WO2004042923A1 - レベル変換回路 - Google Patents

レベル変換回路 Download PDF

Info

Publication number
WO2004042923A1
WO2004042923A1 PCT/JP2003/014107 JP0314107W WO2004042923A1 WO 2004042923 A1 WO2004042923 A1 WO 2004042923A1 JP 0314107 W JP0314107 W JP 0314107W WO 2004042923 A1 WO2004042923 A1 WO 2004042923A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
level conversion
mos
pull
signal
Prior art date
Application number
PCT/JP2003/014107
Other languages
English (en)
French (fr)
Inventor
Masahiro Nomura
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to AU2003277555A priority Critical patent/AU2003277555A1/en
Priority to US10/533,807 priority patent/US7282981B2/en
Priority to JP2004549615A priority patent/JP4389787B2/ja
Publication of WO2004042923A1 publication Critical patent/WO2004042923A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018521Interface arrangements of complementary type, e.g. CMOS

Definitions

  • the present invention relates to a level conversion circuit, and more particularly to a level conversion operation margin of a level conversion circuit having a large potential difference between a first power supply and a second power supply, and improvement of a level conversion delay.
  • a level conversion circuit is generally used in a system LSI having a plurality of power supplies.
  • a level conversion circuit proposed in Patent Document 1 or the like is known.
  • the power supply voltage of LSI tends to decrease.
  • Patent Document 3 discloses an invention in which a p-MOS switch controlled by a level conversion input signal is provided between a p-MOS cross-coupler and a differential n-MOS switch.
  • the technique disclosed in this document uses a cross-link to easily invert a p-MOS cross-coupling latch that is difficult to invert when the potential difference between the first power supply and the second power supply is large.
  • a p-MOS switch is provided to weaken the coupling between the couples.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 63-152022 (Patent Documents 2 to 3; FIGS. 1 to 3)
  • An object of the present invention is to provide a level conversion circuit that can obtain a sufficient level conversion operation margin even if the potential difference between the first power supply and the second power supply is large and has a sufficient level conversion speed.
  • the level conversion circuit according to claim 1 converts a signal level of a first logic circuit supplied with a first power supply to a signal level of a second logic circuit supplied with a second power supply.
  • a level conversion circuit wherein the level conversion circuit is provided with a level conversion core circuit that is controlled by a control circuit and that controls a Z or a pull-down circuit or a Z or a pull-down circuit.
  • Power supply and the first logic A circuit is characterized in that an output signal from a circuit is input and a signal to be input to the second logic circuit is output.
  • the signal level of the first logic circuit to which the first power is supplied is converted to the signal level of the second logic circuit to which the second power is supplied.
  • a level conversion circuit that performs level conversion; a bull-up and Z or pull-down circuit in which the second power is supplied to a level conversion output of the level conversion core circuit;
  • a control circuit that controls the bull-up, the Z or the pull-down circuit by a control circuit that is supplied with the second power and receives a level conversion input signal and the level conversion output signal. I do.
  • the level conversion circuit includes a p-MOS cross-coupling latch including a plurality of p-MOSs and a difference including a plurality of n-MOSs.
  • a source terminal of the p-MOS is connected to a second power supply;
  • a level conversion output which is a drain terminal, is connected to each gate terminal of the p-MOS;
  • the n-MOS of the dynamic n-MOS switch has a source terminal connected to each GND power supply, a drain terminal of the n-MOS connected to the level conversion output, and a gate of the n-MOS connected to a level conversion input. The terminal is connected.
  • the invention of a level conversion circuit according to claim 4 is the control circuit according to claim 2 or 3, wherein the control circuit is configured to supply the second power supply and output a non-inversion signal of the level conversion input signal and the level conversion output signal.
  • a NAND circuit that receives an inverted signal, a NAND circuit that is supplied with the second power, and receives an inverted signal of the level conversion input signal and a non-inversion signal of the level conversion output signal, and the second power supply. It comprises a plurality of inverters supplied with each output of the NAND circuit as an input, and outputs each output signal of the NAND circuit and the inverter as a control signal.
  • the NAM) circuit has a CMOS circuit configuration, and the p-MOS to which the level conversion input signal is connected has a channel width ratio of Z channel length. Is small, or the polarity of the threshold is negative and the absolute value is high, and the transistor has at least one of the conditions.
  • the invention of a level conversion circuit according to claim 6 is the invention according to any one of claims 1 to 5, wherein the pull-up and / or pull-down circuit has a source terminal connected to the second power supply, Each gate terminal is connected to a control signal from the circuit, a plurality of p-MOSs whose drain terminals are connected to the level conversion output, and a source terminal is connected to the GND power supply.
  • the gate terminal includes a plurality of n-MOSs each of which has a drain terminal connected to the level conversion output.
  • the invention of a level conversion circuit according to claim 7 is the control circuit according to any one of claims 1 to 3, wherein the control circuit is configured to receive an inverted signal of the level conversion input signal supplied with the second power supply.
  • a NOR circuit which inputs a non-inverted signal of the level conversion output signal, and a NOR circuit which is supplied with the second power and receives a non-inversion signal of the level conversion input signal and an inverted signal of the level conversion output signal.
  • a plurality of inverters to which the second power is supplied and to which the output of each of the NOR circuits is input, and outputs each output signal of the NOR circuit and the inverter as a control signal.
  • the invention of a level conversion circuit according to claim 9 is the invention according to any one of claims 1 to 8, wherein each of the source terminals is connected to the second power supply, and each of the level conversion circuits is connected to the second power supply.
  • a p-MOS cross-coupled latch composed of a plurality of p-MOSs connected to each of the output gate terminals; a source terminal connected to a drain terminal of the plurality of p-MOSs;
  • Each gate terminal has a plurality of p-MOS switches with each drain terminal connected to the level conversion output, each source terminal for the GND power supply, each drain terminal for the level conversion output, and each for the level conversion input. It is characterized in that the gate terminal is a differential n-MOS switch composed of a plurality of n-MOSs connected to each other.
  • the invention of the level conversion circuit according to claim 10 is the device according to any one of claims 1 to 9, wherein the level conversion core circuit has a source terminal connected to the second power supply, A p-MOS cross-coupled latch composed of a plurality of p-MOSs each having a gate terminal connected to a level conversion output as a drain terminal; a source terminal connected to a GD power supply; and a drain connected to the level conversion output.
  • the terminal is a differential n-MOS switch composed of a plurality of n-MOSs, each gate terminal being connected to the level conversion input.
  • the drain terminal is connected to the first power supply, and each gate terminal is connected to the level conversion input.
  • FIG. 1 is a circuit diagram showing an example of a conventional level conversion circuit.
  • FIG. 2 is a circuit diagram showing another example of the conventional level conversion circuit.
  • FIG. 3 is a circuit diagram showing still another example of the conventional level conversion circuit.
  • FIG. 4 is a circuit diagram showing another example of the control circuit used in the modification of the second embodiment.
  • FIG. 5 is a circuit diagram showing another example of the control circuit used in the modification of the second embodiment.
  • FIG. 6 is a circuit diagram showing another example of the control circuit used in the second embodiment.
  • FIG. 7 is a diagram showing an embodiment of a level conversion circuit according to the present invention.
  • FIG. 8 is a diagram showing an example of a level conversion core circuit used in the level conversion circuit according to the present invention.
  • FIG. 9 is a diagram illustrating an example of a control circuit used in the level conversion circuit according to the present invention.
  • FIG. 10 is a diagram showing an example of a pull-up Z pull-down circuit used in the level conversion circuit according to the present invention.
  • FIG. 11 is a diagram showing an example of a NAND circuit used in the level conversion circuit according to the present invention.
  • FIG. 12 is a diagram showing an example of an OR circuit used in the level conversion circuit according to the present invention.
  • FIG. 13 shows the operation of the level conversion core circuit used in the level conversion circuit according to the present invention. It is a timing chart which shows an example.
  • FIG. 14 is a timing chart showing an operation example of the control circuit and the pull-up Z pull-down circuit used in the level conversion circuit according to the present invention.
  • FIG. 15 is a diagram showing another example of the control circuit used in the level conversion circuit according to the present invention.
  • FIG. 16 is a circuit diagram showing another example of the level conversion core circuit used in the level conversion device of the present invention.
  • FIG. 17 is a circuit diagram showing another example of the level conversion core circuit used in the level conversion device of the present invention.
  • FIG. 18 is a configuration diagram showing a second embodiment of the level conversion circuit of the present invention.
  • FIG. 19 is a diagram illustrating a circuit example of a control circuit used in the second embodiment.
  • FIG. 20 is a circuit diagram illustrating an example of a pull-up circuit used in the second embodiment.
  • FIG. 21 is a circuit diagram illustrating another example of the control circuit used in the second embodiment.
  • FIG. 22 is a diagram illustrating another example of the pull-up circuit used in the second embodiment.
  • FIG. 23 is an evening timing chart showing the operation of the third embodiment (when the pull-up function is performed) of the level conversion device of the present invention.
  • FIG. 24 is a timing chart showing the operation of the third embodiment (when the pull-down function is performed) of the level conversion device of the present invention.
  • FIG. 25 is a diagram illustrating a configuration of a modification of the second embodiment.
  • FIG. 26 is a diagram illustrating an example of a control circuit used in a modification of the second embodiment.
  • FIG. 27 is a circuit diagram illustrating an example of a pull-down circuit used in a modification of the second embodiment.
  • FIG. 28 is a circuit diagram showing another example of the pull-down circuit used in the modification of the second embodiment.
  • FIG. 29 is a diagram showing a configuration of a modification of the second embodiment of the level conversion device of the present invention.
  • FIG. 30 is a circuit diagram illustrating an example of a pull-up circuit used in a modification of the second embodiment.
  • FIG. 31 is a circuit diagram showing another example of the pull-up circuit used in the modification of the second embodiment.
  • FIG. 32 is a diagram showing a configuration example of a third embodiment of the level conversion device of the present invention.
  • FIG. 33 is a circuit diagram illustrating an example of a level conversion core circuit used in the third embodiment.
  • FIG. 34 is a circuit diagram illustrating an example of a control circuit used in the third embodiment.
  • FIG. 35 is a timing chart showing the operation of the third embodiment of the level conversion device of the present invention.
  • FIG. 36 is a circuit diagram showing another example of the control circuit used in the third embodiment.
  • FIG. 37 is a timing chart showing the operation of the third embodiment of the level conversion device of the present invention.
  • FIG. 38 is a configuration diagram showing another modification of the second embodiment.
  • Reference numeral 1 is a level conversion core circuit.
  • Reference numeral 2 is a control circuit.
  • Reference numeral 3 denotes a pull-up Z pull-down circuit.
  • Reference numeral 3-1 is a pull-up circuit.
  • Reference numeral 3-2 denotes a pull-down circuit.
  • Reference numeral 4 is a first logic circuit.
  • Reference numeral 5 is a second logic circuit.
  • One of the level conversion circuits according to the present invention includes a bull-up or a pull-down circuit in which a second power is supplied to a level conversion output, a level conversion input signal in which a second power is supplied, and the level conversion output.
  • a control circuit for inputting a signal is provided, and the control signal is used to control the pull-up and / or pull-down circuit.
  • the pull-up and Z or the blue-down circuit to which the second power is supplied increases the drain-source voltage of the MOS transistor realizing the pull-up function (even if the MOS transistor operates in a saturation region), The operation (action) of increasing the drive current is performed.
  • the level conversion circuit according to the present invention is characterized in that a configuration is provided in which the degree of coupling of the p-MOS cross-coupling of the level conversion core circuit is controlled by a control signal of a control circuit supplied with the second power supply. I have. Adjusting the coupling at the second power supply level By controlling the p-MOS switch, the gate-source voltage of the p-MOS transistor can be reduced to 0, and the coupling of the p-MOS cross-coupled latch can be reduced. Perform an operation (function) that can be made sufficiently small.
  • FIG. 7 shows an embodiment of the level conversion circuit of the present invention.
  • This level conversion circuit converts the signal level of the first logic circuit 4 supplied with the first power supply (VDDL) to the signal level of the second logic circuit 5 supplied with the second power supply (VDDH).
  • the present invention includes a level conversion core circuit 1.
  • the first power supply level signals INL and INLB from the first logic circuit 4 are supplied to the level conversion core circuit 1 and start conversion to the second power supply level.
  • the above-described level conversion core circuit 1 further includes a control circuit 2 to which a second power is supplied, and a pull-up and Z or pull-down circuit 3 to which a second power is supplied. Are provided.
  • the control circuit 2 is provided with a level conversion input signal (INL, INLB) and a level conversion output signal. (OUTH, OUTHB) and as input, generates a control signal (C0 to C3) for the pull-up and / or pull-down circuit 3, and the pull-up / pull-down circuit 3 generates a level conversion output signal according to the control signal (C0 to C3). (OUTH, OUTHB) is pulled up and Z or pulled down, and level conversion is performed based on this.
  • At least one of the level conversion output signals (OUTH, OUTHB) thus obtained is supplied to the second logic circuit 5.
  • FIG. 8 shows an example of the level conversion core circuit 1 used in the level conversion circuit of FIG.
  • the second power supply VDDH
  • VDDH the second power supply
  • the signals OUTHB and OUTH are connected to the drain terminals of the plurality of p-MOSs, the drain terminals of these p-MOSs are cross-coupled to the gate terminals of the other p-MOSs, respectively, and the OUTHB is connected to the drain terminal.
  • the cross circuit including the two p-MOSs may include a plurality of cross circuits. That is, a level conversion core circuit can be provided by connecting a plurality of circuits shown in FIG. 8 in parallel or the like.
  • FIG. 9 shows an example of the control circuit 2 used in the level conversion circuit of FIG.
  • control circuit 2 illustrated in this figure is supplied with a second power supply (VDDH), and receives a first NAND circuit 1021, which has INL and OUTHB as inputs and CO as an output.
  • a power supply (VDDH) is supplied, a second NAM) circuit 102 that receives INLB and OUTH as inputs and C1 is an output, and the second power supply (VDDH) is supplied, and the first NAND circuit 1 is supplied.
  • 0 2 1 Output 1 0 2 3 which inputs C0 as input and C3 as output, and the second power supply (VDDH) is supplied, and the output C1 of the second NAND is input and C2
  • a second inverter 1024 having the output as
  • FIG. 10 shows an example of the bull-up Z pull-down circuit 3 used in the level conversion circuit shown in FIG.
  • the pull-up / pull-down circuit 3 used in the level conversion circuit according to the present invention has a second power source (VDDH) whose source is The first p-MOS 103 connected to the terminal, CO is connected to the gate terminal, OUTH is connected to the drain terminal, the second power supply (VDDH) is the source terminal, C1 is the gate terminal, and OUTHB is the The second p-MOS 1 32 connected to the drain terminal, the first n-MOS 1 connected to the GND power supply to the source terminal, C2 connected to the gate terminal, and OUTH connected to the drain terminal, respectively. And a second n-MOS 104 connected to the GND power supply to the source terminal, C3 to the gate terminal, and OUTHB to the drain terminal.
  • VDDH second power source
  • the NAND circuits 102 1 and 102 2 shown in FIG. 9 are configured, for example, as shown in FIG. In Figure 11, the level conversion input (either INL or INLB) is connected to the n-MOS near the output terminal. As shown in this example, it is possible to reduce the gate delay compared to the case of connecting to an n-MOS far from the output terminal. Also, since the input of the level conversion is the first power supply level, the potential difference from the second power supply increases, the n-MOS threshold (Vt) increases, and especially the n-MOS threshold due to the body effect. If the effect of the rise of the level increases, connecting the level conversion input (either INL or INLB) to the n-MOS near the output pin may increase the delay.
  • the delay is connected by connecting a level conversion input to the n-MOS 2 far from the output terminal that is less affected by the body effect and inputting OUTH or OUTHB to the n-MOS far from the output terminal. It can be smaller.
  • the p-MOS connected to the level conversion input does not turn off depending on the p-MOS threshold because the high level of the level conversion input does not reach the second power supply, and the n-MOS is sufficiently on. If it becomes difficult to perform NAND operation, for example, reduce the p-MOS channel width / channel length ratio (W / L) or increase the threshold (negative polarity and increase absolute value). In addition, operations such as increasing the W / L of the n-MOS or decreasing the threshold value can be used alone or in combination with two or more operations to guarantee NAND operation.
  • NAND leak can be suppressed.
  • INL or lNLB Means that INL or INLB is input, and similarly, OUTH or OUTHB means that OUTH or OUTHB is input.
  • the combination of the input is the combination with OUTHB for INL input and the combination with OUTH for INLB input. This combination of inputs is the same in FIG.
  • the first logic circuit 4 As the first logic circuit 4, the second logic circuit 5, and the inverter shown in the figure, known ones can be used, and since they are not directly related to the present invention, their detailed configurations and operation examples Description is omitted.
  • INL and INLB are input to the differential circuit (level conversion circuit) at the first power supply level, and are connected to the n-MOS input at the high level.
  • the output (OUTH or OUTHB) is pulled low and the opposite output is pulled high to the second power supply level.
  • the CO output from control circuit 2 outputs high and pulls up.
  • / or the p-MOS in the pull-down circuit 3 is turned off to finish the bull-up, and the C3 output from the control circuit outputs low, and the n-MOS in the pull-up / pull-down circuit 3 is Off and pull down Finish. Then, INL is High, INLB is Low, OUTH is High, and OUTHB is Low.
  • the control circuit 2 to which the signal INLB is input outputs C1 low and pull-ups connected to OUTHB and / or Alternatively, the p-MOS in the pull-down circuit 3 turns on, pulls up OUTHB, and C2 output from the control circuit 2 outputs High, and the pull-up and / or pull-down circuit connected to OUTH is output.
  • the n-MOS in the circuit 3 transitions to ON and pulls OUTH down, and at the same time OUTH is pulled down (pulled down) by the operation of the level conversion core circuit 1, C1 outputs High by the control circuit 2.
  • the p-MOS in the pull-up and / or pull-down circuit 3 is turned off, and the pull-up is terminated.At the same time, C2 outputs Low by the control circuit 2 and the n in the pull-up and Z or pull-down circuit 3 -MOS is Turns off and finishes pulldown. Then, INL goes low, INLB goes high, OUTH goes low, and OUTHB goes high, thereby returning to the same state as at the beginning.
  • the level conversion core circuit 1 can be assisted.
  • the level conversion operation margin is secured and the increase in the delay is caused by the rise or fall time delay (rise time) shown by the dotted line in FIG.
  • the suppression of the rise or fall delay (delay of the rise or fall timing: the delay of the start time of the rise or fall) as shown by the solid line. It has become possible.
  • the control circuit 2 is provided with the level conversion output signal as an input, the pull-up Z pull-down circuit 3 at the time of level conversion input switching enables the pull-up Z pull-down operation only when necessary. I can do it.
  • a circuit configuration NAD circuit that reduces the p-MOS off current in the control circuit to which the first power supply level is input can be selected.
  • the level conversion circuit according to the present invention has an effect that high-speed operation is possible.
  • NOR circuit configuration as shown in FIG. 15 can be adopted instead of the NAND circuit configuration as shown in FIG.
  • VDDL-VDDH R or less.
  • this NOR circuit is connected to a p-MOS close to the output terminal as shown in FIG.
  • the VDDL-VDDH value R is a negative value, which means that the threshold value Vt increases when the absolute value of R increases.
  • the level conversion circuit according to the first embodiment of the present invention can realize the level conversion core circuit 1 and the like with another circuit configuration different from the circuit described in the first embodiment shown in FIG. is there.
  • a circuit configuration in which a p-MOS switch is provided on the drain side of a p-MOS cross couple as shown in FIG. 16 may be employed. This operation is the same as the operation of the first embodiment, and the description thereof is omitted.
  • VDDL first power supply voltage
  • a p-MOS cross couple (a pair of p-MOS), a pair of p-MOS switches (a pair of other p'-MOS), and a pair of n-MOS.
  • a second power supply (VDDH) is connected to the source terminal of each of the cross-coupled p-MOSs 110 (the pair of p-MOSs), and two types of level conversion outputs are provided.
  • Signals OUTHB and OUTH are respectively connected to each gate terminal of the p-MOS cross-coupler and one drain terminal of the p-MOS switch, and the drain terminal of the p-MOS switch is connected to one source terminal of the p-MOS switch.
  • OUTHB is connected to the other drain terminal of the p-MOS switch, OUTHB is connected to the drain terminal, IL is connected to the gate terminal, and GND power is connected to the -N-MOS 104 connected to the source terminal, INLB connected to the OUTH card drain terminal, n-MOS 104 connected to the gate terminal and the GND power supply connected to the source terminal.
  • the pair of cross-couplers can be formed. The speed of the Mgh Low transition can be increased by reducing the strength of the coupling between the formed p-MOS cross-couplers.
  • control circuit 2 When such a level conversion core circuit 1 shown in FIG. 16 is adopted, as the control circuit 2, the control circuit 2 having the NAND circuit shown in FIG. 9 as described above (as a NAND circuit, for example, as described above, It is preferable to select the circuit shown in FIG. 11), or the control circuit 2 shown in FIG. 15 (preferably, the NOR circuit shown in FIG. As described above, it is preferable to employ the following.
  • a circuit 1 shown in FIG. 17 can be used in addition to FIG. 8 or FIG.
  • a first power supply VDDL is connected to the level conversion output, and a circuit controlled by the level conversion input signal is employed as the level conversion core circuit 1 in the level conversion circuit according to the first embodiment.
  • a level conversion circuit using such a level conversion core circuit 1 should help the n-MOS 103 to go high and the other n-MOS 104 to go low. it can. As a result, the speed of the level conversion operation can be increased, and a level conversion margin can be secured when the difference between the first power supply and the second power supply increases.
  • this level conversion circuit is the same as that of the first embodiment, and a description thereof will be omitted.
  • the combination of the control circuits 2 similar to the second modification can be changed. That is, similarly to the above, it is preferable to select the circuit shown in FIG. 11 as the control circuit 2 (NAM) circuit having the NAND circuit shown in FIG.
  • the control circuit 2 shown in FIG. 15 (preferably, the NOR circuit shown in FIG. 12 is preferably employed as in the above case).
  • a second embodiment of the level conversion circuit according to the present invention will be described.
  • the pull-down function of the pull-up Z pull-down circuit 3 of the first embodiment can be omitted.
  • the configuration of the control circuit 2 shown in FIG. 19 or FIG. 6 and the pull-up circuit of FIG. 20 are used in combination, or the control circuit shown in FIG. 21 is used.
  • a pull-up circuit 3-1 shown in FIG. 22 can be used in combination with each other.
  • the control circuit 2 shown in FIG. 21 can be replaced with another control circuit that outputs the control signals C0 and C1, for example, by replacing FIG. 19 or FIG.
  • the pull-up circuit is changed from the pull-up circuit 3-1 shown in FIG. 22 described above to the pull-up circuit 3-1 shown in FIG. 20 having a polarity opposite to that of the pull-up circuit.
  • the pull-up function is omitted as shown in FIG. (At this time, the control circuit 1 shown in FIG. 26 or FIG. 4 is used in combination with the pull-down circuit 3-2 shown in FIG. 27, or the control circuit 1 shown in FIG. 5 is used.
  • the control circuit 2 can be used in combination with the bladder circuit 3-2 shown in Fig. 28).
  • C2 and C3 are used as control signals will be described. .
  • the pull-down circuit 3-1 (n-MOS (transistor) configuration) using FIG. 27 can be replaced with a pull-down circuit having a -1 ⁇ 108 (transistor) configuration shown in FIG. That is, when the level conversion core circuit 1 is changed to the circuit shown in FIG. 8 and the control circuit 2 is changed from either of FIGS. 26 and 4 to FIG. 5, the pull-down circuit 3-2 is used as a pull-down circuit 3-2. To form a level conversion circuit. However, these combinations must be determined according to the polarity.
  • the required level conversion output is pulled up or down by the control circuit and the bull-up or pull-down circuit to which the second power is supplied.
  • the operation of the conversion core circuit can be assisted.
  • the level conversion operation A magazine can be secured and increase in delay can be suppressed.
  • a circuit configuration capable of performing level conversion by using two types of signals as control signals is used.
  • these two types of signals are used in the first embodiment.
  • the control signal that is selected from two of the control signals C0 to C3 can be used, but control is performed using the control circuit 2 that outputs the two signals CO and C1 described above.
  • the configuration shown in FIG. 8 and the configuration shown in FIG. 25, for example, can be shown, and the control circuit outputs a bull-up and / or pull-down circuit 3 using the control circuit 2 that controls using these two signals.
  • the configuration that is appropriately changed based on the control signal is included in the present embodiment.
  • pull-up is performed by an INL or INLB signal output from a first logic circuit 4 to which a first power supply VDDL is input. It comprises a pull-up circuit 3-1 and a level conversion core circuit which receives the INL and Z or INLB signals and the second power supply VDDH and outputs OUTH and / or OUTHB signals.
  • the OUTH and Z or OUTHB signals are output to a second logic circuit that inputs an external second power supply.
  • the third embodiment corresponds to a case where the pull-down function is omitted in the second embodiment.
  • the control circuit 2 can be omitted.
  • the level conversion input when the level conversion input is directly connected to the bull-up circuit to which the second power is supplied, the voltage between the drain and the source can be increased, and the level conversion device of the second modification is effective in the level conversion. (Even in the saturation region, the drain current increases as the drain-source voltage increases.)
  • the pull-up circuit shown in Fig. 30 or Fig. 31 can be used.In particular, in Fig. 31, off-peak can be reduced in the region where the threshold value of the p-MOS is below the VDDL-VDDH value as described above. be able to.
  • the OUTHB signal is input to the p-MOS where the INL signal is input to the gate, and the OUTH signal is input to the p-MOS where the INLB signal is input to the gate.
  • the basic operation of the pull-up circuit 3-1 using an n-MOS is basically the same. .
  • the ON / OFF operation is inverted from the basic operation of the pull-up circuit 3-1 described above, and this inverted point is different.
  • the basic configuration of the fourth embodiment is similar to that of the above-described embodiment.
  • the control circuit 2 used according to the configuration of the level conversion core circuit 1 is further devised.
  • Figure 32 shows the configuration.
  • FIGS. 33 and 34 Examples of the level conversion core circuit 1 and the control circuit 2 are shown in FIGS. 33 and 34, respectively.
  • the pull-up / pull-down circuit 3 shown in FIG. 10 used in the fourth embodiment as described above is preferably used, but the pull-up circuit 3_1 is replaced by the pull-up / pull-down circuit 3_1 shown in FIGS.
  • the timing of the operation of the level conversion device using such a level conversion core circuit 1 and the control circuit 2 is shown in FIG.
  • the control circuit 2 when INL is low, INLB is high, OUTH is low, and OUTHB is high, the control circuit 2 outputs this INL signal when the INL signal output from the first logic circuit goes high (INLB is low). Input and output CO signal etc.
  • This output CO outputs Low, pull-up and Z connected to OUTH or the p-MOS in the pull-down circuit 3 turns on, pulls up OUTH, and control circuit 2 sets C3 high.
  • pull-up and the n-MOS connected to Z or OUTHB in the blue-down circuit 3 turn on to pull down OUTHB, and C4 outputs High by the control circuit 2 to output the level conversion core.
  • CO is output high by the control circuit 2 to pull up and / or
  • the p-MOS in the pull-down circuit 3 is turned off and the pull-up is completed.At the same time, the control circuit 2 outputs C3 low, and the pull-up and Z or the n-MOS in the pull-down circuit 3 is turned off and the pull-up circuit is turned off. Finished down, the control circuit 2 C4 are p-MOS switch of the level converting the core outputs Low is turned on. Then INL is High, INLB is Low, OUTH is ffigh, and OUTHB is Low.
  • C5 outputs Low and the p-MOS switch in the level conversion core is turned on. Then, INL is Low, INLB is High, OUTH is Low, and OUTHB is High.
  • n-MOS (transistor) and p-MOS (transistor) in the pull-up and Z or pull-down circuit 3 adopt the above-described configuration shown in FIG. 10 has been described. However, when the configuration in which the n-MOS is replaced with the p-MOS and the Z or p-MOS is replaced with the n-MOS is adopted, the connection between the OUTH signal and the OUTHB signal is replaced, and the description of the above operation also indicates that It will operate by interpreting in such a way.
  • the p-MOS cross-cup coupling when the level conversion input changes, the p-MOS cross-cup coupling can be further suppressed, and the effect of securing the level conversion operation margin, increasing the speed, and reducing the through current can be obtained. Is obtained. That is, in the present invention, the rise and fall time (gradient of rise or fall) of OUTH or OUTHB seen in a general level conversion circuit as shown by the dotted line in FIG. (Steep slope), and the rise or fall timing can be advanced.
  • control circuit 1 may have a NOR circuit configuration as shown in FIG. 36 instead of the circuit shown in FIG. That is, the level conversion core circuit 1 uses the circuit shown in FIG. 33, and the control circuit 1 is changed to the circuit shown in FIG.
  • Such a pull-up circuit 3-1 or a pull-down circuit 3-2 is a pull-up circuit 3-1, Fig. 27 or a diagram selected from FIG. 20, FIG. 22, FIG. 30 or FIG.
  • the level conversion core circuit 1 used in the fourth embodiment such as the level conversion core circuit 1 shown in FIG. 33, is used as one of the pull-down circuits 3-2 selected from 28.
  • the control circuit used here is the second embodiment when the pull-up circuit 3-1 or the pull-down circuit 2-2 is selected.
  • the control circuit 2 that can be combined with the pull-up circuit 3-1 or the pull-down circuit 3-2 described in the second embodiment, the modification of the second embodiment, and the third embodiment can be selected.
  • the pull-down circuit 2-2 is selected according to the timing chart shown in FIG. In this case, the operation is performed according to the timing chart shown in FIG. 24 or FIG.
  • the pull-up circuit 3-1 when the pull-up circuit 3-1 is selected, as shown in FIG. 23, when INL is low, INLB is high, OUTH is low, and OUTHB is high, the output from the first logic circuit is output.
  • the control circuit 2 receives this INL signal and outputs a CO signal and the like. This output CO outputs Low and the p-MOS in the pull-up circuit 3-1 connected to OUTH turns on to pull up OUTH.
  • Control circuit 2 outputs C4 high and OUTHB
  • the pull-up circuit 3-1 connected to the P-MOS turns off the p-MOS switch in 1 and suppresses the pull-up of OUTHB.
  • the control circuit outputs C5 Low, and the p-MOS switch in the pull-up circuit 3-1 turns on. Then, INL is Low, INLB is Higli, OUTH is Low, and OUTHB is High.
  • n-MOS (transistor) and p-MOS (transistor) in pull-up circuit 3-1 Has described the case where the configuration shown in FIG. 20 as described above is adopted. However, when the configuration in which the n-MOS is replaced with the p-MOS and / or the p-MOS is replaced with the n-MOS is adopted, the connection of the OUTH signal and the OUTHB signal is replaced, and the above operation is described. However, it is operated by interpreting in such a way.
  • the pull-down circuit 3-2 When the pull-down circuit 3-2 is adopted, the result is as follows. That is, as shown in FIG. 24 or FIG. 37, when INL is Low, INLB is High, OUTH is Low, and OUTHB is High, the INL signal output from the first logic circuit becomes High (INLB is Low). Then, the control circuit 2 receives the INL signal and outputs a C3 signal and the like.
  • This output C3 outputs High, and as a result, the n-MOS connected to OUTEDB in the pull-down circuit 3-2 turns on and bleeds OUTHB, and at the same time, the operation of the level conversion core circuit 1 causes When OUTH is pulled high, the control circuit 2 outputs C3 low, turning off the n-MOS in the pull-down circuit 3-2 and terminating the pull-down. Then, INL goes high, INLB goes low, OUTH goes high, and OUTHB goes low.
  • n-MOS (transistor) and p-MOS (transistor) in the pull-up and Z or pull-down circuit 3 adopt the above-described configuration shown in FIG. 27 has been described.
  • the configuration in which the n-MOS is replaced with the p-MOS and / or the p-MOS is replaced with the irMOS is adopted, the connection between the OUTH signal and the OUTHB signal is replaced in the same manner as described above, and the operation is described. However, it will be operated by interpreting in such a way.
  • This embodiment is an example in which the level conversion core circuit 1 shown in FIG. 33 used in the fourth embodiment is used, and as shown in FIG. 38, both the pull-up / pull-down circuit is omitted. It is.
  • the same level conversion core circuit 1 and control circuit 2 as those described in the fourth embodiment can be used. That is, the level conversion core circuit 1 shown in FIG. 33 is used as the level conversion core circuit 1, and the control circuit 2 shown in FIG. 34 or FIG.
  • the level conversion circuit of the fifth embodiment includes a control circuit 2 and a level conversion core circuit 1, and the control circuit 2 includes output signals INL and INLB from the first logic circuit and the first
  • the level conversion core circuit 1 outputs the control signal (C4, C5, etc.) that controls the level conversion core circuit 1 Input signals INL and INLB and the second power supply VDDH, and output signals OUTH and OUTHB for controlling the second logic circuit.
  • the OUTH: and OUTHB signals output from the level conversion core circuit are input to the control circuit.
  • a circuit that does not require an inverter circuit to output the control signals C4 and C5, as in the control circuit shown in FIG. 36, can be adopted.
  • Such a level conversion circuit according to the fifth embodiment operates according to the timing chart shown in FIG.
  • the control circuit 2 receives this INL signal. And outputs the C4 signal and so on.
  • the output C4 outputs Low, and the p-MOS in the level conversion core circuit 1 to which this C4 is input turns on to pull up OUTHB.
  • C4 is output High by the control circuit 2 and the p-MOS switch in the level conversion core circuit 1 connected to OUTHB is turned off to suppress the pull-up of OUTHB, and at the same time, the operation of the level conversion core circuit 1
  • the p-MOS in the level conversion core circuit where this OUTHB is input to the gate is turned on, and the p-MOS in the level conversion core circuit where C5 is input to the gate is also turned on.
  • the control circuit 2 outputs C3 low to pull up and pull-up.
  • the n-MOS in the pull-down circuit 3 is turned off and the pull-down is completed, and the control circuit 2 outputs C4 low, and the p-MOS switch in the pull-up and Z or pull-down circuit 3 is turned on. Then, INL becomes ffigh, INLB becomes Low, OUTH becomes High, and OUTHB becomes Low.
  • the control circuit 2 When OUTH is pulled low by the operation of the level conversion core circuit 1, the control circuit 2 outputs C4 high, the p-MOS in the level conversion core circuit 1 is turned off, and the pull-up is terminated and control is performed. C5 outputs Low by circuit 2 and n in level conversion core circuit 1 -MOS turns off and pull-down ends, C5 outputs Low by the control circuit, and the p-MOS switch in the level conversion core circuit 1 turns on. Then, INL is Low, INLB is High, OUTH is Low, and OUTHB is High.
  • the n-MOS (transistor) and p-MOS (transistor) in the pull-up and / or pull-down circuit 3 adopt the configuration shown in FIG.
  • the p-MOS switch can be firmly controlled at the second power supply level of the control circuit output, which is effective in improving the level conversion operation margin. It is.
  • the level conversion core circuit 1 of the fifth embodiment may be changed to a level conversion core circuit having a similar function. It should be noted that the present invention should be interpreted without being limited to the above embodiments, and each embodiment can be appropriately changed within the scope of the technical idea of the present invention. And these modifications are naturally included in the present invention.
  • a circle ( ⁇ ) is drawn on the gate for the p-MOS transistor.
  • At least one of the control signals OUTH and OUTHB for controlling the second logic circuit can be used. That is, OUTH or OUTHB can be used to control the second logic circuit, or both OUTH and OUTHB can be used as appropriate according to the purpose.
  • the signal level of the first logic circuit supplied with the first power is converted into the signal level of the second logic circuit supplied with the second power.
  • the first level conversion circuit has a first configuration based on a basic configuration including a level conversion core circuit supplied with a second power supply, a control circuit supplied with a second power supply, and a bull-up / pull-down circuit supplied with a second power supply. Even when the potential difference between the first power supply and the second power supply becomes large, level conversion that secures a level conversion operation margin and suppresses delay increase can be obtained.
  • a basic circuit having a level conversion core circuit is provided, and a control circuit for outputting a control signal for controlling the level conversion core circuit and a Z or a control circuit controlled by the level conversion core circuit are provided. Even if the potential difference between the first power supply and the second power supply becomes large based on the basic configuration in which the up and Z or pull-down circuits are provided, it is possible to obtain the level conversion that secures the level conversion operation margin and suppresses the delay increase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)
  • Amplifiers (AREA)

Abstract

第1の電源と第2の電源の電位差が大きい場合のレベル変換動作マージンの悪化を低減したレベル変換回路の提供。 第1の電源が供給される第1の論理回路の信号レベルを第2の電源が供給される第2の論理回路の信号レベルに変換するレベル変換回路において、レベル変換コア回路のレベル変換コア出力に前記第2の電源が供給されるプルアップおよび/またはプルダウン回路と前記第2の電源が供給されレベル変換入力信号とレベル変換出力信号を入力する制御回路により前記プルアップおよび/またはプルダウン回路を制御する構成を設けたことを特徴とする。

Description

明細書 レベル変換回路 技術分野
本発明はレベル変換回路に関し、 特に第 1の電源と第 2の電源の電位差が大き いレベル変換回路のレベル変換動作マ一ジンとレベル変換遅延の改良に関する。 従来技術
従来、 レベル変換回路は、一般的に複数の電源を有するシステム LSI 内で利用 され、 たとえば図 1に示すように、 特許文献 1等で提案されるレベル変換回路が 知られており、 近年、 システム LSI の電源電圧が低下する傾向にある。
一方、 規格化され低電圧化が困難な 10回路、 あるいは動作マージン確保のた めに低電圧化が困難なアナログ回路では、 電源電圧が低下せず、 電位差が大きく ても安定かつ高速のレベル変換動作が可能なレベル変換回路が求められている。 この要請に応えるために、 例えば、 特許文献 1に開示されているように、 レべ ル変換出力に第 1の電源が供給されるブルアップ回路を設けるとともに、 レベル 変換入力信号により、 前記プルアップ回路を制御することが提案されている。 こ の特許文献 1に開示された手法は、 図 3に示されるように、 第 1の電源と第 2の 電源の電位差が大きい時に、 反転困難な p-MOSクロスカップルラッチ部を反転 しゃすいように第 1の電源が接続される n-MOSプルアップ手段を設けている。 また、 特許文献 2には、 p-MOSクロスカツプルと差動 n-MOSスイツチの間 にレベル変換入力信号で制御される p-MOSスィツチを設ける発明が開示されて いる。
この文献に開示された手法は、 図 2に示されるように、 第 1の電源と第 2の電 源の電位差が大きい時に反転困難な p-MOSクロスカツプルラッチ部を反転しや すいようにクロスカップルの結合を弱める p-MOSスィツチ手段が設けられてい る。
[特許文献 1 ] 特開昭 6 3— 1 5 2 2 2 0号公報 (第 2〜第 3頁、 第 1図〜第 3図) [特許文献 2 ]
特開平 0 6— 2 4 3 6 8 0号公報 (第 8〜第 1 5頁、 第 1、 第 3、 第 5、 第 7及び第 9図)
[特許文献 3 ]
特開平 0 6— 2 6 8 4 5 2号公報 (第 4〜第 5頁、 第 1、 第 3及び第
5図) 発明が解決しょうとする課題
しかしながら、前記した技術のうち、前者の特許文献 2に開示された技術では、 ブルアップ回路に第 1の電源が供給され、 ブルアップ回路がレベル変換入力信号 の第 1の電源レベルで制御され、 プルアップ回路が実施例に示される n-MOSを 用いた場合には、 閾値落ちしてしまう。 特に、 第 1の電源と第 2の電源の電位差 が大きいほど、 プルアップ能力が十分でなく、 十分なレベル変換動作マージンが 得られないという問題がある。 また、 後者の特許文献 3に記載の技術では、. p-MOS スィツチがレベル変換入力信号の第 1の電源レベルで制御されることか ら、 特に、 第 1の電源と第 2の電源の電位差が大きいほど p-MOSクロスカップ ルの結合を弱める力が十分でなく、 十分なレベル変換速度が得られないという問 題がある。
本発明の目的は、 第 1の電源と第 2の電源の電位差が大きくても十分なレベル 変換動作マージンが得られるとともに、 十分なレベル変換速度を有したレベル変 換回路を提供することにある。 発明の開示
請求項 1に記載のレベル変換回路の発明は、 第 1の電源が供給される第 1の論 理回路の信号レベルを第 2の電源が供給される第 2の論理回路の信号レベルに変 換するレベル変換回路において、 前記レベル変換回路は、 制御回路が制御するお よび Zまたはプルァップぉよぴ Zまたはプルダゥン回路を制御するレベル変換コ ァ回路を設け、 前記レベル変換コア回路は、 前記第 2の電源と、 前記第 1の論理 回路からの出力信号を入力し、 前記第 2の論理回路に入力する信号を出力するこ とを特徴とする。
請求項 2に記載のレベル変換回路の発明は、 第 1の電源が供給される第 1の論 理回路の信号レベルを第 2の電源が供給される第 2の論理回路の信号レベルに変 換するレベル変換回路において、 前記レベル変換回路は、 レベル変換を実現する レベル変換コア回路と、 レベル変換コア回路のレベル変換出力に前記第 2の電源 が供給されるブルアップおよび Zまたはプルダウン回路と、 前記第 2の電源が供 給されレベル変換入力信号と前記レベル変換出力信号とを入力する制御回路によ り前記ブルアップおよび Zまたはプルダウン回路とを制御する制御回路とを設け たことを特徴とする。
請求項 3に記載のレベル変換回路の発明は、 請求項 1または 2において、 前記 レベル変換コァ回路は、 複数の p-MOSからなる p-MOSクロスカツプルラッチ と、複数の n-MOSからなる差動 n-MOSスィツチとを有し、前記 p-MOSの各 ソース端子が第 2の電源に接続され、 前記 p-MOSの各ゲート端子に各ドレイン 端子であるレベル変換出力が接続され、 前記差動 n-MOS スィ ッチの前記 n-MOSは、 ソース端子が各 GND 電源に接続され、 前記レベル変換出力に前記 n-MOSのドレイン端子が接続され、 レベル変換入力に前記 n-MOSのゲート端 子が接続されたことを特徴とする。
請求項 4に記載のレベル変換回路の発明は、 請求項 2または 3において、 前記 制御回路は、 前記第 2の電源が供給され前記レベル変換入力信号の正転信号と前 記レベル変換出力信号の反転信号を入力とする NAND回路と、 前記第 2の電源 が供給され前記レベル変換入力信号の反転信号と前記レベル変換出力信号の正転 信号を入力とする NAND回路と、前記第 2の電源が供給され前記 NAND回路の 各出力を入力とする複数のインパータとからなり、 前記 NAND回路と前記イン バータの各出力信号を制御信号として出力していることを特徴とする。
請求項 5に記載のレベル変換回路の発明は、 請求項 4において、 前記 NAM) 回路は、 CMOS回路構成であり、 前記レベル変換入力信号が接続される p-MOS はチヤネル幅 Zチャネル長の比が小さいか、 閾値の極性が負で絶対値が高い、 少 なくともいずれかの条件を有するトランジスタからなっていることを特徴とする。 請求項 6に記載のレベル変換回路の発明は、 請求項 1〜 5のいずれか 1項にお いて、 前記プルアップおよび/またはプルダウン回路は、 前記第 2の電源にソー ス端子が、 前記制御回路からの制御信号に各ゲート端子が、 前記レベル変換出力 にそれぞれのドレイン端子が接続される複数の p-MOSと、前記 GND電源にソ ース端子が、 前記制御回路からの制御信号に各ゲート端子が、 前記レベル変換出 力に各ドレイン端子がそれぞれ接続される複数の n-MOSからなつていることを 特徴とする。
請求項 7に記載のレベル変換回路の発明は、 請求項 1〜3のいずれか 1項にお いて、 前記制御回路は、 前記第 2の電源が供給され前記レベル変換入力信号の反 転信号と前記レベル変換出力信号の正転信号を入力とする NOR回路と、 前記第 2の電源が供給され前記レベル変換入力信号の正転信号と前記レベル変換出力信 号の反転信号を入力とする NOR回路と、前記第 2の電源が供給され前記各 NOR 回路出力を入力とする複数のインバータとからなり、 前記 NOR回路と前記イン バータの各出力信号を制御信号として出力することを特徴とする。
,請求項.8に記載のレベル変換回路の発明は、 請求項 7において、 前記 NOR回 路は、 CMOS回路構成であり、前記レベル変換入力信号が接続される p-MOSは チャネル幅/チャネル長の比が小さいか、 閾値の極性は負で絶対値が高い少なく とも 1つの条件のトランジスタからなっていることを特徴とする。
請求項 9に記載のレベル変換回路の発明は、 請求項 1 ~ 8のいずれか 1項にお いて、 前記レベル変換コア回路は、 前記第 2の電源に各ソース端子が、 前記各レ ベル変換出力の各ゲ一ト端子が接続された複数の p-MOSからなる p-MOSク口 スカップルラッチと、 前記複数の p-MOSのドレイン端子に各ソース端子が、 前 記各レベル変換入力に各ゲート端子が、 前記レベル変換出力に各ドレイン端子が 接続された複数の p-MOSスィッチと、 GND電源に各ソース端子が、 前記レべ ル変換出力に各ドレイン端子が、 レベル変換入力に各ゲート端子がそれぞれ接続 された複数の n-MOSからなる差動 n-MOSスィッチとなっていることを特徴と する。
請求項 1 0に記載のレベル変換回路の発明は、 請求項 1〜9のいずれか 1項に おいて、 前記レベル変換コア回路は、 前記第 2の電源にそれぞれソース端子が、 ゲート端子にそれぞれのドレイン端子であるレベル変換出力が接続された複数の p-MOSからなる p-MOSクロスカップルラッチと、 G D電源にそれぞれのソ一 ス端子が、 前記レベル変換出力にそれぞれのドレイン端子が、 レベル変換入力に 各ゲート端子が接続された複数の n-MOSからなる差動 n-MOS.スィツチと、前 記第 1の電源にそれぞれドレイン端子が、前記レベル変換入力に各ゲート端子が、 前記レベル変換出力に各ソース端子が接続された n-MOSを有することを特徴と する。 図面の箇単な説明
図 1は、 従来のレベル変換回路の例を示す回路図である。
図 2は、 従来のレベル変換回路の別の例を示す回路図である。
図 3は、 従来のレベル変換回路のさらに別の例を示す回路図である。
図 4は、 第 2実施形態の変形例に使用される制御回路の別の例を示す回路図で ある。
図 5は、 第 2実施形態の変形例に使用される制御回路の他の別の例を示す回路 図である。
図 6は、 第 2の実施形態に使用される制御回路の別の例を示す回路図である。 図 7は、 本発明に係るレベル変換回路の実施の形態例を示す図である。
図 8は、 本発明に係るレベル変換回路に使用されるレベル変換コア回路の例を 示す図である。
図 9は、 本発明に係るレベル変換回路に使用される制御回路の例を示す図であ る。
図 1 0は、 本発明に係るレベル変換回路に使用されるプルアップ Zプルダウン 回路の例を示す図である。
図 1 1は、 本発明に係るレベル変換回路に使用される NAND回路の例を示す 図である。
図 1 2は、 本発明に係るレベル変換回路に使用される OR回路の例を示す図で ある。
図 1 3は、 本発明に係るレベル変換回路に使用されるレベル変換コア回路の動 作例を示すタイミングチャートである。
図 1 4は、 本発明に係るレベル変換回路に使用される制御回路とプルアップ Z プルダウン回路の動作例を示すタイミングチャートである。
図 1 5は、 本発明に係るレベル変換回路に使用される制御回路の別の例を示す 図である。
図 1 6は、 本発明のレベル変換装置に使用されるレベル変換コア回路の別の例 を示す回路図である。
図 1 7は、 本発明のレベル変換装置に使用されるレベル変換コア回路の他の別 の例を示す回路図である。
図 1 8は、 本発明のレベル変換回路の第 2の実施形態を示す構成図である。 図 1 9は、 第 2の実施形態に使用される制御回路の回路例を示す図である。 図 2 0は、 第 2に実施形態に使用されるプルアップ回路の例を示す回路図であ る。
図 2 1は、 第 2の実施形態に使用される制御回路の他の別の例を示す回路図で める。
図 2 2は、 第 2の実施形態に使用されるプルアップ回路の別の例を示す図であ る。
図 2 3は、 本発明のレベル変換装置の第 3の実施 (プルアップ機能を発揮させ た場合) の形態の動作を示す夕イミングチャートである。
図 2 4は、 本発明のレベル変換装置の第 3の実施 (プルダウン機能を発揮させ た場合) の形態の動作を示すタイミングチャートである。
図 2 5は、 第 2実施形態の変形例の構成を示す図である。
図 2 6は、 第 2実施形態の変形例に使用される制御回路の例を示す図である。 図 2 7は、 第 2実施形態の変形例に使用されるプルダウン回路の例を示す回路 図である。
図 2 8は、 第 2実施形態の変形例に使用されるプルダウン回路の別の例を示す 回路図である。
図 2 9は、 本発明のレベル変換装置の第 2の実施の形態の変形例の構成を示す 図である。 図 3 0は、 第 2の実施の形態の変形例に使用されるプルアップ回路の例を示す 回路図である。
図 3 1は、 第 2の実施の形態の変形例に使用されるプルアップ回路の別の例を 示す回路図である。
図 3 2は、 本発明のレベル変換装置の第 3の実施の形態の構成例を示す図であ る。
図 3 3は、 第 3の実施の形態に使用されるレベル変換コア回路の例を示す回路 図である。
図 3 4は、 第 3の実施の形態に使用される制御回路の例を示す回路図である。 図 3 5は、 本発明のレベル変換装置の第 3の実施の形態の動作を示すタイミン グチャートである。
図 3 6は、 第 3の実施の形態に使用される制御回路の別の例を示す回路図であ る。
図 3 7ほ、 本発明のレベル変換装置の第 3の実施の形態の動作を示すタイミン グチャートである。
図 3 8は、 第 2実施形態の他の変形例を示す構成図である。
なお、 符号 1は、 レベル変換コア回路である。 符号 2は、 制御回路である。 符 号 3は、 プルアップ Zプルダウン回路である。 符号 3—1は、 プルアップ回路で ある。符号 3— 2は、プルダウン回路である。符号 4は、第 1の論理回路である。 符号 5は、 第 2の論理回路である。 発明を実施するための最良の形態
以下添付した図面を参照しながら、 実施の形態によって、 本発明を詳細に説明 する。
本発明によるレベル変換回路の 1つは、 レベル変換出力に第 2の電源が供給さ れるブルアップぉよぴ Zまたはプルダウン回路と、 第 2の電源が供給されレベル 変換入力信号と前記レベル変換出力信号を入力とする制御回路を設け、 これの制 御信号により前記プルアップおよび/またはプルダウン回路を制御する構成を設 けたことを特徴としている。 この第 2の電源が供給されるプルアツプぉよび Zまたはブルダゥン回路は、 プ ルアップ機能を実現する MOS トランジスタのドレイン一ソース間電圧を増加さ せ、 (MOS トランジスタが飽和領域動作であっても)、 駆動電流を増加するとい う動作 (作用) を実行する。
また、 第 2の電源が供給される制御回路を設けることにより、 プルアップおよ ぴ Zまたはプルダウン機能を実現する MOS トランジスタのゲート一ソース間電 圧を増加させ、 駆動電流を増加するという動作 (作用) を実行する。
また、 第 2の電源が供給される制御回路により制御されるプルダウン機能を設 けることにより、 プルダウン能力を強化するという動作 (機能) を実行 (発揮) する。
従って、 プルアップ能力とプルダウン能力が増加し、 p-MOSクロスカップル ラッチ部の反転を補助するという効果という効果が得られる。
さらに、 本発明によるレベル変換回路は、 第 2の電源が供給される制御回路の 制御信号により、 レベル変換コァ回路の p-MOSクロスカツプルの結合度を制御 するという構成を設けたことを特徴としている。 第 2の電源レベルで結合度を調 整する p-MOSスィッチを制御することにより、 p-MOS トランジスタのゲート —ソース間電圧を 0にまで削減でき、 p-MOSクロスカップルラッチ部の結合度 を十分小さくできるという動作 (機能) を実行する。
く第 1実施形態 >
図 7に、本発明のレベル変換回路の一実施の形態を示す。本レベル変換回路は、 第 1の電源 (VDDL) が供給される第 1の論理回路 4の信号レベルを第 2の電源 (VDDH) が供給される第 2の論理回路 5の信号レベルに変換するものであり、 本発明は、 レベル変換コア回路 1を有する。 この第 1の論理回路 4からの第 1の 電源レベルの信号 INL と INLBは、 レベル変換コア回路 1に供給され、 第 2の 電源レベルへの変換を開始する。
本発明に係るレベル変換回路では、上記したレベル変換コァ回路 1に、さらに、 第 2の電源が供給される制御回路 2と、 第 2の電源が供給されるプルアツプぉよ び Zまたはプルダウン回路 3とが設けられている。
この制御回路 2は、 レベル変換入力信号 (INL,INLB) とレベル変換出力信号 (OUTH, OUTHB )とを入力として、 プルアップおよび/またはプルダゥン回路 3の制御信号 (C0〜C3) を生成し、 プルアップ/プルダウン回路 3はこの制御 信号 (C0〜C3) に従ってレベル変換出力信号 (OUTH、 OUTHB ) をプルアツ プおよび Zまたはプルダウンし、 これに基づいてレべル変換動作を行う。
こうして得られたレベル変換出力信号 (OUTH、 OUTHB ) の少なくとも 1 つの信号は、 第 2の論理回路 5に供給される。
図 7のレベル変換回路に使用されるレベル変換コア回路 1の一例を図 8に示す。 この図 8に示すように、 本発明に使用されるレベル変換コア回路 1は、 第 2の電 源 (VDDH) が各 p-MOS l 1 0のソース端子に接続され、 2種類のレベル変換 出力信号 OUTHBおよび OUTHが前記複数の p-MOSの各ドレイン端子に接続 され、 これらの p-MOSのドレイン端子が他の p-MOSのゲート端子にそれぞれ クロスカップル接続され、 前記 OUTHB がドレイン端子に接続され、 INLがゲ ―ト端子に接続され GND電源がソース端子に接続された n-MOS 1 0 3と、 OUTHをドレイン端子に接続し INLBをゲ一ト端子に接続し GND電源をソー ス端子に接続した ii-MOS l 0 4とからなる。 図 8において、 p-MOSは 2個使 用され、 n-MOSは、 2個使用されているが、 前記 p-MOS 2個からなるクロス 回路は、 複数のクロス回路からなっていてもよい。 すなわち、 図 8に示された回 路を複数並列に接続等して、 レベル変換コア回路を設けることもできる。
図 7のレベル変換回路に使用される制御回路 2の一例を図 9に示す。
すなわち、 この図に例示される制御回路 2は、 第 2の電源 (VDDH) が供給さ れ、 INL と OUTHB を入力とし COを出力とする第 1の NAND回路 1 0 2 1と、 第 2の電源(VDDH) が供給され、 INLBと OUTHを入力とし C1を出力とする 第 2の NAM)回路 1 0 2 2と、 前記第 2の電源 (VDDH) が供給され、 前記第 1の NAND回路 1 0 2 1の出力 C0を入力とし C3を出力とする第 1のインバー タ 1 0 2 3と、 前記第 2の電源 (VDDH) が供給され、 前記第 2の NANDの出 力 C1を入力とし C2を出力とする第 2のインバータ 1 0 2 4とからなる。
また、 図 7に示すレベル変換回路に使用されるブルアップ Zプルダウン回路 3 の一例を図 1 0に示す。 この図に例示するように、 本発明に係るレベル変換回路 に使用されるプルアップ/プルダウン回路 3は、 第 2の電源 (VDDH) がソース 端子に、 COがゲート端子に、 OUTHがドレイン端子にそれぞれ接続された第 1 の p-MOS 1 0 3 1と、第 2の電源(VDDH) がソース端子に、 C1がゲート端子 に、 OUTHB がドレイン端子にそれぞれ接続された第 2の p-MOS 1 0 3 2と、 GND 電源がソース端子に、 C2がゲート端子に、 OUTHがドレイン端子にそれ ぞれ接続された第 1の n-MOS 1 0 3 3と、 GND電源がソース端子に、 C3がゲ 一ト端子に、 OUTHB がドレイン端子にそれぞれ接続された第 2の n-MOS 1 0 3 4とからなる。
前記図 9に示す NAND回路 1 0 2 1、 1 0 2 2は、 たとえば図 1 1に示すよ うに構成されている。 図 1 1において、 レベル変換入力 (INL または INLB の いずれか) を、 出力端子に近い n-MOS に接続している。 この例に示すように、 出力端子から遠い n-MOSに接続する場合に比べてゲート遅延を少なくすること が可能である。 またレベル変換の入力は第 1の電源レベルであるので、 第 2の電 源との電位差が大きくなつたり、 n-MOSの閾値 (Vt) が大きくなつたり、 特に 基板効果による n-MOSの閾値の上昇の影響が大きくなつた場合に、 出力端子に 近い n-MOSにレベル変換入力 (INL または INLBのいずれか) 接続すると、 遅延が大きくなる場合がある。 このような場合には、 基板効果の影響の小さい出 力端子から遠い n-MOS 2にレベル変換入力を接続し、 出力端子から遠い n-MOSに OUTHまたは OUTHB を入力することによって、 前記遅延を小さく することができる。
また、 レベル変換入力の接続される p-MOSは、 レベル変換入力の Highレべ ルが第 2の電源までいかないため、 p-MOS 閾値によってはオフせず、 また n-MOSは十分にオンしないような NAND動作が困難になる場合には、たとえば p-MOS のチャネル幅ノチャネル長の比 (W/L) を小さくしたり、 閾値を増加 (極 性が負で絶対値を増加) させたり、 あるいは n-MOSの W/Lを大きくしたり閾 値を減少させるなどの操作を、 単独で、 あるいは 2以上組み合わせることにより NAND動作を保証させることが可能となる。
また、 論理動作が可能であっても、 p-MOSの W/L を小さくしたり、 閾値を 増加 (極性が負で絶対値を増加、 例えば VDDL-VDDH以下に) することによつ て、 NANDリークを抑制可能である。 図 1 1において、 INL or lNLB と表記さ れているのは、 INL か INLB が入力されることを意味し、 同様に、 OUTH or OUTHB と表記されているのは、 OUTHか OUTHB が入力されることを意味す る。 但し、 入力の組み合わせは、 INL入力の場合には、 OUTHB との組み合わ せが、 また、 INLB入力の場合には、 OUTHとの組み合わせである。 この入力の 組み合わせは、 図 1 2においても同様である。
図に示す第 1の論理回路 4、 第 2の論理回路 5、 インバータは、 公知のものを 使用することができ、 また本発明とは直接関係しないので、 その詳細な構成およ ぴ動作例の説明を省略する。
以下、本発明に係るレベル変換装置の第 1実施の形態の動作について説明する。 まず、 本発明に係るレベル変換装置の第 1実施形態に使用されるレベル変換コ ァ回路の動作について、 囪 1 3のタイミングチャートを用いて説明する。 差動の 電源レベルでのレベル変換動作であるので、 INL と INLB は第 1の電源レベル で差動回路 (レベル変換回路) に入力され、 High レベルの入力する n-MOS に 接続される側の出力 (OUTHまたは OUTHB ) が Low に引き落とされ、 反対 側の出力が第 2の電源レベルの Highレベルに引き上げられる。
一方、 本発明のレベル変換回路の動作を説明すると、 図 1 4のタイミングチヤ —卜に示すように、初めに INLが Low、INLBが High、OUTHが Low、 OUTHB が Highとする。 まず第 1の論理回路 4から出力された INLが High (INLBが Low) に遷移すると、 信号 INLが入力された制御回路 2により COは Low を出 力して OUTH に接続されたプルアップおよびノまたはプルダウン回路 3中の p-MOSがオンして OUTHをブルアップするとともに制御回路 2から出力される C3は Highを出力して OUTHB に接続されたブルアップおよび/ /またはブルダ ゥン回路 3中の n-MOSがオンして OUTHB をプルダウンし、 同時にレベル変 換コア回路 1の動作により OUTHB が Low に引き下げられると、これにより制 御回路 2から出力される COは Highを出力してプルアップおよび/またはプル ダウン回路 3中の p-MOSはオフとなりブルアップを終えるとともに制御回路か ら出力される C3は Low を出力してプルアップおょぴ/またはプルダウン回路 3中の n-MOSはオフとなりプルダウンを終える。そして、 INLが High、 INLB が Low、 OUTHが High、 OUTHB が Low となる。 次に、第 1の論理回路 4から出力された INLBが Hig lNLが Low)となると、 信号 INLBが入力された制御回路 2により C1は Low を出力して OUTHB に接 続されたプルァップぉよび/またはプルダゥン回路 3中の p-MOSがオンに遷移 して、 OUTHB をプルアップするとともに、 制御回路 2から出力される C2 は Highを出力して、 OUTHに接続されるプルアップおよび/またはプルダウン回 路 3中の n-MOSがオンに遷移して OUTHをプルダウンし、 同時にレベル変換 コア回路 1の動作により OUTHが Low に引き下げられる (プルダウンされる) と、 制御回路 2により C1は Highを出力して、 プルアップおよび/またはプル ダウン回路 3中の p-MOSはオフとなり、 プルアップを終えるとともに、 制御回 路 2により C2は Low を出力して、 プルアップおよび Zまたはプルダウン回路 3中の n-MOSはオフとなり、プルダウンを終える。そして、 INLが Low、INLB が High、 OUTHが Low、 OUTHBが Highとなり、 これによつて最初と同様 の状態になる。
このように、 レベル変換入力が変化する際に、 第 2の電源が供給される制御回 路 2とブルアップ /プルダウン回路 3とにより、 必要な側のレベル変換出力をプ ルアップ /プルダウンしているので、 レベル変換コア回路 1の動作が補助可能と なる。
従って、 第 1の電源と第 2の電源の電位差が大きくなつても、 レベル変換動作 マ一ジンを確保するとともに遅延の増加を図 1 4の点線に示した立上りまたは立 下り時間の遅延 (立上りまたは立下りの勾配の低下) および立上りまたは立下り の遅延 (立上りまたは立下りのタイミングの遅れ:立上りまたは立下りの開始時 間の遅れ) を、 実線で示すように抑制することが本発明では可能となった。 さらに、 本実施の形態では、 制御回路 2はレベル変換出力信号を入力として設 けているので、 レベル変換入力切り換わり時のプルアツプ Zプルダウン回路 3に より、 必要な時にだけプルアップ Zプルダウン動作が行える。 この結果、 第 1の 電源レベルが入力される制御回路における p-MOSオフ電流を削減する回路構成 (NA D回路) を選択することができる。
しかも、 補助動作終了後、 プルアップ Zプルダウン回路 3はオフする論理とな つているので、 レベル変換回路の動作を妨げず、 あるいは必要以上に遅延させる ことがないため、 本発明に係るレベル変換回路は、 高速動作が可能という効果も 有する。
<第 1実施形態の変形例 1 >
上記形態において、 p-MOSオフ電流を削減する回路構成として、 図 9に示す ような NAND回路の構成に替えて、 図 1 5に示すような NOR 回路構成を採用 することができる。 但し、 NOR回路の p-MOSオフ電流を防止するために、 レ ベル変換入力が接続される p-MOSの閾値を増加(VDDL— VDDH=R以下)す る必要がある。 この時、ゲート遅延削減と基板効果を利用するために、 この NOR 回路を、 図 1 2に示すように、 出力端子に近い p-MOSに接続する構成を採用す ることが好ましい。 なお前記 VDDL— VDDH値 Rは、 負の値であって、 Rの絶 対値が増加した場合に閾値 Vtが増加することを意味する。
く第 1実施形態の変形例 2〉
本発明に係る第 1の実施の形態のレベル変換回路は、 レベル変換コア回路 1等 を図 8に示す第 1実施形態で説明した回路とは異なる他の回路構成で実現するこ とが可能である。 例えば、 図 1 6に示すような p-MOSクロスカップルのドレイ ン側に p-MOS スィッチを設けた回路の構成とすることもできる。 この動作は、 前記実施形態 1の動作と同様であるため、 その説明を省略する。 本実施形態の変 形例に示すような、図 1 6に示すレベル変換コア回路 1を採用することによって、 第 1の電源電圧 (VDDL) が低下した場合に、 図 8に示すレベル変換コア回路の p-MOSクロスカップルの結合度を、さらに低下させることができる。すなわち、 図 1 6に示すように、 p-MOS クロスカップル (一対の p-MOS) と、 一対の p-MOSスィッチ (一対のその他の p'-MOS) と、一対の n-MOSとを有するレべ ル変換コア回路であって、 第 2の電源 (VDDH) がクロスカップルの各 p-MOS 1 1 0 (前記一対の p-MOS) のソース端子に接続され、 2種類のレベル変換出 力信号 OUTHB および OUTHが前記 p-MOSクロスカツプルの各ゲート端子お よび前記 p-MOS スィッチの一方のドレイン端子にそれぞれ接続され、 前記 p-MOS スィッチのドレイン端子が前記 p-MOS の一方のソース端子にそれぞれ 接続され、 前記 OUTHB が前記 p-MOS スイツチのもう一方のドレイン端子に 接続され、前記 OUTHBがドレイン端子に I Lがゲ一ト端子に GND電源がソ —ス端子に接続された n-MOS 1 0 3と、 OUTHカ ドレイン端子に INLBがゲ一 ト端子に GND 電源がソース端子に接続された n-MOS 1 0 4とを有して構成さ れている。 このように、 p-MOS l 1 1と 1 1 2とからなる p-MOSスィッチ一 対を前記した間に p-MOS クロスカップルと n-MOS間に設けることによって、 当該 1対のクロスカツプルを形成する p-MOSクロスカツプル間のク口ス結合の 強さを低下させて、 Mgh Lowの遷移の高速化を図ることができる。
このような図 1 6に示すレベル変換コア回路 1を採用した場合には、 制御回路 2として、 前記したような図 9に示す NAND回路を有する制御回路 2 (NAND 回路として、 例えば前記同様に、 図 1 1に示す回路を選択することが好ましい)、 あるいは、 前記変形例 1と同様の NOR構成を有する図 1 5で示される制御回路 2 (好ましくは、 図 1 2で示される NOR回路を採用することが、 前記同様、 好 ましい) を採用することができる。
<第 1実施形態の変形例 3 >
レベル変換コア回路 1を、 図 8または図 1 6以外に、 図 1 7に示す回路 1を用 いることができる。 このレベル変換回路 1には、 レベル変換出力に第 1の電源 VDDLが接続され、 レベル変換入力信号で制御される回路を第 1実施形態に係る レベル変換回路に、 レベル変換コア回路 1として採用することもできる。 このよ うなレベル変換コア回路 1を用いたレベル変換回路は、 n-MOS 1 0 3が High に遷移するのを手助けし、 もう一方の n-MOS 1 0 4が Low になるのを手助け することできる。 これによつて、 レベル変換の動作の高速化が可能となり、 また 第 1の電源と第 2の電源との格差が大きくなつた場合のレベル変換マージンとを 確保することができる。
このレベル変換回路の動作も前記第 1実施形態と同様であり、 その説明を省略 する。 なお本変形例 3においても、 前記変形例 2と同様の制御回路 2の組み合わ せの変更が可能である。 すなわち、 制御回路 2として、 前記同様、 図 9に示す NAND回路を有する制御回路 2 (NAM)回路として、 例えば前記同様に、 図 1 1に示す回路を選択することが好ましい)、 NOR構成を有する図 1 5で示される 制御回路 2 (好ましくは、 図 1 2で示される NOR回路を採用することが、 前記 同様、 好ましい) を挙げることができる。 <第 2実施形態〉
本発明に係るレベル変換回路の第 2実施形態について説明する。 本実施形態で は、 図 1 8に示すように、 前記第 1実施形態のプルアップ Zプルダウン回路 3の プルダウン機能を省略することが可能である。 図 1 8に採用される構成例におい て、 図 1 9、 または図 6に示す制御回路 2の構成と、 図 2 0のプルアップ回路と を組み合わせて用いたり、 または、 図 2 1に示す制御回路を用い、 それぞれ図 2 2に示されるプルアップ回路 3— 1を組み合わせて用いることができる。 この図 2 1に示す制御回路 2は、 制御信号 C0、 C1を出力するような他の制御回路、 た とえば図 1 9又は図 6に置換して行うことができる。 ただし、 この置換後に、 プ ルアップ回路を上述した図 2 2に示すプルアップ回路 3—1から、 このプルアツ プ回路と極性が反対の図 2 0に示すプルアップ回路 3— 1に変更する。
<第 2実施形態の動作例〉
次に第 2実施形態の動作例を説明する。
図 2 3のタイミングチャートに示すように、 初めに INLが Low、 INLB が High, OUTHが Low、 OUTHB が Highとする。 プルアップ回路のみの機能 を使用した場合には、 図 2 3に示すように、 まず INLが Highに遷移すると、 COは Low を出力して OUTHに接続された p-MOSがオンして OUTHをプル アップし、同時にレベル変換コア回路の動作により OUTHB が Low に引き下げ られると、 COは Highを出力して p-MOSはオフとなりプルアップを終える。そ して、 INLが Higli、 INLBが Low、 OUTHが High、 OUTHB が Low とな る。
次に、 INLBが HigMlNLが Low )となると、 C1は Low を出力して OUTHB に接続された p-MOSがオンに遷移して OUTHB をプルアップし、 同時にレべ ル変換コア回路の動作により OUTHが Low に引き下げられると、 C1は High を出力して、 p-MOSはオフとなり、プルアップを終える。そして、 INLが Low、 INLBが High、 OUTHが Low、 OUTHB が Highとなり、 これによつて最初 と同様の状態になる。
く第 2実施形態の変形例 >
本第 2の実施形態の変形例では、 図 2 5に示すように、 プルアップ機能の省略 をすることができる (この時、 図 2 6または図 4で示される制御回路 1と、 図 2 7で示されるプルダウン回路 3— 2とを組み合わせて用 、るか、 または図 5に示 される制御回路 2と、 図 2 8で示されるブルダゥン回路 3— 2を組み合わせて用 いることができる)。 本変形例 1では、 制御信号として、 C2および C3を用いた 例を示す。 .
また前記図 2 7を用いたプルダウン回路 3—1 ( n-MOS (トランジスタ) 構 成) を、 図 2 8に示す -1\108 (トランジスタ) 構成のプルダウン回路に置換可 能である。 すなわち、 レベル変換コア回路 1を図 8に示す回路にし、 制御回路 2 を図 2 6、図 4のいずれかから図 5にした場合に、プルダウン回路 3— 2として、 図 2 7から図 2 8に置換してレベル変換回路を構成することができる。 ただし、 これらの組み合わせは、 極性に合わせて決める必要がある。
このような、 第 2実施形態の変形例に示すプルダウン回路のみの機能を使用し た場合には、図 2 4に示すように、 INLが Low、INLBが High、OUTHが Low、 OUTHB が Highの場合、 INLが High (INLBが Low ) となると C3は High を出力し、 その結果、 OUTHB に接続される n-MOSがオンして OUTHB をプ ルダウンし、同時にレベル変換コァ回路の動作により OUTHが highに引き上げ られると、 C3は Low を出力して n-MOSはオフとなりプルダウンを終える。そ して、 INLが High、 INLBが Low、 OUTHが ffigh、 OUTHB が Low にな る。
次に、 INLBが ffigh(INLが Low)となると、 C2は Highを出力して OUTHに 接続される n-MOSがオンに遷移して OUTHをプルダウンし、 同時にレベル変 換コア回路の動作により OUTHBが Highに引き上げられると、 C2は Low を出 力して n-MOSはオフとなりプルダウンを終える。そして、 INLが Low、 INLB が High、 OUTHが Low、 OUTHB が Highとなる。
このように、 レベル変換入力が変化する際に、 第 2の電源が供給される制御回 路とブルアップまたはプルダウン回路により、 必要な側のレベル変換出力をプル アップまたはプルダウンしているので、 レベル変換コァ回路の動作が補助可能と なる。
従って、 第 1の電源と第 2の電源の電位差が大きくなつても、 レベル変換動作 マ一ジンを確保するとともに遅延の増加を抑制できる。
本実施形態では、 上述したように、 制御信号として、 2種類の信号を用いるこ とにより、 レベル変換をなしうる回路構成としているが、 この 2種類の信号は、 第 1実施形態で使用されている制御信号 C0〜C3のうちの 2つから選択される信 号を用いることができるが、 上述した COと C1の 2つの信号を出力するような 制御回路 2を使用して、 制御する図 1 8に示す構成と、 たとえば図 2 5に示す構 成を示すことができ、 これら、 2つの信号を用いて制御する制御回路 2を用い、 ブルアップおよび/またはプルダウン回路 3を制御回路が出力する制御信号に基 づいて適宜変更する構成は、 本実施形態に含まれる。
<第 3実施形態〉
本発明に係るレベル変換回路の第 3の実施形態は、 図 2 9に示すように、 第 1 の電源 VDDLが入力される第 1の論理回路 4から出力される INL または INLB 信号によりプルアップするプルアップ回路 3— 1と、 前記 INLおよび Zまたは INLB信号と、 第 2の電源 VDDHとを入力し、 OUTHおよび/または OUTHB 信号を出力するレベル変換コア回路とからなる。 この前記 OUTHおよび Zまた は OUTHB信号は、外部の第 2の電源を入力する第 2の論理回路に出力される。 本第 3実施形態は、 第 2実施形態において、 プルダウン機能を省略した場合に 相当する。 そして本実施形態では、 制御回路 2も省略することが可能である。 こ のように、 レベル変換入力を第 2の電源が供給されるブルアップ回路に直接接続 すると、 ドレイン一ソース間電圧を増加でき、 本変形例 2のレベル変換装置は、 レベル変換が有効である (飽和領域であっても、 ドレイン電流はドレイン一ソー ス間電圧が増加すると増える)。この時、図 3 0あるいは図 3 1のプルアップ回路 を用いることが出来、 特に図 3 1では、 p-MOS の閾値を前記したような VDDL-VDDH値以下の領域でォフリークを低減可能とすることができる。
このような本発明に係るレベル変換回路の第 3の実施形態の動作例を説明する と、 図 1 3のタイミングチャートに示すように、 初めに INLが Low、 INLBが High, OUTHが Low、 OUTHB が Highとする。 まず第 1の論理回路 4から 出力された INLが Highに遷移すると、 信号 INL (ブルアップ回路の入力信号 であるので CO と表記) は、 OUTH に接続されたプルアップ回路 3— 1中の n-MOSがオンして OUTHをプルアップする。 このとき INLB (プルアップ回路 の入力信号であるので前記同様に C1と表記) は Lowであるので、 OUTHB が 入力される他の n-MOSはオフとなっている。 次いでレベル変換コア回路 1の動 作により OUTHB が Low に引き下げられると、 COは Highを出力してブルア ップ回路 3— 1中の n-MOSはオフとなりプルアップを終える。そして、 INLが High, INLBが Low、 OUTHが High、 OUTHB が Low となる。
次に、第 1の論理回路 4から出力された E Lが High(INLBが Low )となると、 信号 INLB(Cl)は Low を出力して OUTHB に接続されたブルアップ回路 3― 2 中の n-MOSがオンに遷移して、 OUTHB をプルアップする。 C1は Highを出 力して、プルアップ回路 3— 1中の n-MOSはオフとなり、プルアップを終える。 そして、 INLが Low、 INLBが High、 OUTHが Low、 OUTHBが Highと なり、 これによつて最初と同様の状態になる。 この変形例 2の動作は、 図 3 0の プルアップ回路 3— 1を用いた場合を例示したが、 プルアップ回路 3—1を、 図 3 1に示すプルアップ回路が用いられた場合には、 INL信号がゲートに入力する p-MOSには、 OUTHB信号が入力され、 INLB信号がゲートに入力される p-MOS には、 OUTH信号が入力される。そしてこのような p-MOSが使用されるブルア ップ回路が採用されたレベル変換回路では、 n-MOSが使用された前記したプル アップ回路 3— 1の基本動作と基本的には同様である。 ただし、 p-MOS が n-MOS と極性が反転しているので、 ON、 OFF動作が、 前記したプルアップ回 路 3— 1の基本動作と反転しており、 この反転するところが異なっている。
く第 4実施形態 >
第 4実施形態のその基本的構成は、 上記した実施形態と同様である。 本実施形 態では、 レベル変換コア回路 1の構成に従って使用される制御回路 2を、 さらに 工夫している。 その構成を図 3 2に示す。
本図において、 図 1 6に記載のレベル変換コア回路における p-MOSスィッチ 制御信号の生成機能をさらに追加している。
レベル変換コア回路 1と制御回路 2の例を、 図 3 3および図 3 4にそれぞれ示 す。 このような本第 4実施形態で使用される図 1 0で示されるプルアツプ/プル ダウン回路 3が好ましく用いられるが、プルアップ回路 3 _ 1を図 2 0、図 2 2、 図 3 0および図 3 1の中から選択される 1つのプルアップ回路 3— 1と、 ブルダ ゥン回路 3— 2を図 2 7または図 2 8のいずれかのプルダウン回路 3— 2を選択 して用いることもできる。 このようなレベル変換コア回路 1と制御回路 2を用い たレベル変換装置の動作のタイミングを、 図 3 5に示す。
即ち、 INLが Low、 INLBが High、 OUTHが Low 、 OUTHB が Highの 場合、 第 1の論理回路から出力された INL信号が High (INLBが Low ) とな ると制御回路 2はこの INL信号が入力されて CO信号等を出力する。この出力さ れた COは Low を出力して OUTHに接続されたプルァップぉよび Zまたはプル ダウン回路 3内の p-MOSがオンして OUTHをブルアップするとともに制御回 路 2により C3は Highを出力し、 その結果、 プルアップおよび Zまたはブルダ ゥン回路 3内の OUTHB に接続される n-MOSがオンして OUTHB をプルダウ ンし、 制御回路 2により C4は Highを出力してレベル変換コア内の OUTHBを Highに保持する pMOSクロスカツプル接続を切断し、 同時にレベル変換コア回 路 1の動作により OUTHB が Low に引き下げられると、 制御回路 2により CO は Highを出力してプルアップおよび/またはプルダウン回路 3内の p-MOSは オフとなり、 プルアップを終えるとともに、 制御回路 2により C3は Low を出 力してプルアツプぉよび Zまたはプルダウン回路 3内の n-MOSはオフとなりプ ルダウンを終え、 制御回路 2により C4は Lowを出力してレベル変換コア内の p-MOSスィッチはオンとなる。 そして、 INLが High、 INLBが Low、 OUTH が ffigh、 OUTHB が Low になる。
次に、 外部の第 1の論理回路 4により INLBが HighdNLが Low)となると、 この信号が入力されて制御回路 2により、 C1は Low を出力して OUTHB に接 続されるプルアツプぉよび/またはプルダウン回路 3内の p-MOSがオンに遷移 して OUTHB をブルアップするとともに、制 回路 2により C2は Highを出力 して OUTH に接続されるプルアップおよびノまたはプルダウン回路 3内の n-MOSがォンに遷移して OUTHをプルダウンし、制御回路 2により C5は High を出力してレベル変換コア内の OUTHを Highに保持する pMOSクロスカップ ル接続を切断し、同時にレベル変換コァ回路 1の動作により OUTHが Low に引 き下げられると、 制御回路 2により C1は Highを出力してプルアップおよび Z またはプルダウン回路 3内の p-MOSはオフとなりブルアップを終えるとともに、 制御回路 2により C2は Low を出力してプルアップおよび/またはプルダウン 回路 3内の n-MOSはオフとなりプルダウンを終え、 制御回路により C5は Low を出力してレベル変換コア内の p-MOSスィッチはオンとなる。 そして、 INLが Low、 INLBが High、 OUTHが Low、 OUTHB が Highとなる。 なおここで プルアップおよび Zまたはプルダウン回路 3内の n-MOS (トランジスタ)、 p-MOS (トランジスタ) は、 上記したような図 1 0で示される構成を採用した場 合について説明した。 しかしながら、 n-MOSを p-MOSに入れ替えおよび Zま たは p-MOSを n-MOS に入れ替えた構成を採用した場合には、 OUTH信号と OUTHB信号の接続を換え、前記動作の説明でも、そのように入れ替えて解釈す ることによって動作されることとなる。
このように、 本第 4の実施形態では、 レベル変換入力変化時に、 p-MOSクロ スカップ結合をより大きく抑制でき、 レベル変換動作マージンの確保、 高速化、 さらには貫通電流の低減ィヒという効果が得られる。 すなわち、 図 3 5の点線に示 したような一般的なレベル変換回路に見られる OUTHまたは OUTHB の立上り および立下り時間 (立上りまたは立下りの勾配) を本発明では、 実線に示したよ うに高速化 (急勾配) するとともに、 立上りまたは立下りのタイミングを早める ことができる。
本構成において、 制御回路 1を、 図 3 4に示す回路に代えて、 図 3 6に示すよ うな NOR回路構成としてもよい。 すなわち、 レベル変換コア回路 1を、 図 3 3 に示す回路を用い、 制御回路 1を図 3 6に示す回路に変更する。
<第 4実施形態の変形例 >
また、 プルァップぉよび Zまたはブルダゥン回路 3の一方の機能を省略した構 成を採用することができる。 このようなプルアップ回路 3— 1またはプルダウン 回路 3— 2は、 前記した図 2 0、 図 2 2、 図 3 0または図 3 1から選択されるプ ルアップ回路 3— 1、 図 2 7または図 2 8から選択されるプルダウン回路 3— 2 の 1つであり、 図 3 3に示すレベル変換コァ回路 1等の第 4実施形態で使用され るレベル変換コア回路 1が用いられる。 ここで使用される制御回路は、 プルアツ プ回路 3— 1またはプルダウン回路 3— 2が選択された場合に、 前記第 2実施形 態、 第 2実施形態の変形例、 第 3実施形態で説明したプルアップ回路 3— 1また はプルダウン回路 3— 2と組み合わせることのできる制御回路 2を選択すること ができる。
このような第 4実施形態の変形例の動作は、 ブルアップ回路 3— 1が選択され た場合には、 図 2 3で示されるタイミングチャートに従い、 また、 プルダウン回 路 3— 2が選択された場合には、 図 2 4または図 3 7で示されるタイミングチヤ ートに従って、 動作が行われる。
すなわち、プルアツプ回路 3 - 1が選択された場合には、図 2 3に示すように、 INLが Low、 INLBが High、 OUTHが Low、 OUTHB が Highの場合、 第 1の論理回路から出力された INL信号が High (INLBが Low ) となると制御 回路 2はこの INL信号が入力されて CO信号等を出力する。 この出力された CO は Low を出力して OUTHに接続されたプルアップ回路 3— 1内の p-MOSがォ ンして OUTHをブルアップし、制御回路 2により C4は Highを出力して OUTHB に接続されるプルアップ回路 3— 1内の p-MOS スィツチをオフして OUTHB のプルアップを抑制し、 同時にレベル変換コア回路 1の動作により OUTHBが Low に引き下げられると、 制御回路 2により COは Highを出力してプルアップ 回路 3—1内の p-MOS はオフとなり、 プルアップを終える。 そして、 INLが High, INLBが Low、 OUTHが ffigh、 OUTHB が Low になる。
次に、 外部の第 1の論理回路 4により INLBが HighdNLが Low)となると、 この信号が入力されて制御回路 2により、 C1は Low を出力して OUTHB に接 続されるプルアップ回路 3— 1内の p-MOSがオンに遷移して OUTHB をプル アップし、制御回路 2により C5は Highを出力して OUTHに接続されるブルア ップ回路 3— 1内の p-MOSスィツチをオフに遷移して OUTHのプルアップを 抑制し、同時にレベル変換コア回路 1の動作により OUTHが Low に引き下げら れると、 制御回路 2により C1 は High を出力してプルアップ回路 3— 1内の p-MOSはオフとなりプルアップを終える。 制御回路により C5は Low を出力し てプルアップ回路 3— 1内の p-MOS スィッチはオンとなる。 そして、 INLが Low、 INLBが Higli、 OUTHが Low、 OUTHBが Highとなる。 なおここで プルアップ回路 3—1内の n-MOS (トランジスタ)、 p-MOS (トランジスタ) は、 上記したような図 2 0で示される構成を採用した場合について説明した。 し かしながら、 n-MOSを p-MOSに入れ替えおよび/または p-MOSを n-MOS に入れ替えた構成を採用した場合には、 OUTH信号と OUTHB信号の接続を換 え、 前記動作の説明でも、 そのように入れ替えて解釈することによって動作され ることとなる。
また、 プルダウン回路 3— 2が採用された場合には、 以下のようになる。 即ち、図 2 4または図 3 7に示すように、 INLが Low、 INLBが High、 OUTH が Low、 OUTHB が Highの場合、 第 1の論理回路から出力された INL信号 が High (INLBが Low ) となると制御回路 2はこの INL信号が入力されて C3 信号等を出力する。 この出力された C3は Highを出力し、 その結果、 プルダウ ン回路 3— 2内の OUTEDB に接続される n-MOSがオンして OUTHB をブルダ ゥンし、 同時にレベル変換コア回路 1の動作により OUTHが Highに引き上げ られると、 制御回路 2により C3は Low を出力してプルダウン回路 3— 2内の n-MOSはオフとなりプルダウンを終える。そして、 INLが High、INLBが Low、 OUTHが High、 OUTHB が Low になる。
次に、 外部の第 1の論理回路 4により INLBが HighdNLが Low)となると、 この信号が入力されて制御回路 2により、 C2は Highを出力して OUTHに接続 されるプルダウン回路 3— 2内の n-MOSがオンに遷移して OUTHをプルダウ ンし、同時にレベル変換コァ回路 1の動作により OUTHが Low に引き下げられ ると、 制御回路 2により C2 は Low を出力してプルダウン回路 3— 2内の n-MOSはオフとなりプルダウンを終える。そして、 INLが Low、INLBが High、 OUTHが Low、 OUTHBが Highとなる。 なおここでプルアップおよび Zまた はプルダウン回路 3内の n-MOS (トランジスタ)、 p-MOS (トランジスタ)は、 上記したような図 2 7で示される構成を採用した場合について説明した。 しかし ながら、 n-MOSを p-MOSに入れ替えおよび または p-MOSを irMOSに入 れ替えた構成を採用した場合には、 前記同様に、 OUTH信号と OUTHB信号の 接続を換え、 前記動作の説明でも、 そのように入れ替えて解釈することによって 動作されることとなる。
<第 5実施形態〉 本実施形態は、 第 4実施形態において使用した図 3 3に示すレベル変換コア回 路 1を用いた例であり、 図 3 8に示すように、 プルアップ/プルダウン回路の両 方を省略した構成である。 本第 5実施形態では、 レベル変換コア回路 1および制 御回路 2は、 第 4実施形態で説明したのと同様のものを用いることができる。 す なわち、 レベル変換コア回路 1として、 図 3 3に示すレベル変換コア回路 1を採 用し、 制御回路 2として、 図 3 4または図 3 6に示す制御回路 2を採用する。 す なわち、 本第 5実施形態のレベル変換回路は、 制御回路 2と、 レベル変換コア回 路 1とからなり、 制御回路 2は、 第 1の論理回路からの出力信号 INL と INLB および第 1の電源 VDDHを入力して、 レベル変換コァ回路 1を制御する制御信 号 (C4、 C5など) を出力し、 レベル変換コア回路 1は、 制御回路から出力され た信号と、 第 1の論理回路からの信号 INL、 INLBおよぴ第 2の電源 VDDHを 入力して、第 2の論理回路を制御するための信号 OUTH、 OUTHB を出力する。 また前記レベル変換コア回路から出力された OUTH:、 OUTHB信号は、 前記制 御回路に入力される。このように、図 3 6に示す制御回路のように、制御信号 C4、 C5 を出力するために、 インバーター回路が不要となる回路を採用することがで ぎる。
このような、 本第 5の実施形態に示されるレベル変換回路では、 図 3 7に示す タイミングチャートに従って動作される。
すなわち、 INLが Low、 INLBが High、 OUTHが Low、 OUTHB が High の場合、 第 1の論理回路から出力された INL信号が Low (INLBが High) と なると制御回路 2は、 この INL信号が入力されて C4信号等を出力する。 この出 力された C4は Low を出力し、この C4が入力されたレベル変換コア回路 1内の p-MOS がオンして OUTHB をプルアップする。 その結果、 制御回路 2により C4 は High を出力して OUTHB に接続されるレベル変換コア回路 1内の p-MOSスィッチをオフして OUTHB のプルアップを抑制し、同時にレベル変換 コア回路 1の動作により OUTHB が Low に引き下げられると、 この OUTHB がゲートに入力されるレベル変換コア回路内の p-MOS はオンとなり、 C5がゲ —卜に入力されるレベル変換コア回路内の p-MOSもオンとなり、 他方のブルア ップを終えるとともに、 制御回路 2により C3は Low を出力してプルアップお よび/またはプルダウン回路 3内の n-MOSはオフとなりプルダウンを終え、 制 御回路 2により C4は Low を出力してプルアップおよび Zまたはプルダウン回 路 3内の p-MOSスィッチはオンとなる。そして、 INLが ffigh、INLBが Low、 OUTHが High、 OUTHB が Low になる。
次に、 外部の第 1の論理回路 4により INLBが High(INLが Low)となると、 この信号が入力されて制御回路 2により、 C4は Low を出力して OUTHB に接 続されるレベル変換回路 1内の p-MOSがオンに遷移して OUTHB をプルアツ プするとともに、制御回路 2により C5は Highを出力して OUTHに接続される レ ル変換コア回路 1内の n-MOSがオンに遷移して OUTHをプルダウンし、 制御回路 2により C5は Highを出力して OUTHに接続されるレベル変換コア回 路 1内の p-MOSスィツチをオフに遷移して OUTHのプルアップを抑制し、 同 時にレベル変換コア回路 1の動作により OUTHが Low に引き下げられると、制 御回路 2により C4は Highを出力してレベル変換コア回路 1内の p-MOSはォ フとなりプルアップを終えるとともに、 制御回路 2により C5は Low を出力し てレベル変換コア回路 1内の n-MOSはオフとなりプルダウンを終え、 制御回路 により C5は Low を出力してレベル変換コア回路 1内の p-MOSスィッチはォ ンとなる。そして、 INLが Low、 INLBが High、 OUTHが Low、 OUTHBが High となる。 なおここでプルアップおよび またはプルダウン回路 3内の n-MOS (トランジスタ)、 p-MOS (トランジスタ) は、 上記したような図 3 3 で示される構成を採用した場合について説明した。 しかしながら、 n-MOS を p-MOSに入れ替えおよび Zまたは p-MOSを n-MOSに入れ替えた構成を採用 した場合には、 OUTH信号と OUTHB信号の接続を換え、前記動作の説明でも、 そのように入れ替えて解釈することによつて動作されることとなる。
このようなブルアップおよび/またはプルダウン回路 3の両方を省略した構成 であっても、 p-MOSスィッチを制御回路出力の第 2の電源レベルでしっかり制 御できるため、 レベル変換動作マージン改善に有効である。
本第 5実施形態のレベル変換コア回路 1を、 同様の機能を有するレベル変換コ ァ回路に変更してもよい。 なお、 本発明が上記各実施形態に限定されずに解釈さ れるべきであり、 本発明の技術思想の範囲内において、 各実施形態は適宜変更可 能であり、 これらの変形例も、 当然に本発明に含まれる。 なお図面中、 p-MOS トランジスタには、 ゲートの部分に丸 (〇) を書いて表示した。
上記した実施形態 1〜5では、 第 2の論理回路を制御する制御信号 OUTHま たは OUTHB のうち、 少なくとも 1方を用いることができる。 すなわち、 第 2 の論理回路を制御するために、 OUTHまたは OUTHB を用いるか、 OUTH と OUTHB の両方をその目的に応じて、 適宜、 用いることができる。 産業上の利用可能性
以上説明したように、 本発明によれば、 第 1の電源が供給される第 1の論理回 路の信号レベルを第 2の電源が供給される第 2の論理回路の信号レベルに変換す るレベル変換回路において、 第 2の電源が供給されるレベル変換コア回路と第 2 の電源が供給される制御回路と第 2の電源が供給されるブルアップ /プルダウン 回路を設ける基本構成に基づき第 1の電源と第 2の電源の電位差が大きくなつた 場合にもレベル変換動作マージンの確保、 遅延増加抑制を実現したレベル変換が 得られる。
また、 本発明によれば、 レベル変換コア回路を有する基本構成とし、 当該レべ ル変換コア回路を制御する制御信号を出力する制御回路および Zまたは当該レべ ル変換コア回路により制御されるブルアップおよび Zまたはプルダウン回路を設 ける基本構成に基づき第 1の電源と第 2の電源の電位差が大きくなつた場合にも レベル変換動作マージンの確保、遅延増加抑制を実現したレベル変換が得られる。

Claims

請求の範囲
1 . 第 1の電源が供給される第 1の論理回路の信号レベルを第 2の電源が 供給される第 2の論理回路の信号レベルに変換するレベル変換回路において、 前記レベル変換回路は、 制御回路が制御するおよぴ Zまたはプルァップぉよぴ またはプルダウン回路を制御するレベル変換コァ回路を設け、
前記レベル変換コア回路は、 前記第 2の電源と、 前記第 1の論理回路からの出 力信号を入力し、 前記第 2の論理回路に入力する信号を出力することを特徴とす るレベル変換回路。
2. 第 1の電源が供給される第 1の論理回路の信号レベルを第 2の電源が 供給される第 2の論理回路の信号レベルに変換するレベル変換回路において、 前記レベル変換回路は、 レベル変換を実現するレベル変換コア回路と、 レべ ル変換コァ回路のレベル変換出力に前記第 2の電源が供給されるブルアップおよ び Zまたはプルダウン回路と、
前記第 2の電源が供給されレベル変換入力信号と前記レベル変換出力信号とを 入力する制御回路により前記プルァップぉよび Zまたはブルダゥン回路とを制御 する制御回路とを設けたことを特徴とするレベル変換回路。
3. 前記レベル変換コア回路は、 複数の p-MOSからなる p-MOSクロス カップルラッチと、 複数の n-MOSからなる差動 n-MOSスィツチとを有し、 前記 p-MOSの各ソース端子が第 2の電源に接続され、 前記 p-MOSの各ゲー ト端子に各ドレイン端子であるレベル変換出力が接続され、 前記差動 n-MOSス ィツチの前記 n-MOSは、 ソース端子が各 GND電源に接続され、前記レベル変 換出力に前記 n-MOS のドレイン端子が接続され、 レベル変換入力に前記 n-MOS のゲート端子が接続されたことを特徴とする請求項 1または 2に記載の レベル変換回路。
4. 前記制御回路は、 前記第 2の電源が供給され前記レベル変換入力信号 の正転信号と前記レベル変換出力信号の反転信号を入力とする NAND回路と、 前記第 2の電源が供給され前記レベル変換入力信号の反転信号と前記レベル変換 出力信号の正転信号を入力とする NAND回路と、 前記第 2の電源が供給され前 記 NA D回路の各出力を入力とする複数のインバ一タとからなり、前記 NAND 回路と前記インバータの各出力信号を制御信号として出力していることを特徴と する請求項 2または 3に記載のレベル変換回路。
5. 前記 NAND回路は、 CMOS回路構成であり、 前記レベル変換入力信 号が接続される p-MOSはチャネル幅 Zチャネル長の比が小さいか、 閾値の極性 が負で絶対値が高い、 少なくともいずれかの条件を有するトランジスタからなつ ていることを特徴とする請求項 4記載のレベル変換回路。
6. 前記プルアップおよび/またはプルダウン回路は、 前記第 2の電源に ソース端子が、 前記制御回路からの制御信号に各ゲート端子が、 前記レベル変換 出力にそれぞれのドレイン端子が接続される複数の p-MOSと、前記 GND電源 にソース端子が、 前記制御回路からの制御信号に各ゲート端子が、 前記レベル変 換出力に各ドレイン端子がそれぞれ接続される複数の n-MOSからなつているこ とを特徴とする請求項 1〜 5のいずれか 1項に記載のレベル変換回路。
7. 前記制御回路は、 前記第 2の電源が供給され前記レベル変換入力信号 の反転信号と前記レベル変換出力信号の正転信号を入力とする NOR回路と、前 記第 2の電源が供給され前記レベル変換入力信号の正転信号と前記レベル変換出 力信号の反転信号を入力とする NOR回路と、 前記第 2の電源が供給され前記各 NOR回路出力を入力とする複数のインパー夕とからなり、
前記 NOR回路と前記ィンパータの各出力信号を制御信号として出力すること を特徴とする請求項 1〜 3のいずれか 1項に記載のレベル変換回路。
8. 前記 NOR回路は、 CMOS回路構成であり、前記レベル変換入力信号 が接続される p-MOSはチャネル幅 Zチャネル長の比が小さいか、 閾値の極性は 負で絶対値が高い少なくとも 1つの条件のトランジスタからなっていることを特 徴とする請求項 7記載のレベル変換回路。
9. 前記レベル変換コア回路は、 前記第 2の電源に各ソース端子が、 前記 各レベル変換出力の各ゲート端子が接続された複数の p-MOSからなる p-MOS クロスカップルラッチと、前記複数の p-MOSのドレイン端子に各ソース端子が、 前記各レベル変換入力に各ゲ一ト端子が、 前記レベル変換出力に各ドレイン端子 が接続された複数の p-MOSスィッチと、 GND 電源に各ソース端子が、 前記レ ベル変換出力に各ドレイン端子が、 レベル変換入力に各ゲート端子がそれぞれ接 続された複数の n-MOSからなる差動 n-MOSスィッチとなっていることを特徴 とする請求項 1 ~ 8のいずれか 1項に記載のレベル変換回路。
1 0. 前記レベル変換コア回路は、 前記第 2の電源にそれぞれソース端子 が、 ゲート端子にそれぞれのドレイン端子であるレベル変換出力が接続された複 数の p-MOSからなる p-MOSクロスカップルラッチと、 GND 電源にそれぞれ のソース端子が、 前記レベル変換出力にそれぞれのドレイン端子が、 レベル変換 入力に各ゲート端子が接続された複数の n-MOSからなる差動 n-MOSスィッチ と、 前記第 1の電源にそれぞれドレイン端子が、 前記レベル変換入力に各ゲート 端子が、 前記レベル変換出力に各ソース端子が接続されこ n-MOSを有すること を特徴とする請求項 1〜 9のいずれか 1項に記載のレベル変換回路。
PCT/JP2003/014107 2002-11-06 2003-11-05 レベル変換回路 WO2004042923A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003277555A AU2003277555A1 (en) 2002-11-06 2003-11-05 Level conversion circuit
US10/533,807 US7282981B2 (en) 2002-11-06 2003-11-05 Level conversion circuit with improved margin of level shift operation and level shifting delays
JP2004549615A JP4389787B2 (ja) 2002-11-06 2003-11-05 レベル変換回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-323082 2002-11-06
JP2002323082 2002-11-06

Publications (1)

Publication Number Publication Date
WO2004042923A1 true WO2004042923A1 (ja) 2004-05-21

Family

ID=32310409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/014107 WO2004042923A1 (ja) 2002-11-06 2003-11-05 レベル変換回路

Country Status (4)

Country Link
US (1) US7282981B2 (ja)
JP (1) JP4389787B2 (ja)
AU (1) AU2003277555A1 (ja)
WO (1) WO2004042923A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3796034B2 (ja) * 1997-12-26 2006-07-12 株式会社ルネサステクノロジ レベル変換回路および半導体集積回路装置
KR100833179B1 (ko) * 2006-02-15 2008-05-28 삼성전자주식회사 클러스터드 전압 스케일링을 위한 레벨 컨버팅 플립플롭 및펄스 발생기
US7719313B2 (en) * 2006-06-28 2010-05-18 Qualcomm Incorporated Versatile and compact DC-coupled CML buffer
US20080084238A1 (en) * 2006-10-06 2008-04-10 Himax Technologies Limited Latch-type level shift circuit
US7932702B1 (en) * 2006-10-27 2011-04-26 Motorola Mobility, Inc. Method and apparatus for charging a battery to an enhanced capacity
US7605633B2 (en) * 2007-03-20 2009-10-20 Kabushiki Kaisha Toshiba Level shift circuit which improved the blake down voltage
US8456194B2 (en) * 2010-11-17 2013-06-04 Advanced Micro Devices, Inc. Level shifter with primary and secondary pull-up circuits
GB2530238B (en) * 2014-06-05 2021-07-21 Advanced Risc Mach Ltd Power gating in an electronic device
WO2018055666A1 (ja) * 2016-09-20 2018-03-29 三菱電機株式会社 インターフェース回路
US11606093B2 (en) * 2020-09-29 2023-03-14 Mediatek Inc. Level converting enable latch

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243680A (ja) * 1993-02-22 1994-09-02 Mitsubishi Electric Corp 信号レベル変換回路
JPH06268452A (ja) * 1993-03-16 1994-09-22 Mitsubishi Electric Corp レベル変換回路
JPH07264047A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd Ecl回路
JPH0974348A (ja) * 1995-09-06 1997-03-18 Seiko Epson Corp 半導体装置
JPH1084274A (ja) * 1996-09-09 1998-03-31 Matsushita Electric Ind Co Ltd 半導体論理回路および回路レイアウト構造
JPH11195975A (ja) * 1997-12-26 1999-07-21 Hitachi Ltd レベル変換回路および半導体集積回路装置
JPH11205140A (ja) * 1998-01-07 1999-07-30 Mitsubishi Electric Corp アナログデジタル変換器及びレベルシフタ
JPH11239051A (ja) * 1997-12-24 1999-08-31 Nec Corp 電圧変換バッファ回路
JPH11261401A (ja) * 1997-12-23 1999-09-24 Sharp Corp 交差型電圧レベルシフト回路
JP2000124792A (ja) * 1998-10-20 2000-04-28 New Japan Radio Co Ltd レベルシフト回路
JP2000349618A (ja) * 1999-06-07 2000-12-15 Matsushita Electronics Industry Corp 電圧レベルシフト回路
JP2001068991A (ja) * 1999-08-26 2001-03-16 Nec Ic Microcomput Syst Ltd レベルシフト回路

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828202A (en) * 1971-07-06 1974-08-06 Burroughs Corp Logic circuit using a current switch to compensate for signal deterioration
US4450371A (en) * 1982-03-18 1984-05-22 Rca Corporation Speed up circuit
US4532436A (en) * 1983-09-30 1985-07-30 Rca Corporation Fast switching circuit
US4695744A (en) * 1985-12-16 1987-09-22 Rca Corporation Level shift circuit including source follower output
JPS63152220A (ja) 1986-12-16 1988-06-24 Nec Corp レベル変換回路
JP3335700B2 (ja) * 1993-03-30 2002-10-21 富士通株式会社 レベルコンバータ及び半導体集積回路
KR0172380B1 (ko) * 1995-06-17 1999-03-30 김광호 반도체 메모리장치의 데이터 출력버퍼
US5966030A (en) * 1997-08-05 1999-10-12 Lsi Logic Corporation Output buffer with regulated voltage biasing for driving voltages greater than transistor tolerance
GB2349996A (en) * 1999-05-12 2000-11-15 Sharp Kk Voltage level converter for an active matrix LCD
KR100308792B1 (ko) * 1999-09-28 2001-11-02 윤종용 레벨시프터를 가지는 반도체 장치의 데이터 출력회로 및 데이터 출력방법
JP2001319490A (ja) * 2000-05-12 2001-11-16 Mitsubishi Electric Corp 高電圧スイッチ回路および当該高電圧スイッチ回路を備える半導体記憶装置
JP2001339290A (ja) * 2000-05-29 2001-12-07 Mitsubishi Electric Corp 信号電位変換回路
US6388602B1 (en) * 2000-08-23 2002-05-14 International Business Machines Corporation Bubble and meta-stability error immune gray-code encoder for high-speed A/D converters
JP3866111B2 (ja) * 2002-01-18 2007-01-10 株式会社ルネサステクノロジ 半導体集積回路及びバーンイン方法
JP3657235B2 (ja) * 2002-03-25 2005-06-08 Necマイクロシステム株式会社 レベルシフタ回路及び該レベルシフタ回路を備えた半導体装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243680A (ja) * 1993-02-22 1994-09-02 Mitsubishi Electric Corp 信号レベル変換回路
JPH06268452A (ja) * 1993-03-16 1994-09-22 Mitsubishi Electric Corp レベル変換回路
JPH07264047A (ja) * 1994-03-18 1995-10-13 Fujitsu Ltd Ecl回路
JPH0974348A (ja) * 1995-09-06 1997-03-18 Seiko Epson Corp 半導体装置
JPH1084274A (ja) * 1996-09-09 1998-03-31 Matsushita Electric Ind Co Ltd 半導体論理回路および回路レイアウト構造
JPH11261401A (ja) * 1997-12-23 1999-09-24 Sharp Corp 交差型電圧レベルシフト回路
JPH11239051A (ja) * 1997-12-24 1999-08-31 Nec Corp 電圧変換バッファ回路
JPH11195975A (ja) * 1997-12-26 1999-07-21 Hitachi Ltd レベル変換回路および半導体集積回路装置
JPH11205140A (ja) * 1998-01-07 1999-07-30 Mitsubishi Electric Corp アナログデジタル変換器及びレベルシフタ
JP2000124792A (ja) * 1998-10-20 2000-04-28 New Japan Radio Co Ltd レベルシフト回路
JP2000349618A (ja) * 1999-06-07 2000-12-15 Matsushita Electronics Industry Corp 電圧レベルシフト回路
JP2001068991A (ja) * 1999-08-26 2001-03-16 Nec Ic Microcomput Syst Ltd レベルシフト回路

Also Published As

Publication number Publication date
JP4389787B2 (ja) 2009-12-24
JPWO2004042923A1 (ja) 2006-03-09
AU2003277555A1 (en) 2004-06-07
US20060164147A1 (en) 2006-07-27
US7282981B2 (en) 2007-10-16

Similar Documents

Publication Publication Date Title
US7248076B2 (en) Dual-voltage three-state buffer circuit with simplified tri-state level shifter
US7576566B2 (en) Level-conversion circuit
US7501856B2 (en) Voltage level shifter
US6429683B1 (en) Low-power CMOS digital voltage level shifter
US5406139A (en) Input buffer utilizing a cascode to provide a zero power TTL to CMOS input with high speed switching
WO2004042923A1 (ja) レベル変換回路
US6819159B1 (en) Level shifter circuit
US5432467A (en) Programmable logic device with low power voltage level translator
JPH0728207B2 (ja) Cmos駆動回路
US6392449B1 (en) High-speed low-power low-offset hybrid comparator
US6369632B1 (en) CMOS switching circuitry
JP4552652B2 (ja) レベル変換回路
US9225333B2 (en) Single supply level shifter with improved rise time and reduced leakage
US7187209B2 (en) Non-inverting domino register
JP3761812B2 (ja) レベルシフト回路
US6741106B2 (en) Programmable driver method and apparatus for high and low voltage operation
US6426658B1 (en) Buffers with reduced voltage input/output signals
US6803788B2 (en) SSTL voltage translator with dynamic biasing
KR100713907B1 (ko) 반도체 장치의 라인 구동 회로
JPH0237823A (ja) レベルシフト回路
JPH1174764A (ja) 電圧レベル変換機能付ラッチ回路及びフリップフロップ回路
US7746146B2 (en) Junction field effect transistor input buffer level shifting circuit
US7005910B2 (en) Feed-forward circuit for reducing delay through an input buffer
US20020033712A1 (en) Interface latch for data level transfer
US20080061848A1 (en) Output driver circuit having a clamped mode and an operating mode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006164147

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533807

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004549615

Country of ref document: JP

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10533807

Country of ref document: US