WO2004047946A1 - Método y dispositivo de mezcla y sedimentacíon en procesos de extracción con disolventes para la recuperación de productos de gran pureza - Google Patents

Método y dispositivo de mezcla y sedimentacíon en procesos de extracción con disolventes para la recuperación de productos de gran pureza Download PDF

Info

Publication number
WO2004047946A1
WO2004047946A1 PCT/ES2002/000565 ES0200565W WO2004047946A1 WO 2004047946 A1 WO2004047946 A1 WO 2004047946A1 ES 0200565 W ES0200565 W ES 0200565W WO 2004047946 A1 WO2004047946 A1 WO 2004047946A1
Authority
WO
WIPO (PCT)
Prior art keywords
agitation
phase
window
settler
phases
Prior art date
Application number
PCT/ES2002/000565
Other languages
English (en)
French (fr)
Inventor
Daniel MARTÍN SAN LORENZO
Gustavo DÍAZ NOGUEIRA
Maria Frades Tapia
Original Assignee
Tecnicas Reunidas, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecnicas Reunidas, S.A. filed Critical Tecnicas Reunidas, S.A.
Priority to ES02793135T priority Critical patent/ES2266612T3/es
Priority to PCT/ES2002/000565 priority patent/WO2004047946A1/es
Priority to CNB028299531A priority patent/CN100354020C/zh
Priority to BRPI0215956-2A priority patent/BR0215956B1/pt
Priority to EP02793135A priority patent/EP1566208B1/en
Priority to AU2002358814A priority patent/AU2002358814A1/en
Priority to MXPA05005650A priority patent/MXPA05005650A/es
Publication of WO2004047946A1 publication Critical patent/WO2004047946A1/es
Priority to US11/137,308 priority patent/US7507343B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0446Juxtaposition of mixers-settlers
    • B01D11/0449Juxtaposition of mixers-settlers with stationary contacting elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0446Juxtaposition of mixers-settlers
    • B01D11/0457Juxtaposition of mixers-settlers comprising rotating mechanisms, e.g. mixers, mixing pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0492Applications, solvents used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0211Separation of non-miscible liquids by sedimentation with baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0208Separation of non-miscible liquids by sedimentation
    • B01D17/0214Separation of non-miscible liquids by sedimentation with removal of one of the phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/045Breaking emulsions with coalescers

Definitions

  • the present invention relates to a method and device that perfects the purification system used in the extraction processes with organic solvents (hereinafter, SX) by means of mixer-settlers, as they are used for the recovery of Metals and other products.
  • SX organic solvents
  • the invention incorporates novel elements both in equipment and in operational methodology. Its field of application is the final or intermediate production of any high purity product, preferably metallic or its salts, which requires SX technology with mixer-settlers, in which the phase mixing is carried out by means of stirring turbines and / or pumping into one or more mixing units, reactors or cascading compartments (hereafter referred to as compartments).
  • compartments hereafter referred to as compartments.
  • the SX is a widely known separation technique, in which an impure aqueous solution containing the product, ion or the species object of becoming a product of final interest (hereinafter species), is contacted with an organic solvent that It shows a special affinity for it. After the intimate mixing of both phases, and once the transfer of matter has taken place, it is separated to extract the final product.
  • Typical equipment used in these types of processes are mixers and settlers. Each mixer-settler is called a "floor" in SX.
  • the mixer which can have several cascaded compartments, has the mission of achieving the dispersion of the two phases to be mixed, to form an emulsion, in order to favor the transfer of matter and reach equilibrium.
  • the settler must be able to separate again the two components, organic phase and aqueous phase, which form the emulsion.
  • the most important parameters that determine the operation are: In the mixer, the intensity of the agitation is determined mainly by the viscosity, surface tension, and density differences of the phases.
  • Specifying the intensity of agitation required is paramount, since poor agitation leads to the formation of thick droplets which reduces the area of contact and the transfer of matter, while excessive agitation causes the formation of stable emulsions and fine droplets that they are easily dragged through the other phase damaging the purity of the final product obtained.
  • rotary agitators are used, they impart maximum energy at their periphery which leads to a non-uniform distribution of the droplet size.
  • the separation conditions depend both on the physical characteristics of the phases in dispersion (differences in density, surface tension, viscosity, temperature, acidity, unit velocity) and the intensity of the mixture, and the resulting droplet size .
  • the agitator of the first compartment of the mixer of a floor in an SX process usually has the double mission of agitating and pumping the phases from the settlers of the adjacent floors, so it usually has the geometry similar to the impeller of a pump.
  • the degree of agitation and pumping capacity are mainly a function of the size of the turbine, its agitation speed and its geometry.
  • the mixing of the organic and aqueous phases involved in the metal transfer reaction is normally carried out easily and very quickly by the intimate mixing of one phase in the other.
  • a type of radial agitation suitable for both missions, causes a shear effect of the agitator, especially at the peripheral ends of the turbine, which causes the drops formed to be both smaller (and consequently more difficult to decant later) when the greater the degree of that shear and agitation.
  • the agitators of the following compartments of the mixer have the mission of maintaining the homogeneity to give reaction time according to the kinetics specific to each type of extraction and each stage in it. They can therefore be of the axial agitation type (not shear), of a lower degree of agitation (size and / or speed).
  • the mixture obtained in the SX mixers pours into sedimentators where the phases are separated by the action of gravity taking advantage of the difference in densities of both phases.
  • This liquid-liquid separation is a dynamic separation in which, being a continuous process, it is influenced by the speed and type of travel of each phase, the ease of breaking the formed emulsion, the available surface and consequently the residence time , temperature, acidity, etc.
  • the unit speed of each phase can be varied by doing so mainly the flow rates fed including its possible recirculation and the control of the position of the interface.
  • the ease of breaking the emulsion, for a temperature and characteristics of fixed liquids, is also influenced by the unit speed, by the type and degree of agitation obtained and the type of "internal", which are special design barriers that are interpose in its flow to facilitate its distribution, homogenization and lamination in the whole geometry of the settler, or to facilitate the increase in the size of the drops that form it, thereby improving its decantation.
  • documents such as the Spanish patent applications of the PCT ES01 / 00060 and ES00 / 0458 or the US patents US 4,552,629 and US 4,572,771, applied to the SX of zinc describe either a process based especially on the reinforcement of chemical aspects of purification and selectivity (the first two, of the applicant himself), either by varying the aqueous medium (sulfuric and hydrochloric solutions) and the extractant system (the third), or processes based on previous specific purifications (chlorine oxidation and precipitation) and later (use of membranes or complementary diaphragms in electrolysis) to SX (the fourth).
  • US Patent 4,721, 571 defends a mixer-pre-settler-settler method, where the pre-setter acts as an intermediate chamber for phase separation improvement with its corresponding flow dampers.
  • US 5,185,081 refers to a method of mixing and separating phases with spiral turbines and a system designed to prevent and prevent aeration as the main emulsion source.
  • US 6,083,400 Another method and apparatus for recirculating part of the heavy phase already decanted from the interface zone to the mixer is described in US 6,083,400 as an improvement in the design for better phase contact and droplet size in the mixer.
  • Another patent, complementary to the previous one, US 6,132,615 defends a method and apparatus for improving the phase separation by advanced design of the flow absorbers, which improve the hydrodynamics of the conventional system.
  • US 6,176,608 acts on the decantability of the discharge system of the phase mixture by subjecting it to several changes of direction prior to its discharge to the settler.
  • US 4,925,441 US Energy, USA
  • US 6,007,237 (Bateman, Canada) defends the action of a mixture based on agitation control by creating and propagating vortex rings with an agitator special.
  • US 4,551, 314 (Amax, USA) collects a system of mixing two compartments in series, with different conditions of continuity in the phase as an element that favors subsequent decantation.
  • US 6,033,575 (Krebs, France) a pre-separation of the dispersion in two independently decanted fractions is proposed.
  • the present invention acts on these last aspects: new design, novel internal elements and specific conditions.
  • the objective of the present invention is to achieve a drastic decrease in the trawls of one phase in the other by reducing, depending on the stage, the contamination of the organic phase with the traps of the impure aqueous (trawling of aqueous in organic) or those of the organic in the purified aqueous (organic drag in aqueous).
  • the proposed invention acts directly on one of the main causes of impurification: the trawlers from one phase to another.
  • the reduction of this cause is achieved by acting both on the agitation system that causes the emulsion created during agitation (mixer), and on the destruction of its consistency that persists along the dispersion band at the interface (settler).
  • the decrease in the amount and consistency of said emulsion is achieved by acting together on both the special design of the primary agitator of pumping (first compartment), as in its treatment by the way to reduce that consistency throughout the other compartments of the series and, later, in the dispersion band inside the settler with the introduction of systems and devices to decrease in quantity and persistence that band.
  • the operating conditions in the organic and aqueous phase mixture and its subsequent decantation affect the type of mixture formed and the degree of difficulty in the subsequent separation.
  • the separation of both phases occurs through a physical process whose period of decantation until the emulsion becomes clear separate phases will depend, in addition to the specific operating conditions for each selected SX system (density differences, temperature , type of mixture, etc.), of the appropriate selection of unit speeds of each phase and certain operational conditions that accelerate the process. These conditions are not necessarily the same in all SX systems or in all settlers.
  • the rupture of the emulsion is carried out due to the shock and intersection of the dispersed drops, rupture and increase of the size of these in their displacement from the interface to the surface or bottom according to the relative density of each phase.
  • Figure 1 shows a diagram of an SX installation where, in this case, eight floors or mixers-settlers are shown, grouped in the three typical stages of this type of installations: extraction, washing, and re-extraction, with their interconnection and flows .
  • Figure 2 shows a diagram, in plan, of one of the mixers-settlers of Figure 1.
  • it is a mixer formed by four parallel-shaped compartments in series, and a settler with details of position and shape of both the traditional elements (distributor, flow dampers, recirculation system, and overflows of organic and aqueous phases), as well as the new elements (baffle with window and blind speaker).
  • Figure 3 shows a schematic section of a primary agitator.
  • Figure 4 shows a schematic section of a radial secondary agitator.
  • Figure 5 shows a schematic section of an axial secondary agitator.
  • Figure 6 shows a schematic section, in elevation, of the mixer-settler of Figure 2, with details of the evolution of the emulsion in the mixer and the effect therein of the different "internal" elements in the settler.
  • Figure 7 shows a front elevation of the dances with window.
  • Figure 8 shows a front elevation of blind dances.
  • Figure 1 shows an installation for obtaining a high purity product by SX technology consisting of three essential stages; extraction stage (1), washing stage (2), and re-extraction stage (3), each consisting of several mixers (4) - settlers (5) connected in series.
  • the series of mixers-settlers are connected by interconnections (6) of organic phase (30) that circulates loading with the species object of product in the extraction stage (1), washing in the washing stage (2) and discharging in the re-extraction stage (3).
  • the different aqueous phases that feed each stage flow: an impure solution (7) (fertile liquid) containing the species of interest, which is extracted by the organic phase (30), leaving a solution residual impure (8) (refined); an aqueous to wash (9) that washes that charged organic phase, and an aqueous to re-extraction (10) that allows recovering from that organic phase (30) the species already purified thus obtaining a purified aqueous solution (11) (aqueous extract).
  • FIG. 2 shows a diagram of said mixer (4) - settler (5) in which, in this case, the organic phase mixture (30) with the aqueous ones (31) and recirculation system (29) is performed in a mixer (4), formed by four compartments in series, equipped with their corresponding primary agitators (12), radial secondary agitators (13) and axial secondary agitators (14) as well as successive communication channels (15) formed between compartments successive of the mixer (4) by penetrating the fluid into the communication channels (15) above an upper overflow edge (15 ') presenting the outlet wall of the anterior compartment and leaving below a lower overflow edge (15 ") that has the entrance wall of the next compartment, thereby channeling the mixture of both phases from each compartment to the next, independent of them.
  • a mixer (4) formed by four compartments in series, equipped with their corresponding primary agitators (12), radial secondary agitators (13) and axial secondary agitators (14) as well as successive communication channels (15) formed between compartments successive of the mixer (4) by penetrating the
  • the secondary agitators ( 13) and (14) have turbines that maintain the agitation of the mixture in the desired conditions to allow both the adequate transfer of matter and allow its subsequent separation.
  • the primary agitator turbine (12) also has to stir the mission to act as a pump by aspirating each phase of the adjacent settlers and, if required, recirculation from the settler itself.
  • the turbines of the secondary agitators (13) and (14) maintain the mixing of the phases to complete the mission of said unit , allowing the mixing conditions to be varied for better subsequent separation
  • the agitation conditions must be progressively decreasing in the series of compartments in order to maintain the agitation of both phases, decrease the intensity and aggressiveness of the same, thus preparing said emulsion to facilitate sedimentation and grouping of the smallest drops.
  • the settler (5) has both the conventional flow distributor systems (19), flow dampers (20), upper overflow collection channel of the already decanted organic phase (25), lower overflow collection channel of the water phase already decanted (26), recirculation system (29), and system of control valves of the interface level (28), as of the new loudspeakers with window (21) and blind baffle (23).
  • both the primary agitator (12) and the secondary agitators (13) and (14) are equipped with blunt edges on blades (18) and blunt edges on plates (17), and this regardless of the number and arrangement of the blades (16).
  • these turbines excessive shear is avoided in the agitation, inhibiting the secondary dispersion responsible for the formation of fine drops, created by the rupture of the thick drops previously produced in the primary dispersion.
  • FIG 6 it can be seen how the emulsion (24) of both phases flows from the last compartment of the mixer (4) and is finally discharged to the settler (5).
  • the emulsion (24) behaves like a third phase that disappears over time along the settler (5).
  • a loudspeaker with window (21) and, downstream of it, blind loudspeaker (23), both about 500 mm high, are installed transverse to the wide flow of the entire settler, are located in an area of the interface and, as indicated by the evolution of the emulsion (24) at the interface, the phase separation is improved and the drag is decreased.
  • These new units are formed by independent elements aligned and introduced on posts or columns anchored in the settler in order to favor their installation and maintenance in large settlers. You can even install several of these units in parallel if the specific conditions of the installation so recommend. Also its relative position may vary according to the floor (mixer-settler) considered to achieve maximum efficiency.
  • the dances (21) and (23), constituted by a plurality of modular units as shown in Figures 7 and 8 and supported below, are arranged transversely to the flow covering the entire width of the settler (5).
  • the agitator turbines have a diameter between 0.2 and 0.1 of the circular diameter equivalent to the cross-section (that of the circle of the same cross-section) of the corresponding mixer compartment, the degree of agitation decreasing between 50 rps 3 ft 2 and 0.5 rps 3 ft 2 .
  • the baffles have a height between 10% and 90% of the total height of the phases, and the opening of the baffles with a window is between 10% and 90% of their total surface.
  • each stage of the same process extraction (1), washing (2), or re-extraction (3)
  • each floor within the same stage may require different degrees of application of the previous solutions, adapted to the specific objective that is pursued using, if necessary, several parallel units such as those mentioned, properly positioning the position of those "internal" in height and distance in the settler (5), conveniently fixing the position of the final interface ( 27), and applying the most appropriate operating conditions to each case.
  • Each SX process and each stage in particular requires an optimization tailored to the objectives pursued.
  • Aqueous (impure solution feed): Zinc sulfate solution with 32.7 g / L of Zn and pH 4.0
  • Case B Organic: 5-nonyl-salicylic-aldoxime (Acorga M5640) 30% v / v in kerosene
  • Aqueous (impure solution feed): Copper sulphate solution with 15.0 g / L of Cu and pH 1.5 Conditions: Temperature 30 ° C, total residence time 3 min., Organic / aqueous ratios 2 (continuous organic case) or 1 (continuous aqueous case) Results: 1.1.- Reagents case A (Zinc):
  • Case E Organic: D2EHPA (Di-2 Ethyl Exyl Phosphoric Acid) 40% v / v in kerosene, loaded with 12.1 g / l of Zn 2+ and 0.3 g / L of Fe 3+ , in equilibrium with D2EHPA (Di-2 Ethyl Exyl Phosphoric Acid) 40% v / v in kerosene, loaded with 12.1 g / l of Zn 2+ and 0.3 g / L of Fe 3+ , in equilibrium with
  • Aqueous Zinc sulfate solution (20 g / L Zn, 18 g / LH 2 SO)
  • Case B Organic: Ald-oxy-oxime (Acorga M5640) 30% v / v in kerosene
  • Centralized control Sedimentator type Transparent methacrylate, 22x0.25x1.1 m (LxAxh) (Length x width x height) Internal, located perpendicular to the direction of flow: Distributor, Laminator-damper and when indicated, 1 Speaker 0.5m high, with hollow -Central window of 0.25m, centered on the interface axis and located at a distance (variable depending on the case) from the mixer outlet. The specific flow of each phase was 2.5 m 3 / hm 2 . The unit speeds were 2.5 m / min in Organic, and 1.8 m / min in Aqueous. Results:
  • Sedimentator type As previous example (n ° 3).
  • Distributor Internal, located perpendicular to the direction of flow: Distributor,
  • Case E extraction: See previous examples 3 and 4
  • Case L washing): Organic: D2EHPA (Di-2 Ethyl Exyl Phosphoric Acid) 40% v / v in kerosene, loaded with 12.1 g / l of Zn 2+ and 0.3 g / L of Fe 3+
  • Aqueous Zinc sulfate solution (27 g / L Zn, 17 g / LH 2 SO)
  • Case R (re-extraction): Organic: D2EHPA (Di-2 ethyl exyl phosphoric acid) 40% v / v in kerosene, loaded with 1.5 g / l of Zn + and 0.3 g / L of Fe 3+
  • Aqueous Zinc sulfate solution (85 g / L Zn, 17 g / LH 2 SO 4 ) Continuous operation, in industrial prototype mixer-settler.
  • BV Window Speaker
  • BC Blind Speaker
  • This improvement is general for each and every one of the typical stages of a solvent extraction process and, in relative terms with respect to its absence, the more effective the more difficult the natural decantation of the system on which it operates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

El dispositivo de la invención incorpora los siguientes elementos novedosos en cada mezclador-sedimentador; a) Agitadores con turbinas de bordes romos, b) Agitación de grado decreciente a lo largo de la cascada de mezcla, c) Bafle con ventana centrada en la interfase del sedimentador, situado tras los amortiguadores de flujo, d) Bafle ciego, centrado en la interfase del sedimentador, situado tras el bafle con ventana. Los elementos anteriores permiten ejecutar un método operativo que inhibe la dispersión secundaria, disminuyendo la formación de microgotas, sin afectar a la transferencia de masa entra las fases. En consecuencia, se consigue una separación de fases con arrastres tan pequeños que es posible incrementar drásticamente la calidad del producto al obtener un extracto acuoso ultra-puro, reduciendo simultáneamente la superficie de sedimentación requerida.

Description

MÉTODO Y DISPOSITIVO DE MEZCLA Y SEDIMENTACIÓN EN PROCESOS DE EXTRACCIÓN CON DISOLVENTES PARA LA RECUPERACIÓN DE PRODUCTOS
DE GRAN PUREZA. OBJETO Y CAMPO DE APLICACIÓN La presente invención se refiere a un método y dispositivo que perfecciona el sistema de purificación usado en los procesos de extracción con disolventes orgánicos (en lo sucesivo, SX) mediante mezcladores-sedimentadores, tal como se utilizan para la recuperación de metales y otros productos. La invención incorpora elementos novedosos tanto en equipo como en metodología operativa. Su campo de aplicación es la producción final o intermedia de cualquier producto de alta pureza, preferentemente los metálicos o sus sales, que requiera la tecnología de SX con mezcladores-sedimentadores, en los que la mezcla de fases se realice mediante turbinas de agitación y/o bombeo en una o varias unidades de mezcla, reactores o compartimentos en cascada (en lo sucesivo, compartimentos). ESTADO DE LA TÉCNICA
La SX es una técnica de separación ampliamente conocida, en la que una disolución acuosa impura que contiene el producto, ion o la especie objeto de convertirse en producto de interés final (en lo sucesivo especie), se pone en contacto con un disolvente orgánico que muestra una especial afinidad por la misma. Tras la mezcla íntima de ambas fases, y una vez que se ha producido la transferencia de materia, se procede a su separación para la extracción del producto final.
Los equipos típicos utilizados en este tipo de procesos son mezcladores y sedimentadores. Cada mezclador-sedimentador se denomina "piso" en SX. El mezclador, que puede tener varios compartimentos en cascada, tiene la misión de lograr la dispersión de las dos fases a mezclar, para formar una emulsión, con el fin de favorecer la transferencia de materia y alcanzar el equilibrio. El sedimentador debe ser capaz de separar de nuevo los dos componentes, fase orgánica y fase acuosa, que forman la emulsión. Los parámetros más importantes que determinan la operación son: En el mezclador, la intensidad de la agitación viene determinada principalmente por la viscosidad, tensión superficial, y diferencias de densidad de las fases. El precisar la intensidad de agitación requerida es primordial, ya que una agitación escasa conduce a la formación de gotas gruesas lo que reduce el área de contacto y la transferencia de materia, mientras que una agitación excesiva provoca la formación de emulsiones estables y gotas finas que son fácilmente arrastradas por la otra fase perjudicando la pureza del producto final obtenido. Además, si se utilizan agitadores rotativos, estos imparten la máxima energía en su periferia lo que conduce a una distribución del tamaño de gota no uniforme.
En el sedimentador, las condiciones de separación dependen tanto de las características físicas de las fases en dispersión (diferencias de densidad, tensión superficial, viscosidad, temperatura, acidez, velocidad unitaria) como de la intensidad de la mezcla, y del tamaño de gota resultante.
Cuando se mezclan las dos fases líquidas -orgánica y acuosa- que intervienen en un proceso de extracción de metales u otras especies con disolventes orgánicos, es importante no sólo el asegurar la agitación adecuada que permita un buen contacto para la reacción de transferencia másica del metal o especie a extraer de una fase a otra (transformación química), sino que dicha mezcla sea tal que tras la reacción no sea difícil la posterior separación de fases en el sedimentador (transformación física).
El diseño específico de esos equipos, su combinación con otros agitadores estándar y su distribución en varios compartimentos de una misma etapa o piso de extracción, permiten la adecuación de ambos efectos (químico y físico) y constituyen una clara mejora que permite posteriormente una más fácil, rápida y nítida separación de fases sin menoscabo de sus ventajas químicas. Esa nitidez en la separación de las fases inmiscibles produce menores arrastres de una fase en la otra, repercutiendo en una mayor eficacia en la separación de las impurezas que pudiera llevar alguna de las fases alimentadas.
El agitador del primer compartimento del mezclador de un piso en un proceso de SX suele tener la doble misión de agitar y bombear las fases desde los sedimentadores de los pisos adyacentes, por lo que suele tener la geometría similar al rodete de una bomba. El grado de agitación y la capacidad de bombeo son función principalmente del tamaño de la turbina, de su velocidad de agitación y de su geometría. La mezcla de las fases orgánica y acuosa que intervienen en la reacción de transferencia del metal se realiza normalmente de forma fácil y muy rápida por la mezcla íntima de una fase en la otra. Un tipo de agitación radial, adecuado para ambas misiones, causa un efecto de cizalla del agitador, especialmente en los extremos periféricos de la turbina, que provoca el que las gotas formadas sean tanto más pequeñas (y en consecuencia más difíciles de decantar posteriormente) cuanto mayor sea el grado de esa cizalla y agitación.
Los agitadores de siguientes compartimentos del mezclador tienen la misión de mantener la homogeneidad para dar tiempo de reacción acorde a la cinética específica de cada tipo de extracción y de cada etapa en ella. Pueden por tanto ser del tipo agitación axial (no cizallador), de menor grado de agitación (tamaño y/o velocidad).
Es conocido que las condiciones de agitación de la mezcla afectan a su posterior decantación. Según condiciones, el que el tipo de mezcla sea tal que la dispersión sea de gotas de fase orgánica en la fase acuosa (Acuosa Continua, en adelante AC) o la de gotas de acuosa en fase orgánica (Orgánica Continua, en adelante OC) provoca el que una fase u otra salga más limpia (menor arrastre). La relación de fases orgánica/acuosa de la mezcla es otra variable que afecta no sólo al tipo de mezcla anterior, sino que también crea un grado dentro de cada tipo de mezcla que mejora o dificulta la posterior decantación de fases. Se ha comprobado que existen posibilidades de mejora de las características y condiciones operativas de agitación que permiten, para un equipo concreto, una mejora en la decantación posterior disminuyendo los arrastres de una fase en otra y, consecuentemente, las impurezas arrastradas.
La mezcla obtenida en los mezcladores de SX vierte a sedimentadores donde las fases son separadas por la acción de la gravedad aprovechando la diferencia de densidades de ambas fases. Esa separación líquido-líquido es una separación dinámica en la que, al ser un proceso continuo, está influenciada por la velocidad y el tipo de recorrido de cada fase, la facilidad de romper la emulsión formada, la superficie disponible y consecuentemente el tiempo de residencia, la temperatura, acidez, etc.
Para un proceso, condiciones y geometría del sedimentador concreto, la velocidad unitaria de cada fase puede variarse al hacerlo principalmente los caudales alimentados incluyendo su posible recirculación y el control de la posición de la interfase. La facilidad de ruptura de la emulsión, para una temperatura y características de los líquidos fijas, viene influenciada además de la velocidad unitaria, por el tipo y grado de agitación obtenido y el tipo de "internos", que son barreras de diseño especial que se interponen en su flujo para facilitar su distribución, homogenización y laminación en toda la geometría del sedimentador, o para facilitar el aumento de tamaño de las gotas que lo forman mejorando, en consecuencia, su decantación.
El objetivo de dichos "internos" es, pues, favorecer la decantación de la emulsión evitando que ésta llegue al rebose final de cada fase, obteniendo éstas de forma limpia y separada, evitando con ello los contaminantes de una fase en la otra. En la tecnología de SX normalmente se utilizan tres etapas: Extracción del producto o sus especies por una fase orgánica desde una disolución acuosa impura; posterior Lavado para purificación de esta fase orgánica y, finalmente, Reextracción de dicha especie o producto así purificado a una nueva acuosa. En cada una de esas etapas, pueden existir varios mezcladores-sedimentadores (pisos) en serie, donde cada fase (orgánica o acuosa) circula en sentido contracorriente entre ellos.
La necesidad, dentro de la tecnología de SX, de obtener un producto de alta pureza es a veces no sólo derivada de condiciones de mercado o competencia por calidad, sino que, a veces, es condición técnica ineludible para poder obtener dicho producto en etapas posteriores (como es el caso de la electrólisis del zinc). El problema actualmente existente es que el conseguir altos niveles de pureza requiere un proceso con la conjunción simultánea dentro de la SX de un disolvente selectivo, de mezcladores-sedimentadores con un diseño y elementos internos que proporcionen una mezcla adecuada y buena separación de fases, y unas condiciones operativas que lo permitan.
Existen varios procesos y sistemas que refuerzan la faceta de purificación del producto basados en el aumento o distribución del número de mezcladores- sedimentadores (pisos) o sus condiciones de flujo de una etapa (por ejemplo en lavado), o en aspectos químicos como la exaltación de la selectividad de la especie a extraer o su purificación una vez extraído, etc., pero no así sobre los componentes interiores de cada mezclador o sedimentador o sobre las condiciones operativas especiales que puedan disminuir drásticamente aquellos aspectos que impiden la obtención de disoluciones puras que contengan la especie objeto del producto final como son, por ejemplo, los arrastres (gotas en suspensión) de una fase en la otra o emulsiones de ambas fases.
Dentro del primer caso, documentos como las solicitudes de patentes españolas del PCT ES01/00060 y ES00/0458 o las norteamericanas US 4,552,629 y US 4,572,771 , aplicadas a la SX de zinc describen o bien un proceso basado especialmente en el refuerzo de los aspectos químicos de purificación y selectividad (las dos primeras, del propio solicitante), o bien variando el medio acuoso (disoluciones sulfúrica y clorhídrica) y el sistema extractante (la tercera), o bien procesos basados en purificaciones específicas previas (oxidación con cloro y precipitación) y posteriores (utilización de membranas o diafragmas complementarios en la electrólisis) a la SX (la cuarta). Así mismo ocurre en procesos donde se exalta la selectividad de la extracción por la selección de disolventes orgánicos específicos como son los casos de recuperación de zirconio y hafnio (EP 154,448), galio (US 4,559,203), separación de tierras raras (EP 156,735), cadmio (US 4,511 ,541), separación de níquel y cobalto, SX de cobre, etc. o las que tratan materiales concretos para aplicaciones específicas como las española ES 9701296 (pilas domésticas) y canadiense CA 1198290 (secundarios de zinc) del propio solicitante. Ninguna de ellas actúa ni en la introducción de elementos especiales en los equipos a utilizar ni en las condiciones no genéricas y convencionales de mezcla y decantación que mejoren dicha purificación.
Dentro del segundo grupo, más en la línea de la presente invención, donde intervienen equipos, métodos y aparatos que se diferencian del mezclador- sedimentador convencional, hay patentes que actúan sobre el mezclador o/y su turbina de agitación, sobre el sedimentador o sobre el conjunto.
Un grupo de ellas (Outokumpu, Finlandia) recoge diversos métodos y aparatos que actúan sobre la mezcla y decantación de fases, pero actuando principalmente en los aspectos hidrodinámicos del sistema: proponiendo cámaras o amortiguadores de flujo especiales, o para reciclado de fases, o con diseños de turbina enfocados a evitar aireación, o forzando el cambio de dirección de flujo de la mezcla, etc. Así, la patente US 4,721 ,571 defiende un método de mezclador-presedimentador-sedimentador, donde el presedimentador hace de cámara intermedia de mejora de separación de fases con sus correspondientes amortiguadores de flujo. La US 5,185,081 refiere un método de mezcla y separación de fases con turbinas espirales y un sistema destinado a prevenir y evitar la aireación como fuente de emulsión principal. Otro método y aparato para recircular al mezclador parte de la fase pesada ya decantada desde la zona de interfase es descrito en la US 6,083,400 como una mejora en el diseño para un mejor contacto de fases y tamaño de gotas en el mezclador. Otra patente, complementaria a la anterior, la US 6,132,615 defiende un método y aparato para mejorar la separación de fases por diseño avanzado de los amortiguadores de flujo, que mejoran la hidrodinámica del sistema convencional. La US 6,176,608 actúa sobre la decantabilidad del sistema de descarga de la mezcla de fases sometiendo ésta a varios cambios de dirección previa a su descarga al sedimentador.
Otro grupo de patentes, como la US 4,925,441 (US Energy, USA) trata de una cascada de contactores centrífugos provistos de intercomunicaciones para la mezcla y separación de fases, y aplicable al reprocesamiento de combustibles nucleares. La US 6,007,237 (Bateman, Canadá) defiende la acción de una mezcla basada en el control de agitación mediante la creación y propagación de anillos de vortex con un agitador especial. La US 4,551 ,314 (Amax, USA) recoge un sistema de mezcla de dos compartimentos en serie, con distintas condiciones de continuidad en la fase como un elemento favorecedor de la decantación posterior. También, en la US 6,033,575 (Krebs, Francia) se propone una pre-separación de la dispersión en dos fracciones decantadas independientemente.
Para cada sistema y reactivos utilizados, una mayoría de las turbinas de agitación utilizadas principalmente en SX de cobre, (Lightnin, VSF de Outokumpu, Nettco, Philadelphia, Krebs, etc.) conciben la turbina de bombeo como el rodete de una bomba y para disminuir el consumo energético suelen ser o de alabes curvos o de pequeño diámetro y muy revolucionadas, lo que provoca, a favor del menor consumo en el bombeo, un sacrificio del efecto de agitación y se crean microgotas de una fase en el seno de otra por un alto efecto de cizalladura en los bordes rectos de las turbinas, produciendo así una separación de fases muy dificultosa. Otro grupo de turbinas o sistemas (Bateman, espiral de Outokumpu, etc.) tienen, por el contrario, un tipo de agitación muy suave, o insuficiente para un adecuado bombeo o agitación, y requieren agitadores o sistemas complementarios.
En cuanto a los sistemas de decantación utilizados en el sedimentador, se suele actuar, como ya se ha dicho, con variaciones sobre el diseño de los distribuidores y amortiguadores de flujo, o con variaciones de hidrodinámica que afectan a la recirculación al mezclador con su consiguiente incremento de flujo a decantar, o sobre el cambio de dirección de la mezcla previa a su descarga al sedimentador.
En la presente invención se actúa sobre estos últimos aspectos: nuevos diseño, elementos internos novedosos y condiciones específicas. El objetivo de la presente invención es conseguir una drástica disminución de los arrastres de una fase en la otra reduciendo, según la etapa, la contaminación de la fase orgánica con los arrastres de la acuosa impura (arrastre de acuosa en orgánica) o los de la orgánica en la acuosa purificada (arrastre de orgánica en acuosa). BREVE DESCRIPCIÓN DE LA INVENCIÓN
La invención propuesta, actúa directamente sobre una de las principales causas de impurificación: los arrastres de una fase en otra. La disminución de dicha causa se logra actuando tanto sobre el sistema de agitación que provoca la emulsión creada durante la agitación (mezclador), como sobre la destrucción de su consistencia que persiste a lo largo de la banda de dispersión en la interfase (sedimentador). Así pues, en el mezclador, la disminución de la cantidad y consistencia de dicha emulsión se logra actuando conjuntamente tanto sobre el diseño especial del agitador primario de bombeo (primer compartimento), como en su tratamiento por la forma de disminuir esa consistencia a lo largo de los demás compartimentos de la serie y, posteriormente, en la banda de dispersión dentro del sedimentador con la introducción de sistemas y aparatos para disminuir en cantidad y persistencia esa banda. Estos aspectos no se abordan en ninguno de los documentos antes mencionados.
Para ello se incorpora tanto en los mezcladores como en los sedimentadores una serie de elementos de diseño especial. En cada compartimento del mezclador, se disponen turbinas con alabes de bordes romos eliminando vértices y aristas vivas, para evitar un tipo de mezcla cizallante que produzca una agitación con gotas excesivamente pequeñas logrando, con ello y una adecuada combinación de las condiciones operativas de mezcla y rebose a lo largo de la serie de compartimentos, un tipo de emulsión fácilmente decantable. Como solución complementaria se recomienda, para los compartimentos, una geometría en la que su acoplamiento y comunicación sea por amplios rebosaderos o canales de comunicación, que no provoquen agitaciones adicionales y favorezcan el agolpamiento de gotas en cada fase, así como que la agitación se realice en forma tal que se reduzca el grado de turbulencias puntuales. Aunque también es posible el empleo de unidades de mezcla o compartimentos cilindricos, la utilización en los mezcladores de compartimentos de geometría cuadrada, conectadas por canales de comunicación entre compartimentos contiguos y cortacorrientes superficiales para evitar vórtices, produce también consecuencias positivas.
En el sedimentador, con diseño convencional, se introducen dos nuevos elementos o "internos", situados en sentido transversal al flujo tras los amortiguadores de flujo y en la zona de interfase: - Un primer bafle situado en la zona de la interfase, de tamaño tal que permita el rebose superior e inferior de parte de cada fase decantada no emulsionada, y con una ventana central que contiene y disminuye la altura de la banda de emulsión, al permitir de forma comprimida la evacuación de esta emulsión dirigiéndolo hacia el centro de la interfase. - Un segundo bafle, posterior en el sentido de flujo y análogo al anterior pero sin ventana (ciego), que retiene la totalidad de la emulsión aún restante y zonas ya decantadas, permitiendo que las fases que lo desbordan mantengan posteriormente una línea de interfase totalmente definida y nítida. La situación de ambos dentro del sedimentador varía dependiendo del mezclador sedimentador considerado, con objeto de obtener las mejores condiciones para este efecto.
Por otra parte, las condiciones operativas en la mezcla de fases orgánica y acuosa y su posterior decantación afectan al tipo de mezcla formado y al grado de dificultad en la separación posterior.
En mezcla, una secuencia decreciente del grado de agitación en el que éste decrezca progresivamente en la cascada de compartimentos del mezclador, permite ventajas sobre una posterior decantación. Una mayor intensidad de agitación provoca la creación de gotas más pequeñas cuya separación es más dificultosa y, consecuentemente un mayor arrastre de una fase en la otra impurificando el producto.
Se ha demostrado que, siguiendo unas pautas generales, los logros obtenidos respecto al comportamiento físico posterior (rapidez, nitidez en la decantación y disminución de arrastres) son claramente positivos al iniciar un grado de agitación en el primer compartimento de la cascada adecuado a un bombeo suficiente, y reducir ese grado a lo largo de la cascada de agitadores de los siguientes. El provocar que la mezcla rebosante de cada compartimento en esa cascada se realice por anchos canales que fuerzan en la mezcla un cambio de dirección complementa la acción anterior. La mezcla así obtenida rebosa en el sedimentador desde el último compartimento del mezclador por un canal de comunicación. En el sedimentador se produce la separación de ambas fases mediante un proceso físico cuyo período de decantación hasta que la emulsión se convierta en fases separadas nítidas va a depender, además de las condiciones operativas específicas para cada sistema de SX seleccionado (diferencias de densidades, temperatura, tipo de mezcla, etc.), de la adecuada selección de velocidades unitarias de cada fase y ciertos condicionantes operativos que aceleran el proceso. Estas condiciones no son necesariamente las mismas ni en todos los sistemas SX ni en todos los sedimentadores. La ruptura de la emulsión se realiza debido al choque e intersección de las gotas dispersas, ruptura y aumento del tamaño de éstas en su desplazamiento desde la interfase hacia la superficie o fondo según la densidad relativa de cada fase. Una mayor velocidad unitaria puede provocar más contactos, pero no muy abundantes al no generar turbulencias mientras que también, en mucho mayor grado, se daría menos tiempo para permitir la decantación pudiendo arriesgarse a rebosar sin completarla. Así pues, la actuación sobre los dispositivos tanto de mezcla como de separación de fases se resume en: a) En mezcla:
- Turbina de agitación-bombeo especial - Combinación adecuada de tipos de turbinas en los distintos compartimentos de mezcla de un piso
- Geometría del mezclador b) En sedimentación;
Uso de accesorios internos específicos - Combinación y distribución adecuada de esos internos
La adecuada selección de las condiciones operativas de los dispositivos completa la eficacia del método propuesto actuando sobre: a) En mezcla:
- Tipo y grado de agitación en cada mezclador - Su combinación en la cascada de agitadores de sus compartimentos
- Condiciones operativas específicas en mezcladores b) En sedimentación:
- Diseño de velocidad de decantación, adecuada y diferenciada para cada fase y en cada piso - Condiciones operativas específicas en sedimentadores
Con ello se mejora la calidad de las separaciones, se disminuye la superficie de sedimentación requerida y, en consecuencia, se mejora la calidad del producto final así obtenido. BREVE DESCRIPCIÓN DE LOS DIBUJOS Para complementar la descripción que antecede y con objeto de ayudar a una mejor comprensión de las características de la invención, se va a realizar una descripción detallada de una realización preferida, sobre la base de un juego de dibujos que se acompañan a esta memoria descriptiva y en donde, con carácter meramente orientativo y no limitativo, se ha representado lo siguiente. La figura 1 muestra un esquema de una instalación de SX donde, en este caso, se muestran ocho pisos o mezcladores-sedimentadores, agrupados en las tres etapas típicas de este tipo de instalaciones: extracción, lavado, y reextracción, con su interconexión y flujos.
La figura 2 muestra un esquema, en planta, de uno de los mezcladores- sedimentadores de la figura 1. En este caso se trata de un mezclador formado por cuatro compartimentos paralepipédicos en serie, y un sedimentador con detalles de posición y forma tanto de los elementos tradicionales (distribuidor, amortiguadores de flujo, sistema de recirculación, y reboses de fases orgánica y acuosa), como de los nuevos elementos (bafle con ventana y bafle ciego). La figura 3 muestra una sección esquemática de un agitador primario.
La figura 4 muestra una sección esquemática de un agitador secundario radial.
La figura 5 muestra una sección esquemática de un agitador secundario axial.
La figura 6 muestra una sección esquemática, en alzado, del mezclador- sedimentador de la figura 2, con detalles de la evolución de la emulsión en el mezclador y el efecto en ella de los distintos elementos "internos" en el sedimentador.
La figura 7 muestra un alzado frontal de los bailes con ventana.
La figura 8 muestra un alzado frontal de los bailes ciegos.
En dichas figuras, las referencias numéricas corresponden a las siguientes partes y elementos: 1 Etapa de extracción
2 Etapa de lavado
3 Etapa de reextracción
4 Mezclador, formado por varios compartimentos en serie
5 Sedimentador 6 Interconexión de fase orgánica
7 Alimentación de la disolución impura (Líquido Fértil)
8 Disolución impura residual (Refinado)
9 Alimentación de fase acuosa a lavado
10 Alimentación de fase acuosa a reextracción 11 Disolución acuosa purificada con la especie del producto (Extracto Acuoso)
12 Agitador primario
13 Agitador secundario radial
14 Agitador secundario axial
15 Canales de comunicación entre compartimentos del mezclador 15' Borde de rebose superior del canal de comunicación
15" Borde de rebose inferior del canal de comunicación
16 Alabes de turbinas
17 Bordes romos en platos
18 Bordes romos en alabes 19 Distribuidor de flujo 20 Amortiguador de flujo
21 Bafle con ventana
22 Ventana
23 Bafle ciego 24 Emulsión
25 Canal de recogida por rebose superior de la fase orgánica ya decantada
26 Canal de recogida por rebose inferior de la fase acuosa ya decantada
27 Interfase final
28 Sistema de válvulas de control de nivel de la interfase 29 Sistema de recirculación
30 Fase orgánica
31 Fase acuosa
DESCRIPCIÓN DETALLADA DE UNA REALIZACIÓN PREFERIDA
La figura 1 muestra una instalación para la obtención de un producto de alta pureza por tecnología SX que consta de tres etapas esenciales; etapa de extracción (1), etapa de lavado (2), y etapa de reextracción (3), cada una de ellas formada por varios mezcladores (4) - sedimentadores (5) conectados en serie. En esa instalación, la serie de mezcladores-sedimentadores están unidos por interconexiones (6) de fase orgánica (30) que circula cargándose con la especie objeto de producto en la etapa de extracción (1), lavándose en la etapa de lavado (2) y descargándose en la etapa de reextracción (3). En contracorriente con la fase orgánica fluyen las distintas fases acuosas que se alimentan a cada etapa: una disolución impura (7) (líquido fértil) que contiene la especie de interés, la cual es extraída por la fase orgánica (30), dejando una disolución impura residual (8) (refinado); una acuosa a lavado (9) que lava esa fase orgánica cargada, y una acuosa a reextracción (10) que permita recuperar de esa fase orgánica (30) la especie ya purificada obteniendo así una disolución acuosa purificada (11) (extracto acuoso).
En la figura 2 se muestra un esquema de dicho mezclador (4) - sedimentador (5) en el que, en este caso, la mezcla de fase orgánica (30) con las acuosas (31) y sistema de recirculación (29) se realiza en un mezclador (4), formado por cuatro compartimentos en serie, provisto de sus correspondientes agitadores primarios (12), agitadores secundarios radiales (13) y agitadores secundarios axiales (14) así como de sucesivos canales de comunicación (15) formados entre compartimentos sucesivos del mezclador (4) penetrando el fluido en los canales de comunicación (15) por encima de un borde de rebose superior (15') que presenta la pared de salida del compartimento anterior y saliendo por debajo de un borde de rebose inferior (15") que presenta la pared de entrada del siguiente compartimento, con lo que se canaliza la mezcla de ambas fases desde cada compartimento al siguiente, independizando los mismos. Los agitadores secundarios (13) y (14) disponen de turbinas que mantienen la agitación de la mezcla en las condiciones deseadas para permitir tanto la adecuada transferencia de materia como el posibilitar su posterior separación. La turbina del agitador primario (12) tiene además de agitar, la misión de actuar como bomba aspirando cada fase de los sedimentadores contiguos y, si se requiere, la recirculación desde el propio sedimentador. Las turbinas de los agitadores secundarios (13) y (14) mantienen la mezcla de las fases para completar la misión de dicha unidad, permitiendo variar las condiciones de mezcla para su mejor separación posterior. Las condiciones de agitación han de ir progresivamente disminuyendo en la serie de compartimentos con objeto de, manteniendo la agitación de ambas fases, disminuir la intensidad y agresividad de la misma, preparando así dicha emulsión para facilitar la sedimentación y el agrupamiento de las gotas más pequeñas. En ese mismo sentido, dichos compartimentos pueden intercomunicarse mediante amplios reboses (15) para facilitar el decrecimiento gradual del grado de agitación. El sedimentador (5) dispone tanto de los sistemas convencionales de distribuidor de flujo (19), amortiguadores de flujo (20), canal de recogida por rebose superior de la fase orgánica ya decantada (25), canal de recogida por rebose inferior de la fase acuosa ya decantada (26), sistema de recirculación (29), y sistema de válvulas de control del nivel de la interfase (28), como de los nuevos elementos de bafle con ventana (21) y bafle ciego (23).
La mejora del tipo de mezcla en cuanto a su posterior separación de fases se consigue por un lado evitando o disminuyendo el grado de cizalladura y la formación de gotas excesivamente pequeñas mediante el uso de turbinas adecuadas y por otro disminuyendo progresivamente el grado de agitación a lo largo de la cascada de agitadores de cada mezclador-sedimentador. Como puede verse en las figuras 3, 4 y 5, tanto el agitador primario (12) como los agitadores secundarios (13) y (14) están equipados con bordes romos en alabes (18) y bordes romos en platos (17), y esto independientemente del número y disposición de los alabes (16). Así, con dichas turbinas se evita una excesiva cizalla en la agitación, inhibiendo la dispersión secundaria responsable de la formación de gotas finas, creadas por rotura de las gotas gruesas originadas previamente en la dispersión primaria.
En la figura 6 puede verse como la emulsión (24) de ambas fases fluye desde el último compartimento del mezclador (4) y se descarga finalmente al sedimentador (5). Esta emulsión (24), mezcla de la fase orgánica (30) y de la fase acuosa (31), se somete a un sistema convencional de distribuidor de flujo (19), u otro con la misma finalidad, repartiéndose homogéneamente en toda la superficie del sedimentador, y de uno o dos amortiguadores de flujo (20), donde se amortigua y tranquiliza su flujo. La emulsión (24) se comporta como una tercera fase que desaparece en el tiempo a lo largo del sedimentador (5). Aunque para las fases (30) y (31), ya decantadas, conviene mantener una velocidad unitaria baja, no es así para la emulsión (24), debido a la conveniencia de provocar la posibilidad de mayores contactos entre las gotas dispersas que permitan su coalescencia y separación. Esto se logra con la ventana (22) "entubando y comprimiendo" esa emulsión sobre la interfase, y enjugando su aumento de velocidad mediante barreras que alargan o dificultan su recorrido, como el bafle ciego (23), que elimina la prolongación de dicha emulsión en las cercanías de los canales de recogida (25) y (26). Con ello se consigue minimizar al máximo los arrastres finales de una fase en la otra y obtener una interfase final (27), ya totalmente nítida. Esto dos nuevos elementos adicionales, bafle con ventana (21) y, aguas abajo de éste, bafle ciego (23), ambos de unos 500 mm de altura, son instalados transversales al flujo a lo ancho de todo el sedimentador, se sitúan en zona de la interfase y, como se indica por la evolución de la emulsión (24) en la interfase, se mejora la separación de fases y se disminuye el arrastre. Estas nuevas unidades están formadas por elementos independientes alineados e introducidos sobre postes o columnas ancladas en el sedimentador para así favorecer su instalación y mantenimiento en sedimentadores de gran tamaño. Incluso pueden instalarse en paralelo varias de estas unidades si las condiciones específicas de la instalación así lo recomendaran. También su posición relativa puede variar según el piso (mezclador- sedimentador) considerado para lograr la máxima eficacia.
Los bailes (21) y (23), constituidos por una pluralidad de unidades modulares tal como se muestra en las figuras 7 y 8 y soportadas inferiormente, se disponen transversalmente al flujo cubriendo todo el ancho del sedimentador (5).
En una realización preferida, las turbinas de los agitadores tienen un diámetro entre 0.2 y 0.1 del diámetro circular equivalente a la sección transversal (el del circulo de igual sección transversal) del compartimento correspondiente del mezclador, siendo el grado de agitación decreciente entre 50 rps3ft2 y 0.5 rps3ft2. Los bafles presentan una altura entre el 10% y el 90% de la altura total de las fases, y la abertura de los bafles con ventana se sitúa entre el 10% y el 90% de su superficie total. Por último cabe comentar que cada etapa de un mismo proceso (extracción (1), lavado (2), o reextracción (3)), e incluso cada piso dentro de una misma etapa, puede requerir distintos grados de aplicación de las soluciones anteriores, adaptados al objetivo concreto que se persigue utilizando, si se precisaran, varias unidades en paralelo como las mencionadas, situando adecuadamente la posición de esos "internos" en altura y distancia en el sedimentador (5), fijando convenientemente la posición de la interfase final (27), y aplicando las condiciones operativas mas adecuadas a cada caso. Cada proceso de SX y cada etapa en particular requiere una optimización a la medida de los objetivos perseguidos. EJEMPLOS
A.- AGITACIÓN
Se analizan varios efectos, con un ejemplo de extracción de ion metálico en cada uno de ellos. Para cada ejemplo, en cada caso ensayado se analizó el metal en cada fase, y se determinó el tiempo de separación de fases hasta la desaparición de la banda de dispersión, tomando la media de un mínimo de cinco medidas diferentes e independientes. AL- Efecto del Tipo de Turbina de alabes romos
Comparación de la extracción química y separación física posterior en un mezclador con turbinas de alabes verticales típicas y con turbina de alabes romos, manteniendo igual el resto de condiciones Ejemplo n° 1 :
Mezclador: 1 ó 2 compartimentos en serie (una turbina en cada, la del 1° de bombeo), geometría cilindrica de diámetro = altura útil (D=H), transparentes, con bafle superior Turbinas tipo: (una para cada compartimento) a) bombeo, 8 alabes planas verticales, alabes rectos, diámetro d=1/2 D del compartimento. b) bombeo, d=1/2 D, alabes romos y 8 alabes planas rectas y verticales con curva r=0.1*e(005x) (siendo x el ancho de pala y r el radio de la curvatura). (Ver figura 3) c) de 4 alabes inclinadas 45°, agitación axial, diámetro d=1/3 D del compartimento. (Ver figura 5) d) de 4 alabes rectos, agitación radial, diámetro d=1/3 D del compartimento. Reactivos (alimentación): Caso A: Orgánica: D2EHPA (Ácido Di-2 etil exil fosfórico) 40% v/v en queroseno
Acuosa (alimentación de disolución impura): Disolución de sulfato de zinc con 32.7 g/L de Zn y pH=4.0 Caso B: Orgánica: 5-nonil-salicil-aldoxima (Acorga M5640) 30% v/v en queroseno
Acuosa (alimentación de disolución impura): Disolución de sulfato de cobre con 15.0 g/L de Cu y pH=1.5 Condiciones: Temperatura 30 °C, tiempo de residencia total 3 min., relaciones orgánica/acuosa 2 (caso orgánica continua) ó 1 (caso acuosa continua) Resultados: 1.1.- Reactivos caso A (Zinc):
Figure imgf000017_0001
1.2.- Reactivos caso B (Cobre):
Figure imgf000018_0001
Conclusión: Como puede observarse, independientemente del metal extraído, el uso de turbina de bombeo con alabes romos (b) no afecta prácticamente al comportamiento químico de extracción, pero siempre mejora la velocidad de separación de fases líquido-líquido, tanto independientemente como en combinación con otras turbinas. Ese efecto es más marcado en casos de agitación en acuosa continua
A2.- Efecto del grado decreciente de agitación
Comparación de la extracción química y separación física posterior en un mezclador con una cascada de compartimentos con igual grado de agitación o con agitación decreciente, manteniendo igual el resto de condiciones
Ejemplo n° 2:
Mezclador: 3 compartimentos en serie (una turbina en cada, la del 1° de bombeo), geometría cilindrica como en ejemplo n° 1 , transparentes, con bafle superior
Turbinas tipo: (una para cada compartimento) b) como en ejemplo n° 1 , bombeo, d=1/2 D, alabes romos y 8 alabes planos rectos y verticales con curva r=0.1*e(005x) (siendo x el ancho de pala y r el radio de la curvatura). c) como en ejemplo n° 1 , agitación axial, diámetro d=1/3 D del mezclador de 4 alabes inclinadas 45°. e) de plato, d=1/3 D, agitación radial, alabes romos y 6 alabes planos, rectos, verticales y con curva r=0.1*e(0 05x) (siendo x el ancho de pala y r el radio de la curvatura). (Ver figura 4). Reactivos:
Caso E: Orgánica: D2EHPA (Ácido Di-2 etil exil fosfórico) 40% v/v en queroseno, cargada con 12.1 g/l de Zn2+ y 0.3 g/L de Fe3+, en equilibrio con
Acuosa : Disolución de sulfato de zinc (20 g/L Zn, 18 g/L H2SO ) Caso B: Orgánica: Ald-oxi-oxima (Acorga M5640) 30% v/v en queroseno
Acuosa : Disolución de sulfato de cobre con 15.0 g/L de Cu y pH=1.5
Condiciones: Temperatura 30°C, tiempo de residencia total 3 min., relaciones orgánica/acuosa 2 (caso orgánica continua) ó 1 (caso acuosa continua) reciclando, cuando se precise, la fase correspondiente ya en equilibrio
Resultados:
2.1.- Reactivos caso A (Zinc):
Figure imgf000019_0001
Figure imgf000019_0002
Figure imgf000019_0003
2.2.- Reactivos caso B (Cobre):
Figure imgf000019_0004
Figure imgf000019_0005
Figure imgf000019_0006
Conclusión: Una secuencia decreciente en el grado de agitación a lo largo de la cascada de compartimentos de mezcla, mejora la velocidad de la separación de fases líquido-líquido en la extracción con disolventes.
B.- SEDIMENTACIÓN En un mezclador-sedimentador prototipo, se analiza el efecto de "internos" en la sedimentación, con un ejemplo en cada uno de ellos. Para cada ejemplo, en cada caso ensayado se analizaban los arrastres de fase orgánica en la acuosa y viceversa al final del sedimentador, y se determinaba la altura de la banda de dispersión o la distancia a la que desaparecía, tomando la media de cinco medidas diferentes e independientes.
B1.- Efecto del bafle con ventana en sedimentador, con igual tipo de mezcla
Comparación de la consistencia de emulsión y arrastre de fase acuosa en orgánica y de fase orgánica en acuosa, en un sedimentador prototipo, con y sin bafle con ventana Ejemplo n°3:
Mezclador/Agitación tipo:
Mezclador con tres compartimentos de FGRP paralepipédicos de 350L cada uno, iguales, comunicados en cascada mediante canales formados por doble pared rebose-fondo e independientes y con las siguientes características: - Paralepipédicos de base cuadrada, de lado = 0.89 de la altura H, transparentes.
Agitación en Acuosa Continua y relación orgánica/acuosa = 1 en todos los mezcladores
Condiciones: 30°C, tiempo de residencia total 3 min., relación orgánica/acuosa = 1
Turbina: 1er Compartimento: caso b) de ejemplo n° 1 , agitación con N3d2 = 19 (rps3ft2) 2o y 3er Compartimento: caso c) de ejemplo n° 1 , agitación N3d2 = 8 (rps3ft2) Reactivos: Caso E: Orgánica: D2EHPA (Ácido Di-2 etil exil fosfórico) 40% v/v en queroseno, cargada con 12.1 g/l de Zn2+ y 0.3 g/L de Fe3+ en equilibrio con Acuosa : Disolución de sulfato de zinc (20 g/L Zn, 18 g/L H2SO4) Operación en continuo, en mezclador-sedimentador prototipo industrial. Control centralizado Sedimentador tipo: De metacrilato transparente, de 22x0.25x1.1 m (LxAxh) (Largo x ancho x alto) Internos, situados perpendicularmente al sentido de flujo: Distribuidor, Laminador-amortiguador y cuando se indica, 1 Bafle de 0.5m de alto, con hueco-Ventana central de 0.25m, centrado en el eje de la interfase y situado a una distancia (variable según el caso) de la salida del mezclador. El flujo específico de cada fase fue 2.5 m3/hm2. Las velocidades unitarias fueron 2.5 m/min en Orgánica, y 1.8 m/min en Acuosa. Resultados:
Figure imgf000021_0001
Figure imgf000021_0002
Conclusión: En las condiciones ensayadas, la presencia de un bafle con ventana mejora la eficacia de decantación de fases líquido/líquido, disminuyendo notablemente los arrastres de una fase en la otra. Esta mejora es tanto más eficaz cuanto mayor es la banda de dispersión sobre la que se aplica (situación menos avanzada en el sentido de flujo), sin que ésta rebose por encima y/o debajo del bafle. B2.- Efecto del bafle ciego en sedimentador, con igual tipo de mezcla
Comparación de la consistencia de la emulsión y arrastre de fase acuosa en orgánica y viceversa, en sedimentador prototipo, con y sin bafle ciego Ejemplo n°4:
Reactivos, Operación, Mezclador, Agitación y Condiciones: Como ejemplo anterior
Sedimentador tipo: Como ejemplo anterior (n°3).
Internos, situados perpendicularmente al sentido de flujo: Distribuidor,
Laminador-amortiguador y cuando se indica, un Bafle Ciego de 0.5m de alto, centrado en el eje de la interfase y situado a una distancia (variable según el caso) de la salida del mezclador. Velocidades unitarias y flujos específicos: como en ejemplo n°3 Resultados:
Figure imgf000022_0001
Figure imgf000022_0002
Nota (*): Al final del sedimentador aún permanecían 0.19 m de banda de dispersión
Conclusión: En las condiciones ensayadas, la presencia de un bafle ciego mejora la eficacia de decantación de fases líquido/líquido, disminuyendo notablemente los arrastres de una fase en la otra. Esta mejora es tanto más eficaz cuanto menor es la banda de dispersión sobre la que se aplica (situación mas avanzada en el sentido de flujo), siempre que ésta retenga dispersión sin rebosar por encima y/o debajo del bafle. C- MEZCLA Y SEDIMENTACIÓN
Efecto conjunto de turbinas especiales, grado decreciente de agitación y ambos bafles (con ventana y ciego), sobre la velocidad de decantación y los arrastres de una fase en la otra
C1.- Efecto sinérgico del conjunto de los nuevos dispositivos y métodos incorporados
Comparación entre la incorporación o no del conjunto de novedades inventivas introducidas (turbina de alabes romos, grado de agitación decreciente, bafle con ventana y bafle ciego) y su efecto sinérgico, así como su comportamiento sobre las distintas etapas de la instalación de SX. Ejemplo n°5: Reactivos:
Caso E (extracción): Ver ejemplos anteriores n° 3 y 4 Caso L (lavado): Orgánica: D2EHPA (Ácido Di-2 etil exil fosfórico) 40% v/v en queroseno, cargada con 12.1 g/l de Zn2+ y 0.3 g/L de Fe3+ Acuosa : Disolución de sulfato de zinc (27 g/L Zn, 17 g/L H2SO ) Caso R (reextracción): Orgánica: D2EHPA (Ácido Di-2 etil exil fosfórico) 40% v/v en queroseno, cargada con 1.5 g/l de Zn + y 0.3 g/L de Fe3+ Acuosa : Disolución de sulfato de zinc (85 g/L Zn, 17 g/L H2SO4) Operación en continuo, en mezclador-sedimentador prototipo industrial. Control centralizado
Mezclador/Agitación tipo:
Mezclador: tres compartimentos como en ejemplos 3 y 4 Agitación: Casos E y L: Acuosa Continua relación org/ac.=1 en los tres compartimentos Caso R: Orgánica Continua relación org/acuos=3 en ambos mezcladores Condiciones: 30°C, tiempo de residencia total 3 min. Turbinas:
- Ensayo sin incorporación de la invención:
1a Compartimento: tipo a) de ejemplo n° 1 , agitación N3d2 = 19 (rps3ft2) 2o y 3er Compartimento: tipo c) de ejemplo n° 1 , agitación N3d2 = 8 (rps3ft2) Ensayo con incorporación de la invención: 1a Compartimento: tipo b) de ejemplo n° 1 , agitación N3d2 = 19 (rps3ft2) 2° Compartimento: tipo c) de ejemplo n° 1 , agitación con N3d2 = 8 (rps3ft2) 3er Compartimento: tipo c) de ejemplo n° 1 , agitación N3d2 = 2.3 (rps3ft2) En este caso, como puede observarse, todas las turbinas son de alabes romos y existe una distribución decreciente en el grado de agitación a lo largo de la cascada de compartimentos. Sedimentador tipo: Como en ejemplos 3 y 4
Internos:- En todos los casos, al menos, Distribuidor, Laminador- amortiguador
- En los ensayos de aplicación de la invención, además de los internos anteriores, un Bafle de Ventana (BV) como el indicado en el ejemplo 3, situado en todos los casos a 6 m, y un Bafle Ciego (BC) como el indicado en el ejemplo 4, situado a 15 m en los casos E y L, ó a 11 m en el caso R, todos medidos desde la salida del mezclador. Los flujos específicos y velocidades unitarias utilizados para cada fase fueron:
Figure imgf000023_0001
Resultados: Se comparan las tres etapas: extracción (E), lavado (L) y reextracción (R) anteriores en su comportamiento con y sin las invenciones indicadas. En todos los casos de aplicación de la invención no hubo banda de dispersión final tras el BC.
Figure imgf000024_0001
(*) Medida a la misma distancia en que se posicionarían los bafles, aunque aquí no existan.
Conclusiones: En las condiciones ensayadas, donde se utilizan las mencionadas invenciones (tipo de turbinas y grado de agitación decreciente, junto con la presencia del bafle con ventana y bafle ciego), se ha comprobado que existe en todos los casos, dentro de cada etapa, una clara mejora en la eficacia de decantación líquido/líquido y, sorprendentemente, un evidente y nítido efecto sinérgico, disminuyendo notablemente la banda de dispersión final y los arrastres de una fase en la otra (comparar caso E con casos análogos en ejemplos 4 y 5).
Su aplicación concreta tanto en los métodos de agitación como en la situación de internos en los sedimentadores respectivos puede variarse acorde al comportamiento de cada piso según sean las características de mezcla y decantación requeridas, como la altura y consistencia de la banda de emulsión generada.
Esta mejora es general para todos y cada uno de las etapas típicas de un proceso de extracción con disolventes y, en términos relativos respecto a su ausencia, tanto más eficaz cuanto más dificultosa es la decantación natural del sistema sobre el que se actúa.

Claims

REIVINDICACIONES
1. Dispositivo de mezcla y sedimentación en procesos de extracción con disolventes para la recuperación de productos de gran pureza, en los que se utilizan mezcladores - sedimentadores, caracterizado por comprender; en cada mezclador, varios compartimentos en cascada, disponiéndose en el primero de estos un agitador primario con turbina de agitación - bombeo de bordes romos, y en los siguientes agitadores secundarios con turbinas de agitación de bordes romos, con un grado de agitación decreciente a lo largo de la cascada de compartimentos, de tal manera que manteniendo las características químicas de transferencia de materia entre las fases, se provoque una mínima dispersión de gotas de una fase en otra, al menos un bafle con ventana colocado en la zona de interfase del sedimentador y en sentido perpendicular al flujo, provisto de un hueco o ventana central de tal manera que retiene, comprime y dirige la zona de emulsión permitiendo a la vez el rebose superior e inferior de las fases respectivamente menos y más pesada no emulsionadas, y situado a cierta distancia tras uno o varios amortiguadores de flujo, al menos un bafle ciego colocado en la zona de interfase del sedimentador a cierta distancia tras el bafle con ventana, y en sentido perpendicular al flujo, de tal manera que retiene la zona final de emulsión de la interfase, permitiendo a la vez el rebose superior e inferior de las fases respectivamente menos y más pesada no emulsionadas,
2. Dispositivo de acuerdo con la reivindicación 1 , caracterizado por que las turbinas de bombeo y agitación tienen un diámetro entre el 0.2 y 0.7 del diámetro circular equivalente a la sección transversal del compartimento reactor o unidad de la mezcla correspondiente, con un número de alabes entre 2 y 12.
3. Dispositivo de acuerdo con la reivindicación 1 , caracterizado por que los bordes romos de las turbinas corresponden preferentemente a la función r=0.1*e(005x), siendo "x" el ancho de pala, y "r" el radio de la curvatura aplicado.
4. Dispositivo de acuerdo con la reivindicación 1 , caracterizado por que el grado de agitación decreciente varía desde un máximo de 50 rps3ft2 hasta un mínimo de 0.5 rps3ft2.
5. Dispositivo de acuerdo con la reivindicación 1 , caracterizado por que los bafles con ventana y los bafles ciegos se colocan, el primero tras los amortiguadores de flujo, y el segundo antes de los canales de recogida final de ambas fases ya decantadas.
6. Dispositivo de acuerdo con la reivindicación 1 , caracterizado por que los bafles con ventana presentan una ventana entre el 10 y 90 % de su superficie.
7. Dispositivo de acuerdo con la reivindicación 1 , caracterizado por que los bafles presentan una altura desde el 10 hasta el 90% del total de altura de ambas fases en el sedimentador.
8. Método de mezcla y sedimentación en procesos de extracción con disolventes para la recuperación de productos de gran pureza, caracterizado por que se inhibe la dispersión secundaria de gotas finas, de tal manera que los arrastres de fase acuosa en la fase orgánica y viceversa son reducidos sensiblemente.
PCT/ES2002/000565 2002-11-28 2002-11-28 Método y dispositivo de mezcla y sedimentacíon en procesos de extracción con disolventes para la recuperación de productos de gran pureza WO2004047946A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES02793135T ES2266612T3 (es) 2002-11-28 2002-11-28 Metodo y dispositivo de la mezcla de sedimentacion en procesos de extraccion con disolventes para la recuperacion de productos de gran pureza.
PCT/ES2002/000565 WO2004047946A1 (es) 2002-11-28 2002-11-28 Método y dispositivo de mezcla y sedimentacíon en procesos de extracción con disolventes para la recuperación de productos de gran pureza
CNB028299531A CN100354020C (zh) 2002-11-28 2002-11-28 为回收高纯度产品在溶剂萃取法中用于混合和沉淀的方法和装置
BRPI0215956-2A BR0215956B1 (pt) 2002-11-28 2002-11-28 dispositivo e método de misturação e sedimentação em processos de extração com solvente para a recuperação de produtos de pureza elevada.
EP02793135A EP1566208B1 (en) 2002-11-28 2002-11-28 Method and device used for mixing and sedimentation in solvent extraction processes for the recovery of highly-pure products
AU2002358814A AU2002358814A1 (en) 2002-11-28 2002-11-28 Method and device used for mixing and sedimentation in solvent extraction processes for the recovery of highly-pure products
MXPA05005650A MXPA05005650A (es) 2002-11-28 2002-11-28 Metodo y dispositivo de mezcla y sedimentacion en procesos de extraccion con disolventes para la recuperacion de productos de pureza elevada.
US11/137,308 US7507343B2 (en) 2002-11-28 2005-05-25 Mixing and settling method and device in solvent extraction processes to recover high-purity products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2002/000565 WO2004047946A1 (es) 2002-11-28 2002-11-28 Método y dispositivo de mezcla y sedimentacíon en procesos de extracción con disolventes para la recuperación de productos de gran pureza

Publications (1)

Publication Number Publication Date
WO2004047946A1 true WO2004047946A1 (es) 2004-06-10

Family

ID=32338281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000565 WO2004047946A1 (es) 2002-11-28 2002-11-28 Método y dispositivo de mezcla y sedimentacíon en procesos de extracción con disolventes para la recuperación de productos de gran pureza

Country Status (8)

Country Link
US (1) US7507343B2 (es)
EP (1) EP1566208B1 (es)
CN (1) CN100354020C (es)
AU (1) AU2002358814A1 (es)
BR (1) BR0215956B1 (es)
ES (1) ES2266612T3 (es)
MX (1) MXPA05005650A (es)
WO (1) WO2004047946A1 (es)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI121741B (fi) * 2009-02-26 2011-03-31 Outotec Oyj Menetelmä neste-nesteuuttolaskeutusaltaan poistopään kourujärjestelyn valmistamiseksi ja kourujärjestely
FI121470B (fi) * 2009-03-27 2010-11-30 Outotec Oyj Laitteisto ja menetelmä kuparia sisältävän orgaanisen uuttoliuoksen puhdistamiseksi epäpuhtauksista
US9381448B2 (en) 2011-04-20 2016-07-05 Hatch Associates Pty Ltd Distribution array for use in a settler area of a mixer-settler
US20130292341A1 (en) * 2012-05-07 2013-11-07 Freeport-Mcmoran Corporation System and method for separating liquid mixtures
FI123834B (en) 2012-06-26 2013-11-15 Outotec Oyj Process for making a gutter and gutter
FI123803B (en) * 2012-06-26 2013-10-31 Outotec Oyj Process for preparing a solvent extraction pool and solvent extraction pool
FI124674B (en) 2012-06-26 2014-11-28 Outotec Oyj Solvent extraction procedure and solvent extraction basin
FI124030B (en) 2012-06-26 2014-02-14 Outotec Oyj Process for producing a separating element and separating element
FI123831B (en) 2012-06-26 2013-11-15 Outotec Oyj Solvent extraction clarifier tank arrangement
FI123835B (en) * 2012-06-26 2013-11-15 Outotec Oyj Arrangement for a pool for solvent extraction
US10190188B2 (en) 2012-11-25 2019-01-29 Turbulent Technologies Ltd. Mixing method and device for solvent extraction, especially in hydrometallurgical processes
WO2014094793A1 (en) * 2012-12-19 2014-06-26 Flsmidth A/S Apparatus and method for solvent extraction processing
CN103120863B (zh) * 2013-01-28 2014-11-05 中国科学院过程工程研究所 一种液液萃取混合澄清槽、萃取方法及用途
FI124846B (fi) * 2013-06-10 2015-02-13 Outotec Finland Oy Järjestely nesteuuttosäiliötä varten
CN103432772A (zh) * 2013-08-19 2013-12-11 宋汶芸 油水分离器
KR101570224B1 (ko) * 2013-12-24 2015-11-19 주식회사 포스코 혼합침강조 설비의 교반기
CN106999796B (zh) * 2014-10-24 2020-09-25 生命科技股份有限公司 以声学方式沉淀的液-液样品纯化系统
CN106693462B (zh) * 2016-12-23 2022-07-08 灵宝金源矿业股份有限公司 铜溶剂萃取澄清室的第三相清理装置
JP7430377B2 (ja) * 2019-06-19 2024-02-13 国立研究開発法人日本原子力研究開発機構 液液系での抽出分離による特定物質の製造装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984331A (en) * 1974-09-09 1976-10-05 Holmes & Narver, Inc. Liquid-liquid settler used in solvent extraction apparatus
GB2021965A (en) * 1978-04-11 1979-12-12 Davy Bamag Ltd Separating liquids
US5185081A (en) * 1990-04-04 1993-02-09 Outokumpu Oy Method and apparatus for mixing and separating two liquid phases while preventing aeration and emulsions using a mixer-settler
US5511881A (en) * 1995-01-06 1996-04-30 General Signal Corporation Impeller system and method for enhanced-flow pumping of liquids
US6083400A (en) * 1996-04-30 2000-07-04 Outokumpu Technology Oyj Method and apparatus for recirculating a heavier solution from the separation part of two separable solutions into a mixing unit
US6132615A (en) * 1996-04-30 2000-10-17 Outokumpu Technology Oyj Method and apparatus for creating controlled flows in two mutually separable solutions

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2137966A (en) * 1935-03-12 1938-11-22 Dorr Co Inc Sewage system
US2266097A (en) * 1938-03-11 1941-12-16 Jeffrey Mfg Co Method of and apparatus for clarifying liquids
US2937078A (en) * 1956-02-03 1960-05-17 Atomic Energy Authority Uk Mixer-settler apparatus
FI57059C (fi) 1978-06-28 1980-06-10 Outokumpu Oy Extraktionsenhet foer vaetske-vaetske-extraktion
ES8204696A1 (es) 1981-07-24 1982-05-16 Martin San Lorenzo Daniel Procedimiento para la produccion de cinc electrolitico o de sales de cinc de alta pureza a partir de materias primas se-cundarias de cinc
FR2532296B1 (fr) 1982-08-26 1985-06-07 Rhone Poulenc Spec Chim Procede d'extraction du gallium a l'aide d'hydroxyquinoleines substituees et de composes organophosphores
US4511541A (en) 1982-12-02 1985-04-16 J. R. Simplot Company Process for the recovery of cadmium and other metals from solution
ZA851295B (en) 1984-02-22 1985-10-30 Canada Iron Ore Co Process for recovery of zirconium by solvent extraction
FR2562059B1 (fr) 1984-04-02 1989-12-01 Rhone Poulenc Spec Chim Procede de separation des terres rares par extraction liquide-liquide
US4551314A (en) 1984-04-11 1985-11-05 Amax Inc. Process for improving solvent extraction operation using two mixers
US4572771A (en) 1985-01-31 1986-02-25 Amax Inc. Zinc recovery from steel plant dusts and other zinciferous materials
US4925441A (en) 1989-06-13 1990-05-15 The United States Of America As Represented By The United States Department Of Energy Centrifugal contactor modified for end stage operation in a multistage system
FI96968C (fi) * 1993-12-02 1996-09-25 Outokumpu Eng Contract Menetelmä metallien uuttamiseksi suurista liuosvirtauksista ja laitteisto tämän toteuttamiseksi
FR2740700B1 (fr) 1995-11-07 1998-01-23 Krebs & Cie Sa Procede et installation de melange-separation de deux liquides non miscibles
FI101200B1 (fi) 1996-05-07 1998-05-15 Outokumpu Oy Menetelmä ja laite neste-nesteuuton kahden, dispersioksi sekoitetun liuoksen johtamiseksi hallitusti erotustilaan
US6007237A (en) 1997-05-29 1999-12-28 Latto; Brian Vortex ring mixer controlled mixing device
ES2134725B1 (es) 1997-06-13 2000-05-16 Tecnicas Reunidas S A Procedimiento de tratamiento de pilas electroquimicas secas gastadas de usos domesticos, con recuperacion de elementos componentes.
US6007330A (en) * 1998-03-12 1999-12-28 Cosmos Factory, Inc. Liquid precursor delivery system
ES2159263B1 (es) 1999-12-17 2002-04-16 Tecn Reunidas S A Proceso para la produccion electrolitica de zinc o de compuestos de zinc de alta pureza a partir de materias primas primarias y secundarias de zinc.
ES2269349T3 (es) 2001-02-16 2007-04-01 Tecnicas Reunidas, S.A. Proceso para la produccion electrolitica de zinc o de compuestos de zinc ultra puro a partir de materias primas primarias y secundarias de zinc.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984331A (en) * 1974-09-09 1976-10-05 Holmes & Narver, Inc. Liquid-liquid settler used in solvent extraction apparatus
GB2021965A (en) * 1978-04-11 1979-12-12 Davy Bamag Ltd Separating liquids
US5185081A (en) * 1990-04-04 1993-02-09 Outokumpu Oy Method and apparatus for mixing and separating two liquid phases while preventing aeration and emulsions using a mixer-settler
US5511881A (en) * 1995-01-06 1996-04-30 General Signal Corporation Impeller system and method for enhanced-flow pumping of liquids
US6083400A (en) * 1996-04-30 2000-07-04 Outokumpu Technology Oyj Method and apparatus for recirculating a heavier solution from the separation part of two separable solutions into a mixing unit
US6132615A (en) * 1996-04-30 2000-10-17 Outokumpu Technology Oyj Method and apparatus for creating controlled flows in two mutually separable solutions

Also Published As

Publication number Publication date
EP1566208A1 (en) 2005-08-24
US7507343B2 (en) 2009-03-24
BR0215956B1 (pt) 2011-01-11
CN100354020C (zh) 2007-12-12
EP1566208B1 (en) 2006-05-31
ES2266612T3 (es) 2007-03-01
MXPA05005650A (es) 2005-07-26
BR0215956A (pt) 2005-09-13
CN1694751A (zh) 2005-11-09
AU2002358814A1 (en) 2004-06-18
US20050218072A1 (en) 2005-10-06

Similar Documents

Publication Publication Date Title
ES2266612T3 (es) Metodo y dispositivo de la mezcla de sedimentacion en procesos de extraccion con disolventes para la recuperacion de productos de gran pureza.
US20070217285A1 (en) Autoclave with underflow dividers
EP3038725B1 (en) Gas flotation tank
ES2228298T3 (es) Procedimiento y dispositivo de clarificacion de liquidos, particularmente de aguas, cargadas de materias en suspension.
GB1601567A (en) Effecting liquid-liquid contact
US20180282887A1 (en) Solvent extraction and stripping system
EP3493912A1 (en) Flotation line and a method
US3489526A (en) Liquid-liquid contactor
CN103120863B (zh) 一种液液萃取混合澄清槽、萃取方法及用途
CN107073419A (zh) 混合装置及其应用
AT517984B1 (de) Trennbehälter
CN103706147B (zh) 提高萃取槽中有机相和水相分相速度的方法
AT522391B1 (de) Gasflotationsbehälter
FI107236B (fi) Tapa uuttoprosessin vaiheiden koon pienentämiseksi ja uuttoprosessissa käytettävä kenno
US6099732A (en) Solvent extraction method and apparatus
GB2171026A (en) Liquid-liquid extraction
Terashima et al. Tracer experiment and RTD analysis of DAF separator with bar-type baffles
ZA200503905B (en) Method and device used for mixing and sedimentation in solvent extraction processes for the recovery of highly-pure products
US1136485A (en) Flotation-machine.
JP6790626B2 (ja) オートクレーブ装置
DE338656C (de) Vorrichtung zur Durchfuehrung von Schaumscheideverfahren in der Erzaufbereitung, be-stehend aus einem um eine senkrecht stehende Achse gedrehten und mit stehenden ge-kruemmten Fluegeln besetzten Umruehrer zum Umruehren und Belueften von Fluessigkeiten
CN209306995U (zh) 一种气浮破乳隔油一体化设备
US20180001230A1 (en) System and method for separating liquid mixtures
Bennie An investigation of froth effects in scavenging flotation of platinum from UG-2 ore.
US2792289A (en) Extraction method and apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002793135

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005/03905

Country of ref document: ZA

Ref document number: 200503905

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 20028299531

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/005650

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 2002793135

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0215956

Country of ref document: BR

WWG Wipo information: grant in national office

Ref document number: 2002793135

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP