process such as press working to form a thread 22 and then both may be joined.
  • FIG. 4 is a front view showing a state where the multi-pitch nut 20 shown in FIG. 2 is screwed into the multi-pitch screw 10 shown in FIG. Assume that the multi-pitch screw 10 has a head on the left side of the drawing.
  • the multi-pitch nut 20 is drawn as a conceptual extract of only the screw thread 22 shown in FIG. Fig. 4 (A) shows a state in which the threads 12 of the multi-pitch screw 10 and the threads 22 of the multi-pitch nut 20 are simply screwed together and do not exert any force on each other. I have. In this state, the leading flank and the trailing flank have a gap between the flank of the thread 12 of the multi-pitch screw 10 and the flank of the thread 22 of the multi-pitch nut 20.
  • FIG. 4 (B) shows a case where an urging force is applied to the multi-pitch nut 20 in the direction of arrow F1 by a spring means (not shown).
  • the pressure side flank of the thread 22 of the multi-pitch nut 20 is in close contact with the pressure side flank of the thread 12 of the multi-pitch screw 10, and the free side flank of the two threads 1 2 and 2 2 Between them, a gap L shown in the figure is generated.
  • a strong force acts on the multi-pitch nut 20 in the direction of the axial arrow F1.
  • the contact between the oblique portions of the pressure flank generates a component force for rotating the multi-pitch screw 10.
  • the multi-pitch screw 10 when the multi-pitch screw 10 is rotated counterclockwise, it returns to the state shown in Fig. 4 ( ⁇ ). However, among the pressure side flanks of each thread 1 2 and 2 2, the contacting flat portion and the inclined portion are shifted by one, and the multi-pitch nut 20 is in the axial direction by the axial distance of the adjacent flat portion across the inclined portion. You have moved right. That is, the multi-pitch nut 20 is not continuously fed according to the rotation of the multi-pitch screw 10, but is sent stepwise only when the multi-pitch nut 20 is at the rotational position shown in FIG. In other words, as the multi-pitch screw 10 rotates, the multi-pitch nut 20 intermittently repeats feeding and stopping.
  • the multi-pitch nut 20 is sent stepwise according to the rotation of the multi-pitch screw 10, but in many cases this is not a problem when used as a feed screw device.
  • the multi-pitch screw 10 and the multi-pitch nut 2 Although the description has been given of the feed screw device composed of 0, a fastening device composed of the multi-pitch screw 10 and the multi-pitch nut 20 can be assumed as the second embodiment. In this case, a strong force in the direction shown by the arrow F1 in FIG. 4 (B) is applied to the multi-pitch nut 20 due to the reaction force due to the elastic deformation of the object to be fastened. For this reason, it cannot exist stably in the state of FIG. 4 (E) or FIG. 4 (D) where only the flank of the flank abuts, and FIG. 4 (B) and FIG. The stable state can be achieved only when the flat part of the flank is strongly pressed.
  • the multi-pitch screw 10 and the multi-pitch nut 20 with the average lead reduced in this way also have an application as an adjusting screw.
  • a multi-pitch screw 10 and a multi-pitch nut 20 having a small average lead may be used, the multi-pitch nut 20 may be fixed to the device, and the multi-pitch screw 10 may be screwed.
  • the thread 22 of the internal thread of the multi-pitch nut 20 is continuous along the helix. For this reason, as shown in Fig.
  • the thread of the nut may be discontinuous, leaving only the flat part. That is, the thread of the female screw may be present only in a part of the section during one rotation along the helix line, and may have a section where the thread is missing. Furthermore, if the strength of the thread allows, even if all eight flat parts that are obtained by dividing one turn of the helical wire by 16 do not exist, some of them only have to remain. . It is desirable that the remaining portion of the thread be located only at a rotationally symmetric position about the axis of the screw from the viewpoint of balancing the forces applied to the multi-pitch nut.
  • FIG. 5 is a perspective view showing such a second multi-pitch nut 30.
  • the second multi-pitch nut 30 is a square nut having a screw hole 31 in the center.
  • Five thread protrusions 32 are formed in the screw hole 31.
  • the thread protrusion 32 has such a shape as to leave only a part of the flat portion 22a, 22c of the thread of the female screw shown in FIG.
  • Three thread protrusions 32 are formed on the left side of the drawing and two on the right side, and the left and right thread protrusions 32 are formed at rotationally symmetric positions 180 ° apart from each other about the axis of the screw.
  • Such a multi-pitch nut 30 can be manufactured by cutting a ring-shaped groove in the prepared hole of the screw hole 31 and then cutting the inner peripheral surface along the axis with an appropriate width. it can.
  • FIG. 6 is a front view showing a multi-pitch feed screw 40 screwed to the second multi-pitch nut 30.
  • the multi-pitch feed screw 40 is used for a power sheet of an automobile.
  • the multi-pitch feed screw 40 is a single-pitch multi-pitch screw with a thread 42 lead of 16 mm and a stroke of about 200 mm.
  • the outer diameter of the multi-pitch feed screw 40 (the outer diameter of the thread 42) is ⁇ 20 mm, the effective diameter is ⁇ 18 mm, and the diameter of the shaft part 41 is ⁇ 13.7 mm.
  • FIG. 7 is a developed view showing the shape and lead of the thread 42 of the multi-pitch feed screw 40 expanded by 360 °.
  • the multi-pitch feed screw 40 is a trapezoidal screw with a root diameter of 13.7 mm, an effective diameter of 18.0 mm, and an outer diameter of 20.0 mm.
  • the pitch (lead) of the thread 42 is 16 mm.
  • the thread 42 divides the circumference into 16 equal parts, and the lead angle of the thread 42 is zero, that is, a flat section 42 a (hereinafter referred to as a flat section 42 a) and a steep slope close to 30 °.
  • the section 4 2b (hereinafter referred to as the slope 4 2b) is formed alternately. Therefore, the thread 42 passes one pitch in 8 steps.
  • FIG. 8 is a front view showing a state in which the multi-pitch feed screw 40 and various multi-pitch nuts are screwed together. All multi-pitch nuts have female threads This is a multi-pitch nut that exists only in some sections and has a section with missing threads. Each multi-pitch nut is not shown in its entirety, and only the intermittent thread protrusion is extracted and drawn as shown in FIG. 3 with respect to FIG.
  • FIG. 8 (D) shows the engagement of the second multi-pitch nut 30 shown in FIG. 5 and the multi-pitch feed screw 40 shown in FIG.
  • the thread projection 32 of the second multi-pitch nut 30 has a flat portion 32 a of the leading flank that is longer than the flat portion 42 of the thread 42 of the multi-pitch feed screw 40 and is lower in the drawing.
  • the length of the flat portion 42 a and the inclined portion 42 b of the multi-pitch feed screw 40 are combined. In other words, it has a length of 2-16 of the circumference.
  • the thickness of the thread protrusion 32 is also increased, and when the flat portion 32a of the leading flank is in sliding contact with the flat portion 42a of the thread 42, the flat portion 32c of the trailing flank is formed.
  • the thickness is in contact with the flat part 42 c of the screw thread 42 that is out of phase.
  • the thread protrusion 32 has such a rectangular shape. For this reason, in the rotation position where one of the flat portions 3 2 a of the thread protrusion 3 2 is in sliding contact with the leading flat portion 4 2 a of the multi-pitch feed screw 40, the thread protrusion 3 2 A part of the other flat portion 32c of the slidably contacts the flat portion 42c on the trailing side of the multipitch feed screw 40. In other words, at the rotational position where the second multi-pitch nut 30 stops in the axial direction, the second multi-pitch nut 30 is guided by surface contact.
  • FIG. 8 (E) is a front view showing a state where the third multi-pitch nut 50 and the multi-pitch feed screw 40 are screwed together.
  • nine thread protrusions 52 of the multi-pitch nut 50 are arranged every 90 ° along the helix line.
  • the shape of each thread projection 52 is the same as the thread projection 32 of the second multi-pitch nut 30 described above. Therefore, the operation is the same as that described in FIG. 8 (D).
  • the flat portions 52a and 52c of the thread protrusion 52 are in sliding contact with the flat portions 42a and 42c of the thread 42, respectively. In this embodiment, the number of thread protrusions 52 is large. Accordingly, there is an advantage that the strength and durability of the multi-pitch nut 50 are improved.
  • FIG. 8 (C) is a front view showing a state where the fourth multi-pitch nut 60 and the multi-pitch feed screw 40 are screwed together.
  • the length of the thread projection 62 of the multi-pitch nut 60 is extended to the length of 4 16 rotations of the circumference.
  • Each of the thread protrusions 6 2 has a flat portion 6 2 a, 62 c with a length of 3 16 turns and an inclined portion 6 2 b with a length of 1 16 turns, both for the leading flank and the trailing flank. It has 6 2d.
  • the oblique portions 62b and 62d have lead angles corresponding to the oblique portions 42b and 42d of the multi-pitch feed screw 40, of course.
  • a part of the other flat part 62 c of the thread protrusion 62 comes into sliding contact with the flat part 42 c following the multi-pitch feed screw 40. That is, at the rotation position where the fourth multi-pitch nut 60 stops in the direction of the force axis, the fourth multi-pitch nut 60 is devised by surface contact.
  • the multi-pitch nut 60 has a surface contact with the thread protrusion 62 of the multi-pitch nut 60 and the thread 42 of the multi-pitch feed screw 40 at most of the rotation position, so it has excellent mechanical strength and durability ⁇
  • the advantage is that
  • FIG. 8 (B) is a front view showing a state where the fifth multi-pitch nut 70 and the multi-pitch feed screw 40 are screwed together.
  • the length of the thread projection 72 of the multi-pitch nut 70 is extended to the length of 6/16 rotation of the circumference.
  • the ends of the two thread projections 72 on the other side partially show the face.
  • Each of the thread projections 72 has a flat portion with a length of 4 to 16 turns for both the leading flank and the trailing flank. It has 72b and 72d.
  • the oblique portions 72b and 72d have lead angles corresponding to the oblique portions 42b and 42d of the multi-pitch screw 40, of course. With such a shape, since the volume of each thread protrusion 72 becomes large, there is an advantage that the mechanical strength and the durability are excellent.
  • FIG. 8 (A) is a front view showing a state in which a sixth multi-pitch nut 80 and a multi-pitch feed screw 40 are screwed together.
  • the thread protrusion 82 of the multi-pitch nut 80 has a shape in which only a portion necessary for sliding contact with the thread 42 of the multi-pitch feed screw 40 is left, and the remaining portion is cut off.
  • Each of the thread protrusions 8 2 has a flat portion 8 2 a having a length of 1/16 turn on the leading flank and an inclined portion 8 2 b having a length of 1 16 turns which is advanced by one phase. I have.
  • the thread protrusion 82 has a diamond shape.
  • the oblique portions 8 2 b and 8 2 d are, of course, those having a lead angle corresponding to the oblique portions 42 b and 42 d of the multi-pitch feed screw 40. With such a shape, a thread protrusion 82 that allows the thread 42 of the multi-pitch feed screw 40 to make surface contact without any loss can be realized with a minimum volume. Therefore, there is an advantage that a large space is provided around the thread protrusion 82, and the work is easy.
  • FIG. 9 is a perspective view showing the element plate 65 of the fourth multi-pitch nut 60 shown in FIG. 8 (C).
  • the element plate material 65 a hole corresponding to the screw hole 61 is formed in the center of a square plate material of a predetermined thickness, and one thread protrusion 62 is formed at a part of the periphery of the screw hole 61. Have been.
  • the thread projection 62 has a flat portion 62 a having a length of 3 turns 16 and an inclined portion 62 b having a length of 16 turns.
  • Two holes 66 are formed on the sides of the element plate 65. Such an element plate 65 can be easily and accurately manufactured by pressing the plate.
  • FIG. 10 is a perspective view showing a spacer 67 which is an element of the multi-pitch nut.
  • a hole 68 corresponding to the screw hole 61 is formed in the center of a square plate material having a predetermined thickness, and two holes 69 are formed on the side.
  • Such spacers 67 can be easily and accurately manufactured by pressing a plate material. Then, five pieces of the above-mentioned element plates 65 and four spacers 67 are provided, and the spacers 67 are sandwiched between the layers while inverting the position of the element plates 65 by 180 °.
  • the fourth multi-pitch nut 60 is completed by inserting a port through the two holes 66 and 69 with a nut.
  • the respective element materials 65 and the spacer 67 may be fixed.
  • FIG. 11 is a developed view showing, in an unfolded manner, a screwing state between the thread 42 of the multi-pitch feed screw 40 and the thread projection 62 of the fourth multi-pitch nut 60 manufactured as described above.
  • the pitch of the thread 42 of the multi-pitch feed screw 40 is 16 mm. Since the flank of the thread 42 is a trapezoidal screw, it rotates once at the effective diameter. At the flank on the leading side of the thread 42, the flat portion 42a and the inclined portion 42b are continuous with alternating power. Similarly, in the trailing flank, the flat portion 42c and the inclined portion 42d are alternately continuous.
  • FIG. 12 is a perspective view showing a multi-pitch screw 90 having two threads.
  • the multi-pitch double thread 90 has a shaft portion 91, a first screw thread 92 and a second screw thread 93 formed around the shaft portion 91 in a spiral shape.
  • the first thread 92 and the second thread 93 are 180 degrees out of phase.
  • the flat portion 92a and the inclined portion 92b are alternately continuous with the leading flank of the first thread 92, and the flat portion 92c and the inclined portion 92d are alternately continuous with the trailing flank.
  • a flat portion 93a and an inclined portion 93b are alternately continuous with the leading flank of the second thread 93, and the flat portion 93c and the inclined portion 93d are alternately continuous with the delayed flank.
  • the flat portions 92a and 92c and the slant portions 92b and 92d of the first thread 92 are respectively flat portions 93a and 93a of the second thread 93.
  • FIG. 13 is a front view showing a multi-pitch double-start screw 100 in which the multi-pitch double-start screw is applied to a feed screw.
  • the multi-pitch double feed screw 100 is used for an automobile power seat.
  • the multi-pitch double feed screw 100 is a multi-pitch double thread having two threads 102 and 103. Each thread 102, 103 lead is 16mm, pitch is 8mm, and stroke is about 200mm.
  • the outer diameter of 103 is ⁇ 20 mm, the effective diameter is 18 mm, and the diameter of the shaft 101 is 13.7 mm.
  • FIG. 14 is a developed view showing the shapes and leads of the two threads 102 and 103 of the multi-pitch two-lead screw 100 by expanding the lead 360 °.
  • Multi-pitch double feed screw 100 is a trapezoidal screw with a root diameter of 13.7 mm, an effective diameter of 18.0 mm, and an outer diameter of 20.0 mm.
  • the lead of the two threads 102 and 103 is 16 mm, and the pitch of the threads 102 and 103 is 8 mm.
  • Article 2 Are 180 ° out of phase.
  • the first thread 102 divides the circumference into 16 equal parts, and the lead angle of the first thread 102 is zero, that is, a flat section 102 a (hereinafter, flat section 102 a ) And the section 102b (hereafter referred to as the slope 102b) that forms a steep slope close to 30 ° come alternately.
  • the circumference of the second thread 103 is also divided into 16 equal parts, and the lead angle of the first thread 103 is zero, that is, a flat section 103 a (hereinafter referred to as a flat part 103).
  • Section 3a) and section 103b (hereafter referred to as slanted section 103b), which forms a steep slope close to 30 °, come alternately.
  • FIG. 15 is a perspective view showing a multi-pitch double-nut element plate 110 that is screwed into such a multi-pitch double-thread feed screw 100.
  • a hole corresponding to the screw hole 111 is formed in the center of a square plate material of a predetermined thickness, and 180 ° around the periphery of the screw hole 111
  • Two thread protrusions 1 1 2 and 1 1 3 are formed at opposing positions.
  • Each of the two thread protrusions 1 1 2 and 1 13 has a length of 2 16 turns, and flat portions 1 12 a and 1 13 a formed of trapezoidal flanks are formed.
  • Two holes 1 15 are formed on the sides of the multi-pitch double-nut element plate 1 10.
  • Such a multi-pitch double-nut element plate 110 can be easily and accurately manufactured by pressing the plate.
  • Such a multi-pitch double nut element plate 110 may be combined with the spacer 67 shown in FIG. 10 to laminate a plurality of sheets to form a multi-pitch double nut.
  • the element plate material 1 10 may be used as a multi-pitch double-row nut alone.
  • the two holes 1 15 are used as holes for positioning pins when laminating or as holes for fastening ports.
  • Fig. 16 is an exploded view showing how the multi-pitch double-nut nut composed of the above-mentioned multi-pitch double-nut element 110 and the multi-pitch double-thread feed screw 100 are screwed together. It is.
  • the pitch of the multi-pitch double-start feed screw 100 with a thread of 102 and 103 is 8 mm, and the lead is 16 mm. Since the flank of each thread 102 and 103 is a trapezoidal thread, one turn is developed at the effective diameter. Since it is a double thread, the first thread 102 and the second thread 103 appear alternately in the drawing height direction.
  • the flat portion 102a and the inclined portion 102b alternate and continue in the leading flank, and the flattened portion 102c and the inclined portion 102d at the trailing flank.
  • the leading screw of the second thread 103 In the tank the flat portion 103a and the oblique portion 103b are alternately continuous, and the flat portion 103c and the oblique portion 103d are alternately continuous in the trailing rank.
  • the two thread protrusions 1 12 and 1 13 of the multi-pitch double-nut element plate 1 10 are arranged at the same height and 180 ° out of phase on the drawing.
  • the two thread protrusions 1 12 and 1 13 have a rectangular shape with a length of 2Z16 turns.
  • the first thread protrusion 1 12 has a leading flat portion 1 12 a in surface contact with the leading flat portion 103 a of the second screw thread 103, and a trailing flat portion 1 12 c has the leading flat portion 103 a. It is guided in surface contact with the flat portion 102c on the trailing side of the first thread 102.
  • the edges of the flat portions 112a and 112c of the first thread protrusion 112 are guided in line contact with the inclined portions 102d and 103b, respectively.
  • the leading flat portion 113a is in surface contact with the leading flat portion 102a of the first thread 102
  • the trailing flat portion 113c is the second flat portion 113c.
  • the edges of the flat portions 113a and 113c of the second thread protrusion 113 are guided in line contact with the inclined portions 102b and 103d, respectively.
  • this embodiment has an advantage that the multi-pitch two-nut element plate 110 is guided without play.
  • the two thread projections 1 12 and 113 at the same height and 180 ° offset and symmetrically positioned receive the force from the multi-pitch double feed screw 100, which has the advantage of good balance.
  • FIG. 17 is a perspective view showing a second multi-pitch two-row nut element plate 120.
  • a hole corresponding to the screw hole 121 is formed in the center of a square plate having a predetermined thickness, and is located at a position 180 ° opposite to the periphery of the screw hole 121.
  • Two thread projections 122 and 123 are formed.
  • Each of the two thread protrusions 122, 123 has a length of 416 turns, and has flat portions 122a, 123a formed of trapezoidal flanks and inclined portions 122b, 123b.
  • flat portions 122c and 123c and inclined portions 122d and 123d are also formed on the back side.
  • Two holes 125 are formed in the side of the second multi-pitch two-nut element plate 120.
  • Such a second multi-pitch double-nut element plate 120 can be easily and accurately manufactured by pressing the plate.
  • Such a multi-pitch double nut element plate 120 may be combined with the spacer 67 shown in FIG. 10 to form a multi-pitch double nut element by laminating a plurality of sheets. It may be a multi-pitch double-row nut alone.
  • the two holes 125 are used as holes for positioning pins when laminating or as holes for fastening bolts Can be
  • Fig. 18 is an unfolded view showing how the multi-pitch double-nut nut consisting of the second multi-pitch double-nut nut element 120 and the multi-pitch double-nut feed screw 100 are screwed together.
  • the two thread projections 122, 123 of the second multi-pitch two-nut element plate 120 are arranged at the same height and 180 ° out of phase in the drawing.
  • the two thread projections 1 2 2 and 1 2 3 are approximately parallelograms with a length of 4 to 16 turns.
  • the first thread protrusion 1 2 2 has a leading flat portion 1 2 2 a in surface contact with a leading flat portion 103 a of the second thread 103, and a trailing flat portion.
  • the part 122 c is guided in surface contact with the flat part 102 c on the trailing side of the first thread 102.
  • the phase-lag slope 1 2 2 b of the first thread projection 1 2 2 is guided by the slope 110 3 b of the second thread 103 and the first thread projection 1 2 2
  • the phase-advancing slope 122d of the first thread 102 is guided by the slope 102d of the first thread 102, and the slope is also guided by surface contact.
  • the second thread protrusion 1 2 3 has a leading flat portion 1 2 3 a in surface contact with the leading flat portion 10 2 a of the first thread 10 2,
  • the flat portion 123c is guided in surface contact with the flat portion 103c on the trailing side of the second thread 103.
  • the phase lag slope 1 2 3 b of the second thread projection 1 2 3 is guided by the slope 110 2 b of the first thread 102, and the second thread projection 1 2 3
  • the phase leading slope 123d of the second thread 103 is guided by the slope 103d of the second thread 103, and the slope is also guided by surface contact.
  • this embodiment is advantageous in that the second multi-pitch double-row nut element plate member 120 is guided without any loss, and furthermore, it is located at the same height and at a 180 ° offset symmetrical position.
  • the two multi-pitch double-nut nut element plate 1 in addition to the advantage of good balance because it receives the force from the multi-pitch double feed screw 100 with two thread protrusions 1 2 2 and 1 2 3 20 thread protrusions 1 2 2 and 1 2 3 are guided by multi-pitch double feed screw 1 0 0 1 and 1 0 3 thread by surface contact, so high mechanical strength and wear Also has the advantage of being strong.
  • the flat section is described as a flat section where the lead angle is zero.
  • the lead angle in this section is not set to zero and has a gentler gradient than the self-lock angle. It is clear that the same effect can be obtained for the section.
  • the present invention can provide a screw and a nut that can be securely locked in a stepwise manner without applying excessive stress to members, although the lock can be applied only discontinuously. There is an excellent effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

マルチピッチねじ10のねじ山12に平坦部12aと傾斜部12bとを交互に設ける。これに螺合するマルチピッチナットのねじ山にも平坦部と傾斜部とを設ける。これにより、ステップ式に確実に緩み止めができるねじとナットを実現する。また、快適な高速送りが可能で、駆動源からトルクが絶たれた時も、ステップ的にセルフロックが働く。

Description

明 細 書 マルチピッチねじ及びマルチピッチナツト並びにそれを用いた送りねじ装置 並びにマルチピッチナツト製造方法 技術分野
本発明は、 ねじとナットに関し、 一つには部材を締着するねじとナットとし てそれ自体が緩み止めの機能を有するねじとナツ卜に関し、 二つには回転運動 を直線運動に変換する送りねじ装置であって、 セルフロック機能を持つものに 関する。 背景技術
ねじとナツトは機械の基本的な要素であり、 従来より種々の提案がなされて きている。 その一つは、 ねじの緩み止めに関するものである。 たとえば、 実開 昭 5 8— 9 9 5 1 3号公報には、 雌雄いずれかのねじ山を波形にしたものが提 案されている。 ねじを螺合したとき波形の突出した部分が弾性変形し、 軸方向 に強く押圧するので、振動等によるねじの緩みを防ぐというものである。また、 特開平 6 _ 3 3 0 9 2 8号公報には、 ねじ山が 1ピッチ毎に交互に大きいピッ チと小さいピッチとになっているねじが提案されている。 標準ピッチのナツト と螺合することにより、ねじ山のフランクに強く押圧され変形する部分が生じ、 それにより、 ねじの緩みを防ぐというものである。
また、 本件発明の発明者の一人である藤井 洋は、 第 1 9図に示す、 ステツ プロックボルトを発表している。 ボルトのねじ山のフランクに微細なステツプ 部分と傾斜部分を設け、 ポルトのねじ込みに伴う、 これらねじ山あるいは相手 の部材の塑性変形により、 ボルトの緩み止めを達成しょうとするものである。 これらは以下の非特許文献 1乃至 3に記載されている。
非特言午 献 1 Journal of Mater i al s Process i ng Techno l ogy Vo l, 56, P321-332, " Evaluat ion of AnU - l oosening Nut s for Screw Fas t eners" H, Fuj i i e t al. 1996.
非特許文献 2 日本機械学会論文集、 C編、 6 2巻 (5 9 7号) 、 p 1 9 6 3 — 1 9 6 8、 「極端にゆるみにくいねじ締結体の開発」 、 藤井 洋、 他、 1 9 9 6年。
非特許文献 3 日本機械学会論文集、 C編、 6 2巻 (5 9 6号) 、 p 1 5 2 7
- 1 5 3 2 , 「ねじ締結体のゆるみ機構の解析とゆるみ試験法の開発」 、 藤井 洋、 他、 1 9 9 6年。
その二つは、 送りねじ装置に関するものである。 たとえば、 実用新案登録第 2 5 7 7 7 8 6号公報には、 ねじをウォーム減速機付きモー夕で回転させ、 ナ ット部材を送る自動車パワーシートが開示されている。 モータを駆動しないと きのロックは、 送りねじ自体のセルフロックあるいはウォーム減速機のセルフ ロックで実現される。 また、 特許開平 5— 2 8 8 2 5 3号公報には、 従来の送 りねじ装置が 3つのカテゴリ一に分けて解りやすく解説してある。 その第 1の グループは、 三角ねじ、 台形ねじ等のねじ軸とナットとの摺動回転により回転 運動を直線運動に変換するものである。 その第 2のグループは、 ボールねじの ようにねじ溝に鋼球を多数介在させて動力を伝達するものである。 その第 3の グループは、 リードの大きいねじ軸のねじ山の両方のフランクにローラーを押 し当て、 その口一ラーを支持する部材をナツトのように使用するものである。 しかしながら、 上記従来のねじとナットは、 双方の相対的回転が連続的なも のであることを前提としている。 その一の、 部材を締着するねじとナットの緩 み止めに関して言えば、 ねじの相対的回転位置が 1回転 3 6 0 ° のどの回転位 置にあっても締着でき、 かつ、 緩み止めができることを前提としている。 これ は、 機能としては好ましいことではあるが、 そのために緩み止めのための構造 に過酷な負担を強いることになる。 このため、 ねじを締め付けたときのねじ山 の変形部が弾性変形で終わらず塑性変形してしまう場合もある。 このことは、 一旦、 ねじを締め付けてしまうと、 再度の締め付け緩み止めができないことを 意味する。 ここで発想を転換して、 締め付ける部材によっては、 また、 ねじの リードによっては、 ねじの相対的回転位置が 1回転の連続的ないかなる回転位 置でも締め付け緩み止めができなくても、 たとえば、 2 0 ° 毎のステップ的な 回転位置で締め付け緩み止めができれば充分である部材へのねじナツ卜の用途 もあり得る。
そこで本発明の第 1の目的は、 不連続的にしかロックは掛からないものの、 部材に過大な応力を掛けることなく、 確実に緩み止めができるねじとナツトを 提供することである。 その二の、 送りねじ装置に関して言えば、 回転運動を直線運動に変換するに あたって、 従来の装置は、 暗黙の内にその連続性とリニアリティを要求してき た。 従来の発明はこれを前提として、 さらなる精度を求めたり高速性を求める ものであった。 ここで発想を転換して、 送りねじ装置の用途によっては、 連続 性やリニアリティを要求されないものがある。 たとえば、 自動車のパワーシー トにおいてシート位置やシート高さを調整するのに一般的には 1 mm以下のピ ツチでの調整は要求されない。 また、 駆動モ一夕の回転角に対する直線移動の リニアリティも差程要求されない。 にもかかわらず、 送りねじ装置に連続性と リニアリティを備えたものを使用しているため、 送りねじ装置に本来以上の過 剰な機能を要求してしまうことになる。
たとえば、 実用新案登録第 2 5 7 7 7 8 6号公報の自動車パワーシート装置 では、 特許開平 5— 2 8 8 2 5 3号公報の言う第 1のグループに含まれる送り ねじ装置を使用している。 自動車のパワーシー卜装置ではシート位置の調整を した後にモ一夕の電源を切り、 その位置を保持することが求められる。 このた め、 実用新案登録第 2 5 7 7 7 8 6号公報の自動車パワーシート装置では、 そ の第 1図に示すねじ (9 ) にリードの小さいねじを用い、 ナット (5 ) との間 でセルフロックが掛かるようにしている。 このため、 モー夕 (7 ) に通電して いない時でもナット (5 ) がシートからの荷重で動いてしまうことがない。 し かしながら、 ねじ (9 ) のリードが小さいと言うことは、 シートを快適に高速 で移動させるにためには、 ねじ (9 ) を高速で回転させなければならず、 モー 夕 (7 ) やギヤボックス (8 ) に掛かる負担が大きくなり、 高価なものになつ てしまう。また、仮に高価なものが許されたとしても、ねじ(9 )とナツト(5 ) が摺接する構造では、 摩擦のため、 ねじ (9 ) を余り高速で回転させるのは別 の不都合が発生する。
また、 特許開平 5— 2 8 8 2 5 3号公報の言う第 2あるいは第 3のグループ に含まれるポールねじやローラーねじを用いれば、 ねじとナツ卜との摩擦の問 題は解決でき、 ねじのリードも大きくとることができ、 快適な高速送りが実現 できる。 しかしながら、 これらのねじは摩擦が非常に小さいという利点の裏返 しとして、 回転運動と直線運動との変換が両方向に働く。 つまり、 セルフロッ クはできない。 送りモータにサーポモー夕を使用する工作機械等の送りねじ装 置ならともかく、 自動車パワーシート装置では、 使用しないときはモ一夕の電 源を切るようにしているので、 何らかのロック機構が必要になる。 このため、 高価なものになりやすいばかりではなく、 ロック機構とボールねじとの間に歯 車等の機械機構が介在すると、 その間のバックラッシュや歪み等のロストモ一 シヨンにより座席の座り心地が悪くなる恐れがある。
そこで本発明の第 2の目的は、 快適な高速送りがモー夕やギヤポックスに負 担を掛けることなく実現でき、 かつ、 駆動源からのトルクが絶たれた時も、 連 続的ではないものの、 セルフ口ック機能が働く送りねじ装置を提供することに ある。 発明の開示
上記の目的を達成するため、 本発明のうち第 1の実施態様の発明は、 ねじの ねじ山が、 つるまき線に沿って 1回転する間にリ一ド角の緩い区間とリ一ド角 の急な区間とが交代して、 交互に連続するように形成されていることを特徴と するマルチピッチねじである。
このように形成すると、 ねじ全体の実効的リードはリード角の緩い区間とリ ード角の急な区間との平均値となる。 そして、 ねじの緩みに対する対抗力は、 軸方向の力によるリード角の緩い区間での相手の部材との摩擦力が支配的にな るから、 大きな実効的リードを持ちながら、 リード角の緩い区間の摩擦力によ り強い緩み止め作用を奏する。
ここで、 第 2の実施態様の発明のように、 前記リード角の緩い区間のリード 角が、 ゼロ (平坦) であることを特徴とするマルチピッチねじ、 とすることが できる。
このように形成すると、 リード角がゼロの区間では軸方向の力がそのまま摩 擦力に変化し、 ねじを回そうとする分力が全く働かないから、 リード角のゼロ の区間の摩擦力がより強くなり、 より強い緩み止め作用を奏する。
ここで、 第 3の実施態様の発明のように、 前記リード角の急な区間のリード 角が、セルフ口ック角度より急勾配であることを特徴とするマルチピッチねじ、 とすることができる。
このように形成すると、 ねじの緩み止め作用をリード角の緩い区間で担保し つつ、 平均の実効的なリードを大きくとることができる。 したがって、 僅かな 回転でねじを締めたり、 螺合するナットを進めたりすることができる。
ここで、 第 4の実施態様の発明のように、 前記ねじが、 多条ねじであること を特徴とするマルチピッチねじ、 とすることができる。
このように形成すると、 平均のリードが大きいねじであっても、 ねじのピッ チを小さくすることができ、 条数の分だけねじの緩みに抗する摩擦力を大きく することができ、 それだけ、 ねじの緩み止め作用が強くなる。 また、 平均リー ドの大きいねじを転造により作成しょうとすると、 材料の流れに無理が生じ歩 留まりが落ちるが、 多条ねじであればピッチが小さいので材料の流れに無理が 生ぜず、 加工が容易になるという効果を奏する。
理解を容易にするため、 第 5乃至第 8の実施態様の発明の説明をする前に、 ナツトの発明である第 9乃至第 1 6の実施態様の発明について説明する。 ねじ とナットは相補的な関係にあり、 ねじのねじ山とナットのねじ山は全く等価な ものとして相互に変換し得る。 つまり、 ねじのねじ山として有効な作用効果を 及ぼすものは、 ナツ卜のねじ山に適用しても同様の作用効果を奏するはずであ る。 第 9〜第 1 2の実施態様の発明はそれぞれ上記第 1乃至第 4の実施態様の 発明に対応している。
ここで、 第 9の実施態様の発明は、 雌ねじのねじ山が、 つるまき線に沿って 1回転する間にリード角の緩い区間とリード角の急な区間とが交代して、 交互 に連続するように形成されていることを特徴とするマルチピッチナツト、 であ る。
このように形成すると、 ナット全体の実効的リ一ドはリード角の緩い区間と リード角の急な区間との平均値となる。 そして、 ナットの緩みに対する対抗力 は、 軸方向の力によるリード角の緩い区間での相手の部材との摩擦力が支配的 になるから、 大きな実効的リードを持ちながら、 リード角の緩い区間の摩擦力 により強い緩み止め作用を奏する。
ここで、 第 1 0の実施態様の発明のように、 前記リード角の緩い区間のリー ド角が、 ゼロ (平坦) であることを特徴とするマルチピッチナット、 とするこ とができる。
このように形成すると、 リード角がゼロの区間では軸方向の力がそのまま摩 擦力に変化し、 ナットを回そうとする分力が全く働かないから、 リード角のゼ 口の区間の摩擦力がより強くなり、 より強い緩み止め作用を奏する。
ここで、 第 1 1の実施態様の発明のように、 前記リード角の急な区間のリー ド角が、 セルフ口ック角度より急勾配であることを特徴とするマルチピッチナ ット、 とすることができる。
このように形成すると、 ねじの緩み止め作用をリード角の緩い区間で担保し つつ、 平均の実効的なリードを大きくとることができる。 したがって、 僅かな 回転でナットを締めたり、 螺合するねじを進めたりすることができる。
ここで、 第 1 2の実施態様の発明のように、 前記雌ねじが、 多条ねじである ことを特徴とするマルチピッチナツト、 とすることができる。
このように形成すると、 平均のリードが大きいねじであっても、 ねじのピッ チを小さくすることができ、 条数の分だけねじの緩みに抗する摩擦力を大きく することができ、 それだけ、 ねじの緩み止め作用が強くなる。
ところで、 第 1乃至第 4の実施態様のいずれかのねじと、 対応する第 9乃至 第 1 2の実施態様のいずれかのナットを螺合しようとした場合、 普通のねじと ナツ卜のようにねじのねじ山の幅とナツ卜のねじ溝の幅が等しければ、 換言す れば、フランクの両面が相手側のフランクの両面に常に摺接する状態であれば、 ねじ山が塑性変形しない限りねじとナツトは螺合することができない。 したが つて、 これらのねじとナットでは、 ねじ山の幅に比べてねじ溝の幅が広い、 換 言すれば、 各フランクのうち圧力側フランクのみが摺接し、 遊び側フランクは 完全に他方のフランクから離れていることを前提としている。 遊び側のフラン ク同士に遊びがあつたとしても、 螺合する途中でねじとナットの間に遊びが生 ずるが、 締め付けた際には圧力側フランク同士が圧力を持って密着し締結には 問題を生じない。 螺合途中でのがたが気になるようであれば、 ばね等の付勢手 段により圧力側フランク同士が常時密着するように付勢しておけばよい。
また、 上記のねじとナットの組み合わせの場合、 両者で他のものを締着して 安定な状態となる相対的回転位置は、 1回転 3 6 0 ° すべての連続的な位置で はなく、 ねじのリード角の緩い区間のフランクと、 ナットのリード角の緩い区 間のフランクが密着できる回転位置のみである。 この点が普通のねじナツトと 大きく異なる特異な点である。 リード角の緩い区間のフランク同士の密着によ り締結されるという、 この点に着目すれば、 ねじまたはナットのいずれか一方 のねじ山は、 リード角の緩い区間だけ存在すれば充分であるという結論にたど り着く。 リード角の急な区間は他方のねじ山を案内する機能しか持たないから である。 そこで、 ねじ山の一部を欠いたマルチピッチナットが第 1 3乃至第 1 6の実施態様の発明として提示される。
そこで、 第 1 3の実施態様の発明のように、 前記雌ねじのねじ山が、 つるま き線に沿って 1回転する間の一部の区間にしか存在せずねじ山の欠損区間を有 することを特徴とするマルチピッチナツト、 とすることができる。
このように形成すると、 マルチピッチナットの製作が容易になる。 欠損区間 部分から工具を出し入れすることができるからである。 また、 欠損区間部分が あるということは、雌ねじのねじ山が一部分しか存在しないと言うことであり、 その一部分のにのみ精密なねじ山加工を施せばよいのであるから製作が容易に なるという効果を奏する。
ここで、 第 1 4の実施態様の発明のように、 前記雌ねじのねじ山が、 ねじの 軸線を中心とする回転対称の位置にのみあることを特徴とするマルチピッチナ ット、 とすることができる。 このように形成すると、 ねじに掛かるねじ山からの力が対称の取れた状態で 掛かり、 ねじに掛かる力が偏らないという効果を奏する。 たとえば、 ねじ山が 1つだけでその周長も短いものであれば、 必然的に偏った力となりねじやナツ トを傾かせるような力が働くことになる。 これは望ましいことではない。 した がって、 ねじ山が対称な位置にあれば作用する力も対称の取れたものになる。 また、 この発明は、 多条ねじ、 多条ナットを想定している。 たとえば、 2条 ねじに適用した場合、 互いに 1 8 0 ° 離れた位置にナツトのねじ山が存在すれ ば、 ナツ卜のそれぞれのねじ山がねじの異なった条のねじ山のフランクに当接 することになり、力のバランスが取り易い。 3条ねじであれば、互いに 1 2 0 ° 離れた位置にナットのねじ山が存在すれば、 ナットのそれぞれのねじ山がねじ の異なった条のねじ山のフランクに当接することになり、 力のバランスが取り 易い。
ここで、 第 1 5の実施態様の発明のように、 前記雌ねじのねじ山が、 前記リ —ド角がゼロ (平坦) である区間のみからなり、 雌ねじのねじ山のフランクが 雄ねじのねじ山のリード角がゼロの区間の圧力側フランクに面接触していると き、 雌ねじのねじ山の一端が雄ねじの遊び側フランクの位相のずれた位置 (回 転角の異なった位置) に線接触するように形成されていることを特徴とするマ ルチピッチナット、 とすることができる。
この実施態様は、 第 8図の (D) 、 ( E ) 、 及び第 1 6図を参照すると理解 し易いだろう。 雌ねじのねじ山が断続的に存在する場合、 ねじ山のフランクが 圧力側と遊び側との両方に同位相で接触したら、 ステップ状のねじは回転する ことができず螺合することができない。 このため、 雌ねじのねじ山の幅は雄ね じのねじ溝の幅より小さく作られる。 この幅の細い雌ねじのねじ山を位相の遅 れる方に延伸させてやれば、 雌ねじのねじ山の遊びフランク側の端部が、 雄ね じの位相の遅れた位置の遊び側フランクに線接触する。 つまり、 遊び側フラン ク同士が線接触ではあるが当接し、 雌ねじのねじ山を案内する本来の遊び側フ ランクの機能を発揮するであろう。
したがって、 このように形成すると、 雌ねじのねじ山の幅が雄ねじのねじ溝 の幅より狭くても、 また、 ステップ状のねじにもかかわらずナットをばね等で 付勢しなくても、 雌ねじの遊び側フランクの一端が雄ねじの遊び側フランクに 摺接し案内するので、 雄ねじと雌ねじが、 ガタなく螺合することができるとい う効果を奏する。
ここで、 第 1 6の実施態様の発明のように、 前記雌ねじのねじ山が、 前記リ ード角がゼロ (平坦) である区間とリード角が急な区間とを連続した形状を有 し、 雌ねじのねじ山のフランクと雄ねじのねじ山のフランクとが接触する位相 が、 雄ねじの圧力側フランクと遊び側フランクとでは位相のずれた位置 (回転 角の異なつた位置) でそれぞれ面接触するように形成されていることを特徴と するマルチピッチナット、 とすることができる。
この実施態様は、 第 8図 (A) 、 ( B ) 、 ( C) 、 及び第 1 8図を参照する と理解しやすい。 ここでは、 雌ねじのねじ山の端面が矩形ではなく、 リード角 が急な区間に対応した斜面を位相のずれた部分 (位相の進んだ部分と位相の遅 れた部分のいずれか、 あるいは、 両者) に有している。
このように形成すると、 雌ねじのねじ山のリード角が急な区間に対応した斜 面が、 位相の遅れた部分であれば雄ねじの遊び側フランクに摺接し、 位相の進 んだ部分であれば雄ねじの圧力側フランクに摺接し、 ナットを案内する。 この ため、 ステップ状のねじにもかかわらずナットをばね等で付勢しなくても、 雄 ねじと雌ねじ力 ^ガ夕なく螺合することができるという効果を奏する。さらに、 面接触であるので耐久性が高いという効果を奏する。
さて、 ねじのねじ山とナットのねじ山は相補性を有し、 互いにその機能を交 換しても差し支えない。 ところで、 今までの説明でナットのねじ山を断続的な ものとする態様を第 1 3乃至第 1 6の実施態様として説明したが、 ナットのね じ山を連続的なものとし、 ねじのねじ山を断続的なものとすることも理論的に は可能である。 そこで、 第 1 3乃至第 1 6の実施態様に対応するものとして、 第 5乃至第 8の実施態様を提供する。
ここで、 第 5の実施態様の発明のように、 前記ねじのねじ山が、 つるまき線 に沿って 1回転する間の一部の区間にしか存在せずねじ山の欠損区間を有する ことを特徴とするマルチピッチねじ、 とすることができる。
ここで、 第 6の実施態様の発明のように、 前記ねじのねじ山が、 ねじの軸線 を中心とする回転対称の位置にのみあることを特徴とするマルチピッチねじ、 とすることができる。
ここで、 第 7の実施態様の発明のように、 前記ねじのねじ山が、 前記リード 角がゼロ (平坦) である区間のみからなり、 ねじのねじ山のフランクが雌ねじ のねじ山のリ一ド角がゼロの区間の圧力側フランクに面接触しているとき、 ね じのねじ山の一端が雌ねじの遊び側フランクの位相のずれた位置 (回転角の異 なつた位置) に線接触するように形成されていることを特徴とするマルチピッ チねじ、 とすることができる。
ここで、 第 8の実施態様の発明のように、 前記ねじのねじ山が、 前記リード 角がゼロ (平坦) である区間とリード角が急な区間とを連続した形状を有し、 ねじのねじ山のフランクと雌ねじのねじ山のフランクとが接触する位相が、 雌 ねじの圧力側フランクと遊び側フランクとでは位相のずれた位置 (回転角の異 なった位置) でそれぞれ面接触するように形成されていることを特徴とするマ ルチピッチねじ、 とすることができる。
ところで、 以上説明してきたマルチピッチねじとマルチピッチナットとを螺 合させると、 送りねじ装置を構成することができる。 送りねじ装置を構成する ためには、 マルチピッチねじのねじ山とマルチピッチナツ卜のねじ山の両者が 連続的であるか、 少なくとも一方のねじ山が連続的でなければならない。 そこ で、 マルチピッチねじが連続したねじ山を有し、 マルチピッチナットが連続的 なねじ山を持つものとマルチピッチナツ卜が断続的なねじ山を持つものを第 1 7の実施態様の発明とし、 マルチピッチねじが断続的なねじ山を有し、 マルチ ピッチナツトが連続的なねじ山を持つものを第 1 8の実施態様の発明とするこ とにした。 実用的に重要なのは、 第 1 7の実施態様の発明のうち、 マルチピッ チねじが連続したねじ山を有しマルチピッチナツ卜が断続的なねじ山を有する ものであると考えている。
ここで、 第 1 7の実施態様の発明のように、 第 1乃至第 4の実施態様の発明 のいずれかに記載されたマルチピッチねじと、 第 9乃至第 1 6の実施態様の発 明のいずれかに記載されたマルチピッチナットとを、 組み合わせたことを特徴 とする送りねじ装置、 とすることができる。
このように形成すると、 連続したねじ山を持つマルチピッチねじと、 連続的 あるいは断続的なねじ山を有するマルチピッチナットが螺合することができ、 送りねじ装置を構成することができる。 そして、 リード角の急な区間の存在に より平均的なリードを大きく取り、 高速で快適な送りを可能としながら、 リー ド角の緩い区間の当接により断続的ながらセルフロックを可能としている。 し たがって、 自動車のパワーシートの送りねじ装置として特に好適である。 なかでも、 第 1 5または第 1 6の実施態様の発明のマルチピッチナットと組 み合わせた送りねじ装置は、 ナツ卜のねじ山の遊び側フランクが線接触あるい は面接触によりねじの遊び側フランクに絶えず摺接しナツトを案内するから、 パネ等の付加的な付勢手段を用いなくても、 ガ夕なくスムーズに送ることがで きるという効果を奏する。
ここで、 第 1 8の実施態様の発明のように、 第 5乃至第 8の実施態様の発明 のいずれかに記載されたマルチピッチねじと、 第 9乃至第 1 2の実施態様の発 明のいずれかに記載されたマルチピッチナツ卜とを、 組み合わせたことを特徴 とする送りねじ装置と、 することができる。 第 1 7の実施態様の発明に対して ねじとナツトを入れ替えた形のねじ送り装置である。
さて、 ここで、 断続的なねじ山を有する雌ねじを構成するマルチピッチナツ 卜の製造方法の一つを提案する。すなわち、第 1 9の実施態様の発明のように、 雌ねじのねじ溝に相当する穴が明けられ、 その穴の周縁から穴の中心に向かつ て突出した雌ねじのねじ山の一部に相当するねじ山突出部を有する要素板材を 形成する要素工程と、 その要素板材を積層して一体に固着する積層工程と、 を 備えることを特徴とするナットを製作するマルチピッチナツト製造方法、 であ る。 - このようにすると、 ねじ下穴の明けられたナツトブランクから穴の複雑な切 削加工をすることなく、 ナットを製造することができる。 たとえば、 最初に、 第 1 5図に示すような、 穴の周縁から穴の中心に向かって突出した雌ねじのね じ山の一部に相当するねじ山突出部を有する要素板材を形成する。 第 1 5図に 示すような要素板材は、 ナットブランクの穴の加工ではなく、 基本的に板材の 加工であるからプレス加工により容易に作成することができる。 次に、 要素板 材を第 1 0図に示すようなスぺ一サーを介して積層し、 一体に固着する。 固着 する手段としては、 普通のポルトナットで締着する、 溶接する、 接着剤で接着 する等が考えられる。 このように積層することにより、 積層しただけの多段の 雌ねじのねじ山を持つマルチピッチナットを製造できる。
この製造方法によれば、 基本的に板材の加工で要素板材が製造できプレス加 ェ等で製造できるものであり、 グルービングのような複雑な切削加工を必要と しないので、 安価に大量にマルチピッチナツトを提供できるという優れた効果 を奏する。 図面の簡単な説明
第 1図は、 第 1の実施の形態のマルチピッチねじを示す斜視図である。 第 2図は、 第 1図に示したマルチピッチねじに螺合するマルチピッチナツト を示す斜視図である。
第 3図は、 第 2図に示したマルチピッチナツ卜のねじ山のみを概念的に抽出 して示す正面図である。
第 4図は、 第 1図に示したマルチピッチねじに第 2図に示したマルチピッチ ナツトを螺合させた状態を示す正面図である。
第 5図は、 第 2のマルチピッチナットを示す斜視図である。
第 6図は、 第 2のマルチピッチナッ卜に螺合するマルチピッチ送りねじを示 す正面図である。 第 7図は、 マルチピッチ送りねじのねじ山の形状及びリードを 3 6 0 ° 展開 して示す展開図である。
第 8図は、 マルチピッチ送りねじと種々のマルチピッチナツ卜との螺合の状 態を示す正面図である。
第 9図は、 第 4のマルチピッチナットの要素板材を示す斜視図である。
第 1 0図は、 マルチピッチナットの要素であるスぺーサーを示す斜視図であ る。
第 1 1図は、 マルチピッチ送りねじのねじ山と第 4のマルチピッチナットの ねじ山突起との螺合の様子を展開して示す展開図である。
第 1 2図は、 2条ねじのマルチピッチねじを示す斜視図である。
第 1 3図は、 マルチピッチ 2条ねじを送りねじに適用したマルチピッチ 2条 送りねじを示す正面図である。
第 1 4図は、 マルチピッチ 2条送りねじの 2条のねじ山の形状及びリードを 3 6 0 ° 展開して示す展開図である。
第 1 5図は、 マルチピッチ 2条送りねじに螺合するマルチピッチ 2条ナット 要素板材を示す斜視図である。
第 1 6図は、 マルチピッチ 2条ナット要素板材からなるマルチピッチ 2条 ナツ卜と、 マルチピッチ 2条送りねじとの螺合の様子を展開して示す展開図で ある。
第 1 7図は、第 2のマルチピッチ 2条ナツト要素板材を示す斜視図である。 第 1 8図は、 第 2のマルチピッチ 2条ナット要素板材からなるマルチピッ チ 2条ナットと、 マルチピッチ 2条送りねじとの螺合の様子を展開して示す展 開図である。
第 1 9図は、 従来技術であるステップロックポルトを示す正面図である。 発明を実施するための最良の形態
本発明の第 1の実施の形態について図面を参照し説明する。
第 1図は、 第 1の実施の形態のマルチピッチねじ 1 0を示す斜視図である。 円柱形状の軸部 1 1に、 つるまき線に沿ってねじ山 1 2が形成されている。 ね じ山 1 2は台形ねじで、 そのフランクには部分的にリード角がゼロすなわち平 坦な区間 1 2 aとリード角が急な区間 1 2 とが交互に連続する。 以後、 平坦 な区間 1 2 aを平坦部 1 2 aと、 急な区間 1 2 を斜部 1 2 bと呼ぶこととす る。 進み側フランクと同様に、 追い側フランクにも平坦部 1 2 cと斜部 1 2 d が存在する。 平坦部 1 2 aと斜部 1 2 bはつるまき線の一回転を 1 6等分し、 1/16回転毎に、 すなわち、 22. 5 ° 毎に平坦部 12 aと斜部 12 bが交 代する。 したがって、 ねじの平均的なリード角は斜部 12 bの傾斜の半分とい うことになる。
図から明らかなように、 ねじ山 12の幅に比べてねじ溝の幅が異常に大きい 形状とされている。 これは後述する平坦部と斜部が交代して連続するねじ山を 有するナットが螺合できるようにするためである。 たとえば、 軸部 11の径は 13. 7mm、 ねじ山 12の幅は 4mm、 ねじ山 12の高さは 3 mm、 ねじ 溝の幅は 12mm、 ねじ 10の平均的なリードは 16 mmに形成する。 このよ うなマルチピッチねじ 10は転造により容易に製作することができる。
第 2図は、 第 1図に示したマルチピッチねじ 10に螺合するマルチピッチナ ット 20を示す斜視図である。 マルチピッチナツト 20は四角ナツトであり中 央にねじ穴 21が明けられている。 ねじ穴 21にはねじ溝が彫られ雌ねじのね じ山 22が形成されている。
第 3図は、 第 2図に示したマルチピッチナツト 20のねじ山 22のみを概念 的に抽出して示す正面図である。 ねじ山 22は台形ねじで、 そのフランクには 部分的にリード角がゼロすなわち平坦な区間 22 aとリード角が急な区間 22 bとが交互に連続する。 以後、 平坦な区間 22 aを平坦部 22 aと、 急な区間 22 bを斜部 22 bと呼ぶこととする。 進み側フランクと同様に、 追い側フラ ンクにも平坦部 22 cと斜部 22 dが存在する。 平坦部 22 aと斜部 22 bは つるまき線の一回転を 16等分し、 1/16回転毎に、 すなわち、 22. 5° 毎に平坦部 22 aと斜部 22 bが交代する。 したがって、 雌ねじの平均的なリ ード角は斜部 22 bの傾斜の半分ということになる。 このリードやピッチは第 1図に示すマルチピッチねじ 10のそれと合わせてある。 マルチピッチねじ 1 0とマルチピッチナツト 20の螺合を可能とするためである。
雌ねじの平坦部 22 a、 22 c、 斜部 22 b、 22 dはマルチピッチねじ 1 0のねじ山 12の平坦部 12 a、 12 c、斜部 12 b、 12 dに対応した形状、 寸法になっている。 ナット 20のねじ山 22の抽象的な外径 (具体的にはねじ 溝の内径) は Φ 20. 3mm, ねじ山 22の高さは 3 mmである。 ねじ山 22 の幅は 9. 4mm、 ねじ溝の幅は 6. 6 mmである。 ナット 20の厚さ (図で は高さ) は 38. 6 mmである。 ねじ溝の幅 (6. 6mm) は雄ねじ 10のね じ山 12の幅 (4mm) より大きく設定してある。 これは平坦部を有するマル チピッチねじ 10とマルチピッチナツト 20との螺合を可能とするためである。 このようなマルチピッチナツト 20は、 下穴を開けたナツトブランクに数値制 御によるグルービング切削加工を施すことにより作成できる。 また、 ナットブ ランクを軸方向に半割にし、 半割にしたナツトブランクにプレス加工等の加工 を施してねじ山 2 2を形成し、 その後両者を接合することにして製作しても良 い。
第 4図は、 第 1図に示したマルチピッチねじ 1 0に第 2図に示したマルチピ ツチナツト 2 0を螺合させた状態を示す正面図である。 マルチピッチねじ 1 0 は図面左側に頭があると想定する。 螺合の状態を明確に示すため、 マルチピッ チナツト 2 0は第 3図に示すねじ山 2 2のみの概念的な抽出物として描いてい る。 第 4図 (A) は、 マルチピッチねじ 1 0のねじ山 1 2とマルチピッチナツ ト 2 0のねじ山 2 2とが単に螺合しただけで互いに力を及ぼし合っていない状 態を示している。 この状態ではマルチピッチねじ 1 0のねじ山 1 2のフランク とマルチピッチナツト 2 0のねじ山 2 2のフランクの間に進み側フランク追い 側フランク共に間隙を有している。
第 4図 (B ) は、 マルチピッチナット 2 0に図示しないバネ手段により矢印 F 1方向に付勢力を与えた場合を示している。 この場合、 マルチピッチナット 2 0のねじ山 2 2の圧力側フランクがマルチピッチねじ 1 0のねじ山 1 2の圧 力側フランクに密着し、 両ねじ山 1 2、 2 2の遊び側フランクの間には、 図示 の間隙 Lが、 発生する。 この状態で、 マルチピッチナット 2 0に軸方向矢印 F 1の方向に強い力が作用したとする。 この場合、 圧力側フランクの斜部同士の 当接によりマルチピッチねじ 1 0を回転させようとする分力が発生する。 しか し、 圧力側フランクの平坦部同士の当接により平坦部に F = ^ N ( は摩擦係 数、 Nは軸方向の力) の力 Nに比例した摩擦力 Fが発生する。 摩擦力 Fはマル チピッチねじ 1 0を回転させようとする斜部からの分力より絶えず強い。 した がって、 軸方向矢印 F 1の方向に強い力が作用したとしてもマルチピッチねじ 1 0が回転させられることはなく、 その位置を保つ。 すなわち、 セルフロック が働く。
この状態から、 マルチピッチねじ 1 0を僅かに左回転させると、第 4図(C ) の状態になる。 この状態では、 マルチピッチねじ 1 0及びマルチピッチナット 2 0のねじ山 1 2、 2 2の圧力側フランクのうち斜部が当接から離脱する。 し かし、 平坦部が当接したままであるので、 マルチピッチナット 2 0はその軸方 向位置を保持したまま動かない。 さらに、 マルチピッチねじ 1 0を左回転させ ると、 第 4図 (D) の状態に至る。 この状態では、 各ねじ山 1 2、 2 2の圧力 側フランクのうち平坦部から斜部に切り替わる稜縁で線接触している。 不安定 な状態ではあるが、 この回転位置までマルチピッチナット 2 0は動かない。 さ らに、 マルチピッチねじ 1 0を左回転させると、 第 4図 (E) の状態に至る。 この状態では、 各ねじ山 1 2、 2 2の圧力側フランクのうち斜部同士が当接し 平坦部は離脱する。 そして、 マルチピッチねじ 1 0の回転に従いマルチピッチ ナット 2 0力 ί軸方向に送られる。 なお、 この状態では、 フランクの斜部の傾斜 が急であるためセルフ口ックは効かない。
さらに、 マルチピッチねじ 1 0を左回転させると、 第 4図 (Β) の状態に戻 る。 もっとも、 各ねじ山 1 2、 2 2の圧力側フランクのうち当接する平坦部と 斜部は一つずれ、 マルチピッチナツト 2 0は斜部を挟んで隣接する平坦部の軸 方向距離だけ軸方向右に移動したことになる。 つまり、 マルチピッチねじ 1 0 の回転にしたがってマルチピッチナツ卜 2 0が連続的に送られるのではなく、 第 4図 (Ε ) の回転位置にあるときだけステップ的に送られる。 換言すれば、 マルチピッチねじ 1 0の回転にしたがって、 マルチピッチナット 2 0は、 送ら れたり停止したりを断続的に繰り返すことになる。 なお、 マルチピッチねじ 1 0の回転が停止すると、 駆動系の反力やマルチピッチナツト 2 0を軸方向に付 勢するパネの付勢力によって、 マルチピッチナツト 2 0に掛かる力が安定する 第 4図 (Β ) か第 4図 (C) の平坦部が互いに当接する状態で停止する。 そし て、 この状態ではセルフロックが働く。
上記の説明では、 図面との関係を見やすくするためマルチピッチねじ 1 0を 左回転させマルチピッチナツト 2 0を右方向に送る場合について説明したが、 マルチピッチねじ 1 0を右回転させマルチピッチナツト 2 0を図面左方向に送 る場合、 締着具であれば締め付ける方向への回転の場合も同様である。 右回転 の場合は、 第 4図 (Β) →第 4図 (Ε) →第 4図 (D) →第 4図 (C) →第 4 図 (Β ) の順番で状態が変化する。 また、 前記の例ではマルチピッチねじ 1 0 を回転してマルチピッチナット 2 0を送るものとして説明したが、 マルチピッ チナット 2 0を回転させるものとしても同様なことが言えることは明らかであ る。
上述の説明では、 マルチピッチねじ 1 0の回転にしたがってマルチピッチナ ット 2 0がステップ的に送られると言ったが、 送りねじ装置として使用する場 合にはそれが問題とならないケースも多い。 たとえば、 自動車の座席のパワー シートに適用する場合を想定すると、 マルチピッチねじ 1 0は 5回転 秒程度 の速い回転数で回転駆動される。 フランクの平坦部と斜部は 1回転を 1 6分割 して構成されているから、 1秒間に 8 X 5 = 4 0回の頻度で送られることにな り、 実質的には、 各ねじ山 1 2、 2 2の斜部と平坦部の平均のリードで滑らか に送られることになる。
以上述べた実施の形態では、 マルチピッチねじ 1 0とマルチピッチナツト 2 0からなる送りねじ装置について説明したが、 第 2の実施の形態として、 マル チピッチねじ 1 0とマルチピッチナット 2 0からなる締着具を想定してみるこ とができる。 この場合、 締着される物の弾性変形による反力により、 マルチピ ツチナツト 2 0には第 4図 (B ) 矢印 F 1に示す方向の強い力が掛かる。 この ため、 フランクの斜部と斜部のみが当接する第 4図 (E) や第 4図 (D) の状 態では安定に存在し得ず、 第 4図 (B ) や第 4図 (C ) のフランクの平坦部が 強く圧接する状態でのみ安定な状態となり得る。 この状態ではフランクの平坦 部同士の強い圧接により強い耐回転摩擦力が発生し、 振動等による緩みのこな レ、 確実な信頼性の高い締め付けが行えるマルチピッチねじとマルチピッチナ ットを提供することができる。 マルチピッチねじ 1 0とマルチピッチナット 2 0を、 送りねじ装置ではなく締着具として使用する場合には、 マルチピッチね じ 1 0の平均的なリードを 1 6 mmに設定するのはリードが大きすぎる。 普通 ねじのように平均的なリードを 2 mm程度に設定すれば、 2 / 8 mm毎にフラ ンクの平坦部同士が圧接する状態が現れ、 実用上締め付け具として差し支えの 無いものが提供できる。
また、 このように平均的なリードを小さくしたマルチピッチねじ 1 0及びマ ルチピッチナット 2 0は、 調整ねじとしての用途もある。 平均的なリードの小 さいマルチピッチねじ 1 0及びマルチピッチナツト 2 0を用い、 マルチピッチ ナツト 2 0を機器に固着してマルチピッチねじ 1 0を螺合させるようにすれば よい。 たとえば、 机、 テーブル、 冷蔵庫等の水平を取るための調整ねじとして 用いれば、 簡単に調整でき、 かつ、 狂いのこない調整ねじとして使用できる。 以上述べた実施の形態では、 マルチピッチナット 2 0の雌ねじのねじ山 2 2 はつるまき線に沿った連続的なものであった。 このため、 平坦部 1 2 a, 2 2 aと斜部 1 2 b、 2 2 bとからなる相互のねじ山 1 2、 2 2を螺合させるため、 第 4図 (A) に示すようにマルチピッチねじ 1 0のねじ山 1 2とマルチピッチ ナットのねじ山 2 2との間に隙間 (遊び) を設ける必要があった。 ところで、 マルチピッチナット 2 0に着目してみると、 送りねじ装置として使用してセル フロックの効く回転位置での作用と、 締着具として使用して締着が効く、 すな わち、 セルフロックの効く回転位置での作用とを考えれば、 第 3図に示す、 マ ルチピッチナット 2 0のねじ山 2 2の平坦部 2 2 aのみが働いており、 斜部 2 2 bは何の働きもしていないことに気付く。 斜部 2 2 bはマルチピッチねじ 1 0を回転させているときの案内としてのみ働いているに過ぎない。
つまり、 マルチピッチナツ卜 2 0のねじ山 2 2として本当に必要なのは平坦 部 2 2 aだけだという結論に到達する。 そこで発想を転換して、 マルチピッチ ナットのねじ山として平坦部のみ残した不連続なものとしても良いはずである。 つまり、 雌ねじのねじ山が、 つるまき線に沿って 1回転する間の一部の区間に しか存在せずねじ山の欠損区間を有するもので良い。 さらに、 ねじ山としての 強度が許せば、 つるまき線の一回転を 1 6分割した 8個の平坦部のすべてが存 在しなくても、 そのいくつかが残存していればよいことになる。 そして、 ねじ 山の残存部分は、 ねじの軸線を中心とする回転対称の位置にのみあることがマ ルチピッチナツトに掛かる力の均衡の面から望ましい。
第 5図は、 そのような第 2のマルチピッチナツト 3 0を示す斜視図である。 第 5図 (A) は斜視図、 第 5図 (B ) は透視して示す斜視図である。 第 2のマ ルチピッチナツト 3 0は四角ナツトであり中央にねじ穴 3 1が明けられている。 ねじ穴 3 1の中には 5つのねじ山突起 3 2が形成されている。 このねじ山突起 3 2は第 3図に示す雌ねじのねじ山の平坦部 2 2 a、 2 2 cの一部のみを残し たような形になっている。 ねじ山突起 3 2は図面左側に 3個、 右側に 2個形成 され、 左右のねじ山突起 3 2はねじの軸線を中心として互いに 1 8 0 ° 離れた 回転対称な位置に形成されている。 各ねじ山 3 2の軸方向位置は 1ピッチずつ ずれている。 このようなマルチピッチナット 3 0は、 ねじ穴 3 1の下穴にリン グ状の溝を切削し、 その後、 内周面を適宜の幅で軸線に沿って切削することに より製作することができる。
第 6図は、 この第 2のマルチピッチナット 3 0に螺合するマルチピッチ送り ねじ 4 0を示す正面図である。 このマルチピッチ送りねじ 4 0は自動車のパヮ 一シートに用いられるものである。 マルチピッチ送りねじ 4 0は 1条ねじのマ ルチピッチねじで、 ねじ山 4 2リードは 1 6 mm、 ストロークは約 2 0 0 mm である。マルチピッチ送りねじ 4 0の外径(ねじ山 4 2の外径)は φ 2 0 mm、 有効径は Φ 1 8 mm, 軸部 4 1の径は φ 1 3 . 7 mmである。
第 7図は、 マルチピッチ送りねじ 4 0のねじ山 4 2の形状及びリードを 3 6 0 ° 展開して示す展開図である。マルチピッチ送りねじ 4 0は台形ねじであり、 その谷径は Φ 1 3 . 7 mm、 有効径は φ 1 8 . 0 mm、 外径は φ 2 0 . 0 mm である。 ねじ山 4 2のピッチ (リード) は 1 6 mmである。 ねじ山 4 2は円周 を 1 6等分し、ねじ山 4 2のリード角がゼロすなわち平坦な区間 4 2 a (以下、 平坦部 4 2 aという) と 3 0 ° 近い急角度な傾斜をなす区間 4 2 b (以下、 斜 部 4 2 bという) が交互に来るようにされている。 したがって、 ねじ山 4 2は 1つのピッチを 8ステップで通過することになる。
第 8図は、 マルチピッチ送りねじ 4 0と種々のマルチピッチナットとの螺合 の状態を示す正面図である。 マルチピッチナツトはいずれも雌ねじのねじ山が 一部の区間にしか存在せずねじ山の欠損区間を有するマルチピッチナットであ る。 各マルチピッチナットはその全体を図示せず、 第 2図に対する第 3図のよ うに、 断続的なねじ山突起部分のみを抽出して描いている。
第 8図 (D) は、 前述した第 5図に示した第 2のマルチピッチナット 3 0と 第 6図に示したマルチピッチ送りねじ 4 0との螺合を示している。 第 2のマル チピッチナット 3 0のねじ山突起 3 2は、 その進み側フランクの平坦部 3 2 a がマルチピッチ送りねじ 4 0のねじ山 4 2の平坦部 4 2 aより長く、 図面で下 方に延び、 マルチピッチ送りねじ 4 0の平坦部 4 2 aと斜部 4 2 bとを併せた 長さとされている。 つまり、 円周の 2ノ 1 6の長さを有する。 そして、 ねじ山 突起 3 2の厚さも厚くされ、 進み側フランクの平坦部 3 2 aがねじ山 4 2の平 坦部 4 2 aに摺接している時に追い側フランクの平坦部 3 2 cがーつ位相のず れたねじ山 4 2の平坦部 4 2 cに接する厚さとされている。 ねじ山突起 3 2は このような矩形とされている。 このため、 ねじ山突起 3 2の一方の平坦部 3 2 aがマルチピッチ送りねじ 4 0の進み側の平坦部 4 2 aにその一部が摺接して いる回転位置では、 ねじ山突起 3 2の他方の平坦部 3 2 cの一部がマルチピッ チ送りねじ 4 0の追い側の平坦部 4 2 cに摺接する。 つまり、 第 2のマルチピ ツチナツト 3 0が軸方向には停止する回転位置では、 面接触で第 2のマルチピ ツチナツト 3 0が案内される。
ねじ山突起 3 2がマルチピッチ送りねじ 4 0のねじ山 4 2の斜部 4 2 bにさ しかかると、 ねじ山突起 3 2の平坦部 3 2 a、 3 2 cの縁、 つまり、 稜縁がね じ山 4 2の斜部 4 2 b、 4 2 dに摺接する。 つまり、 第 2のマルチピッチナツ ト 3 0が軸方向に送られる回転位置では、ねじ山突起 3 2の稜縁が斜部 4 2 b、 4 2 dに線接触して第 2のマレチピッチナット 3 0が案内される。したがって、 この実施の形態では、 線接触を含みながらもマルチピッチ送りねじ 4 0のねじ 山 4 2のフランクとの間に間隙を作ることなく、 つまりガ夕なく、 マルチピッ チナット 3 0を送ることができる。 これは、 第 4図で説明した第 1の実施の形 態に比べて優れた利点である。
第 8図 (E) は、 第 3のマルチピッチナット 5 0とマルチピッチ送りねじ 4 0との螺合の状態を示す正面図である。 ここでは、 マルチピッチナット 5 0の ねじ山突起 5 2がつるまき線に沿って 9 0 ° 毎に 9個配置されている。 個々の ねじ山突起 5 2の形状は前述の第 2のマルチピッチナツト 3 0のねじ山突起 3 2と同じである。 したがって、 作動は前述の第 8図 (D) で述べたものと同じ である。 ねじ山突起 5 2の平坦部 5 2 a、 5 2 cがそれぞれねじ山 4 2の平坦 部 4 2 a、 4 2 cに摺接する。 この実施の形態はねじ山突起 5 2の数が いの でそれだけマルチピッチナツト 5 0の強度、 耐久性が向上するという利点があ る。
第 8図 (C ) は、 第 4のマルチピッチナット 6 0とマルチピッチ送りねじ 4 0との螺合の状態を示す正面図である。 ここでは、 マルチピッチナット 6 0の ねじ山突起 6 2の長さが円周の 4 1 6回転の長さまで伸ばされている。 ねじ 山突起 6 2は全部で 5個ある。 各ねじ山突起 6 2は、 進み側フランク、 追い側 フランク共に、 3 1 6回転の長さの平坦部 6 2 a、 6 2 cと 1ノ 1 6回転の 長さの斜部 6 2 b、 6 2 dを有している。 斜部 6 2 b、 6 2 dは勿論マルチピ ツチ送りねじ 4 0の斜部 4 2 b、 4 2 dに対応したリード角のものである。 こ のような形状にすると、 ねじ山突起 6 2の一方の平坦部 6 2 aがマルチピッチ 送りねじ 4 0の進み側の平坦部 4 2 aにその一部が摺接している回転位置では、 ねじ山突起 6 2の他方の平坦部 6 2 cの一部がマルチピッチ送りねじ 4 0の追 い側の平坦部 4 2 cに摺接する。 つまり、 第 4のマルチピッチナツト 6 0力軸 方向には停止する回転位置では、 面接触で第 4のマルチピッチナツト 6 0が案 内される。
ねじ山突起 6 2がマルチピッチ送りねじ 4 0のねじ山 4 2の斜部 4 2 bにさ しかかると、ねじ山突起 6 2の斜部 6 2 b、 6 2 dがねじ山 4 2の斜部 4 2 b、 4 2 dに摺接する。 つまり、 第 4のマルチピッチナット 6 0が軸方向に送られ る回転位置では、 ねじ山突起 6 2の斜部 6 2 b、 6 2 dがマルチピッチ送りね じ 4 0の斜部 4 2 b、 4 2 dに面接触して第 4のマルチピッチナット 6 0が案 内される。 僅かに、 平坦部 6 2 a、 6 2 c , 4 2 a , 4 2 c同士の接触から斜 部 6 2 b、 6 2 d、 4 2 b、 4 2 d同士の接触に移行する瞬間に線接触が発生 する。 第 8図 (C) に示す位置である。 したがって、 この実施の形態では、 マ ルチピッチ送りねじ 4 0のねじ山 4 2のフランクとの間に間隙を作ることなく、 つまりガタなく、 マルチピッチナット 6 0を送ることができると共に、 瞬間的 な回転位置を除いてそのほとんどの回転位置でマルチピッチナツト 6 0のねじ 山突起 6 2とマルチピッチ送りねじ 4 0のねじ山 4 2が面接触するので、 機械 的強度、 耐久性に優れて ^るという利点がある。
第 8図 (B ) は、 第 5のマルチピッチナット 7 0とマルチピッチ送りねじ 4 0との螺合の状態を示す正面図である。 ここでは、 マルチピッチナット 7 0の ねじ山突起 7 2の長さが円周の 6 / 1 6回転の長さまで伸ばされている。 ねじ 山突起 7 2は全部で 5個ある。 向こう側の 2つのねじ山突起 7 2の端部が一部 顔を視かせている。 各ねじ山突起 7 2は、 進み側フランク、 追い側フランク共 に、 4ノ 1 6回転の長さの平坦部 7 2 a、 7 2 cと 2ノ 1 6回転の長さの斜部 7 2 b、 7 2 dを有している。 斜部 7 2 b、 7 2 dは勿論マルチピッチ送りね じ 4 0の斜部 4 2 b、 4 2 dに対応したリード角のものである。 このような形 状にすると、一つ一つのねじ山突起 7 2の体積が大きくなるので、機械的強度、 耐久性に優れているという利点がある。
第 8図 (A) は、 第 6のマルチピッチナット 8 0とマルチピッチ送りねじ 4 0との螺合の状態を示す正面図である。 ここでは、 マルチピッチナツト 8 0の ねじ山突起 8 2が、 マルチピッチ送りねじ 4 0のねじ山 4 2との摺接に必要な 部分のみ残し、 残余の部分を削り取った形状をしている。 ねじ山突起 8 2は全 部で 5個ある。 各ねじ山突起 8 2は、 進み側フランクでは 1 / 1 6回転の長さ の平坦部 8 2 aとそれに 1位相だけ進んだ 1 1 6回転の長さの斜部 8 2 bを 有している。 追い側フランクでは進み側フランクの平坦部 8 2 aから 1位相遅 れた 1ノ1 6回転の長さの平坦部 8 2 cと、 さらに 1位相遅れた 1 / 1 6回転 の長さの斜部 8 2 dを有している。 したがって、 ねじ山突起 8 2は菱形をなし ている。 斜部 8 2 b、 8 2 dは勿論マルチピッチ送りねじ 4 0の斜部 4 2 b、 4 2 dに対応したリ一ド角のものである。 このような形状にすると、 マルチピ ツチ送りねじ 4 0のねじ山 4 2がガ夕なく面接触することのできるねじ山突起 8 2が最小の容積で実現できる。 したがって、 ねじ山突起 8 2の周辺に大きな 空間が取れ、 工作がし易いという利点がある。
第 9図は、 第 8図 (C) に示した第 4のマルチピッチナット 6 0の要素板材 6 5を示す斜視図である。 要素板材 6 5は、 所定の板厚の正方形の板材の中央 にねじ穴 6 1に相当する穴が明けられ、 そのねじ穴 6 1の周縁の一部に 1個の ねじ山突起 6 2が形成されている。 ねじ山突起 6 2には 3ノ 1 6回転の長さの 平坦部 6 2 aと 1ノ1 6回転の長さの斜部 6 2 bが形成されている。 要素板材 6 5の辺部には 2つの孔 6 6が形成されている。 このような要素板材 6 5は板 材をプレス加工することにより容易に精度良く製作できる。
第 1 0図は、 マルチピッチナツ卜の要素であるスぺーサー 6 7を示す斜視図 である。 スぺーサー 6 7は所定の板厚の正方形の板材の中央にねじ穴 6 1に相 当する穴 6 8が明けられ、 辺部には 2つの孔 6 9が形成されている。 このよう なスぺーサ一 6 7は板材をプレス加工することにより容易に精度良く製作でき る。 そして、 前記の要素板材 6 5を 5枚とスぺーサー 6 7を 4枚取りそろえ、 要素板材 6 5の位置を 1 8 0 ° ずつ反転させながらスぺーサー 6 7を間に挾ん で積層し、 2つの孔 6 6、 6 9にポルトを揷通しナットで固定することにより 第 4のマルチピッチナット 6 0が完成する。 ポルトナットで締着した後、 溶接 により固着しても良い。 また、 2つの孔 6 6、 6 9に位置決めピンを嵌挿し要 素板材 65、 スぺーサー 67の位置を決めてから各要素板材 65、 スぺーサ一 67を固着するようにしても良い。
第 1 1図は、 マルチピッチ送りねじ 40のねじ山 42と前記のように製作し た第 4のマルチピッチナツト 60のねじ山突起 62との螺合の様子を展開して 示す展開図である。 マルチピッチ送りねじ 40のねじ山 42のピッチは 16m mである。 ねじ山 42のフランクは台形ねじであるので有効径のところで 1回 転を展開している。 ねじ山 42の進み側フランクでは平坦部 42 aと斜部 42 b力交代しながら連続する。 同様に、 追い側フランクでも平坦部 42 cと斜部 42 dが交代しながら連続する。これら、ねじ山 42の平坦部 42 a、 42 c、 斜部 42 b、 42 dに摺接するように、 ねじ山突起 62の平坦部 62 a、 62 c、 斜部 62 b、 62 dが面接触で摺接し、 ねじ山突起 62が案内される。 第 12図は、 2条ねじのマルチピッチねじ 90を示す斜視図である。 マルチ ピッチ 2条ねじ 90は、 軸部 91とその軸部 91の回りにつるまき状に形成さ れた第 1のねじ山 92と第 2のねじ山 93を有する。 第 1のねじ山 92と第 2 のねじ山 93は位相を 180° 異にする。 第 1のねじ山 92の進み側フランク には平坦部 92 aと斜部 92 bが交代して連続し、 遅れ側フランクにも平坦部 92 cと斜部 92 dが交代して連続する。 第 2のねじ山 93の進み側フランク には平坦部 93 aと斜部 93 bが交代して連続し、 遅れ側フランクにも平坦部 93 cと斜部 93 dが交代して連続する。 第 1のねじ山 92の平坦部 92 a、 92 c、斜部 92 b、 92 dは、それぞれ、第 2のねじ山 93の平坦部 93 a、
93 c、 斜部 93 b、 93 dと同じ角度位置に来るように形成される。
第 13図は、 このマルチピッチ 2条ねじを送りねじに適用したマルチピッチ 2条送りねじ 100を示す正面図である。 このマルチピッチ 2条送りねじ 10 0は自動車のパワーシートに用いられるものである。 マルチピッチ 2条送りね じ 100は 2条のねじ山 102、 103を有するマルチピッチ 2条ねじである。 各ねじ山 102、 103リードは 16mm、 ピッチは 8mm、 ストロークは約 200mmである。 マルチピッチ 2条送りねじ 100の外径 (ねじ山 102、
103の外径)は Ψ 20 mm,有効径は φ 18 mm、軸部 101の径は Φ 13. 7mmである。
第 14図は、 マルチピッチ 2条送りねじ 100の 2条のねじ山 102、 10 3の形状及びリードを 360° 展開して示す展開図である。 マルチピッチ 2条 送りねじ 100は台形ねじであり、 その谷径は Φ 13. 7mm, 有効径は φ 1 8. 0mm、 外径は Φ20. 0mmである。 2条のねじ山 102、 103のリ ードは 16mmであり、 ねじ山 102、 103のピッチは 8 mmである。 2条 のねじ山は位相が 1 8 0 ° ずれている。 第 1のねじ山 1 0 2は円周を 1 6等分 し、第 1のねじ山 1 0 2のリ一ド角がゼロすなわち平坦な区間 1 0 2 a (以下、 平坦部 1 0 2 aという)と 3 0 ° 近い急角度な傾斜をなす区間 1 0 2 b (以下、 斜部 1 0 2 bという) が交互に来るようにされている。 同様に、 第 2のねじ山 1 0 3も円周を 1 6等分し、 第 1のねじ山 1 0 3のリード角がゼロすなわち平 坦な区間 1 0 3 a (以下、 平坦部 1 0 3 aという) と 3 0 ° 近い急角度な傾斜 をなす区間 1 0 3 b (以下、 斜部 1 0 3 bという) が交互に来るようにされて いる。 そして、 第 1のねじ山の平坦部 1 0 2 a、 斜部 1 0 2 bは、 それぞれ、 第 2のねじ山の平坦部 1 0 3 a、 斜部 1 0 3 bと同じ角度位置に来るようにさ れている。 各ねじ山 1 0 2、 1 0 3は 1つのリードを 8ステップで通過するこ とになる。
第 1 5図は、 このようなマルチピッチ 2条送りねじ 1 0 0に螺合するマルチ ピッチ 2条ナツト要素板材 1 1 0を示す斜視図である。 マルチピッチ 2条ナツ ト要素板材 1 1 0は、 所定の板厚の正方形の板材の中央にねじ穴 1 1 1に相当 する穴が明けられ、 そのねじ穴 1 1 1の周縁の 1 8 0 ° 対向する位置に 2つの ねじ山突起 1 1 2、 1 1 3が形成されている。 2つのねじ山突起 1 1 2 , 1 1 3はそれぞれ、 2 1 6回転の長さを有し、 台形のフランクからなる平坦部 1 1 2 a , 1 1 3 aが形成されている。 マルチピッチ 2条ナツト要素板材 1 1 0 の辺部には 2つの孔 1 1 5が形成されている。 このようなマルチピッチ 2条ナ ット要素板材 1 1 0は板材をプレス加工することにより容易に精度良く製作で きる。 このようなマルチピッチ 2条ナット要素板材 1 1 0を第 1 0図に示した スぺーサー 6 7と組み合わせ、 複数枚積層してマルチピッチ 2条ナットとして も良く、 また、 マルチピッチ 2条ナット要素板材 1 1 0単体でマルチピッチ 2 条ナットとしても良い。 2つの孔 1 1 5は積層する際の位置決めピンの孔とし て、 あるいは、 締着ポルトの揷通孔として用いられる。
第 1 6図は、 上記のマルチピッチ 2条ナット要素板材 1 1 0からなるマルチ ピッチ 2条ナツ卜と、 マルチピッチ 2条送りねじ 1 0 0との螺合の様子を展開 して示す展開図である。 マルチピッチ 2条送りねじ 1 0 0のねじ山 1 0 2、 1 0 3のピッチは 8 mm、 リードは 1 6 mmである。 各ねじ山 1 0 2、 1 0 3の フランクは台形ねじであるので有効径のところで 1回転を展開している。 2条 ねじであるので第 1のねじ山 1 0 2と第 2のねじ山 1 0 3とが図面高さ方向で 交互に現れる。 第 1のねじ山 1 0 2の進み側フランクでは平坦部 1 0 2 aと斜 部 1 0 2 bが交代しながら連続し、 追い側フランクでも平坦部 1 0 2 cと斜部 1 0 2 dが交代しながら連続する。 同様に、 第 2のねじ山 1 0 3の進み側フラ ンクでは平坦部 103 aと斜部 103 bが交代しながら連続し、 追い側フラン クでも平坦部 103 cと斜部 103 dが交代しながら連続する。
マルチピッチ 2条ナツト要素板材 1 10の 2つのねじ山突起 1 12、 1 13 が、 図面上で同じ高さで 180° 位相のずれた位置に配置される。 2つのねじ 山突起 1 12、 1 13は長さが 2Z16回転の矩形をしている。 そして、 第 1 のねじ山突起 1 12は、 進み側の平坦部 1 12 aが第 2のねじ山 103の進み 側の平坦部 103 aに面接触し、 追い側の平坦部 1 12 cが第 1のねじ山 10 2の追い側の平坦部 102 cに面接触して案内される。 斜部 102 d、 103 bにおいては、 第 1のねじ山突起 112の平坦部 1 12 a、 1 12 cの端縁の 稜縁がそれぞれ斜部 102 d、 103 bに線接触して案内される。 第 2のねじ 山突起 113も同様に、 進み側の平坦部 1 13 aが第 1のねじ山 102の進み 側の平坦部 102 aに面接触し、 追い側の平坦部 1 13 cが第 2のねじ山 10 3の追い側の平坦部 103 cに面接触して案内される。 斜部 102 b、 103 dにおいては、 第 2のねじ山突起 113の平坦部 113 a、 1 13 cの端縁の 稜縁がそれぞれ斜部 102 b、 103 dに線接触して案内される。
したがって、 本実施の形態はガタなくマルチピッチ 2条ナット要素板材 1 1 0が案内されるという利点がある。 さらに、 同じ高さで 180° 位置のずれた 対称の位置にある 2つのねじ山突起 1 12、 113でマルチピッチ 2条送りね じ 100からの力を受けるので、 バランスが良いという利点がある。
第 17図は、 第 2のマルチピッチ 2条ナット要素板材 120を示す斜視図で ある。 第 2のマルチピッチ 2条ナット要素板材 120は、 所定の板厚の正方形 の板材の中央にねじ穴 121に相当する穴が明けられ、 そのねじ穴 121の周 縁の 180 °対向する位置に 2つのねじ山突起 122、 123が形成されてい る。 2つのねじ山突起 122, 123はそれぞれ、 4 16回転の長さを有し、 台形のフランクからなる平坦部 122 a, 123 aと斜部 122 b、 123 b が形成されている。 この斜視図からは見えないが、 裏側にも平坦部 122 c、 123 cと斜部 122 d、 123 dが形成されている。 第 2のマルチピッチ 2 条ナツト要素板材 120の辺部には 2つの孔 125が形成されている。 このよ うな第 2のマルチピッチ 2条ナツト要素板材 120は板材をプレス加工するこ とにより容易に精度良く製作できる。 このようなマルチピッチ 2条ナット要素 板材 120を第 10図に示したスぺーサー 67と組み合わせ、 複数枚積層して マルチピッチ 2条ナットとしても良く、 また、 マルチピッチ 2条ナット要素板 材 120単体でマルチピッチ 2条ナツ卜としても良い。 2つの孔 125は積層 する際の位置決めピンの孔として、 あるいは、 締着ボルトの揷通孔として用い られる。
第 1 8図は、 上記第 2のマルチピッチ 2条ナツト要素板材 1 2 0からなるマ ルチピッチ 2条ナツトと、 マルチピッチ 2条送りねじ 1 0 0との螺合の様子を 展開して示す展開図である。 マルチピッチ 2条送りねじ 1 0 0については前に 第 1 6図で説明したのと同じであるから、 同じ符号を附して説明を省略する。 第 2のマルチピッチ 2条ナツト要素板材 1 2 0の 2つのねじ山突起 1 2 2、 1 2 3が、 図面上で同じ高さで 1 8 0 ° 位相のずれた位置に配置される。 2つの ねじ山突起 1 2 2、 1 2 3は長さが 4ノ 1 6回転の略平行四辺形をしている。 そして、 第 1のねじ山突起 1 2 2は、 進み側の平坦部 1 2 2 aが第 2のねじ山 1 0 3の進み側の平坦部 1 0 3 aに面接触し、 追い側の平坦部 1 2 2 cが第 1 のねじ山 1 0 2の追い側の平坦部 1 0 2 cに面接触して案内される。 さらに、 第 1のねじ山突起 1 2 2の位相遅れの斜部 1 2 2 bは第 2のねじ山 1 0 3の斜 部 1 0 3 bに案内され、 第 1のねじ山突起 1 2 2の位相進みの斜部 1 2 2 dは 第 1のねじ山 1 0 2の斜部 1 0 2 dに案内され、 斜部においても面接触で案内 される。
同様に、 第 2のねじ山突起 1 2 3は、 進み側の平坦部 1 2 3 aが第 1のねじ 山 1 0 2の進み側の平坦部 1 0 2 aに面接触し、 追い側の平坦部 1 2 3 cが第 2のねじ山 1 0 3の追い側の平坦部 1 0 3 cに面接触して案内される。さらに、 第 2のねじ山突起 1 2 3の位相遅れの斜部 1 2 3 bは第 1のねじ山 1 0 2の斜 部 1 0 2 bに案内され、 第 2のねじ山突起 1 2 3の位相進みの斜部 1 2 3 dは 第 2のねじ山 1 0 3の斜部 1 0 3 dに案内され、 斜部においても面接触で案内 される。
したがって、 本実施の形態は、 ガ夕なく第 2のマルチピッチ 2条ナット要素 板材 1 2 0が案内されるという利点、 さらに、 同じ高さで 1 8 0 ° 位置のずれ た対称の位置にある 2つのねじ山突起 1 2 2、 1 2 3でマルチピッチ 2条送り ねじ 1 0 0からの力を受けるので、 バランスが良いという利点、 に加えて、 第 2のマルチピッチ 2条ナツト要素板材 1 2 0のねじ山突起 1 2 2、 1 2 3が面 接触でマルチピッチ 2条送りねじ 1 0 0のねじ山 1 0 2、 1 0 3に案内される ので、 機械的強度が強いと共に摩耗にも強いという利点がある。
以上述べた実施の形態では、 平坦部の区間をリード角がゼロである平坦な区 間として説明したが、 この区間のリード角をゼロとはせず、 セルフロック角よ り緩やかな勾配を持つ区間としても同様の作用効果を奏することは明らかであ る。 また、 送りねじ装置として説明したが、 締め付け具として使用しても、 ス テツプ的に強力な緩み止め作用を奏することは明らかである。 以上説明したように、本発明は、不連続的にしかロックは掛からないものの、 部材に過大な応力を掛けることなく、 ステップ的に確実に緩み止めができるね じとナットを提供することができるという優れた効果がある。 また、 快適な高 速送りがモー夕やギヤボックスに負担を掛けることなく実現でき、 かつ、 駆動 源からのトルクが絶たれた時も、 連続的ではないものの、 ステップ的にセルフ 口ック機能が働く送りねじ装置を提供することができるという優れた効果があ る。

Claims

請 求 の 範 囲
I . ねじのねじ山が、 つるまき線に沿って 1回転する間にリード角の緩い区 間とリード角の急な区間とが交代して、 交互に連続するように形成されている ことを特徴とするマルチピッチねじ。
2 . 前記リード角の緩い区間のリード角が、 ゼロ (平坦) であることを特徴 とする請求の範囲第 1項記載のマルチピッチねじ。
3 . 前記リード角の急な区間のリード角が、 セルフロック角度より急勾配で あることを特徴とする請求の範囲第 1項記載のマルチピツチねじ。
4 . 前記ねじが、 多条ねじであることを特徴とする請求の範囲第 1項乃至第 3項のいずれかに記載のマルチピッチねじ。
5 . 前記ねじのねじ山が、 つるまき線に沿って 1回転する間の一部の区間に しか存在せずねじ山の欠損区間を有することを特徴とする請求の範囲第 1項乃 至第 4項のいずれかに記載のマルチピツチねじ。
6 . 前記ねじのねじ山が、 ねじの軸線を中心とする回転対称の位匱にのみあ ることを特徴とする請求の範囲第 5項記載のマルチピッチねじ。
7 . 前記ねじのねじ山が、 前記リード角がゼロ (平坦) である区間のみから なり、 ねじのねじ山のフランクが雌ねじのねじ山のリード角がゼロの区間の圧 力側フランクに面接触しているとき、 ねじのねじ山の一端が雌ねじの遊び側フ ランクの位相のずれた位置 (回転角の異なった位置) に線接触するように形成 されていることを特徴とする請求の範囲第 5項または第 6項に記載のマルチピ ツチねじ。
8 . 前記ねじのねじ山が、 前記リード角がゼロ (平坦) である区間とリード 角が急な区間とを連続した形状を有し、 ねじのねじ山のフランクと雌ねじのね じ山のフランクとが接触する位相が、 雌ねじの圧力側フランクと遊び側フラン クとでは位相のずれた位置 (回転角の異なった位置) でそれぞれ面接触するよ うに形成されていることを特徴とする請求の範囲第 5項または第 6項に記載の マルチピッチねじ。
9 . 雌ねじのねじ山が、 つるまき線に沿って 1回転する間にリード角の緩い 区間とリード角の急な区間とが交代して、 交互に連続するように形成されてい ることを特徵とするマルチピッチナット。
1 0 . 前記リード角の緩い区間のリード角が、 ゼロ (平坦) であることを特 徴とする請求の範囲第 9項記載のマルチピッチナツト。
I I . 前記リード角の急な区間のリード角が、 セルフロック角度より急勾配 であることを特徴とする請求の範囲第 9項記載のマルチピッチナツト。
1 2 . 前記雌ねじが、 多条ねじであることを特徴とする請求の範囲第 9項乃 至第 1 1項のいずれかに記載のマルチピッチナツ卜。
1 3 . 前記雌ねじのねじ山が、 つるまき線に沿って 1回転する間の一部の区 間にしか存在せずねじ山の欠損区間を有することを特徴とする請求の範囲第 9 項乃至第 1 2項のいずれかに記載のマルチピッチナツ卜。
1 4 . 前記雌ねじのねじ山が、 ねじの軸線を中心とする回転対称の位置にの みあることを特徴とする請求の範囲第 1 3項記載のマルチピッチナツト。
1 5 . 前記雌ねじのねじ山が、 前記リード角がゼロ (平坦) である区間のみ からなり、 雌ねじのねじ山のフランクが雄ねじのねじ山のリード角がゼロの区 間の圧力側フランクに面接触しているとき、 雌ねじのねじ山の一端が雄ねじの 遊び側フランクの位相のずれた位置 (回転角の異なった位置) に線接触するよ うに形成されていることを特徴とする請求の範囲第 1 3項または第 1 4項に記 載のマルチピッチナツト。
1 6 . 前記雌ねじのねじ山が、 前記リード角がゼロ (平坦) である区間とリ ード角が急な区間とを連続した形状を有し、 雌ねじのねじ山のフランクと雄ね じのねじ山のフランクとが接触する位相が、 雄ねじの圧力側フランクと遊び側 フランクとでは位相のずれた位置 (回転角の異なった位置) でそれぞれ面接触 するように形成されていることを特徴とする請求の範囲第 1 3項または第 1 4 項に記載のマルチピッチナット。
1 7 . 請求の範囲第 1項乃至 4のいずれかに記載されたマルチピッチねじと、 請求の範囲第 9項乃至第 1 6項のいずれかに記載されたマルチピッチナツ卜と を、 組み合わせたことを特徴とする送りねじ装置。
1 8 . 請求の範囲第 5項乃至第 8項のいずれかに記載されたマルチピッチね じと、 請求の範囲第 9項乃至第 1 2項のいずれかに記載されたマルチピッチナ ットとを、 組み合わせたことを特徴とする送りねじ装置。
1 9 . 雌ねじのねじ溝に相当する穴が明けられ、 その穴の周縁から穴の中心 に向かって突出した雌ねじのねじ山の一部に相当するねじ山突出部を有する要 素板材を形成する要素工程と、
その要素板材を積層して一体に固着する積層工程と、
を備えることを特徴とする請求の範囲第 1 3項乃至第 1 6項のいずれかに記載 のナツ卜を製作するマルチピッチナツト製造方法。
PCT/JP2003/013508 2002-11-29 2003-10-22 マルチピッチねじ及びマルチピッチナット並びにそれを用いた送りねじ装置並びにマルチピッチナット製造方法 WO2004051098A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03812279A EP1566555B1 (en) 2002-11-29 2003-10-22 Multi-pitch screw, multi-pitch nut, feed screw device using the screw and nut, and method of producing the nut
DE60319414T DE60319414T2 (de) 2002-11-29 2003-10-22 Mehrgängige schraube, mehrgängige mutter, diese schraube und mutter verwendende vorschubspindelvorrichtung und verfahren zur herstellung der mutter
US10/508,773 US7246979B2 (en) 2002-11-29 2003-10-22 Multi-pitch screw, multi-pitch nut, feed screw device using the screw and nut, and method of producing the nut
AU2003277511A AU2003277511A1 (en) 2002-11-29 2003-10-22 Multi-pitch screw, multi-pitch nut, feed screw device using the screw and nut, and method of producing the nut

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002346891A JP2007016797A (ja) 2002-11-29 2002-11-29 マルチピッチねじとマルチピッチナットとの組み合わせ及びマルチピッチナットの製造方法。
JP2002/346891 2002-11-29

Publications (1)

Publication Number Publication Date
WO2004051098A1 true WO2004051098A1 (ja) 2004-06-17

Family

ID=32462867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013508 WO2004051098A1 (ja) 2002-11-29 2003-10-22 マルチピッチねじ及びマルチピッチナット並びにそれを用いた送りねじ装置並びにマルチピッチナット製造方法

Country Status (7)

Country Link
US (1) US7246979B2 (ja)
EP (1) EP1566555B1 (ja)
JP (1) JP2007016797A (ja)
CN (2) CN100501175C (ja)
AU (1) AU2003277511A1 (ja)
DE (1) DE60319414T2 (ja)
WO (1) WO2004051098A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444985C (zh) * 2004-11-19 2008-12-24 财团法人名古屋产业科学研究所 多螺距螺纹、多螺距螺纹的制造方法及制造装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7793989B2 (en) * 2004-07-14 2010-09-14 Pinckney Jr Robert Locking connector with depressions
US7690697B2 (en) * 2007-05-09 2010-04-06 Gandy Technologies Corp. Thread form for tubular connections
DE102007000828A1 (de) * 2007-10-08 2009-04-09 Hilti Aktiengesellschaft Befestigungselement
DE102008027297A1 (de) * 2008-06-06 2009-12-10 Pee-Wee Kaltwalz- Und Rohrbearbeitungsmaschinen Gmbh Verbindungselement für eine Schraubverbindung sowie eine solche Schraubverbindung
CN101315999B (zh) * 2008-06-27 2012-10-03 华为技术有限公司 螺钉装置和使用该螺钉装置的空腔滤波器
US9441661B2 (en) 2008-12-31 2016-09-13 Microfabrica Inc. Microscale and millimeter scale devices including threaded elements, methods for designing, and methods for making
ES2523579T3 (es) * 2010-12-17 2014-11-27 Stryker Trauma Gmbh Fijación ósea y procedimiento de fabricación de la misma
US10557316B2 (en) 2011-01-26 2020-02-11 Bly Ip Inc. Drill string components having multiple-thread joints
US9810029B2 (en) * 2011-01-26 2017-11-07 Bly Ip Inc. Drill string components resistant to jamming
US9850723B2 (en) 2011-01-26 2017-12-26 Bly Ip Inc. Drill string components having multiple-thread joints
ITTO20110189A1 (it) * 2011-03-02 2012-09-03 Big Astor S R L Dispositivo di regolazione a vite provvisto di un meccanismo di bloccaggio
JP2012219873A (ja) * 2011-04-06 2012-11-12 Enuma Chain Mfg Co Ltd オートテンショナ
CN102319981B (zh) * 2011-06-08 2013-06-05 沈阳飞机工业(集团)有限公司 曲柄式压力机大螺杆锁紧螺母的加工方法
JP5612633B2 (ja) * 2012-06-04 2014-10-22 和穂 小磯 緩み止めナット・ボルト及び製造方法
CN103335001A (zh) * 2013-07-24 2013-10-02 太仓市协诚金属制品有限公司 互锁螺栓
US9603718B2 (en) * 2014-02-27 2017-03-28 Alphatec Spine, Inc. Spacer with temporary fixation plate
US9642723B2 (en) 2014-02-27 2017-05-09 Alphatec Spine, Inc. Spinal implants and insertion instruments
CN105508376A (zh) * 2016-02-03 2016-04-20 厦门普瑞特科技有限公司 一种止转调节螺纹结构
EP3591262B1 (en) * 2017-04-12 2022-08-24 Goodrich Actuation Systems Limited Linear actuator
CN106979210A (zh) * 2017-05-10 2017-07-25 米建军 一种新型螺纹及加工方法
DE202018105683U1 (de) * 2018-10-04 2020-01-08 Igus Gmbh Spindelgetriebe
CN113785124A (zh) * 2019-06-11 2021-12-10 兵神装备株式会社 连结轴及单轴偏心螺杆泵
CN110332199A (zh) * 2019-06-27 2019-10-15 河海大学 一种螺丝
CN111877754B (zh) * 2020-07-27 2021-11-30 浙江瓯海铁路投资集团有限公司 一种建筑施工支撑装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4745973B1 (ja) * 1966-12-28 1972-11-20
JPS5992253U (ja) * 1982-12-13 1984-06-22 アルプス電気株式会社 螺旋状溝を有する部材
JPS6048931U (ja) * 1983-09-12 1985-04-06 アルプス電気株式会社 間欠送り用部材
JPS6274475U (ja) * 1985-10-29 1987-05-13
JPS63152762A (ja) * 1986-12-16 1988-06-25 Alps Electric Co Ltd 間欠送り部材およびその製造方法
JP3039156U (ja) * 1995-08-11 1997-07-11 大和金属工業株式会社 軽荷重の支柱管に於ける長さ調整装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US113557A (en) * 1871-04-11 Improvement in metal screws and nuts
US756269A (en) * 1903-01-05 1904-04-05 John F Fromm Nut-lock.
US3176746A (en) * 1963-04-01 1965-04-06 Walton Marvin Self-holding screw member
US3238985A (en) * 1963-05-09 1966-03-08 Allen F Reid Threaded devices with antirotational means
US3972361A (en) * 1972-05-30 1976-08-03 Standard Pressed Steel Co. Threaded fastener
US3972360A (en) * 1974-05-17 1976-08-03 Standard Pressed Steel Co. Vibration resistant fastener
US3972359A (en) * 1974-05-17 1976-08-03 Standard Pressed Steel Co. Vibration resistant fastener
US3982575A (en) * 1974-12-23 1976-09-28 Standard Pressed Steel Co. Thread forming self-locking screw
US4273175A (en) * 1979-04-04 1981-06-16 The Lamson & Sessions Co. Thread convolution
US6974289B2 (en) * 2002-08-12 2005-12-13 Illinois Tool Works Inc Pressure flank screw and fastening system therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4745973B1 (ja) * 1966-12-28 1972-11-20
JPS5992253U (ja) * 1982-12-13 1984-06-22 アルプス電気株式会社 螺旋状溝を有する部材
JPS6048931U (ja) * 1983-09-12 1985-04-06 アルプス電気株式会社 間欠送り用部材
JPS6274475U (ja) * 1985-10-29 1987-05-13
JPS63152762A (ja) * 1986-12-16 1988-06-25 Alps Electric Co Ltd 間欠送り部材およびその製造方法
JP3039156U (ja) * 1995-08-11 1997-07-11 大和金属工業株式会社 軽荷重の支柱管に於ける長さ調整装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1566555A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444985C (zh) * 2004-11-19 2008-12-24 财团法人名古屋产业科学研究所 多螺距螺纹、多螺距螺纹的制造方法及制造装置

Also Published As

Publication number Publication date
AU2003277511A8 (en) 2004-06-23
CN100501175C (zh) 2009-06-17
AU2003277511A1 (en) 2004-06-23
DE60319414D1 (de) 2008-04-10
DE60319414T2 (de) 2009-02-26
EP1566555A1 (en) 2005-08-24
CN100590326C (zh) 2010-02-17
CN1692232A (zh) 2005-11-02
EP1566555A4 (en) 2006-04-05
JP2007016797A (ja) 2007-01-25
US20050141983A1 (en) 2005-06-30
US7246979B2 (en) 2007-07-24
EP1566555B1 (en) 2008-02-27
CN101255888A (zh) 2008-09-03

Similar Documents

Publication Publication Date Title
WO2004051098A1 (ja) マルチピッチねじ及びマルチピッチナット並びにそれを用いた送りねじ装置並びにマルチピッチナット製造方法
US20200180123A1 (en) Negative drive angle
JP3764420B2 (ja) 締結具
CA2092018C (en) Tightening screw
US7780381B2 (en) Slot milling cutter
US20080219801A1 (en) Screw Fastener
WO2006054451A1 (ja) マルチピッチねじ、マルチピッチねじの製造方法及び製造装置
JPS61228157A (ja) スクリユ−ナツト駆動装置
US6035745A (en) Indexing clutch assembly for gear wrench
US6669424B1 (en) Screwed connection, fastener for said connection and method for the production thereof
JP4336178B2 (ja) マルチピッチナットの製造方法
US7661914B2 (en) Loosening-proof method used for a screw fastening unit and the device thereof
US20100162857A1 (en) Wrench
JP6871595B2 (ja) 二重ねじ構成体
JPH02120553A (ja) 歯車装置
JP2998882B2 (ja) 連結ネジ用ネジ締め機におけるネジ送り機構
JP2015152167A (ja) 伝動部材の締結構造
JP4873598B2 (ja) 締結具
JP2007170582A (ja) 締結具
JP2780003B2 (ja) セルフロックボルトの製造方法
TW201802363A (zh) 螺帽
CN218625003U (zh) 一种凸台自锁紧固件
JPH03129157A (ja) 歯車及びその歯車の製造方法
JP2003220438A (ja) 緩み防止ボルトのネジ形成方法
JPS6262056A (ja) 歯車

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10508773

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003812279

Country of ref document: EP

Ref document number: 20038A03685

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003812279

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003812279

Country of ref document: EP