WO2004046366A2 - Verfahren zur mikrobiellen herstellung von stoffwechselprodukten - Google Patents

Verfahren zur mikrobiellen herstellung von stoffwechselprodukten Download PDF

Info

Publication number
WO2004046366A2
WO2004046366A2 PCT/DE2003/003826 DE0303826W WO2004046366A2 WO 2004046366 A2 WO2004046366 A2 WO 2004046366A2 DE 0303826 W DE0303826 W DE 0303826W WO 2004046366 A2 WO2004046366 A2 WO 2004046366A2
Authority
WO
WIPO (PCT)
Prior art keywords
cytochrome
acid
ctaf
oxidase
genes
Prior art date
Application number
PCT/DE2003/003826
Other languages
English (en)
French (fr)
Other versions
WO2004046366A3 (de
Inventor
Axel Niebisch
Michael Bott
Original Assignee
Forschungszentrum Jülich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Jülich GmbH filed Critical Forschungszentrum Jülich GmbH
Publication of WO2004046366A2 publication Critical patent/WO2004046366A2/de
Publication of WO2004046366A3 publication Critical patent/WO2004046366A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0053Oxidoreductases (1.) acting on a heme group of donors (1.9)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium

Definitions

  • the invention relates to a method for the microbial production of metabolic products.
  • Corynebacterium glutamicum (C. glutamicum), a gram-positive soil bacterium with a high G + C content (54 mol%), is used for the industrial production of
  • Amino acids especially used for the production of L-glutamate and L-lysine.
  • the synthetic route of these amino acids, the central metabolism, which provides the relevant precursors, and the carbon flow and nitrogen flow of this organism have been intensively investigated [1].
  • composition and energy efficiency of the respiratory chain in coryneform bacteria has been intensively investigated both genetically and biochemically in recent years.
  • Breathing organisms can synthesize ATP by oxidative phosphorylation.
  • the reduction equivalents (H or electrons) that arise during the oxidation of substrates are introduced into the membrane-attached respiratory chain and the electrons are ultimately transferred to oxygen or other terminal electron acceptors.
  • Energy-generating and energy-consuming metabolic pathways are linked via ATP and the electrochemical proton potential or the electrochemical sodium ion potential as universal cellular forms of energy.
  • the synthesis of ATP can be done either via substrate step phosphorylation or by Electron transport phosphorylation take place.
  • the build-up of the electrochemical proton potential takes place through the respiratory chain or the hydrolysis of ATP through the membrane-based F 0 F-ATP synthase.
  • the components of the respiratory chain are enzymes, which usually contain covalently or non-covalently bound low molecular weight groups, e.g. B. flavins (flavoproteins), iron-sulfur centers (iron-sulfur proteins) and heme groups (cytochrome).
  • Another essential component of respiratory chains are quinones, ie low molecular weight, membrane-bound electron and proton carriers, such as. B. ubiquinone and Menac inon.
  • the respiratory chain of C. glutamicum has several dehydrogenases, which are responsible for electron transfer to the intermembrane pool of menaquinone-9 [2] and have at least two ways for reoxidation of menaquinone, one way of reoxidation using the cytochrome d- Oxidase occurs and the second way with the help of the cytochrome bc complex and the cytochrome aa 3 oxidase.
  • the latter play an important role in the growth of the organism, since mutants with a missing Cji complex or a lack of cytochrome aa 3 oxidase have significant growth defects [2].
  • the cytochrome bc complex is encoded by the qrcrCAB genes [2,3].
  • the genes for subunit II (ctaC) and III (ctaE) of the cytochrome aa 3 oxidase [2,3] are upstream of the gcrC gene, the cytochrome bcj_ complex and the cytochrome aa 3 oxidase, coded by ctaC-DE, presumably one Form super complex [2].
  • the respiratory chain in C. glutamicum with the corresponding genes can also be found in WO 02/22799 A2.
  • the ATP obtained through the reactions of the respiratory chain is the universal transmitter of chemical energy between energy-generating and energy-consuming reactions and serves heterogeneous processes such as the synthesis of building blocks and macromolecules. Energy-generating and energy-consuming metabolic pathways can be controlled, among other things, via the cell's energy balance or its ATP content and thus via the functions of the respiratory chain.
  • the inventors surprisingly succeeded in identifying the gene which codes for a previously unknown fourth subunit of the cytochrome aa 3 oxidase. It is a further object of the invention to provide microorganisms whose metabolism can be regulated in a targeted manner.
  • the object is achieved according to the invention with the features specified in the characterizing part of claim 1.
  • the object is further achieved according to the invention with the features specified in the characterizing part of claim 7.
  • the object is also achieved according to the invention with the features specified in the characterizing part of claims 8 and 9.
  • the method now makes it possible to specifically influence the synthesis of ATP by electron transport phosphorylation and the build-up of the electrochemical proton potential via the respiratory chain, and thus to control the synthesis of metabolic products.
  • the microbial production of metabolic products such as amino acids (L-asparagine, L-threonine, L-serine, L-glutamate, L-glycine, L-alanine, L-cysteine, L-valine, L-methionine, L- Isoleucine, L-leucine, L-tyrosine, L-phenylalanine, L-histidine, L-lysine, L-tryptophan, L-arginine), organic acids (acetic acid, citric acid, isocitric acid, lactic acid, succinic acid, fumaric acid, ketoglutaric acid, Pyruvic acid, malic acid), vitamins, nucleosides, nucleotides and mono- or polyhydric alcohols can be positively influenced by setting a suitable energy charge.
  • the polynucleotides according to the invention can be used as hybridization probes for finding RNA, cDNA and DNA and for isolating nucleic acids, polynucos
  • the present invention relates to a process for the production of metabolic products, d a d u r c h g e k e n n z e i c h n e t that the following steps are carried out:
  • weakened includes the weakening of the synthesis and expression in comparison to the natural synthesis or expression of the gene sequence coding for the fourth subunit of the cytochrome aa 3 oxidase (ctaF).
  • natural used here is intended to encompass the properties which have genetically unmodified microorganisms, ie wild-type strains.
  • weakened is to be understood as the complete deletion of the gene sequence ctaF coding for the fourth subunit of the cytochrome aa 3 oxidase.
  • the term “amplified” means an increase in the gene expression of one or more genes from the group ctaC, ctaD, ctaE, ctaF, qcrA, qcrB, qrcC compared to the corresponding not to understand genetically modified microorganism.
  • a particularly advantageous embodiment of the method comprises the amplification of all genes in the aforementioned group.
  • the number of copies of the corresponding genes can be increased to achieve increased gene expression (overexpression). Furthermore, the promoter and / or regulatory region and / or the ribosome binding site which is located upstream of the structural gene can be changed accordingly in such a way that expression takes place at an increased rate. Expression cassettes which are installed upstream of the structural gene act in the same way. In addition, inducible promoters make it possible to increase expression in the course of the fermentative manufacture of the metabolic products. Expression is also improved by measures to extend the life of the mRNA.
  • the genes or gene constructs can either be present in plasmids with different copy numbers or in
  • Chromosome integrated and amplified Chromosome integrated and amplified. Furthermore, the stability of the expressed polypeptides themselves can also be increased or increased by preventing the degradation of the protein. Alternatively, overexpression of the genes in question can also be achieved by changing the media composition and culture management.
  • the genetically modified microorganisms produced according to the invention can be cultured continuously or discontinuously in the batch process (batch cultivation) or in the fed batch (experienced feed) or repeated fed batch process (repetitive feed process) for the purpose of producing the metabolic products.
  • batch cultivation or in the fed batch (experienced feed) or repeated fed batch process (repetitive feed process) for the purpose of producing the metabolic products.
  • the culture medium to be used must meet the requirements of the respective strains in a suitable manner. Descriptions of culture media from various microorganisms are contained, for example, in [22].
  • producing bacteria are to be understood as Corynebacterium glutamicum strains or homologous microorganisms which have been modified by classic and / or molecular genetic methods in such a way that their metabolic flow is increasingly directed towards the biosynthesis of the desired metabolism. sel products is running.
  • genes and / or the corresponding enzymes which are located at key and correspondingly complexly regulated key positions of the metabolic pathway (bottleneck) are changed in their regulation or even deregulated.
  • the present invention includes all known production strains, preferably of the genus Corynebacterium or homologous organisms.
  • the present invention furthermore relates to the transfer of a gene or several genes from the group ctaC, ctäD, ctaE, ctaF, qcrh, qcrB, qrcC into a host system.
  • This also includes the transfer of a gene construct or vector according to the invention into a host system.
  • This transfer of DNA into a host cell takes place using genetic engineering methods.
  • the preferred method here is transformation and particularly preferably the transfer of DNA by electroporation.
  • Homologous microorganisms have proven to be particularly suitable. Homologous microorganisms are organisms which all belong to a related family. According to the invention, this includes Coryne bacterianeae into which the gene sequences of the above-described group isolated from coryneform bacteria are introduced or in which the ctaF gene is weakened. Representative of a suitable homologous microorganism is the bacterium Corynebacterium glutamicum and preferably the strain ATCC13032. Depending on the requirements, a complex medium such as e.g. B. LB medium or also a mineral salt medium, such as. B. CGXII medium suitable.
  • a complex medium such as e.g. B. LB medium or also a mineral salt medium, such as. B. CGXII medium suitable.
  • the bacterial suspension can be harvested and used for further investigation, for example for the transformation or for the isolation of nucleic acids by conventional methods. This procedure can also be applied analogously to other coryneform bacterial strains.
  • Bacteria of the genus Corynebacterium are preferred as host systems.
  • the species Corynebacterium glutamicum is particularly preferred and within the genus Brevibacterium particularly the species Brevibacterium flavum.
  • the representatives of these genera include strains that are characterized in their properties as wild type.
  • Corynebacterium glutami cum ATCC 13032 Corynebacterium glutamicum ATCC 14752, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium me- lassecola ATCC 17965, Corynebacterium Thermoaminogenes F39.
  • the present invention also includes producing bacterial strains which are distinguished, for example, as amino acid production strains. These can e.g. B. based on wild-type strains by classic (chemical or physical) or genetic engineering methods. Examples of strains suitable according to the invention include Corynebacterium glutamicum ATCC 21586, Corynebacterium glutamicum KY 10150, Corynebacterium glutamicum ATCC 13032 ⁇ panBC. Furthermore, those production strains which are generally known to the person skilled in the art from microbial production processes are also suitable according to the invention. The present invention is illustrated by the selected games characterized in more detail on microorganisms, but not limited.
  • the present invention relates to a method for finding RNA, cDNA and DNA in order to isolate nucleic acids, or polynucleotides or genes, characterized in that the gene sequence ctaF coding for the fourth subunit of the cytochrome aa 3 oxidase is used as a hybridization probe.
  • the present invention further relates to a genetically modified microorganism in which the gene sequence coding for the fourth subunit of cytochrome aa 3 oxidase (ctaF) is weakened.
  • the present invention also encompasses a microorganism containing one or more genes from the group ctaC, ctaD, ctäE, ctaF, qcrA, qcr, grcC in replicable form, which are enhanced in comparison to the wild type microorganism.
  • FIG. 1 Representation of the genome region of C. glutamicum with the gene region for the at complex (gcrABC) and the Cytochrome aa 3 oxidase (ctaCE) and the ctaF gene without ctaD.
  • the DNA regions deleted in the strains 13032 ⁇ gcr and 13032 ⁇ ctaF are shown, as are the fragments in the plasmids pJCl-gcrB S t and the corresponding derivatives and in the plasmid pBM20-QXA.
  • FIG. 2 SDS-polyacrylamide gel analysis of the cytochrome bc ⁇ complex and the cytochrome aa 3 single complex and the super complex from C. glutamicum, purified by affinity chromatography with StrepTactin Sepharose using QcrB st (derivative of cytochrome b with C-terminal strep- Day II) or CtaD st (derivative of subunit I of cytochrome aa 3 oxidase with a C-terminal strep day II).
  • QcrB st derivative of cytochrome b with C-terminal strep- Day II
  • CtaD st derivative of subunit I of cytochrome aa 3 oxidase with a C-terminal strep day II.
  • the proteins were denatured, separated using an 8-16% Tris-HCl gradient gel (Biorad) and stained with Coomassie Blue.
  • Lane 1 cytochrome aa 3 oxidase (7.2 ⁇ g protein) purified from strain ⁇ Q-D s ; Lane 2, cytochrome bc ⁇ -aa 3 super complex purified from strain ⁇ C-D st (4.7 ⁇ g); Lane 3, cytochrome bc ⁇ -aa super complex purified from strain ⁇ _-B S t (5.7 ⁇ g); Lane 4, cytochrome, cX complex purified from strain ⁇ C-B S t (4.3 ⁇ g).
  • FIG. 3 Absolute redox difference spectra of reduced intact cells from C. glutamicum ATCC13032 (Wild
  • FIG. 4 Sequence comparison of the CtaF protein with different species of other actinomycetes. Suspected transmembrane helices are marked with lines and numbers. Amino acids that are identical in at least 5 sequences are marked with black shading. Conserved amino acid exchange areas are shown shaded gray.
  • the names of the bacteria were abbreviated as follows: Cgi, C. glutamicum (NCgl2114); Cdi, C. diphtheriae (NC_002935); tu, Mycobacterium tuberculosis (Rv2199c); Mbo, M. bovis (NC_002945); Mle, M. leprae (ML0876); Sco, Streptomcyces coelicolor (NP_626410); Tfu, Thermobifida fusca (Tfus_p_278).
  • SeQ ID No 1 CtaC amino acid sequence
  • SeQ ID No 2 ctaC coding nucleotide sequence
  • SeQ ID No 4 nucleotide sequence encoding ctaD
  • SeQ ID No 6 ctaE coding nucleotide sequence
  • SeQ ID No 7 CtaF amino acid sequence
  • SeQ ID No 8 nucleotide sequence encoding ctaF
  • SeQ ID No 10 qcrA coding nucleotide sequence
  • SeQ ID No 11 QcrB amino acid sequence
  • SeQ ID No 12 qcrB coding nucleotide sequence
  • SeQ ID No 13 QcrC amino acid sequence
  • SeQ ID No 14 qcrC coding nucleotide sequence
  • SeQ ID No 16 nucleotide sequence coding for p20
  • SeQ ID No 18 p24 coding nucleotide sequence
  • SeQ ID No 19 P29 amino acid sequence
  • SeQ ID No 20 nucleotide sequence coding for p29
  • Corynebacterium glutamicum was at 30 ° C either in Luria Bertani (LB) medium (Sambrook et al. 1989) or in Brain Heart Infusion (BHI) medium (Difco Laboratories, Detroit, USA) with 2% (w / v) glucose or in CGXII minimal medium cultivated with 4% glucose as a carbon and energy source (Keilhauer et al. 1993). Kanamycin (25 ⁇ g / ml) was added if necessary. Escherichia coli (E. coli) was grown at 37 ° C in LB medium cultured. Optionally, kanamycin (50 ug / ml) or ampicillin (100 ug / ml) was added.
  • Enzymes from Röche Diagnistics or New England Biolabs were used to prepare recombinant DNA.
  • the oligonucleotides used were obtained from MWG Biotech (Ebersber) and are listed in Table 2. Cloning procedures were carried out according to known standard procedures [8].
  • the resulting plasmid pJCl-gcrB st codes for a QcrB derivative with ten additional residues at the C-terminus (calculated molecular weight 61.1 kDa).
  • a similar procedure was used to purify the cytochrome aa 3 complex
  • CtaD derivative with a C-terminal StrepTag II produced with the difference that only the monocistronic ctaD genes with their native promoter were amplified by PCR.
  • the resulting 2.0 kb fragment was cloned into the vector pJCl via the Xbal site, so that the pJCl-ctaD st plasmid was obtained therefrom resulted.
  • the modified CtaD protein contained ten additional residues at the C-terminus (calculated molecular weight 66.3 kDA).
  • Each of the two plasmids was introduced into C. glutamicum 13032ActaD and 13032 ⁇ qcr using electroporation [8].
  • the residue with the cytoplasmic membrane was resuspended in 10 mM Tris / HCl at pH 7.5 (60-80 mg protein / ml) and centrifuged again at 90,000 xg for 90 min.
  • the membrane substance was resuspended in a small volume of the buffer used with 10% (v / v) glycerol and stored at -20 ° C.
  • the washed membrane substance was adjusted to a protein concentration of 5 mg / ml in 100 mM Tris-HCl, containing 50 ⁇ g / ml protein avidin (Sigma).
  • a 10% (w / v) aqueous solution of n-dodecyl- ⁇ -D-maltoside (Biomol) was added, so that a final concentration of 2 g didecyl maltoside / g protein was obtained.
  • Biomol n-dodecyl- ⁇ -D-maltoside
  • the supernatant was applied to a StrepTactin Sepharose column with a column volume of 2 ml (IBA, Göttingen) and equilibrated with 100 mM Tris-HCl buffer (pH 7.5) and 0.025% (w / v) dodecyl maltoside.
  • the column was washed with 9 ml of a buffer of 100 mM Tris-HCl buffer (pH 7.5), 100 mM NaCl, 2 mM MgSO4 and 0.025% (w / v) dodecyl maltoside.
  • Specifically bound proteins were made with the same buffer and an additional 2.5 mM
  • TMPD trimethyl-p-phenylenediamine
  • the N, N, N ', N "-tetramethyl-p-phenylenediamine (TMPD) oxidase activity was determined spectrophotometrically at 562 nm in air-saturated 100 mM Tris-HCl buffer (pH 7.5) containing 200 ⁇ M TMPD at 25 ° C. An extinction coefficient of 10.5 mM "1 cm “ 1 was used to calculate the activity [4]. One unit of enzyme activity corresponds to the amount of 1 ⁇ mol TMPD which is oxidized in one minute. 7. Difference spectroscopy
  • Dithionite-reduced minus ferricyanide-oxidized difference spectra were carried out at room temperature with a Jasco V560 spectrophotometer, which was equipped with a silicon photodiode detector for cloudy samples [11]. A cuvette with a 5 mm wide detection window was used. Protein concentration was determined using the bicinchoninic acid (BCA) protein assay [14] and bovine serum albumin as standard. The heme content was determined from the
  • Exemplary embodiments a. Isolation of the cytochrome Jc ⁇ -aa 3 super complex
  • membranes of the complemented strains ⁇ Q-Bst and ⁇ C-Ds ⁇ were isolated and the proteins obtained after solubilization with dodecyl maltoside were subjected to affinity chromatography with StrepTactin Sepharose. After washing, the specifically bound proteins were eluted with desthiobiotin and analyzed using the SDS page.
  • the protein patterns of the two strains ⁇ Q-B S t (FIG. 2, lane 3) and ⁇ C-D ST (FIG. 2, lane 2) were very similar to 8 protein bands and apparently identical molecular weights. The identity of the proteins shown in FIG.
  • NCgl numbers correspond to the nomenclature of the publicly available NCBI (National Center for Biotechnology Information) or the numbers in the brackets of the nomenclature of the DDBJ (DNA Data Bank of Japan) databases.
  • NCBI National Center for Biotechnology Information
  • DDBJ DNA Data Bank of Japan
  • the plasmid pJCl-ctaD st was transferred into C. glutamicum 13032 ⁇ gcr.
  • the resulting ⁇ Q-D st strain had the same growth defects as the 13032 ⁇ gcr strain due to the lack of Qcr genes and formed both wild-type CtaD and strep-tagged CtaD.
  • the eluate from StrepTactin affinity chromatography contained four proteins (Fig. 2, lane 1) which were identified as CtaD, CtaC, CtaE and P19.
  • TMPD oxidase activity of the isolated cytochrome aa 3 oxidase of 0.34 U / mg was determined and a turn-over value of 1.1 TMPD oxidized / aa 3 s ' 1 . Due to the lack of cytochrome c. a 10-fold lower oxidase activity compared to the activity of the super complex was determined.
  • the protein P19 is also purified on the basis of the interaction with the subunits of the cytochrome aa 3 oxidase and can therefore be counted as the as yet unknown fourth subunit of the cytochrome aa 3 oxidase from C. glutamicum.
  • the protein P19 consists of 143 amino acids and has a molecular weight of 15.5 kDA. It has three hydrohobic regions, in the region of amino acids 7-27, 40-60, and 97-130, whereby three or four transmembrane helices are formed. The first transmembrane helix is believed to serve as part of a signal peptide.
  • the sequence comparison shown in FIG. 4 shows that the gene coding for the P19 protein ctaF with corresponding genes from the group of the Actinomycetal homologies: C. diphtheriae 68% identity; Mycobacteria 38-39% identity; S. coelicolor 39% identity and Thermobifida fusca 33% identity. In all of these organisms, the corresponding genes are the same
  • ⁇ Cg2114 ⁇ ctaF In-frame deletion of the NCgl2114 gene
  • the quinol oxidase activity was determined using DMNH 2 (2,3-dimethyl-1,4-naphthoquinone in reduced form) as a substrate by measuring the oxygen uptake using a Clark oxygen electrode.
  • One unit (U) corresponds to 1 ⁇ mol 0 2 A. Per minute.
  • the turnover number (TN) was calculated as electron transfer

Abstract

Die Erfindung betrifft ein Verfahren zur mikrobiellen Herstellung von Stoffwechselprodukten. Durch das erfindungsgemässe Verfahren ist es nunmehr möglich, die Synthese von ATP gezielt zu beeinflussen und damit auch die Synthese von Stoffwechselprodukten zu steuern. Die Erfindung betrifft ein für Cytochrom aa3 Oxidase kodierendes Gen ctaF aus Corynebacterium glutamicum. Das ctaF Gen kodiert für ein Protein, welches die Funktion einer vierten Untereinheit der Cytochrom aa3 Oxidase aufweist.

Description

B e s c h r e i b u n g
Verfahren zur mikrobiellen Herstellung von StoffWechselprodukten
Die Erfindung betrifft ein Verfahren zur mikrobiellen Herstellung von StoffWechselprodukten.
Corynebacterium glutamicum ( C. glutamicum) , ein gram positives Bodenbakterium mit einem hohen G+C Gehalt (54 mol%) , wird für die industrielle Produktion von
Aminosäuren, insbesondere zur Produktion von L-Glutamat und L-Lysin eingesetzt. Der Syntheseweg dieser Aminosäuren, der Zentralstoffwechsel, welcher die relevanten Vorstufen bereitstellt sowie der Kohlenstoff-Fluss und der Stickstoff-Fluss dieses Organismus ist intensiv untersucht worden [1] .
Die Zusammensetzung und ernergetische Effizienz der Atmungskette bei coryneformen Bakterien wurde in den letzten Jahren sowohl genetisch als auch biochemisch intensiv untersucht.
Atmende Organismen können ATP durch oxidative Phospho- rylierung synthetisieren. Dabei werden die bei der Oxi- dation von Substraten enstehenden Reduktionsäquivalente (H oder Elektronen) in die membranständige Atmungskette eingeschleust und die Elektronen letztendlich auf Sauerstoff oder andere terminale Elektronen-Akzeptoren übertragen. Energieerzeugende und energieverbrauchende Stoffwechselwege sind über ATP und das elektrochemische Protonenpotential bzw. das elektrochemische Natrium- ionen-Potential als universelle zelluläre Energieformen miteinander gekoppelt. Die Synthese von ATP kann entweder über Substratstufenphosphorylierung oder durch Elektronentransportphosphorylierung erfolgen. Der Aufbau des elektrochemischen Protonenpotentials erfolgt durch die Atmungskette oder die Hydrolyse von ATP durch die membranständige F0Fι-ATP-Synthase . Die Komponenten der Atmungskette sind Enzyme, die i.d.R. kovalent oder nicht-kovalent gebundene niedermolekulare Gruppen enthalten, z. B. Flavine (Flavoproteine) , Eisen-Schwefel- Zentren (Eisen-Schwefel-Proteine) und Häm-Gruppen (Cytochrome) . Ein weiterer essentieller Bestandteil von Atmungsketten sind Chinone, d. h. niedermolekulare, membranständige Elektronen- und Protonenüberträger, wie z. B. Ubichinon und Menac inon.
Die Atmungskette von C. glutamicum weist mehrere De- hydrogenasen auf, die für den Elektronentransfer zum Intermembranpool des Menachinon-9 [2] verantwortlich sind sowie mindestens zwei Wege für die Reoxidation des Menachinons aufweist, wobei ein Weg der Reoxidation mit Hilfe der Cytochrom d-Oxidase erfolgt und der zweite Weg mit Hilfe des Cytochrom bc Komplexes und der Cy- tochrom aa3 Oxidase erfolgt. Letztere spielen eine bedeutende Rolle für das Wachstum der Organismen, da Mutanten mit fehlendem Cji-Komplex oder fehlender Cytochrom aa3 Oxidase deutliche Wachstumsdefekte aufweisen [2] . Der Cytochrom bc Komplex wird durch die Gene qrcrCAB kodiert [2,3] . Dem gcrC Gen vorgeschaltet sind die Gene für die Untereinheit II (ctaC) und III (ctaE) der Cytochrom aa3 Oxidase [2,3], wobei der Cytochrom bcj_ Komplex und die Cytochrom aa3 Oxidase, codiert durch ctaC- DE, vermutlich einen Superkomplex bilden [2] . Einzelheiten betreffend die Atmungskette in C. glutamicum mit den entsprechenden Genen sind auch der WO 02/22799 A2 zu entnehmen. Das u.a. durch die Reaktionen der Atmungskette gewonnene ATP ist der universelle Überträger chemischer Energie zwischen energieerzeugenden und energievebrauchen- den Reaktionen und bedient so heterogene Prozesse wie die Synthese von Bausteinen und Makromolekülen. Energieerzeugende und energieverbrauchende Stoffwechselwege können u. a. über den Energiehaushalt der Zelle bzw. ihren ATP-Gehalt gesteuert werden und damit über die Funktionen der Atmungskette.
Es ist daher Aufgabe der Erfindung, ein Verfahren zu schaffen, mit dem der Stoffwechsel von Zellen reguliert werden kann .
Den Erfindern ist es in überraschender Weise gelungen, das Gen zu identifizieren, das für eine bisher unbekannte vierte Untereinheit der Cytochrom aa3-Oxidase codiert. Es ist weiterhin Aufgabe der Erfindung Mikroorganismen bereit zu stellen, deren Stoffwechsel ge- zielt regulierbar ist.
Ausgehend vom Oberbegriff des Anspruchs 1 wird die Aufgabe erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruchs 1 angegebenen Merkmalen. Ausgehend vom Oberbegriff des Anspruchs 7 wird die Aufgabe weiterhin erfindungsgemäß gelöst mit den im kennzeichnenden Teil des Anspruchs 7 angegebenen Merkmalen. Die Aufgabe wird ebenso ausgehend vom Oberbegriff des Anspruchs 8 und 9 erfindungsgemäß gelöst mit den im kenn- zeichnenden Teil des Anspruchs 8 und 9 angegebenen Merkmalen. Durch das Verfahren ist es nunmehr möglich, die Synthese von ATP durch Elektronentransportphosphorylierung sowie den Aufbau des elektrochemischen Protonenpotentials über die Atmungskette gezielt zu beeinflussen und damit eine Steuerung der Synthese von Stoffwechselprodukten zu ermöglichen. So kann beispielsweise die mikrobielle Produktion von Stoffwechselprodukten wie beispielsweise Aminosäuren (L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan, L-Arginin) , organischen Säuren (Essigsäure, Citronen- säure, Isocitronensäure, Milchsäure, Bernsteinsäure, Fumarsäure, Ketoglutarsäure, Brenztraubensäure, Apfel- säure) , Vitaminen, Nukleosiden, Nukleotiden und ein- oder mehrwertiger Alkohole durch Einstellung einer geeigneten Energieladung positiv beeinflußt werden. Weiterhin können die erfindungsgemäßen Polynukleotide als Hybridisierungssonden zum Auffinden von RNA, cDNA und DNA sowie zur Isolation von Nukleinsäuren, Polynukleo- tiden oder Genen verwendet werden.
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Stoffwechselprodukten, d a d u r c h g e k e n n z e i c h n e t, daß man folgende Schritte durchführt :
a) Fermentation der das gewünschte Stoffwechselprodukt produzierenden Bakterien, in denen man die für die vierte Untereinheit der Cytochtom aa3 O- xidase codierende Gensequenz ctaF abschwächt oder zusammen mit einem Gen oder mehreren Genen aus der Gruppe ctaC, ctaD, ctaE, qcrA, qcrB , qcrC verstärkt . b) Anreicherung des gewünschten Stoffwechselprodukts im Medium oder in den Zellen der Bakterien, und
c) Isolieren des entsprechenden Stoffwechselpro- dukts.
Die Bezeichnung „abgeschwächt" beinhaltet die Abschwä- chung der Synthese und der Expression im Vergleich zur natürlichen Synthese bzw. Expression der für die vierte Untereinheit der Cytochtom aa3 Oxidase codierenden Gensequenz (ctaF) . Der verwendete Begriff „natürlich" soll dabei die Eigenschaften umfassen, die genetisch nicht veränderte Mikroorganismen, d.h. Wildtypstämme aufweisen. Weiterhin ist unter der Bezeichnung „abgeschwächt" die vollständige Deletion der für die vierte Untereinheit der Cytochtom aa3 Oxidase codierenden Gensequenz ctaF zu verstehen.
Durch die „Abschwächung" der ctaF Gensequenz kann keine aktive Cytochrom aa3 Oxidase gebildet werden. Die Reoxidation des Menachinons über den Weg des Cytochrom bc Komplexes und die Cytochom aa3 Oxidase ist damit nicht mehr möglich. Die Reoxidation kann nur noch über den Weg der Cytochrom d-Oxidase erfolgen. Durch diese „Abschwächung" kann die Funktion der Atmungskette ge- zielt gesteuert werden und so auch der davon abhängige Stoffwechsel in gewünschter Weise beeinflußt werden.
Unter dem Begriff „verstärkt" ist im Rahmen der vorliegenden Erfindung eine Erhöhung der Genexpression eines Gens oder mehrerer Gene aus der Gruppe ctaC, ctaD, ctaE, ctaF , qcrA, qcrB, qrcC gegenüber dem entspre- chend nicht genetisch veränderten Mikroorganismus zu verstehen. Eine besonders vorteilhafte Ausführung des Verfahrens umfaßt dabei die Verstärkung aller Gene der vorgenannten Gruppe .
Zur Erzielung einer erhöhten Genexpression (Überexpression) kann die Kopienzahl der entsprechenden Gene erhöht werden. Ferner kann die Promotor- und/oder Regulationsregion und/oder die Ribosomenbindungsstelle, die sich stromaufwärts des Strukturgens befindet, entsprechend so verändert werden, daß die Expression mit erhöhter Rate erfolgt. In gleicher Weise wirken Expressionskassetten, die stromaufwärts des Strukturgens eingebaut werden. Durch induzierbare Promotoren ist es zu- sätzlich möglich die Expression im Verlaufe der fermen- tativen Herstellung der StoffWechselprodukte zu steigern. Durch Maßnahmen zur Verlängerung der Lebensdauer der mRNA wird ebenfalls die Expression verbessert. Die Gene oder Genkonstrukte können entweder in Plasmiden mit unterschiedlicher Kopienzahl vorliegen oder im
Chromosom integriert und amplifiziert sein. Weiterhin kann auch die Stabilität der exprimierten Polypeptide selbst erhöht sein oder durch die Verhinderung des Abbaus des Proteins verstärkt werden. Alternativ kann ferner eine Überexpression der betreffenden Gene durch Veränderung der Medienzusammensetzung und Kulturführung erreicht werden.
Anleitungen hierzu findet der Fachmann unter anderem bei Martin et al . [17], bei Guerrero et al . [18], oder Tsuchiya und Morinaga [19] .
Durch die Verstärkung eines Gens oder mehrerer Gene aus der Gruppe ctaC, ctaD, ctaE, ctaF , qcrA, qcrB , qrcC wird eine positive Beeinflussung der Atmungskette, insbesondere der durch das ctaF codierten Cytochtom aa3 Oxidase erreicht. Diese wird sowohl in ihrer Stabilität als auch in ihrer Wirkungsweise zusammen mit anderen Komponenten der Atmungskette durch die Ausbildung ihrer vierten Untereinheit beeinflußt. So kommt es, wie weiter unten beschrieben, beispielsweise zu deutlichen Wachstumsdefekten, wenn das ctaF Gen deletiert wird. Durch die „Verstärkung" der Gene aus der oben genannten Gruppe kann gezielt die Reoxidation des Menachinons über den Cytochrom ei Komplex und die Cytochrom aa2 Oxidase gefördert werden.
Die erfindungsgemäß hergestellten genetisch veränderten Mikroorganismen können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulauf erfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Herstellung der StoffWechselprodukte kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden ist im Lehrbuch von Chmiel [20] oder im Lehrbuch von Storhas [21] beschrieben.
Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschrei- bungen von Kulturmedien verschiedenener Mikroorganismen sind beispielsweise in [22] enthalten.
Unter „produzierenden Bakterien" sind im Sinne der vorliegenden Erfindung Corynebacterium glutamicum-Stämme oder homologe Mikroorganismen zu verstehen, die durch klassische und/oder molekulargenetische Methoden derart verändert sind, daß ihr Stoffwechselfluß verstärkt in die Richtung der Biosynthese der gewünschten Stoffwech- selprodukte läuft. Beispielsweise sind bei diesen Bakterien ein oder mehrere Gen(e) und/oder die korrespondierenden Enzyme, die an entscheidenden und entsprechend komplex regulierten Schlüsselpositionen des Stoffwechselweges (Flaschenhals) stehen, in ihrer Regulation verändert oder sogar dereguliert. Die vorliegende Erfindung umfaßt hierbei sämtliche bereits bekannten Produktionsstämme, bevorzugt der Gattung Corynebacteri- um oder homologer Organismen.
Gegenstand der vorliegenden Erfindung ist ferner die Übertragung eines Gens oder mehrerer Gene aus der Gruppe ctaC, ctäD , ctaE, ctaF , qcrh, qcrB , qrcC in ein Wirtssystem. Dies schließt auch die Übertragung eines erfindungsgemäßen Genkonstrukts oder Vektors in ein Wirtssystem ein. Diese Übertragung von DNA in eine Wirtszelle erfolgt nach gentechnischen Methoden. Als bevorzugtes Verfahren sei hier die Transformation und besonders bevorzugt die Übertragung von DNA durch Elektroporation genannt.
Als besonders geeignet haben sich homologe Mikroorganismen erwiesen. Unter homologen Mikroorganismen sind Organismen zu verstehen, die alle einer verwandten Fa- milie angehören. Erfindungsgemäß sind hierunter Coryne- bacterianeae zu verstehen, in die die aus coryneformen Bakterien isolierten Gensequenzen der oben beschriebenen Gruppe eingebracht werden bzw. in denen das ctaF Gen abgeschwächt wird. Stellvertretend für einen geeig- neten homologen Mikroorganismus sei das Bakterium Cory- nebacterium glutamicum und bevorzugt der Stamm ATCC13032 genannt. Als Kulturmedium ist je nach Anforderungen ein Komplexmedium wie z. B. LB Medium oder auch ein Mineralsalzmedium, wie z. B. CGXII-Medium geeignet. Nach entsprechender Kultivierung kann die Bakteriensuspension geerntet und zur weiteren Untersuchung, beispielsweise zur Transformation oder zur Iso- lierung von Nukleinsäuren nach gängigen Methoden eingesetzt werden. Diese Vorgehensweise kann analog auch auf andere coryneforme Bakterienstämme angewendet werden. Dabei werden als Wirtssysteme Bakterien der Gattung Corynebacterium bevorzugt. Innerhalb der Gattung Coryne- bacterium wird besonders die Art Corynebacterium glutamicum und innerhalb der Gattung Brevibacterium besonders die Art Brevibacterium flavum bevorzugt. Zu den Vertretern dieser Gattungen zählen zum einen Stämme, die in ihren Eigenschaften als Wild Typ charakterisiert sind. Hier sind beispielsweise Corynebacterium glutami cum ATCC 13032, Corynebacterium glutamicum ATCC 14752, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium me- lassecola ATCC 17965, Corynebacterium thermoaminogenes FERM BP-1539, zu nennen.
Darüber hinaus schließt die vorliegende Erfindung auch produzierende Bakterienstämme ein, die sich beispielsweise als Aminosäureproduktionsstämme auszeichnen. Diese können z. B. ausgehend von Wildtypstämmen durch klassische (chemische oder physikalische) oder gentechnische Methoden hergestellt werden. Beispiele für erfindungsgemäß geeignete Stämme sind u. a. Corynebacterium glutamicum ATCC 21586, Corynebacterium glutamicum KY 10150, Corynebacterium glutamicum ATCC 13032ΔpanBC. Ferner sind erfindungsgemäß auch diejenigen Produkti- onsstämme geeignet, die dem Fachmann allgemein aus mikrobiellen Herstellungsverfahren bekannt sind. Die vorliegende Erfindung wird durch die ausgewählten Bei- spiele an Mikroorganismen näher charakterisiert, jedoch nicht limitiert.
Weiterhin betrifft die vorliegende Erfindung ein Ver- fahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, dadurch gekennzeichnet, daß man die für die vierte Untereinheit der Cytochrom aa3 Oxidase codierende Gensequenz ctaF als Hybridisierungssonde einsetzt.
Die vorliegende Erfindung betrifft ferner einen genetisch veränderten Mikroorganismus in dem die für die vierte Untereinheit der Cytochrom aa3 Oxidase (ctaF) codierende Gensequenz abgeschwächt ist.
Ebenso umfaßt die vorliegende Erfindung einen Mikroorganismus enthaltend ein Gen oder mehrere Gene aus der Gruppe ctaC, ctaD, ctäE, ctaF , qcrA, qcr , grcC in replizierbarer Form, welche im Vergleich zum Wild Typ Mikroorganismus verstärkt sind.
Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
Die Figuren zeigen modellhaft die, an der Atmungskette beteiligten Komponenten, mit den zugehörigen Genen sowie experimentelle Ergebnisse der durchgeführten Methoden mit dem ctaF Gen:
Es zeigt:
FIG. 1. Darstellung der Genomregion von C. glutamicum mit der Genregion für den bei Komplex (gcrABC) und die Cytochrom aa3 Oxidase (ctaCE) und dem ctaF Gen ohne ctaD. Die DNA Regionen, die in den Stämmen 13032Δgcr und 13032ΔctaF deletiert wurden, sind ebenso eingezeichnet wie die Fragmente in den Plasmiden pJCl-gcrBSt und den entsprechenden Derivaten sowie im Plasmid pBM20-QXA.
FIG. 2: SDS-Polyacrylamid Gel Analyse des Cytochrom bc± Komplexes und des Cytochrome aa3 Einzel Komplexes sowie des Superkomplexes aus C. glutamicum, aufgereinigt durch Affinitäts Chromatographie mit StrepTactin Sepha- rose mittels QcrBst (Derivat des Cytochrom b mit C-terminaler Strep-Tag II) oder CtaDst (Derivat der Untereinheit I der Cytochrom aa3 Oxidase mit einem C-terminalen Strep-Tag II) . Die Proteine wurden denaturiert, mit Hilfe eines 8-16% Tris-HCl Gradienten-Gels (Biorad) aufgetrennt und mit Coomassie Blau gef rbt. Spur 1, Cytochrom aa3 Oxidase (7.2 μg Protein) aufgereinigt aus Stamm ΔQ-Ds ; Spur 2, Cytochrome bcχ-aa3 Su- perkomplex aufgereinigt aus Stamm ΔC-Dst (4.7 μg) ; Spur 3, Cytochrom bcχ-aa Superkomplex aufgereinigt aus Stamm Δθ_-BSt (5.7 μg) ; Spur 4, Cytochrome , cX Komplex aufgereinigt aus Stamm ΔC-BSt (4.3 μg) .
FIG. 3: Absolute Redox-Differenzspektren von reduzierten intakten Zellen von C. glutamicum ATCC13032 (Wild
Typ) , 13032ΔctaD, und 13032ΔctaF. Die Zellen wurden vor Aufnahme der Spektren bei Raumtemperatur in 100 mM Tris-HCl Puffer (pH 7.5) resuspendiert, auf eine op- tische Dichte von 200 bei 600 nm eingestellt und durch Zugabe von Dithionit reduziert. Relevante Unterschiede der einzelnen Cytochrom-Muster sind durch Pfeile markiert. X = Wellenlänge (nm) ; Y = Absorption
FIG. 4: Sequenzvergleich des CtaF Proteins mit unter- schiedlichen Spezies anderer Actinomyceten. Mutmaßliche Transmembran Helices werden durch Linien und Ziffern markiert. Aminosäuren, die in mindestens 5 Sequenzen identisch sind, werden mit schwarzer Schattierung markiert. Konservierte Aminosäure-Austauschbereiche werden grau schattiert dargestellt. Die Bezeichnungen der Bakterien wurden wie folgt abgekürzt: Cgi , C. glutamicum (NCgl2114) ; Cdi , C. diphtheriae (NC_002935) ; tu, Myco- bacterium tuberculosis (Rv2199c) ; Mbo, M. bovis (NC_002945) ; Mle, M. leprae (ML0876) ; Sco, Streptomcy- ces coelicolor (NP_626410) ; Tfu, Thermobifida fusca (Tfus_p_278) .
Fig. 5: Sequenzprotokoll
SeQ ID No 1 : CtaC Aminosäuresequenz SeQ ID No 2: ctaC codierende Nukleotidsequenz
SeQ ID No 3 : CtaD Aminosäuresequenz
SeQ ID No 4 : ctaD codierende Nukleotidsequenz
SeQ ID No 5 : CtaE Aminosäuresequenz
SeQ ID No 6 : ctaE codierende Nukleotidsequenz SeQ ID No 7: CtaF Aminosäuresequenz
SeQ ID No 8 : ctaF codierende Nukleotidsequenz
SeQ ID No 9 : QcrA Aminosäuresequenz
SeQ ID No 10: qcrA codierende Nukleotidsequenz SeQ ID No 11: QcrB Aminosäuresequenz
SeQ ID No 12 : qcrB codierende Nukleotidsequenz
SeQ ID No 13 : QcrC Aminosäuresequenz SeQ ID No 14: qcrC codierende Nukleotidsequenz
SeQ ID No 15: P20 Aminosäuresequenz
SeQ ID No 16: p20 codierende Nukleotidsequenz
SeQ ID No 17: P24 Aminosäuresequenz
SeQ ID No 18: p24 codierende Nukleotidsequenz SeQ ID No 19: P29 Aminosäuresequenz
SeQ ID No 20: p29 codierende Nukleotidsequenz
Im Folgenden sollen die verwendeten Methoden beschrie- ben werden.
1. Kultivierung der verwendeten Mikroorganismen
In Tab. 1 und Tab. 2 sind die verwendeten Organismenstämme und Plasmide aufgelistet. Corynebacterium glutamicum wurde bei 30°C entweder in Luria Bertani (LB) Medium (Sambrook et al . 1989) oder in Brain Heart Infusion (BHI) Medium (Difco Laboratories, Detroit, USA) mit 2% (w/v) Glucose oder in CGXII Minimal Medium mit 4% Glucose als Kohlenstoff- und Energiequelle (Keilhauer et al . 1993) kultiviert. Falls erforderlich wurde Kanamycin (25 μg/ml) zugegeben. Escherichia coli (E. coli) wurde bei 37°C in LB Medium kultiviert. Gegebenenfalls wurde Kanamycin (50 μg/ml) oder Ampicillin (100 μg/ml) zugegeben.
Für die Präparation rekombinanter DNA wurde Enzyme der Firma Röche Diagnistics oder New England Biolabs einge- setzt. Die eingesetzten Oligonukleotide wurde von MWG Biotech (Ebersber) bezogen und sind in Tab. 2 aufgelistet . Klonierungsverfahren wurden nach bekannten Standardverfahren durchgeführt [8] .
2. Aufreinigung des Cytochrom hc1 Komplexes
Die Aufreinigung des Cytochrom bei Komplexes, ein QcrB Derivat mit C-terminaler Strep Tag II [6] wurde wie folgt durchgeführt: Das gesamte ctaE-gcrCAB Genkluster mit der vermeintlichen Promotorregion wurde mittels PCR (Polymerase Chain Reaction) amplifiziert (Expand High Fidelity PCR System, Röche Diagnostics) . Dabei wurde ein reverser Primer mit Codons für StrepTag II (WSHPQFEK) und zwei vorangestellten Alanin Codons eingesetzt. Das daraus erhaltene 5,0-kb Fragment wurde in den E . coli-C .glutamicum Shuttle Vektor pJCl hineinklo- niert, wobei die durch Primer induzierten Xbal und Sall Restriktionsschnittstellen verwendet wurden. Das resultierende Plasmid pJCl-gcrBst kodiert für ein QcrB Derivat mit zehn zusätzlichen Resten am C-Terminus (berechnetes Molekulargewicht 61,1 kDa) . Zur Aufreinigung des Cytochrom aa3 Komplexes wurde in ähnlicher Weise ein
CtaD Derivat mit einem C-terminalen StrepTag II hergestellt mit dem Unterschied, daß nur die monocistroni- schen ctaD Gene mit ihrem nativen Promotor mittels PCR amplifiziert wurden. Das resultiernde 2,0-kb Fragment wurde über die Xbal Schnittstelle in den Vektor pJCl hineinkloniert, so daß daraus das pJCl-ctaDst Plasmid resultierte. Das modifizierte CtaD Protein enthielt zehn zusäzliche Reste am C-Terminus (berechnetes Molekulargewicht 66,3 kDA) . Jedes der beiden Plasmide wurde in C. glutamicum 13032ActaD und 13032Δqcr mittels Elektroporation [8] eingebracht.
3. Membran-Isolation
10 g Zellmasse (Feuchtgewicht) wurden in 15 ml 100 mM Tris/HCl, pH 7,5 mit 5 mM MgS04 und 10 mg/1 Lysozyme suspendiert. Nach 45 min Inkubation bei 37°C wurde der Protease Inhibitor Phenylmethansulfonylfluorid (1 mM) zugegeben. Es wurde ein Zellaufschluß durchgeführt, in dem die Suspension 5 mal bei 207 MPa durch eine French- Press (SLM Aminco) geleitet wurde. Zelltrümmer wurden durch Zentrifugation bei 27000 x g für 20 min entfernt. Der Überstand (zellfreier Extrakt) wurde für 90 min bei 150000 x g erneut zentifugiert . Der Rückstand mit der Cytoplasmamembran wurde in 10 mM Tris/HCl bei pH 7,5 resuspendiert (60-80 mg Protein/ml) und erneut für 90 min bei 150000 x g zentrifugiert . Die Membransubstanz wurde in einem kleinen Volumen des verwendeten Puffers mit 10% (v/v) Glycerin resuspendiert und bei -20°C gelagert .
4. Auf einigung der Protein Komplexe
Die gewaschene Membransubstanz wurde auf eine Protein- konzentration von 5 mg/ml in 100 mM Tris-HCl, enthaltend 50 μg/ml Eiweiß Avidin (Sigma) , eingestellt. Zur Isolation der Membranproteine wurde eine 10%ige (w/v) wässrige Lösung von n-Dodecyl-ß-D-Maltosid (Biomol) zugegeben, so daß sich eine Endkonzentration von 2 g Do- decylmaltosid/ g Protein einstellte. Nach 45 Minuten Inkubation auf Eis unter langsamem Rühren wurde die Probe für 20 min bei 180000 x g ultrazentrifugiert . Der Überstand wurde auf eine StrepTactin Sepharose Säule gegeben mit einem Säulenvolumen von 2 ml (IBA, Göttin- gen) und mit 100 mM Tris-HCL Puffer (pH 7,5) und 0,025% (W/v) Dodecylmaltosid equilibriert . Die Säule wurde mit 9 ml eines Puffers aus 100 mM Tris -HCl Puffer (pH 7,5), 100 mM NaCl , 2 mM MgS04 und 0,025% (w/v) Dodecylmaltosid gewaschen. Spezifisch gebundene Proteine wur- den mit dem selben Puffer und zusätzlich 2,5 mM
D-Desthiobiotin (Sigma) und 10% (v/v) Glycerin eluiert .
5. Protein Identifizierung durch Peptid-Massen- Fingerprinting
Die durch SDS-PAGE aufgetrennten und mit Coomassie Blue gefärbten Proteine wurden nach bekannter Methode [9] durch Peptid-Massen-Fingerprinting nach Verdau mit Trypsin (Promega) oder mit Cyanogen Bomid [10] identifiziert. Peptidmassen Datenbanken wurden eingesetzt, um lokal einen Ausschnitt des 3312 C. glutamicum Poteins zu suchen. Diese Datenbank wurde durch die Degussa AG
(Frankfurt) zur Verfügung gestellt.
6. Enzym Untersuchung
Die N,N,N' ,N"-Tetramethyl-p-Phenylendiamin (TMPD) Oxidase Aktivität wurde spektrophotometrisch bei 562 nm in Luft gesättigtem 100 mM Tris-HCl Puffer (pH 7,5), der 200 μM TMPD enthielt, bei 25°C gemessen. Für die Berechnung der Aktivität wurde ein Extinktions Koeffizient von 10,5 mM"1cm"1 eingesetzt [4] . Eine Einheit der Enzymaktivität entspricht der Menge von 1 μmol TMPD welches in einer Minute oxidiert wird. 7. Dif erenz-Spektroskopie
Dithionit-reduzierte minus Ferricyanid-oxidierte Differenzspektren wurden bei Raumtemperatur mit einem Jasco V560 Spektrophotometer, welches mit einem Silicium- Photodioden- Detektor für trübe Proben ausgestattet war, durchgeführt [11] . Dabei wurde eine Küvette mit einem 5 mm breiten Detektionsfenster eingesetzt. Die Proteinkonzentration wurde mit dem Bicinchoninsäure (BCA) Protein-Assay [14] und Rinderserum-Albumin als Standard durchgeführt. Der Häm-Gehalt wurde aus den
Differenz Spektren durch folgende Wellenlängepaare und Absorptionskoeffizienten (mM_1cm"1) bestimmt: Häm a, Δε 650-soo nm = 11,6 [12] ; Häm b, Δε5S2-577nm = 22; Häm c Δε 552-
5 0nm = 19,1 [13] .
Ausführungsbeispiele: a. Isolation des Cytochrom Jcι-aa3 Superkomplexes
Zur Aufreinigung des bcx Komplexes und der Cytochrom aa3 Oxidase wurden Membranen der komplementierten Stämme ΔQ-Bst und ΔC-Dsτ isoliert und die nach Solubilisie- rung mit Dodecylmaltosid erhaltenen Proteine der Affinitätschromatographie mit StrepTactin Sepharose unterzogen. Nach dem Waschen wurden die spezifisch gebundenen Proteine mit Desthiobiotin eluiert und mittels SDS- Page analysiert. Überraschenderweise wiesen die Prote- inmuster der beiden Stämme ΔQ-BSt (Fig. 2, Spur 3) und ΔC-DST (Fig. 2, Spur 2) eine hohe Ähnlichkeit auf mit 8 Proteinbanden und scheinbar identischem Molekulargewicht. Die in Fig. 2 bis auf das 17-kDA-Protein (P17) dargestellte Identität der Proteine wurde mit Hilfe des Peptid-Mass-Fingerprinting wie oben beschrieben und ei- ner MALDI (matrix-assisted laser desorption ionizati- on) -TOF (time of light) Massensprektrometrie nachgewiesen. Für die Proteinbanden mit einem Molekulargewicht von 52 kDa bzw. 29 kDa wurde nachgewiesen, daß sie aus jeweils zwei unterschiedlichen Proteinen bestehen. Insgesamt konnten 10 Proteine nachgewiesen werden. Neben den bereits bekannten Untereinheiten des bc Komplexes (QcrA, QcrB, QcrC) bzw. der Cytochrom aa3 Oxidase (CtaC, CtaD, CtaE) wurden 4 weitere Proteine mit einem Molekulargewicht von 29 kDa (P 29) , 24 kDa (P24) , 20 kDa (P20) und 19 kDa (P19) nachgewiesen. Diese können jeweils den Proteinen NCgl2611 (Cgl2664) , NCgl2177 (Cgl2226) , NCgll970 (Cgl2017) und NCgl2114 (Cgl2194) zugeordnet werden. Diese NCgl-Nummern entsprechen der Nomenklatur der öffentlich zugänglichen NCBI (National Center for Biotechnology Information) bzw. die in den Klammern verwendeten Nummern der Nomenklatur der DDBJ (DNA Data Bank of Japan) Datenbanken. Der Fachmann weiß, daß das komplette Genom von C. glutamicum aus allgemein zugänglichen Datenbanken identifizierbar ist (wie z. B. NCBI) und durch Techniken der Genklonierung, z. B. unter Einsatz der Polymerasekettenreaktion (PCR) klonierbar ist .
b. Aufreinigung der Cytochrom aa3 Oxidase als Einzel- komplex
Um die Cytochrom aa3 Oxidase als Einzelkomplex und nicht als Superkomplex zusammen mit dem bc1 Komplex aufzureinigen, wurde das Plasmid pJCl-ctaDst in C. glu- tamicum 13032Δgcr transferiert. Der daraus resultierende ΔQ-Dst-Stamm wies infolge der fehlenden Qcr Gene dieselben Wachstumsdefekte wie der 13032Δgcr Stamm auf und bildete sowohl Wild-Typ CtaD als auch Strep-Tagged CtaD. Das Eluat der StrepTactin Affinitätschromatographie enthielt vier Proteine (Fig.2, Spur 1), die als CtaD, CtaC, CtaE und P19 identifiziert wurden. Es wurde eine TMPD Oxidaseaktivität der isolierten Cytochrom aa3 Oxidase von 0,34 U/mg ermittelt sowie ein Turn- Over Wert von 1,1 TMPD oxidiert / aa3 s'1 . In Folge des fehlenden Cytochrom c . wurde eine 10-fach geringere Oxidaseaktivität gegenüber der Aktivität des Superkom- plexes ermittelt.
c. Beweis der vierten Untereinheit der Cytochrom aa3 Oxidase
Um die Bedeutung der Proteine P29, P24, P20 und P19 für die Atmungskette und die Bildung des bc -aa3-Superkomplexes nachzuweisen, wurden die entsprechenden Gene aus dem Chromosom von C. glutamicum deletiert. Die daraus entstandenen Stämme wurden mit ΔC2611, ΔC2177, ΔC1970 und ΔC2114 bezeichnet. Die ersten drei Stämme wiesen keine deutlichen Unterschiede im Wachstumsverhalten oder in der Bildung des a- , b- , und c-Typ Cytochroms auf. Offenbar sind die Proteine P29, P24, und P20 nicht essentiell für die Bildung und die Aktivität des bc - aa3-Abzweigs der Atmungskette bzw. die Funktion und die Interaktion des bcx-aa3 Superkomplexes.
Im Gegensatz dazu führte die Deletion des Gens NCgl2114, welches für das P19 Protein codiert, zum Phä- notyp des 13032ΔctaD Stammes. So war das Wachstum deutlich beeinträchtigt, Cytochrom a war nahezu nicht im Spektrum der Dithionit-reduzierten Zellen vorhanden und der Gehalt an Cytochrom war deutlich geringer als im Wild Typ (Fig.3) . Das P19 Protein ist daher essentiell für die Bildung einer aktiven Cytochrom aa3 Oxidase. Das Protein P19 wurde nur bei der Aufreinigung des Superkomplexes oder der isolierten Cytochrom aa3 Oxidase nachgewiesen, nicht jedoch bei der Aufreinigung des isolierten bei Komplexes (Fig.2) . Das Protein P19 wird auf Grund der Interaktion mit den Untereinheiten der Cytochtom aa3 Oxidase mit aufgereinigt und kann daher zur bisher noch nicht bekannten vierten Untereinheit der Cytochtom aa3 Oxidase aus C. glutamicum gezählt werden.
Das Protein P19 besteht aus 143 Aminosäuren und hat ein Molekulargewicht von 15,5 kDA. Es weist drei hydrohobe Regionen auf, und zwar im Bereich der Aminosäuren 7-27, 40-60, sowie 97-130, wodurch drei oder vier Trans- membranhelices gebildet werden. Die erste Transmembran- helix dient vermutlich als Teil eines Signalpeptids . Der in Fig. 4 dargestellte Sequenzvergleich zeigt, daß das für das P19 Protein codierende Gen ctaF mit korrespondierenden Genen aus der Gruppe der Actinomycetales Homologien aufweist: C. diphtheriae 68% Identität; My- cobakterien 38-39% Identität; S. coelicolor 39% Identität und Thermobifida fusca 33% Identität. Bei all die- sen Organismen sind die korrenpondierenden Gene den
Genclustern des ctaC oder des ctaD nachgeschaltet. Im Fall von S. coelicolor und T. fusca werden diese kor- renspondierenden Gene zusammen transkribiert . Daraus kann geschlossen werden, daß die mit dem P19 Protein homologen Sequenzen die vierte Untereinheit der Cytochrom aa3 Oxidase in Actinomyceten repräsentieren. Tab. 1: Verwendete Bakterienstämme und Plasmide
Stamm/Plasmid Relevante Charakteristik Quelle
ATCC23032 Wild Typ , Biotin-auxotroph [7]
13032ActaD In-frame Deletion der ctaD Gene , [2 ] codierend für Untereinheit I der Cytochrom aa3 Oxidase
13032Δgcr Deletion der qcrCAB Gene codierend, [2 ] für die drei Untereinheiten des hcx Komplexes
ΔC-Dst 13032ΔctaD mit pJCl- ctaZ3st Diese Arbeit
ΔC-Bst 13032ΔctaD mit pJCl- gcrBst Diese Arbeit
ΔQ-Bst 13032Δgcr mit pJCl-gcrBst Diese Arbeit
ΔQ-Dst 13032Δgcr mit pJCl- ctaDst Diese Arbeit
ΔQ-Bst-C67S 13032Δgcr mit pJCl -gcrBst-C67S Diese Arbeit
ΔQ-Bst-C177S 13032Δgcr mit pJCl -gcrBst-C177S Diese Arbeit
ΔCgl970 In-frame Deletion des Gens NCgll941 Diese Arbeit
ΔCg2114=ΔctaF In-frame Deletion des Gens NCgl2114 Diese Arbeit
ΔCg2177 In-frame Deletion des Gens NCgl2145 Diese Arbeit
ΔCg2611 In-frame Deletion des Gens NCgl2574 Diese Arbeit
Plasmide pJCl KanR; E. coli-C. glutamicum Shuttle [IS] Vektor pJCl-ctaDSt KanR; Expressions Plasmid für Diese Arbeit Strep-tagged CtaD; ctaD exprimiert durch eigenen nativen Promotor und 10 zusätzlichen Codons am 3 v -Ende (AAWSHPQFEK) pJCl-gcrBSt KanR; Expressionsplasmid für Strep- Diese Arbeit Tagged QcrB; ctaE- qcrCAB exprimiert mit eigenem nativen Promoter; gcrB mit 10 zusätzlichen Codons am 3 λ - Ende (AAWSHPQFEK) pBM20-QXA AmpR; pUC-BM20 Derivativ mit 2.0-kb Diese Arbeit Z al-Apal Fragment aus pJCl-gcr-3st; verwendet für Site-directed Muta- genese
Tab . 2 : Verwendete Oligonucleotide
Primer Sequenz (5x-»3λ)
Primer für die Konstruktion von pJCl - ctaDst and pJCl- qcrBst ctaDst-for ACTTCTAGATGACTGAACCTGGCAGCGACC c aDst-rev TGATCTAGATTACTTCTCGAACTGTGGGTGGGACCAAGCTGCGCG
GCTGGAGTCAGATGCAAG gcrBst-for ACTTCTAGATAGGGTTGAGCATTTTGTC gcrBst-rev AGTGTCGACTTACTTCTCGAACTGTGGGTGGGACCAAGCTGCGTT
CTTGCCCTCATTCTTGTC
Primer für die Konstruktion von Deletionsmutanten
ΔCgl970-l GACTCTAGAATCTTCGCAGCATCGGTTCC
ΔCgl970-2 CCCATCCACTAAACTTAAACACGTGTGGGAGGAACCAGCCAC
ΔCgl970-3 TGTTTAAGTTTAGTGGATGGGCTGCGTGCTGCAGATTCTGCG
ΔCgl970-4 GATGTCGACGTTGTTGATGCCCAGGCACTG
ΔCg2114-1 GACTCTAGATAACCCAATTCACGGCAACTC
ΔCg2114-2 CCCATCCACTAAACTTAAACAGTACATGAGTTTTGCTGAAGACTTC
ΔCg2114-3 TGTTTAAGTTTAGTGGATGGGCTCAACCTTCAGTACGGCGTGC
ΔCg2114-4 GATGTCGACCTTCCGGGAACTTTTCGTA
ΔCg2177-l GACTCTAGAGGATTCCCGTGCGGCTGGTCT
ΔCg2177-2 CCCATCCACTAAACTTAAACATTTACACCCGAGACTACGTACCA
ΔCg2177-3 TGTTTAAGTTTAGTGGATGGGCCATTCGGTCCGGGATACCGC
ΔCg2177-4 GATGTCGACGGTTCTAACGATTTTCGCCGTC
ΔCg2611-l GACTCTAGATAGCCAACGCTTCGCCCAAGTCATG
ΔCg2611-2 CCCATCCACTAAACTTAAACACTTCACGGATTCGTCCTCCATTGG
ΔCg2611-3 TGTTTAAGTTTAGTGGATGGGGAGGTCGGCGGAGACACTGCAG
ΔCg2611-4 GTCGTCGACAGCTGCGGTGCGCTCAGCG TAB. 3: Aufreinigung des Cytochrom bcx -aa3- Superkomplexes aus Membranen von C. glutamicum ΔQ-Bst und ΔC-DSt
Die Chinol Oxidase Aktivität wurde mittels DMNH2 (2,3- Dimethyl-1, 4-Naphtoquinone in reduzierter Form) als Substrat durch Messung der Sauerstoffaufnähme mittels einer Clark-Sauerstoffelektode bestimmt. Eine Einheit (U) entspricht 1 μmol 02-A.ufnähme pro Minute. Die Turn- over Nummer (TN) wurden berechnet als Elektronentrans¬
10 fer pro Cytochrom aa pro Sekunde. Die in den Klammern angegebenen Werte wurde berechnet als Elektronentransfer pro Cytochrom b pro Sekunde. N.d. = nicht bestimmt
Aufreinigungsschritt Protein Chinol Oxidase Aktivität mg U U/mg TN (s_1) Ausbeute (%)
Membranen aus 44.7 32.3 0. .72 n.d. 100
Stamm ΔQ-Bst
Dodecylmaltosid Extrakt 15.3 14.5 0. .95 314 45
StrepTactin Sepharose 0.64 1.7 2, .70 220 5.4
Eluat
Membranen aus 42.3 33.5 0. .79 n.d. 100
Stamm ΔC-Dst
Dodecylmaltosid Extrakt 17.9 15.2 0. .85 365 45
StrepTactin Sepharose 0.50 1.5 2. .96 93 4.4
Eluat (152) Literatur
I. Eggeling, L., and Sahm, H. (1999) Appl . Microbiol . Biotechnol . 52, 146-153 2. Niebisch, A. , and Bott, M. (2001) Arch . Microbiol . 175, 282-294 3. Sone, N. , Nagata, K. , Kojima, H., Tajima, J., Kode- ra, Y., Kanamaru, T., Noguchi, S., and Sakamoto, J. (2001) Biochim. Biophys . Acta 1503, 279-290 4. Sakamoto, J. , Shibata, T., Mine, T. , Miyahara, R., Torigoe, T., Noguchi, S., Matsushita, K. , and Sone, N. (2001) Microbiology 147, 2865-2871 5. Molenaar, D., van der Rest, M. E., and Petrovic, S. (1998) Eur. J. Biochem. 254, 395-403 6. Skerra, A. , and Schmidt, T. G. M. (2000) Methode Enzymol . 326, 271-304
7. Abe, S., Takaya a, K. , and Kinoshita, S. (1967) ". Gen . Appl . Microbiol . 13, 279-301
8. van der Rest, M. E., Lange, C, and Molenaar, D. (1999) Appl . Microbiol . Biotechnol . 52, 541-545
9. Schaffer, S., Weil, B., Nguyen, V. D., Dongmann, G., Günther, K. , Nickolaus, M. , Hermann, T., and Bott, M. (2001) Electrophoresis 22, 4404-4422
10. Montfort, B. A. , Canas, B., Duurkens, R. , Godovac- Zimmermann, J. , and Robillard, G. T. (2002) J. Mass
Spectrom . 37, 322-330
II. Castiglioni, E. , Grilli, E., and Sanguinetti, S.
(1997) Rev. Sei . Instrum . 68, 4288-4289
12. Sone, N. , and Yanagita, Y. (1982) Biochim . Biophys . Acta 682, 216-226
13. Chance, B. (1957) Methode Enzymol . 4, 273-329
14. Smith, P. K. , Krohn, R. I., Hermanson, G. T., Mal- lia, A. K. , Gärtner, F. H. , Provenzano, M. D., Fu- jimoto, E. K., Goeke, N. M. , Olson, B, J. , and Klenk, D. C. (1985) Anal . Biochem . 150, 76-85
15. Laemmli, U. K. (1970) Nature 227, 680-685
16. Cremer, J. , Eggeling, L., and Sahm, H. (1990) Mol . Gen . Genet . 220, 478-480
17. Bio/Technology 5, 137-146 (1987)
18. Gene 138, 35-41 (1994)
19. BioRechnology 6, 428-430 (1988)
20. Bioprozesstechnik 1. Einführung in die Bioverfah- renstechnik (Gustav Fischer Verlag, Stuttgart, 1991
21. Bioreaktoren und periphere Einrichtungen; Vieweg Verlag, Braunschweig/Wiesbaden, 1994)
22. Handbuch "Manual of Methods for General Bacteriolo- gy" der American Society for Bacteriology; Washing- ton D.C., USA, 1981 2

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zur Herstellung von Stoffwechselprodukten, dadurch gekennzeichnet , daß man folgende Schritte durchführt :
d) Fermentation der das gewünschte Stoffwechselprodukt produzierenden Bakterien, in denen man die für die vierte Untereinheit der Cytochtom aa3 0- xidase codierende Gensequenz ctaF abschwächt o- der zusammen mit einem Gen oder mehreren Genen aus der Gruppe ctaC, ctaD, ctaE, qcrA, qcrB, qcrC verstärkt .
e) Anreicherung des gewünschten Stoffwechselprodukts im Medium oder in den Zellen der Bakteri- en, und
f) Isolieren des entsprechenden Stoffwechselprodukts .
2. Verfahren gemäß Anspruch 1 , dadurch gekennz ei chnet , daß das StoffWechselprodukt eine Aminosäure ausgewählt aus der Gruppe L-Asparagin, L-Threonin, L-Serin, L-Glutamat, L-Glycin, L-Alanin, L-Cystein, L-Valin, L-Methionin, L-Isoleucin, L-Leucin, L-Tyrosin, L-Phenylalanin, L-Histidin, L-Lysin, L-Tryptophan und L-Arginin ist.
3. Verfahren gemäß Anspruch 1, dadurch gekennze i chne t , daß das Stoffwechselprodukt eine organische Säure vorzugsweise ausgewählt aus der Gruppe Essigsäure, Citronensäure, Isocitronensäure, Milchsäure, Bern- steinsäure, Fumarsäure, Ketoglutarsäure, Brenztrau- bensäure und Äpfelsäure ist.
4. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Stoffwechselprodukt ein Vitamin ist.
5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß das Stoffwechselprodukt ein Nukleosid oder Nukle- otid ist .
6. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet , daß das StoffWechselprodukt ein ein- oder mehrwertiger Alkohol ist .
7. Verfahren zum Auffinden von RNA, cDNA und DNA, um Nukleinsäuren, beziehungsweise Polynukleotide oder Gene zu isolieren, dadurch gekennzeichnet , daß man die für die vierte Untereinheit der Cytochrom aa3 Oxidase codierende Gensequenz ctaF einsetzt.
8. Mikroorganismus in dem die für die vierte Untereinheit der Cytochrom aa3 Oxidase codierende Gensequenz (ctaF) abgeschwächt ist.
9. Mikroorganismus enthaltend ein oder mehrere Gene aus der Gruppe ctaC, ctaD, ctaE, ctaF, qcrA, qcrB, qcrC in replizierbarer Form, welche im Vergleich zum Wild Typ Mikroorganismus verstärkt sind.
PCT/DE2003/003826 2002-11-19 2003-11-19 Verfahren zur mikrobiellen herstellung von stoffwechselprodukten WO2004046366A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10254074.8 2002-11-19
DE10254074A DE10254074A1 (de) 2002-11-19 2002-11-19 Verfahren zur mikrobiellen Herstellung von Stoffwechselprodukten

Publications (2)

Publication Number Publication Date
WO2004046366A2 true WO2004046366A2 (de) 2004-06-03
WO2004046366A3 WO2004046366A3 (de) 2004-08-19

Family

ID=32318563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/003826 WO2004046366A2 (de) 2002-11-19 2003-11-19 Verfahren zur mikrobiellen herstellung von stoffwechselprodukten

Country Status (2)

Country Link
DE (1) DE10254074A1 (de)
WO (1) WO2004046366A2 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1038969A2 (de) * 1999-03-19 2000-09-27 Degussa-Hüls Aktiengesellschaft Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP1108790A2 (de) * 1999-12-16 2001-06-20 Kyowa Hakko Kogyo Co., Ltd. Neue Polynukleotide
EP1170376A1 (de) * 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Verfahren zur Herstellung von Substanzen unter Verwendung von Mikroorganismen
WO2002022799A2 (de) * 2000-09-14 2002-03-21 Forschungszentrum Jülich GmbH Verfahren zur mikrobiellen herstellung von stoffwechselprodukten, polynukleotide aus coryneformen bakterien sowie deren verwendung
EP1195433A2 (de) * 2000-09-06 2002-04-10 Ajinomoto Co., Inc. Atmungskette Enzymgene aus Coryneformbakterien

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1038969A2 (de) * 1999-03-19 2000-09-27 Degussa-Hüls Aktiengesellschaft Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP1108790A2 (de) * 1999-12-16 2001-06-20 Kyowa Hakko Kogyo Co., Ltd. Neue Polynukleotide
EP1170376A1 (de) * 2000-07-05 2002-01-09 Ajinomoto Co., Inc. Verfahren zur Herstellung von Substanzen unter Verwendung von Mikroorganismen
EP1195433A2 (de) * 2000-09-06 2002-04-10 Ajinomoto Co., Inc. Atmungskette Enzymgene aus Coryneformbakterien
WO2002022799A2 (de) * 2000-09-14 2002-03-21 Forschungszentrum Jülich GmbH Verfahren zur mikrobiellen herstellung von stoffwechselprodukten, polynukleotide aus coryneformen bakterien sowie deren verwendung

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NIEBISCH AXEL ET AL: "Purification of a cytochrome bc-aa3 supercomplex with quinol oxidase activity from Corynebacterium glutamicum. Identification of a fourth subunity of cytochrome aa3 oxidase and mutational analysis of diheme cytochrome c1." THE JOURNAL OF BIOLOGICAL CHEMISTRY. 7 FEB 2003, Bd. 278, Nr. 6, 7. Februar 2003 (2003-02-07), Seiten 4339-4346, XP002283681 ISSN: 0021-9258 *
SARASTE M ET AL: "THE BACILLUS-SUBTILIS CYTOCHROME-C OXIDASE VARIATIONS ON A CONSERVED PROTEIN THEME" EUROPEAN JOURNAL OF BIOCHEMISTRY, Bd. 195, Nr. 2, 1991, Seiten 517-526, XP008031335 ISSN: 0014-2956 *
WITT H ET AL: "Isolation, analysis, and deletion of the gene coding for subunit IV of cytochrome c oxidase in Paracoccus denitrificans." THE JOURNAL OF BIOLOGICAL CHEMISTRY. 28 FEB 1997, Bd. 272, Nr. 9, 28. Februar 1997 (1997-02-28), Seiten 5514-5517, XP002284314 ISSN: 0021-9258 *

Also Published As

Publication number Publication date
WO2004046366A3 (de) 2004-08-19
DE10254074A1 (de) 2004-06-17

Similar Documents

Publication Publication Date Title
EP0334841B1 (de) Microorganismen and plasmide für die 2,4-dichlorphenoxyessigsäure (2,4-d)-monooxigenase - bildung und verfahren zur herstellung dieser plasmide und stämme
DE69928845T2 (de) Methode zur Herstellung von L-Serin mittels Fermentation
EP1094111B1 (de) Coryneforme Bakterien mit einer Deletion der Phosphoenolpyruvat-Carboxykinase und ihre Verwendung
EP0739417B1 (de) Herstellung von l-isoleucin mittels rekombinanter mikroorganismen mit deregulierter threonindehydratase
EP1155139B2 (de) Verfahren zur mikrobiellen herstellung von l-valin
DE69929264T2 (de) Methode zur Herstellung von L-Serin mittels Fermentation
DE19539952A1 (de) Verfahren zur Herstellung von O-Acetylserin, L-Cystein und L-Cystein-verwandten Produkten
EP2553113A2 (de) Verfahren zur herstellung von l-ornithin unter verwendung von lyse überexprimierenden bakterien
WO1999018228A2 (de) Verfahren zur mikrobiellen herstellung von aminosäuren der aspartat- und/oder glutamatfamilie und im verfahren einsetzbare mittel
DE112009000453T5 (de) Vektor zur Transformation unter Verwendung von Transposons, durch den Vektor transformierte Mikroorganismen und Verfahren zum Herstellen von L-Lysin unter Verwendung derselben
DE102004006526A1 (de) Neues Lysindecarboxylase-Gen und Verfahren zur Herstellung von L-Lysin
EP2418276B1 (de) Mikroorganismenstamm zur Produktion von rekombinanten Proteinen
EP0798384A1 (de) Biotechnologisches Verfahren zur Herstellung von Biotin
EP0722500B1 (de) Gene für den butyrobetain/crotonobetain-l-carnitin-stoffwechsel und ihre verwendung zur mikrobiologischen herstellung von l-carnitin
DE60312592T2 (de) Verfahren zur Herstellung von L-Lysin unter Verwendung Coryneformer Bakterien die ein attenuiertes Malat Enzym-gen enthalten
EP1038969A2 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
EP1368480B1 (de) Verfahren zur veränderung des genoms von gram-positiven bakterien mit einem neuen konditional negativ dominanten markergen
DE112019000467T5 (de) Rekombinanter Mikroorganismus, Verfahren zu dessen Herstellung und seine Anwendung bei der Herstellung von Coenzym Q10
EP1259622B1 (de) Nukleotidsequenzen kodierend fur proteine beteiligt an der biosynthese von l-serin, verbessertes verfahren zur mikrobiellen herstellung von l-serin sowie ein dazu geeigneter genetisch veranderter mikroorganismus
WO2004046366A2 (de) Verfahren zur mikrobiellen herstellung von stoffwechselprodukten
DE10103509B4 (de) Phosphoserinphospatase-Gen der coryneformen Bakterien
DE19953809A1 (de) Verfahren zur fermentativen Herstellung von L-Lysin unter Verwendung coryneformer Bakterien
DE10344739A1 (de) Verfahren zur fermentativen Herstellung von L-Aminosäuren unter Verwendung coryneformer Bakterien
DE69938427T2 (de) An der herstellung von homo-glutaminsäure beteiligtes gen und dessen verwendung
DE102005049527B4 (de) Verfahren zur Herstellung von L-Serin, Gensequenz, Vektoren sowie Mikroorganismus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CN JP KR US ZA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP