WO2004041765A1 - Procede de fabrication d'acides carboxyliques - Google Patents

Procede de fabrication d'acides carboxyliques Download PDF

Info

Publication number
WO2004041765A1
WO2004041765A1 PCT/FR2003/003198 FR0303198W WO2004041765A1 WO 2004041765 A1 WO2004041765 A1 WO 2004041765A1 FR 0303198 W FR0303198 W FR 0303198W WO 2004041765 A1 WO2004041765 A1 WO 2004041765A1
Authority
WO
WIPO (PCT)
Prior art keywords
acids
oxidation
acid
medium
hydrolysis
Prior art date
Application number
PCT/FR2003/003198
Other languages
English (en)
Inventor
Didier Bonnet
Tania Ireland
Jean-Pierre Simonato
Original Assignee
Rhodia Polyamide Intermediates
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US10/533,212 priority Critical patent/US7253312B2/en
Application filed by Rhodia Polyamide Intermediates filed Critical Rhodia Polyamide Intermediates
Priority to JP2004549261A priority patent/JP2006504781A/ja
Priority to EP03778477A priority patent/EP1562886A1/fr
Priority to AU2003285476A priority patent/AU2003285476A1/en
Priority to BRPI0315060-7A priority patent/BR0315060B1/pt
Priority to UAA200504096A priority patent/UA79640C2/uk
Publication of WO2004041765A1 publication Critical patent/WO2004041765A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/487Separation; Purification; Stabilisation; Use of additives by treatment giving rise to chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • C07C55/12Glutaric acid

Definitions

  • the present invention relates to a process for the manufacture of carboxylic acids. It relates more particularly to a process for the production of carboxylic acids by oxidation of a hydrocarbon with oxygen or an oxygen-containing gas, and even more particularly to the oxidation of cyclohexane to adipic acid.
  • Adipic acid is an important chemical compound used in many fields. Thus, adipic acid can be used as an additive in many products both in the food sector and in concrete. However, one of the most important uses is its application as a monomer in the manufacture of polymers including polyurethanes and polyamides.
  • adipic acid Several methods of manufacturing adipic acid have been proposed.
  • One of the most important, used industrially on a large scale, consists in oxidizing in one or two step (s) cyclohexane to a mixture of cyclohexanol / cyclohexanone by a gas containing oxygen or by oxygen. After extraction and purification of the cyclohexanol / cyclohexanone mixture, these compounds are oxidized in particular to adipic acid by nitric acid.
  • the reaction is carried out in a solvent medium, the solvent being a monocarboxylic acid such as acetic acid.
  • a solvent medium such as acetic acid.
  • Other solvents have been proposed, such as the lipophilic carboxylic acids described in patent FR 2806079.
  • esters are either recycled with the non-oxidized hydrocarbon, or entrained with the recovered acids.
  • the presence of esters in the reaction medium can cause a drop in the activity of the catalyst and especially the formation of undesirable by-products resulting from the oxidation of these esters.
  • esters are all the more important as the oxidation reaction is less selective for acids.
  • One of the objectives of the present invention is to provide a process for the manufacture of carboxylic acids by oxidation of hydrocarbons using oxygen or a gas containing oxygen. in which the harmful effect of the esters formed is reduced.
  • the invention provides a process for the manufacture of carboxylic acids by oxidation of a hydrocarbon with oxygen or an oxygen-containing gas in the presence of a solvent based on monocarboxylic acid and an oxidation catalyst characterized in that the reaction medium is treated to separate and extract the carboxylic acids formed during the oxidation and in that hydrolysis of the esters formed during the oxidation reaction is carried out by treatment of the reaction medium, either before separation of said acids formed or, after separation of said acids formed by treatment of the organic phase resulting from the reaction medium.
  • the hydrolysis is carried out by adding a strong acid to the medium to be treated and maintaining said medium at a temperature above 50 ° C; preferably between 80 ° C and 200 ° C.
  • the temperature holding time is a function of the quantity of esters to be hydrolyzed and is determined in the usual way by a person skilled in the art when adjusting the operating parameters of the process.
  • water can be added to the medium to be treated. However, this addition of water can be eliminated if the amount present in the medium or the water added with the strong acid is sufficient.
  • acids having a pKa of less than 2 are preferred.
  • sulfonic, sulfuric, nitric, hydrochloric, hydrobromic, orthophosphoric, triflic or similar acids are preferred.
  • the amount of strong acid added is defined to have a concentration of less than about ⁇ 0% relative to or by weight of the reaction medium, preferably between 0.1 and 10%, advantageously between 0.1 and 4%.
  • the strong acid is added in pure form, preferably in the form of a concentrated solution.
  • the strong acid is added in supported form or fixed on an inert material such as a resin.
  • an inert material such as a resin.
  • This embodiment makes it possible to carry out the hydrolysis under ideal conditions and to be able to easily separate and recover the strong acid.
  • Mention may be made, as acidic compounds suitable for the invention, of sulfonic resins by way of example. However, any other equivalent resin or support for strong acid functions may be used, the invention not being limited to the use of sulfonic resins.
  • the extraction or separation of the reaction medium from the carboxylic acids formed is carried out by decantation of the reaction medium into two phases, an aqueous phase and an organic phase.
  • This decantation is obtained or promoted directly by cooling the reaction medium, in the case where the concentration of water present in said medium is sufficient to obtain the formation of two phases. If the quantity of water present is not sufficient, an additional quantity of water is added to the reaction medium before decantation is carried out, before or after cooling.
  • the extraction of the carboxylic acids formed can be carried out by a liquid / liquid extraction by treatment of the reaction medium from the reactor with an extraction liquid.
  • the monocarboxylic acid solvent present in the reaction medium is advantageously insoluble in the extraction liquid.
  • the hydrolysis of the esters is advantageously carried out in the medium obtained after extraction of the carboxylic acids according to one of the embodiments described above, or by filtration if the carboxylic acid produced crystallizes after cooling of the reaction medium.
  • the hydrolysis of the esters can, according to the invention, also be carried out in the reaction medium before the extraction or the separation of the carboxylic acids formed.
  • the acids will be extracted or recovered according to the techniques described above from the medium after implementation of the hydrolysis of the esters.
  • the treatment with a strong acid is advantageously carried out after elimination by evaporation or distillation of the organic compounds having a boiling point less than or equal to that of the alcohols and / or ketones formed during the reaction oxidation.
  • the unreacted cyclohexane and all the organic compounds formed which have a boiling point lower than that of alcohol and ketone are separated from the medium by distillation and preferably recycled in the oxidation step.
  • the alcohol and the ketone (cyclohexanol and cyclohexanone) are also separated and recycled during this stage.
  • the treatment with a strong acid can also be carried out on the reaction medium before the separation by distillation of the organic compounds described above.
  • the treatment with a strong acid to carry out the hydrolysis of the esters is carried out after elimination by distillation of the organic compounds having a boiling point lower than or equal to that of the monocarboxylic solvent used to carry out oxidation such as for example aromatic carboxylic acids.
  • This embodiment makes it possible to recycle the acid solvent with the hydrocarbon and the ketone and alcohol compounds in the oxidation stage, before any contact with a strong acid.
  • the reaction medium after hydrolysis of the esters is treated to firstly separate the alcohols formed, and secondly recover the acids formed and optionally, the monocarboxylic solvent.
  • the separation of the alcohols formed such as cyclohexanol in the case of the oxidation of cyclohexane is advantageously obtained by distillation.
  • the monocarboxylic solvent is recycled after separation of the acids formed during the hydrolysis. This separation is advantageously obtained by extraction with a solvent of said acids formed, such as water. It is carried out either by addition of the extraction solvent and separation of the aqueous and organic phases by decantation or in a liquid / liquid extraction process and device, the oxidation solvent forming the organic phase
  • the alcohol (cyclohexanol) separated is advantageously recycled to the oxidation stage, the medium obtained after separation of the alcohols can be treated to recover the carboxylic acids present by precipitation, crystallization or any other method.
  • the oxidation solvent present in the medium obtained after separation of the alcohol is separated from the dicarboxylic acids or from the aqueous phase present by, in particular, the techniques described above.
  • the oxidation solvent as well separated is recycled in the oxidation step after advantageously a purification, for example by distillation.
  • the aqueous phase containing the acids formed during the hydrolysis is, after extraction or separation of the oxidation solvent, advantageously mixed with the aqueous phase containing the diacids formed during the oxidation extracted at the outlet of the oxidation step or obtained in the step of extracting these diacids or treated directly to recover the acids present.
  • This aqueous phase containing the diacids formed during the hydrolysis can also be mixed with the oxidation medium leaving the oxidation stage before the extraction of the diacids formed.
  • the medium obtained after separation of the alcohols can also be introduced in the liquid / liquid extraction step of the carboxylic acids formed in particular when the strong acid used to carry out the hydrolysis is in supported form, therefore easily separable from the medium before its introduction in the liquid / liquid extraction step.
  • the alcohol formed by the hydrolysis of the esters is oxidized to acid in the hydrolysis medium.
  • an oxidation catalyst can be added to the hydrolysis medium and the amount of strong acid added can be greater than 10% by weight.
  • the medium obtained containing acids is added directly to the step of crystallization of the dicarboxylic acid, without the step of separation and recovery of the alcohol.
  • the reaction medium is generally obtained from oxidation with oxygen or an oxygen-containing gas, of a hydrocarbon, more particularly of an arylaliphatic cycloaliphatic hydrocarbon such as cyclohexane, cyclododecane.
  • a hydrocarbon more particularly of an arylaliphatic cycloaliphatic hydrocarbon such as cyclohexane, cyclododecane.
  • the oxidation reaction is generally carried out in the presence of a solvent.
  • This solvent can be very varied in nature insofar as it is not substantially oxidizable under the reaction conditions. It can in particular be chosen from polar protic solvents and polar aprotic solvents.
  • polar protic solvents mention may, for example, be made of carboxylic acids having only primary or secondary hydrogen atoms, in particular aliphatic acids having from 2 to 9 carbon atoms such as acetic acid, perfluoroalkylcarboxylic acids such as trifluoroacetic acid, alcohols such as tertiobutanol, halogenated hydrocarbons such as dichloromethane, ketones such as acetone.
  • carboxylic acids having only primary or secondary hydrogen atoms such as acetic acid, perfluoroalkylcarboxylic acids such as trifluoroacetic acid, alcohols such as tertiobutanol, halogenated hydrocarbons such as dichloromethane, ketones such as acetone.
  • polar aprotic solvents mention may, for example, be made of lower alkyl esters (icalradical alkyl having from 1 to 4 carbon atoms) ' of carboxylic acids, in particular aliphatic carboxylic acids having from 2 to 9 carbon atoms or perfluoroalkylcarboxylic acids, tetramethylenesulfone (or sulfolane) or acetonitrile, benzonitrile.
  • the solvent can also be chosen from carboxylic acids of lipophilic nature.
  • lipophilic acid compound suitable for the invention means the aromatic, aliphatic, arylaliphatic or aikylaromatic acid compounds comprising at least 6 carbon atoms, which may comprise several acid functions and having a low solubility in water, that is to say a solubility of less than 10% by weight at room temperature (10 ° C - 30 ° C).
  • lipophilic organic compound there may be mentioned, for example, hexanoic, heptanoic, octanoic, 2-ethyl hexanoic, nonanoic, decanoic, undecanoic, dodecanoic, stearic (octadecanoic) acids and their permethyl derivatives (total substitution of the methylene group hydrogens by the group methyl), 2-octadecylsuccinic acid, 3,5-ditertiobutylbenzoic, 4-tertiobutylbenzoic, 4-octylbenzoic, tert-butyl hydrogen orthophthalate r naphthenic or anthracene acids substituted by alkyl groups, preferably tert-butyl derivatives, phthalic acids, fatty diacids such as the fatty acid dimer.
  • acids belonging to the preceding families and carrying different electron donor substituents groups with heteroatom of type O or N
  • electro acceptors halogens, sulfonimides, nitro groups, sulfonato or the like.
  • the solvent is chosen to advantageously obtain a homogeneous phase under the temperature and pressure conditions at which the oxidation reaction is carried out.
  • the solubility of the solvent in the hydrocarbon or the reaction medium is at least greater than 2% by weight, and that at least one homogeneous liquid phase comprising at least part of the hydrocarbons to be oxidized and part solvent is formed.
  • the solvent is chosen from those which are not very soluble in water, that is to say which have a solubility in water of less than 10% by weight at ambient temperature (10-30 ° C.).
  • the oxidation is carried out, in general, in the presence of a catalyst.
  • This catalyst advantageously comprises a metallic element chosen from the group comprising Cu, Ag, Au, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Se, In, TI, Y, Ga, Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, Cr, Mo, W, Mn, Te, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, lanthanides like Ce and combinations of them.
  • catalytic elements are used either in the form of compounds advantageously at least partially soluble in the liquid oxidation medium under the conditions for carrying out the oxidation reaction, or supported, absorbed or linked to an inert support such as silica , alumina, for example.
  • the catalyst is preferably, in particular under the conditions for carrying out the oxidation reaction:
  • the catalyst used is soluble in one of these media at room temperature or at the recycling temperature of these media in a new oxidation.
  • the catalytically active metallic elements are supported or incorporated in a micro or mesoporous mineral matrix or in a polymer matrix or are in the form of organometallic complexes grafted on an organic or mineral support.
  • the metal is an element of the support or that one works with complexes sterically trapped in porous structures under the conditions of oxidation.
  • the homogeneous or heterogeneous catalyst consists of salts or metal complexes of groups IVb (group of Ti), Vb (group of V), Vllb (group of Cr), Vllb ( Mn group), VIII (Fe or Co or Ni group), Ib (Cu group) and cerium, alone or as a mixture.
  • the preferred elements are, in particular, Mn and / or Co in combination with one or more elements chosen from the group comprising Zr, Hf, Ce, Hf, Fe.
  • the metal concentrations in the liquid oxidation medium vary between 0, 00001 and 5% (% by weight), preferably between 0.001% and 2%.
  • the concentration of solvent in the reaction medium is advantageously determined so as to have a molar ratio between the number of solvent molecules and the number of metal of catalytic element between 0.5 and 100,000, preferably between 1 and 5000
  • the concentration of solvent in the liquid oxidation medium can vary within wide limits. Thus, it can be between 1 and 99% by weight relative to the total weight of the liquid medium, more advantageously it can be between 2 and 50% by weight of the liquid medium. It is also possible, without departing from the scope of the invention, to use the solvent in combination with another compound which may in particular have the effect of improving the productivity and / or the selectivity of the oxidation reaction in adipic acid, and in particular the solubilization of oxygen. As examples of such compounds, there may be mentioned, in particular, nitriles, hydroxyimide compounds, halogen compounds, more advantageously fluorinated compounds.
  • nitriles such as acetonitrile, benzonitrile, imides belonging to the family described in patent application Ep 0824962, and more particularly N-hydroxysuccinimide (NHS) or N-hydroxyphthalimide (NHPI).
  • halogen derivatives such as dichloromethane
  • fluorinated compounds such as:
  • fluorinated aromatic hydrocarbons such as perfluorotoluene, perfluoromethylcyclohexane, perfluoroheptane, perfluorooctane, perfluorononane, perfluorodecaline, perfluoromethyldecaline,, ⁇ , ⁇ -trifluorotoluene, 1, 3-bis (methyl trifluoro) benzene).
  • - Fluorinated or perfluorinated ketones such as perfluorinated acetone.
  • - Fluorinated or perfluorinated alcohols such as hexanol, octanol, nonanol, perfluorinated decanol, perfluorinated t-butanol, perfluorinated isopropanol, hexafluoro-1, 1, 1, 3,3,3-propanol-2.
  • Fluorinated or perfluorinated nitriles such as perfluorinated acetonitrile.
  • Fluorinated or perfluorinated acids such as trifluoromethylbenzoic acids, pentafluorobenzoic acid, hexanoic, heptanoic, octanoic, nonanoic acid, perfluorinated adipic acid.
  • Fluorinated or perfluorinated halides such as perfluorinated iodo octane, perfluorinated bromooctane.
  • Fluorinated or perfluorinated amines such as perfluorinated tripropylamine, perfluorinated tributylamine, perfluorinated tripentylamine.
  • the invention applies more particularly to the oxidation of cycloaliphatic compounds such as cyclohexane, cyclododecane into corresponding linear diacids, adipic acid, dodecanoic acid.
  • it relates to the direct oxidation of cyclohexane to adipic acid, by a gas containing oxygen, in a liquid medium and in the presence of a manganese catalyst.
  • the oxidation reaction is carried out at a temperature between 50 ° C and 200 ° C, preferably between 70 ° C and 180 ° C. It can be carried out at atmospheric pressure. However, it is generally implemented under pressure to maintain the components of the reaction medium in liquid form.
  • the pressure can be between 10Kpa (0.1 bar) and 20,000 Kpa (200 bar), preferably between 100 Kpa (1 bar) and 10,000 Kpa (100 bar).
  • the oxygen used can be in pure form or as a mixture with an inert gas such as nitrogen or helium. It is also possible to use air more or less enriched with oxygen.
  • the quantity of oxygen supplied to the medium is advantageously between 1 and 1000 moles per mole of compounds to be oxidized.
  • the oxidation process can be carried out continuously or according to a batch process.
  • the liquid reaction medium leaving the reactor is treated according to known methods making it possible on the one hand to separate and recover the diacid produced and on the other hand to recycle the non-oxidized or partially oxidized organic compounds such as cyclohexane, cyclohexanol and / or cyclohexanone, the catalyst and the acidic compound.
  • a compound which initiates the oxidation reaction such as for example a ketone, an alcohol, an aldehyde or a hydroperoxide.
  • Cyclohexanone, cyclohexanol and cyclohexyl hydroperoxide which are reaction intermediates in the case of the oxidation of cyclohexane, are very particularly indicated.
  • the initiator represents from 0.01% to 20% by weight of the weight of the reaction mixture used, without these proportions having a critical value.
  • the initiator is especially useful when starting oxidation. It can be introduced at the start of the reaction. Oxidation can also be carried out in the presence of water introduced from the initial stage of the process.
  • the reaction mixture resulting from the oxidation is subjected to different operations of separation of some of its constituents to, for example, allow their recycling at the level of oxidation and the recovery of the acids produced.
  • the crude reaction mixture can firstly be subjected to cooling to a temperature of 16 ° C to 30 ° C for example, which causes the crystallization of at least part of the acid form.
  • a medium comprising a solid phase consisting essentially of acid, at least one organic liquid phase essentially containing the unreacted compound to be oxidized, optionally the acid compound and the oxidation intermediates, (or more organic phases if the acid compound and the hydrocarbon are not completely miscible at low temperature) and an aqueous liquid phase essentially containing acid by-products of oxidation and the water formed.
  • the catalyst can be found in one of the organic phases if it is soluble in said phase, or in the lower aqueous phase.
  • the organic and aqueous liquid phases constituting the filtrate or the centrifuge are separated by decantation if necessary: the organic phase or phases can be recycled in a new oxidation reaction.
  • the final raw reaction mixture can be drawn off while hot.
  • the reaction mixture then settles into at least two liquid phases: one or more organic phases containing essentially the unreacted hydrocarbon, the acid compound, the oxidation intermediates and an aqueous liquid phase containing essentially the acids formed, the water formed and / or added.
  • organic phase Depending on the solubility and the nature of the catalyst, it can be present in the organic phase (s), recovered by solid / liquid separation before precipitation or crystallization of the acid formed in the case of heterogeneous catalysis or if it is soluble in the aqueous phase, extract not liquid / liquid extraction, on resin or electrodialysis.
  • the liquid phases are separated by decantation: the organic phase or phases can be recycled in a new oxidation reaction.
  • the reaction medium withdrawn from the reactor when hot or after cooling is introduced into a step of liquid / liquid extraction of the carboxylic acids formed.
  • the extraction liquid is generally the water in which the acids formed are soluble, the organic compounds, hydrocarbons, alcohol, ketones, esters are insoluble as well as the solvent used in the oxidation step.
  • the catalyst can be in the organic fraction and will be recycled in the reaction medium. It can also be found in the fraction containing the carboxylic acids called for simplicity, aqueous phase.
  • the catalyst is recovered according to the usual techniques and listed above.
  • the hydrolysis step by adding an acid and maintaining temperature is carried out on the reaction medium before separation of the carboxylic acid or on the medium collected after decantation or filtration of the crystallized acid.
  • the hydrolysis of the esters is carried out by adding an acid to the separated liquid organic phase, before recycling to the oxidation reactor and optionally water.
  • the carboxylic acid recovered can be purified according to the usual techniques and described in numerous documents, for example by crystallization and recrystallization from different solvents such as water, acetic acid or other solvents organic. Purification processes are described in particular in French patents Nos. 2749299 and 2749300.
  • the catalyst is not entirely recycled with the organic phase, and is partly or completely extracted with the aqueous phase, it will advantageously be extracted from the aqueous phase by different techniques such as liquid / liquid extraction, electrodialysis, treatment on ion exchange resin for example.
  • the process of the invention makes it possible to limit the formation of by-products, in particular formed by the oxidation of the esters if these are not removed before recycling.
  • the elimination of esters and the limitation of the formation of by-products make it possible in particular to maintain the activity of the oxidation catalyst and to facilitate the extraction of the diacids formed from the oxidation medium.
  • a distillation foot of 510 g is recovered.
  • This foot constitutes "the reaction mixture after distillation of the light" treated in I example 1-A below.
  • the reaction mixture used is the "reaction mixture after distillation of the light” above having undergone a complementary elimination of the cyclohexanol / cyclohexanone compounds (hereinafter designated "olone") by azeotropic distillation in the presence of water.
  • reaction mixture leaving the reactor is obtained as follows:
  • phase a lower phase known as aqueous which esentiably contains the diacids produced and the catalysis metals and a higher phase known as organic which contains essentially cyclohexane, tert-butylbenzoic acid, cyclohexanone, cyclohexanol and other reaction by-products including esters.
  • the mixture is stirred for 1 h at 70 ° C.
  • esters are completely hydrolyzed and the cyclohexanol formed is completely transformed into adipic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention concerne un procédé de fabrication d'acides carboxyliques.Elle se rapporte plus particulièrement à un procédé de fabrication d'acides carboxyliques par oxydation d'hydrocarbure par l'oxygène ou un gaz contenant de l'oxygène, et encore plus particulièrement à l'oxydation du cyclohexane en acide adipique.Elle concerne un procédé comprenant une étape d'hydrolyse des esters formés au cours de l'étape d'oxydation.

Description

PROCEDE DE FABRICATION D'ACIDES CARBOXYLIQUES
La présente invention concerne un procédé de fabrication d'acides carboxyliques. Elle se rapporte plus particulièrement à un procédé de fabrication d'acides carboxyliques par oxydation d'hydrocarbure par l'oxygène ou un gaz contenant de l'oxygène, et encore plus particulièrement à l'oxydation du cyclohexane en acide adipique.
L'acide adipique est un composé chimique important utilisé dans de nombreux domaines. Ainsi, l'acide adipique peut être utilisé comme additif dans de nombreux produits tant dans le domaine alimentaire que les bétons. Toutefois, une des utilisations les plus importantes est son application comme monomère dans la fabrication de polymères dont les polyuréthanes et les polyamides.
Plusieurs procédés de fabrication d'acide adipique ont été proposés. Un des plus importants, utilisé industriellement à grande échelle, consiste à oxyder en une ou deux étape(s) le cyclohexane en un mélange de cyclohexanol/cyclohexanone par un gaz contenant de l'oxygène ou par l'oxygène. Après extraction et purification du mélange cyclohexanol/cyclohexanone, ces composés sont oxydés notamment en acide adipique par l'acide nitrique.
Toutefois ce procédé présente un inconvénient majeur lié à la formation de vapeur nitreuse.
De nombreux travaux ont été effectués pour la mise au point d'un procédé d'oxydation par l'oxygène ou un gaz contenant de l'oxygène, d'hydrocarbures permettant d'obtenir directement les acides carboxyliques, principalement l'acide adipique.
Ces procédés sont décrits notamment dans les brevets FR2761984, FR2791667, FR2765930, US 5294739.
Généralement, la réaction est réalisée en milieu solvant, le solvant étant un acide monocarboxylique comme l'acide acétique. D'autres solvants ont été proposés comme les acides carboxyliques à caractère lipophile décrits dans le brevet FR 2806079.
De nombreux brevets ont décrit les conditions opératoires de cette réaction ainsi que les différentes étapes pour extraire les acides formés, les purifier et également recycler l'hydrocarbure non oxydé ainsi que le catalyseur.
Toutefois, dans cette réaction d'oxydation, il se forme des sous-produits qui peuvent diminuer de manière plus ou moins importante le rendement du procédé. Parmi ceux-ci, les sous-produits à fonction alcool tel que le cyclohexanol sont particulièrement néfastes. En effet, ils peuvent réagir avec les acides formés pour donner des esters et ainsi fortement diminuer le rendement en acides carboxyliques récupérés. Selon le mode d'extraction et de séparation des acides, les esters sont soit recyclés avec l'hydrocarbure non oxydé, soit entraînés avec les acides récupérés. La présence d'esters dans le milieu reactionnel peut entraîner une baisse de l'activité du catalyseur et surtout la formation de sous produits indésirables résultant de l'oxydation de ces esters
Le problème de la formation d'esters est d'autant plus important que la réaction d'oxydation est moins sélective en acides.
Un des objectifs de la présente invention est de proposer un procédé de fabrication d'acides carboxyliques par oxydation d'hydrocarbures à l'aide de l'oxygène ou d'un gaz contenarrt de l'oxygèjne. dansjlequel l'effet néfaste des esters formés est diminué. A cet effet, l'invention propose un procédé de fabrication d'acides carboxyliques par oxydation d'un hydrocarbure avec de l'oxygène ou un gaz contenant de l'oxygène en présence d'un solvant à base d'acide monocarboxylique et d'un catalyseur d'oxydation se caractérisant en ce que le milieu reactionnel est traité pour séparer et extraire les acides carboxyliques formés au cours de l'oxydation et en ce qu'une hydrolyse des esters formés pendant la réaction d'oxydation est réalisée par traitement du milieu reactionnel, soit avant séparation desdits acides formés soit, après séparation desdits acides formés par traitement de la phase organique issue du milieu reactionnel.
Selon une caractéristique préférentielle de l'invention, l'hydrolyse est réalisée par addition dans le milieu à traiter d'un acide fort et maintien dudit milieu à une température supérieure à 50°C; de préférence comprise entre 80 C et 200°C.
La durée de maintien en température est fonction de la quantité d'esters à hydrolyser et est déterminée de manière habituelle par l'homme du métier lors du réglage des paramètres de fonctionnement du procédé.
Pour réaliser l'hydrolyse, de l'eau peut être ajoutée dans le milieu à traiter. Toutefois, cette addition d'eau peut être supprimée si la quantité présente dans le milieu ou l'eau ajoutée avec l'acide fort est suffisante.
Comme acide fort convenable pour l'invention, les acides présentant un pKa inférieur à 2 sont préférés. A titre d'exemple, on peut citer les acides sulfonique, sulfurique, nitrique, chlorhydrique, bromhydrique, orthophosphorique, triflique ou analogues.
Généralement, la quantité d'acide fort ajoutée est définie pour avoir une concentration ponαéraie inférieure à ι0 % environ par rapport ou poids du milieu reactionnel, de préférence comprise entre 0,1 et 10 %, avantageusement entre 0,1 et 4 %. Dans un mode de réalisation de l'invention, l'acide fort est ajouté sous forme pure, de préférence sous forme d'une solution concentrée.
Selon un autre mode de réalisation de l'invention, l'acide fort est ajouté sous forme supportée ou fixée sur un matériau inerte tel qu'une résine. Ce mode de réalisation permet de mettre en œuvre l'hydrolyse dans des conditions idéales et de pouvoir séparer et récupérer aisément l'acide fort. Comme composés acides convenables pour l'invention on peut citer à titre d'exemple les résines sulfoniques. Toutefois, tout autre résine équivalente ou support de fonctions acides fort pourra être utilisé, l'invention n'étant pas limitée à l'utilisation des résines sulfoniques.
Dans un mode de réalisation de l'invention, l'extraction ou séparation du milieu reactionnel des acides carboxyliques formés est effectuée par décantation du milieu reactionnel en deux phases, une phase aqueuse et une phase organique. Cette décantation est obtenue ou favorisée directement par refroidissement du milieu reactionnel, dans le cas où la concentration de l'eau présente dans ledit milieu est suffisante pour obtenir la formation de deux phases. Dans le cas où la quantité d'eau présente n'est pas suffisante, une quantité d'eau supplémentaire est ajoutée au milieu reactionnel avant de réaliser la décantation, avant ou après refroidissement.
Dans un autre mode de réalisation de l'invention, l'extraction des acides carboxyliques formés peut être réalisée par une extraction liquide/liquide par traitement du milieu reactionnel issu du réacteur par un liquide d'extraction.
Le solvant acide monocarboxylique présent dans le milieu reactionnel est avantageusement insoluble dans le liquide d'extraction.
Les produits sont considérés, au sens du brevet, comme insolubles dans le liquide d'extraction si leur solubilité dans ledit liquide , mesurée à 90°C et sous pression atmosphérique, est inférieure ou égale à 10 % en poids par rapport au liquide.
Selon l'invention, l'hydrolyse des esters est réalisée avantageusement dans le milieu obtenu après extraction des acides carboxyliques selon un des modes de réalisation décrits ci-dessus, ou par filtration si l'acide carboxylique produit cristallise après refroidissement du milieu reactionnel.
Toutefois, l'hydrolyse des esters peut, selon l'invention, également être réalisée dans le milieu reactionnel avant l'extraction ou la séparation des acides carboxyliques formés. Dans ce mode de réalisation, les acides seront extraits ou récupérés selon les techniques décrites ci-dessus à partir du milieu après mise en œuvre de l'hydrolyse des esters. Selon un mode de réalisation préféré de l'invention, le traitement par un acide fort est réalisé avantageusement après élimination par évaporation ou distillation des composés organiques présentant un point d'ébullition inférieur ou égal à celui des alcools et/ou cétones formés pendant la réaction d'oxydation. Ainsi, dans le cas de l'oxydation du cyclohexane, le cyclohexane qui n'a pas réagi et tous les composés organiques formés qui ont un point d'ébullition inférieur à celui de l'alcool et de la cétone (le cyclohexanol ou la cyclohexanone dans le cas de l'oxydation du cyclohexane) sont séparés du milieu par distillation et de préférence, recyclés dans l'étape d'oxydation . L'alcool et la cétone (cyclohexanol et la cyclohexanone) sont également séparés et recyclés au cours de cette étape. Toutefois, le traitement par un acide fort peut également être pratiqué sur le milieu reactionnel avant la séparation par distillation des composés organiques décrits ci- dessus.
Selon un autre mode de réalisation de l'invention, le traitement par un acide fort pour réaliser l'hydrolyse des esters est réalisé après élimination par distillation des composés organiques présentant un point d'ébullition inférieur ou égal à celui du solvant monocarboxylique utilisé pour réaliser l'oxydation tel que par exemple les acides carboxyliques aromatiques. Ce mode de réalisation permet de recycler le solvant acide avec l'hydrocarbure et les composés cétones et alcools dans l'étape d'oxydation, avant toute mise en contact avec un acide fort.
Selon une autre caractéristique de l'invention, le milieu reactionnel après hydrolyse des esters est traité pour d'une part séparer les alcools formés, et d'autre part récupérer les acides formés et éventuellement, le solvant monocarboxylique. La séparation des alcools formés tels que le cyclohexanol dans le cas de l'oxydation du cyclohexane est obtenu avantageusement par distillation. Le solvant monocarboxylique est recyclé après séparation des acides formés au cours de l'hydrolyse. Cette séparation est obtenue avantageusement, par extraction par un solvant desdits acides formés ,tel que l'eau. Elle est réalisée soit par addition du solvant d'extraction et séparation des phases aqueuse et organique par décantation soit dans un procédé et dispositif d'extraction liquide/liquide, le solvant d'oxydation formant la phase organique
L'alcool (cyclohexanol) séparé est, avantageusement, recyclé à l'étape d'oxydation, le milieu obtenu après séparation des alcools peut être traité pour récupérer les acides carboxyliques présents par précipitation, cristallisation ou tout autre méthode.
Avantageusement, le solvant d'oxydation présent dans le milieu obtenu après séparation de l'alcool est séparé des acides dicarboxyliques ou de la phase aqueuse présente par, notamment, les techniques décrites ci-dessus. Le solvant d'oxydation ainsi séparé est recyclé dans l'étape d'oxydation après avantageusement une purification, par exemple par distillation. La phase aqueuse contenant les acides formés lors de l'hydrolyse est, après extraction ou séparation du solvant d'oxydation, avantageusement mélangée avec la phase aqueuse contenant les diacides formés lors de l'oxydation extraites en sortie d'étape d'oxydation ou obtenue dans l'étape d'extraction de ces diacides ou traitée directement pour récupérer les acides présents. Cette phase aqueuse contenant les diacides formés lors de l'hydrolyse peut également être mélangée au milieu d'oxydation sortant de l'étape d'oxydation avant l'extraction des diacides formés. Le milieu obtenu après séparation des alcools peut également être introduit dans l'étape d'extraction liquide/liquide des acides carboxyliques formés notamment quand l'acide fort utilisé pour réaliser l'hydrolyse est sous forme supportée, donc facilement séparable du milieu avant son introduction dans l'étape d'extraction liquide/liquide.
Dans un mode de réalisation particulier de l'invention, quand l'acide fort est l'acide nitrigue, l'alcool _ formé par l'hydrolyse des_esters est oxydé_en acide dans le milieu d'hydrolyse. Pour cela, un catalyseur d'oxydation peut être ajouté au milieu d'hydrolyse et la quantité d'acide fort ajouté peut être supérieure à 10 % en poids. Le milieu obtenu contenant des acides est ajouté directement à l'étape de cristallisation du diacide carboxylique, sans étape de séparation et récupération de l'alcool.
Le milieu reactionnel est généralement obtenu à partir de l'oxydation par l'oxygène ou un gaz contenant de l'oxygène, d'un hydrocarbure, plus particulièrement d'un hydrocarbure cycloaliphatique arylaliphatiques tels que le cyclohexane, le cyclododécane. La réaction d'oxydation est généralement mise en œuvre en présence d'un solvant. Ce solvant peut être de nature très variée dans la mesure où il n'est pas sensiblement oxydable dans les conditions réactionnelles. Il peut être notamment choisi parmi les solvants protiques polaires et les solvants aprotiques polaires. Comme solvants protiques polaires, on peut citer par exemple les acides carboxyliques ne possédant que des atomes d'hydrogène primaires ou secondaires, en particulier les acides aliphatiques ayant de 2 à 9 atomes de carbone tels que l'acide acétique, les acides perfluoroalkylcarboxyliques tel que l'acide trifluoroacétique, les alcools tels que le tertiobutanol, les hydrocarbures halogènes tel que le dichlorométhane, les cétones telles que l'acétone. Comme solvants aprotiques polaires, on peut citer par exemple les esters d'alkyle inférieur (≈radical alkyle ayant de 1 à 4 atomes de carbone) ' d'acides carboxyliques, en particulier des acides carboxyliques aliphatiques ayant de 2 à 9 atomes de carbone ou des acides perfluoroalkylcarboxyliques, la tétraméthylènesulfone (ou sulfolane) ou l'acétonitrile, benzonitrile.
Le solvant peut également être choisi parmi les acides carboxyliques à caractère lipophile. Par composé acide lipophile convenable pour l'invention, on entend les composés acides aromatiques, aliphatiques, arylaliphatiques ou aikylaromatiques comprenant au moins 6 atomes de carbones, pouvant comprendre plusieurs fonctions acides et présentant une faible solubilité dans l'eau, c'est à dire une solubilité inférieure à 10 % en poids à température ambiante (10°C - 30°C).
Comme composé organique lipophile on peut citer par exemple, les acides hexanoïque, heptanoïque, octanoïque, éthyl-2 hexanoïque, nonanoïque, décanoïque, undécanoïque, dodécanoïque, stéarique (octadécanoïque) et leurs dérivés perméthylés (substitution totale des hydrogènes des groupes méthylènes par le groupe méthyie), l'acide 2-octadécylsuccinique, 3,5-ditertiobutylbenzoïque, 4-tertiobutylbenzoïque, 4- octylbenzoïque, l'hydrogénoorthophtalate de tertiobutyler les acides naphténiques ou anthracéniques substitués par des groupements alkyles, de préférence de type tertiobutyle, les dérivés substitués des acides phtaliques, les diacides gras comme le dimère d'acide gras. On„ peut , également .cjter les. acides appartenant aux familles précédentes et porteurs de différents substituants électrodonneurs (groupements avec hétéroatome du type O ou N) ou électroaccepteurs (halogènes, sulfonimides, groupements nitro, sulfonato ou analogues).
De manière générale, le solvant est choisi pour obtenir avantageusement une phase homogène dans les conditions de température et de pression auxquelles est mis en œuvre la réaction d'oxydation. Pour cela, il est avantageux que la solubilité du solvant dans l'hydrocarbure ou le milieu reactionnel soit au moins supérieure à 2 % en poids, et qu'au moins une phase liquide homogène comprenant au moins une partie des hydrocarbures à oxyder et une partie du solvant soit formée.
Avantageusement, le solvant est choisi parmi ceux qui sont peu solubles dans l'eau, c'est à dire qui présentent une solubilité dans l'eau inférieure à 10 % en poids à température ambiante (10-30°C).
Toutefois, il est possible sans sortir du cadre de l'invention, d'utiliser un solvant présentant une solubilité dans l'eau supérieure à celle indiquée précédemment si le coefficient de partage de ce composé entre la ou les phases organiques du milieu reactionnel constituées essentiellement par l'hydrocarbure à oxyder, les intermédiaires d'oxydation et la phase non organique comprenant l'eau formée pendant la réaction d'oxydation permet d'obtenir une concentration du solvant dans ladite phase aqueuse inférieure à 10 % en poids.
L'oxydation est réalisée, en général, en présence d'un catalyseur. Ce catalyseur comprend avantageusement un élément métallique choisi dans le groupe comprenant Cu, Ag, Au, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Se, In, TI, Y, Ga, Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, Cr, Mo, W, Mn, Te, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, les lanthanides comme Ce et les combinaisons de ceux-ci. Ces éléments catalytiques sont mis en œuvre soit sous forme de composés avantageusement au moins partiellement solubles dans le milieu liquide d'oxydation aux conditions de mise en œuvre de la réaction d'oxydation, soit supportés, absorbés ou liés à un support inerte tel que silice, alumine, par exemple. Le catalyseur est de préférence, notamment aux conditions de mise en œuvre de la réaction d'oxydation :
- soit soluble dans l'hydrocarbure à oxyder,
- soit soluble dans le composé acide lipophile,
- soit soluble dans le mélange hydrocarbure/composé acide lipophile formant une phase liquide homogène aux conditions de mise en œuvre de la réaction.
Selon un mode de réalisation préféré de l'invention, le catalyseur utilisé est soluble dans l'un de ces milieux à température ambiante ou à la température de recyclage de ces milieux dans une nouvelle oxydation.
P? Ie. J®1" .!!1®. soluble, on entend que le catalyseur soit au moins partiellement soluble dans le milieu considéré.
Dans le cas d'une catalyse hétérogène, les éléments métalliques catalytiquement actifs sont supportés ou incorporés dans une matrice minérale micro ou mésoporeuse ou dans une matrice poiymérique ou sont sous forme de complexes organométalliques greffés sur un support organique ou minéral. Par incorporé, on entend que le métal est un élément du support ou que l'on travaille avec des complexes steriquement piégés dans des structures poreuses dans les conditions de l'oxydation.
Dans un mode de réalisation préféré de l'invention, le catalyseur homogène ou hétérogène est constitué de sels ou de complexes de métaux des groupes IVb (groupe du Ti), Vb (groupe du V), Vllb (groupe du Cr), Vllb (groupe du Mn), VIII (groupe du Fe ou Co ou Ni), Ib (groupe du Cu) et cérium, seuls ou en mélange. Les éléments préférés sont, en particulier, Mn et/ou Co en association avec un ou plusieurs éléments choisis dans le groupe comprenant Zr, Hf, Ce, Hf, Fe. Les concentrations en métal dans le milieu liquide d'oxydation varient entre 0,00001 et 5 % (% poids), de préférence entre 0,001 % et 2 %. Par ailleurs, la concentration en solvant dans le milieu reactionnel est avantageusement déterminé pour avoir un rapport molaire entre le nombre de molécules de solvant et le nombre de métal d'élément catalytique compris entre 0,5 et 100 000, de préférence entre 1 et 5000
La concentration en solvant dans le milieu liquide d'oxydation peut varier dans de larges limites. Ainsi, elle peut être comprise entre 1 et 99 % en poids par rapport au poids total du milieu liquide, plus avantageusement elle peut être comprise entre 2 et 50 % en poids du milieu liquide. Il est également possible, sans pour cela sortir du cadre de l'invention, d'utiliser le solvant en association avec un autre composé qui peut notamment avoir comme effet d'améliorer la productivité et/ou la sélectivité de la réaction d'oxydation en acide adipique, et notamment la solubilisation de l'oxygène. Comme exemples de tels composés, on peut citer, en particulier, les nitriles, les composés hydroxyimides les composés halogènes, plus avantageusement les composés fluorés. Comme composés plus particulièrement convenables, on peut citer les nitriles comme l'acétonitrile, le benzonitrile, les imides appartenant à la famille décrite dans la demande brevet Ep 0824962, et plus particulièrement la N-hydroxysuccinimide (NHS) ou la N-hydroxyphtalimide (NHPI), les dérivés halogènes comme le dichlorométhane, les composés fluorés comme :
- Hydrocarbures aliphatiques fluorés ou perfluorés cycliques ou acycliques,
- hydrocarbures fluorés aromatiques tels le perfluorotoluène, perfluorométhylcyclohexane, perfluoroheptane, perfluorooctane, perfluorononane, perfluorodécaline, perfluorométhyldécaline, , α, α-trifluorotoluène, 1 ,3-bis (méthyl trifluoro) benzène).
- Esters perfluorés ou fluorés tels que perfluorooctanoates d'alkyle, perfluoronanoates d'alkyle.
- Cétones fluorées ou perfluorées telles que acétone perfluorée. - Alcools fluorés ou perfluorés tels que hexanol, octanol, nonanol, décanol perfluorés, t-butanol perfluoré, isopropanol perfluoré, hexafluoro-1 ,1 ,1 ,3,3,3- propanol-2. Nitriles fluorés ou perfluorés tels que acétonitrile perfluoré.
- Acides fluorés ou perfluorés tels que acides trifluorométhylbenzoïque, acide pentafluorobenzoique, acide hexanoique, heptanoique, octanoique, nonanoique perfluorés, acide adipique perfluoré.
Halogénures fluorés ou perfluorés tels que iodo octane perfluoré, bromooctane perfluoré.
- Aminés fluorées ou perfluorées tels que tripropylamine perfluorée, tributylamine perfluorée, tripentylamine perfluorée.
L'invention s'applique plus particulièrement à l'oxydation de composés cycloaliphatiques tels que le cyclohexane, le cyclododécane en diacides linéaires correspondants, l'acide adipique, l'acide dodécanoïque. Selon un mode de réalisation préféré de l'invention, elle concerne l'oxydation directe du cyclohexane en acide adipique, par un gaz contenant de l'oxygène, en milieu liquide et en présence α'un catalyseur au manganèse. La réaction d'oxydation est mise en œuvre à une température comprise entre 50°C et 200°C, de préférence entre 70°C et 180°C. Elle peut être réalisée sous pression atmosphérique. Toutefois, elle est généralement mise en œuvre sous pression pour maintenir les composants du milieu reactionnel sous forme liquide. La pression peut être comprise entre 10Kpa (0,1 bar) et 20000 Kpa (200 bars), de préférence entre 100 Kpa (1 bar) et 10000 Kpa (100 bars).
L'oxygène utilisé peut être sous forme pure ou en mélange avec un gaz inerte tel que l'azote ou l'hélium. On peut également utiliser de l'air plus ou moins enrichi en oxygène. La quantité d'oxygène alimentée dans le milieu est avantageusement comprise entre 1 et 1000 moles par mole de composés à oxyder.
Le procédé d'oxydation peut être réalisé de manière continue ou selon un procédé discontinu. Avantageusement, le milieu reactionnel liquide sorti du réacteur est traité selon des procédés connus permettant d'une part de séparer et récupérer le diacide produits et d'autre part de recycler les composés organiques non oxydés ou partiellement oxydés comme le cyclohexane, le cyclohexanol et/ou la cyclohexanone, le catalyseur et le composé acide.
Il est avantageux de mettre en œuvre également un composé initiateur de la réaction d'oxydation, tel que par exemple une cétone, un alcool, un aldéhyde ou un hydroperoxyde. La cyclohexanone, le cyclohexanol et l'hydroperoxyde de cyclohexyle qui sont des intermédiaires reactionnels dans le cas de l'oxydation du cyclohexane, sont tout particulièrement indiqués. Généralement l'initiateur représente de 0,01 % à 20 % en poids du poids du mélange reactionnel mis en œuvre, sans que ces proportions aient une valeur critique. L'initiateur est surtout utile lors du démarrage de l'oxydation. Il peut être introduit dès le début de la réaction. L'oxydation peut également être mise en œuvre en présence d'eau introduite dès le stade initial du procédé.
Comme indiqué ci-dessus, le mélange reactionnel issu de l'oxydation est soumis à différentes opérations de séparation de certains de ses constituants pour, par exemple, permettre leur recyclage au niveau de l'oxydation et la récupération des acides produits. Selon une première variante du procédé, on peut soumettre tout d'abord le mélange reactionnel brut à un refroidissement à une température de 16°C à 30°C par exemple, ce qui occasionne la cristallisation d'au moins une partie de l'acide formé. On obtient ainsi un milieu comprenant une phase solide constituée essentiellement d'acide, au moins une phase liquide organique contenant essentiellement le composé à oxyder n'ayant pas réagi, éventuellement le composé acide et les intermédiaires d'oxydation, (ou plusieurs phases organiques si le composé acide et l'hydrocarbure ne sont pas totalement miscibles à basse température) et une phase liquide aqueuse contenant essentiellement des sous produits acides de l'oxydation et l'eau formée. Le catalyseur peut se trouver dans une des phases organiques s'il est soluble dans ladite phase, ou dans la phase aqueuse inférieure.
Après filtration ou centrifugation du solide, on procède s'il y a lieu à la séparation par décantation des phases liquides organique et aqueuse constituant le filtrat ou le centrifugeât : la ou les phases organiques peuvent être recyclées dans une nouvelle réaction d'oxydation.
Il peut être avantageux de procéder, préalablement à l'opération de cristallisation de l'acide, à une concentration du mélange reactionnel.
Selon une deuxième variante du procédé, on peut soutirer à chaud le mélange reactionnel brut final. Le mélange reactionnel décante alors en au moins deux phases liquides : une ou plusieurs phases organiques contenant essentiellement l'hydrocarbure n'ayant pas réagi, le composé acide, les intermédiaires d'oxydation et une phase liquide aqueuse contenant essentiellement les acides formés, l'eau formée et/ou additionnée. Selon la solubilité et la nature du catalyseur celui-ci peut être présent dans la ou les phases organiques, récupéré par séparation solide/liquide avant précipitation ou cristallisation de l'acide formé dans le cas d'une catalyse hétérogène ou s'il est soluble dans la phase aqueuse, extrait pas extraction liquide/liquide, sur résine ou électrodialyse.
Comme dans la première variante, on procède à la séparation par décantation des phases liquides : la ou les phases organiques peuvent être recyclées dans une nouvelle réaction d'oxydation.
Selon une troisième variante du procédé de l'invention, le milieu reactionnel soutiré du réacteur à chaud ou après refroidissement est introduit dans une étape d'extraction liquide/liquide des acides carboxyliques formés. Le liquide d'extraction est généralement l'eau dans laquelle les acides formés sont solubles, les composés organiques, hydrocarbures, alcool, cétones, esters sont insolubles ainsi que le solvant utilisé dans l'étape d'oxydation.
Comme précédemment, le catalyseur peut se trouver dans la fraction organique et sera recyclé dans le milieu reactionnel. Il peut également se retrouver dans la fraction contenant les acides carboxyliques appelée pour plus de simplicité, phase aqueuse. Le catalyseur est récupéré selon les techniques habituelles et listées ci-dessus.
Selon la présente invention et un premier mode de réalisation de celle-ci, l'étape d'hydrolyse par addition d'un acide et maintient en température est réalisée sur le milieu reactionnel avant séparation de l'acide carboxylique ou sur le milieu recueilli après décantation ou filtration de l'acide cristallisé. Selon un second mode de réalisation de l'invention, l'hydrolyse des esters est réalisée par addition d'un acide dans la phase organique liquide séparée, avant le recyclage dans le réacteur d'oxydation et éventuellement de l'eau. Dans ces deux modes de réalisation, il peut être avantageux de séparer, préalablement à l'addition de l'acide fort, les composés organiques tels que l'hydrocarbure qui n'a pas réagi, les alcools et cétones formés et tous les autres produits présentant un point d'ébullition plus bas que les dits alcools et cétones, et également le solvant monocarboxylique, dans un mode de réalisation avantageux de l'invention.
Dans ces différents modes de réalisation, l'acide carboxylique récupéré peut être purifié selon les techniques habituelles et décrites dans de nombreux documents, par exemple par cristallisation et recristallisation dans différents solvants tels que l'eau, l'acide acétique ou d'autres solvants organiques. Des procédés de purification sont notamment décrits dans les brevets français n° 2749299 et 2749300.
De même si le catalyseur n'est pas recyclé entièrement avec la phase organique, et est en partie ou totalement extrait avec la phase aqueuse, il sera avantageusement extrait de la phase aqueuse par différentes techniques tels que l'extraction liquide/liquide, l'électrodialyse, traitement sur résine échangeuses d'ions par exemple. Le procédé de l'invention permet de limiter la formation de sous-produits notamment formés par l'oxydation des esters si ceux-ci ne sont pas éliminés avant le recyclage. De plus, l'élimination des esters et la limitation de la formation de sous-produits permettent notamment de maintenir l'activité du catalyseur d'oxydation et de faciliter l'extraction des diacides formés du milieu d'oxydation. D'autres avantages, détails de l'invention apparaîtront au vu des exemples donnés ci- dessous uniquement à titre indicatif.
Exemple 1-A et 1-B :
- Oxydation :
Dans un réacteur de 1,5L sont placés 4g de cobalt tetrahydrate, 357 g d'acide acétique, 290g de cyclohexane et 3,6 g de cyclohexanone (initiateur). Le mélange est agité à 105°C sous une pression de 20 bar et sous un flux continu de gaz contenant de l'azote et de l'oxygène. Après avoir consommé 50 L d'oxygène, une solution cyclohexanique et une solution d'acide acétique contenant 1,1% massique de cobalt sont injectées en continu, le niveau dans le réacteur étant maintenu constant. La masse réactionnelle est récupérée dans une recette en verre maintenue à 70°C. Le mélange reactionnel obtenu en continu est distillé sous vide (120-145°C, 0,6 à 0,3 bar). Sur une masse de 2340 g engagée à la distillation, un pied de distillation de 510 g est récupéré. Ce pied constitue "le mélange reactionnel après distillation des légers" traité dans I' exemple 1-A ci-dessous. Pour l'exemple 1-B, le mélange reactionnel utilisé est le "mélange reactionnel après distillation des légers" ci-dessus ayant subit une élimination complémentaire des composés cyclohexanol/cyclohexanone (ci-après désigné « olone ») par une distillation azéotropique en présence d'eau.
1-A Hydrolyse sans catalyseur
L'hydrolyse du mélange reactionnel après distillation des légers (18.6 g) est réalisée en présence de H2O (7.2 g) soit un rapport molaire eau/esters = 77.5. Le mélange est agitée à 115 °C pendant 18 h, avec élimination du cyclohexanol en continu par un "Dean-Starck". Dans ces conditions 20 % des esters de cyclohexyle sont hydrolyses.
1-B Hydrolyse en présence d'un catalyseur
L'hydrolyse du mélange reactionnel après distillation des légers et distillation azéotropique de l'olone (15.3 g) est réalisée en présence de H2O (12.1 g dont 4.8 g de solution nitrique 2N). Le mélange est agitée à 127 °C pendant 18 h, avec élimination du cyclohexanol en continu par un "Dean-Starck".
Dans ces conditions 90 % des esters de cyclohexyle sont hydrolyses.
Exemples 2-A et 2-B:
Dans ces exemples, le "mélange reactionnel en sortie de réacteur" est obtenu comme suit :
Dans un réacteur de 1 ,5L sont placés 522 g de cyclohexane, 55 g d'acide tertiobutyibenzoïque et 6 g de cyclohexanone (initiateur). Du manganèse et du cobalt sont ajoutés en quantités respectives de 50 et 20 ppm massiques. Le mélange est agité sous 130°C, 20 Bar durant 150 min sous un flux continu de gaz contenant de l'azote et de l'oxygène. Après avoir consommé 63 L d'oxygène, le flux gazeux est arrêté, le mélange refroidi et le réacteur est dépressurisé. Une masse de 300g d'eau est ajoutée dans le réacteur sous faible agitation. Le contenu du réacteur est transféré dans un décanteur. Après décantation deux phases sont récupérées: une phase inférieure dite aqueuse qui contient esentieilement les diacides produits et les métaux de catalyse et une phase supérieure dite organique qui contient essentiellement du cyclohexane, l'acide tertiobutylbenzoïque, de la cyclohexanone du cyclohexanol et d'autres sous-produits de la réaction dont des esters.
2-A Hydrolyse avec résines PUROLITE NRW 60
L'hydrolyse du mélange reactionnel en sortie de réacteur (5,37 g) est réalisée en présence de H2O (5,14 g) et d'une résine sulfonique commercialisée par la société ALDRICH sous la dénomination PUROLITE NRW160 (1 ,01 g). Le mélange est agitée à 80 °C pendant 4 h. Dans ces conditions environ 30 % des esters de cyclohexyle sont hydrolyses.
2-B Hydrolyse avec résines PUROLITE NRW160
L'hydrolyse du mélange reactionnel en sortie de réacteur- (5,28 g) est- éalisée- en présence de H2O (5,07 g) et d'une résine sulfonique purolite NRW160 (5,03 g). Le mélange est agitée à 100 °C pendant 4 h. Dans ces conditions environ 70 % des esters de cyclohexyle sont hydrolyses.
Exemple 3: Hydrolyse en présence de H?SQ4
L'hydrolyse d' un mélange reactionnel après distillation des légers correspondants à celui utilisé dans l'exemple 1-A (2,6 g dont 0,55 g d'esters) est réalisée en présence de H2O et H2SO4 (1 g eau dont 1% massique de H2SO4). Le mélange est agitée à 160 °C pendant 12 h. Dans ces conditions environ 85 % des esters de cyclohexyle sont hydrolyses.
Exemple 4- Hydrolyse avec résine Amberlyst A31.
L' hydrolyse d'un mélange reactionnel (10 g), correspondant à l'exemple 2A et après distillation des composés présentant un point d'ébullition plus bas ou égal à celui du solvant acide le tBBA, est réalisée en présence de 20 mL de résine Amberlyst A31
(commercialisée par la société Rohm et Haas), et de 90 g d'H2O. Le mélange est chauffé à 100 °C, avec élimination en continu du cyclohexanol formé à l'aide d'un Dean-
Stark. Le mélange est agité à 100°C pendant 4 h.
Dans ces conditions environ 95% des esters sont hydrolyses et le cyclohexanol formé est récupéré. Exemple 5- Hydrolyse en présence d' HNO3 .
L'hydrolyse d'un mélange reactionnel (1 ,4 g) équivalent à l'exemple 2A, après distillation des légers et du tBBA est réalisée en présence d' HNO3 à 60% dans l'eau (10,1 g) et en présence d'un catalyseur constitué par une faible quantité de Cu(NO3)2, VO3NH4 et NaNO2.
Le mélange est agité pendant 1 h à 70°C.
Dans ces conditions, les esters sont complètement hydrolyses et le cyclohexanol formé est complètement transformé en acide adipique.

Claims

REVENDICATIONS
- Procédé de fabrication d'acides carboxyliques par oxydation d'un hydrocarbure avec de l'oxygène ou un gaz contenant de l'oxygène en présence d'un soivant à base d'acides monocarboxyliques et d'un catalyseur d'oxydation, caractérisé en ce qu'une étape d'hydroiyse des esters formés est réalisée par traitement du milieu reactionnel avant extraction des acides carboxyliques ou par traitement de la phase organique issue du milieu reactionnel après extraction des acides carboxyliques formés.
- Procédé selon la revendication 1 , caractérisé en ce que l'étape d'hydrolyse est réalisée par addition au milieu à traiter d'un acide fort et maintien dudit milieu à une température supérieure à 50°C, de préférence entre 80 et 200°C.
- Procédé selon la revendication 2, caractérisé en ce que l'acide fort est choisi pour les acides présentant un pka inférieur ou égal à 2.
- Procédé selon la revendication 2 ou 3, caractérisé en ce que l'acide fort est supporté ou fixé sur un matériau inerte tel qu'une résine.
- Procédé selon la revendication 4, caractérisé en que les résines comprenant un acide fort sont choisies dans le groupe comprenant les acides sulfoniques.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que la séparation des acides carboxyliques produits du milieu reactionnel est réalisée par décantation.
- Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la séparation des acides carboxyliques produits du milieu reactionnel est obtenue par extraction liquide/liquide.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que la phase organique obtenue après séparation des acides carboxyliques et hydrolyse des esters est recyclée à l'étape d'oxydation.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que la phase organique récupérée après séparation des diacides formés est soumise à une distillation des composés de point d'ébullition égal ou inférieur à celui de l'alcool formé pendant l'étape d'oxydation, avant l'étape d'hydrolyse.
- Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la phase organique récupérée après séparation des diacides formés est soumise à une distillation des composés de point d'ébullition égal ou inférieur à celui du solvant acide utilisé dans l'étape d'oxydation, avant l'étape d'hydrolyse.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que les acides formés pendant l'étape d'hydrolyse sont extraits du milieu par un solvant desdits acides.
- Procédé selon l'une des revendications 1 à 9 et 11 , caractérisé en ce que le solvant d'oxydation présent dans le milieu d'hydrolyse est extrait et purifié avant recyclage à l'étape d'oxydation.
- Procédé selon la revendication 11 , caractérisé en ce que les acides récupérés à partir du milieu d'hydrolyse sont mélangés aux diacides extraits du milieu d'oxydation ou dans le milieu d'oxydation avant extraction des diacides.
- Procédé selon l'une des revendications précédents caractérisée en ce que l'hydrocarbure est un cycloalcane.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que le cycloalcane est choisi dans le groupe comprenant le cyclohexane, le cyclododécane.
- Procédé selon l'une des revendications précédentes, caractérisé en ce que le solvant est choisi dans le groupe comprenant les acides monocarboxyliques comprenant de 1 à 6 atomes de carbone, les acides à caractère lipophile comprenant de 7 à 20 atomes de carbone.
- Procédé selon l'une des revendications précédentes caractérisé en ce que les acides lipophiles sont choisis dans le groupe comprenant les acides hexanoïque, heptanoïque, octanoïque, éthyi-2 hexanoïque, nonanoïque, décanoïque, undécanoïque, dodécanoïque, stéarique (octadécanoïque) et leurs dérivés perméthylés, l'acide 2-octadécylsuccinique, 3,5-ditertiobutylbenzoïque, 4- tertiobutylbenzoïque, 4-octylbenzoïque, l'hydrogénoorthophtalate de tertiobutyle, les acides naphténiques ou anthracéniques substitués par des groupements alkyles, les dérivés substitués des acides phtaliques, les diacides gras
- Procédé selon la revendication 16, caractérisé en ce que l'acide lipophile est choisi dans le groupe comprenant les dimères d'acides gras ou les acides naphténiques ou anthracéniques substitués par des groupements tertiobutyles.
- Procédé selon l'une des revendications précédentes caractérisé en ce que le catalyseur est choisi dans le groupe des métaux de transition.
- Procédé selon la revendication 18 caractérisé en ce que le catalyseur est à base de manganèse en association avec un cocatalyseur choisi dans le groupe comprenant le cobalt, le zirconium, le cérium, l'hafnium, le fer.
- Procédé selon l'une des revendications précédentes caractérisé en ce que les acides polycarboxyliques produits sont choisis dans le groupe comprenant l'acide adipique, l'acide succinique, l'acide glutarique, l'acide dodécanedioïque et/ou un mélange de ceux-ci.
PCT/FR2003/003198 2002-10-30 2003-10-28 Procede de fabrication d'acides carboxyliques WO2004041765A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US10/533,212 US7253312B2 (en) 2002-10-30 2003-10-08 Process for producing carboxylic acids
JP2004549261A JP2006504781A (ja) 2002-10-30 2003-10-28 カルボン酸の製造方法
EP03778477A EP1562886A1 (fr) 2002-10-30 2003-10-28 Procede de fabrication d'acides carboxyliques
AU2003285476A AU2003285476A1 (en) 2002-10-30 2003-10-28 Method for making carboxylic acids
BRPI0315060-7A BR0315060B1 (pt) 2002-10-30 2003-10-28 processo para a fabricaÇço de Ácidos carboxÍlicos.
UAA200504096A UA79640C2 (en) 2002-10-30 2003-10-28 A method for making adipinic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0213576A FR2846651B1 (fr) 2002-10-30 2002-10-30 Procede de fabrication d'acides carboxyliques
FR02/13576 2002-10-30

Publications (1)

Publication Number Publication Date
WO2004041765A1 true WO2004041765A1 (fr) 2004-05-21

Family

ID=32104304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003198 WO2004041765A1 (fr) 2002-10-30 2003-10-28 Procede de fabrication d'acides carboxyliques

Country Status (11)

Country Link
US (1) US7253312B2 (fr)
EP (1) EP1562886A1 (fr)
JP (1) JP2006504781A (fr)
KR (1) KR100683462B1 (fr)
CN (1) CN100404490C (fr)
AU (1) AU2003285476A1 (fr)
BR (1) BR0315060B1 (fr)
FR (1) FR2846651B1 (fr)
RU (1) RU2296743C2 (fr)
UA (1) UA79640C2 (fr)
WO (1) WO2004041765A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108855087A (zh) * 2017-05-12 2018-11-23 中国石油天然气股份有限公司 用于制备己二酸的催化剂及其制备方法、己二酸的制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2557475T3 (es) 2005-06-17 2016-01-26 Vital Health Sciences Pty Ltd. Un portador que comprende uno o más derivados di- y/o monofosfato de agentes de transferencia de electrones
JP2012531903A (ja) 2009-07-02 2012-12-13 バーデザイン, インコーポレイテッド アジピン酸を調製する生物学的方法
BR112012015682A2 (pt) * 2009-12-23 2019-09-24 Phosphagenics Ltd composição transportadora.
US10071030B2 (en) 2010-02-05 2018-09-11 Phosphagenics Limited Carrier comprising non-neutralised tocopheryl phosphate
BR112012024835A2 (pt) 2010-03-30 2016-06-07 Phosphagenics Ltd adesivo de distribuição transdérmica
EP2685992A4 (fr) 2011-03-15 2014-09-10 Phosphagenics Ltd Amino-quinoléines en tant qu'inhibiteurs de kinase
US8728798B2 (en) 2011-05-03 2014-05-20 Verdezyne, Inc. Biological methods for preparing adipic acid
US10973761B2 (en) 2015-12-09 2021-04-13 Phosphagenics Limited Pharmaceutical formulation
KR102647670B1 (ko) 2016-12-21 2024-03-15 아베초 바이오테크놀로지 리미티드 방법
WO2020249688A1 (fr) 2019-06-12 2020-12-17 Nouryon Chemicals International B.V. Procédé de production de peroxydes de diacyle
JP7335362B2 (ja) 2019-06-12 2023-08-29 ヌーリオン ケミカルズ インターナショナル ベスローテン フェノーツハップ 過酸化ジアシルを生成するためのプロセス
CN113924282B (zh) * 2019-06-12 2023-09-12 诺力昂化学品国际有限公司 用于从含水侧流中分离羧酸的方法
CN115417758A (zh) * 2022-09-22 2022-12-02 山东大学 一种高纯度结晶状全氟辛酸的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294739A (en) 1991-06-20 1994-03-15 Shell Oil Company Catalyttic oxidation of hydrocarbons
DE4427474A1 (de) * 1994-08-03 1996-02-08 Bayer Ag Verfahren zur Herstellung von Adipinsäure
FR2761984A1 (fr) 1997-04-10 1998-10-16 Rhone Poulenc Fibres Procede d'oxydation d'hydrocarbures, d'alcools et/ou de cetones
FR2765930A1 (fr) 1997-07-08 1999-01-15 Mannesmann Sachs Ag Amortisseur d'oscillations reglable pour vehicules automobiles
US5900506A (en) * 1996-12-12 1999-05-04 R.P. Fiber & Resin Intermediates Method of processing reaction mixtures obtained from the oxidation of cyclohexane
FR2791667A1 (fr) 1999-03-30 2000-10-06 Rhone Poulenc Fibres Procede d'oxydation d'hydrocarbures, d'alcools et/ou de cetones
US6218573B1 (en) * 1998-07-02 2001-04-17 Rpc Inc. Methods of recovering catalyst in solution in the oxidation of cyclohexane to adipic acid
FR2806079A1 (fr) 2000-03-08 2001-09-14 Rhodia Polyamide Intermediates Procede d'oxydation d'hydrocarbures en acides

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775685B1 (fr) * 1998-03-05 2000-12-29 Rhone Poulenc Fibres Procede de separation et de purification de l'acide adipique

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5294739A (en) 1991-06-20 1994-03-15 Shell Oil Company Catalyttic oxidation of hydrocarbons
DE4427474A1 (de) * 1994-08-03 1996-02-08 Bayer Ag Verfahren zur Herstellung von Adipinsäure
US5900506A (en) * 1996-12-12 1999-05-04 R.P. Fiber & Resin Intermediates Method of processing reaction mixtures obtained from the oxidation of cyclohexane
FR2761984A1 (fr) 1997-04-10 1998-10-16 Rhone Poulenc Fibres Procede d'oxydation d'hydrocarbures, d'alcools et/ou de cetones
FR2765930A1 (fr) 1997-07-08 1999-01-15 Mannesmann Sachs Ag Amortisseur d'oscillations reglable pour vehicules automobiles
US6218573B1 (en) * 1998-07-02 2001-04-17 Rpc Inc. Methods of recovering catalyst in solution in the oxidation of cyclohexane to adipic acid
US6433220B1 (en) * 1998-07-02 2002-08-13 Rpc Inc. Methods of extracting catalyst from a reaction mixture in the oxidation of cyclohexane to adipic acid
FR2791667A1 (fr) 1999-03-30 2000-10-06 Rhone Poulenc Fibres Procede d'oxydation d'hydrocarbures, d'alcools et/ou de cetones
FR2806079A1 (fr) 2000-03-08 2001-09-14 Rhodia Polyamide Intermediates Procede d'oxydation d'hydrocarbures en acides

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108855087A (zh) * 2017-05-12 2018-11-23 中国石油天然气股份有限公司 用于制备己二酸的催化剂及其制备方法、己二酸的制备方法

Also Published As

Publication number Publication date
KR100683462B1 (ko) 2007-02-22
UA79640C2 (en) 2007-07-10
FR2846651B1 (fr) 2006-06-16
EP1562886A1 (fr) 2005-08-17
RU2296743C2 (ru) 2007-04-10
JP2006504781A (ja) 2006-02-09
US7253312B2 (en) 2007-08-07
BR0315060B1 (pt) 2013-04-02
KR20050065651A (ko) 2005-06-29
RU2005116249A (ru) 2006-01-27
FR2846651A1 (fr) 2004-05-07
US20060106251A1 (en) 2006-05-18
CN1714068A (zh) 2005-12-28
AU2003285476A1 (en) 2004-06-07
CN100404490C (zh) 2008-07-23
BR0315060A (pt) 2005-08-16

Similar Documents

Publication Publication Date Title
EP1890990B1 (fr) Procede de fabrication d'acides carboxyliques
WO2004041765A1 (fr) Procede de fabrication d'acides carboxyliques
FR2722783A1 (fr) Procede de preparation d'acide adipique par oxydattion directe du cyclohexane et recyclage du catalyseur
EP0847980B1 (fr) Procédé de traitement de mélanges réactionnels issus de l'oxydation du cyclohexane
EP0021525B1 (fr) Procédé pour la fabrication de composés carboxylés
EP1165481B1 (fr) Procede d'oxydation de cycloalcanes, de cycloalcanols et/ou de cycloalcanones
EP1268384B1 (fr) Procede d'oxydation de cyclohexane en acides
EP1412316B1 (fr) Procede d'oxydation d'hydrocarbures en acides
EP1390338A1 (fr) Procede d'oxydation d'hydrocarbures
WO2003099755A1 (fr) Procede d'oxydation d'hydrocarbures, d'alcools et/ou de cetones
EP1556328A1 (fr) Procede de fabrication d'acides carboxyliques
EP1492754B1 (fr) Procede de fabrication d'acides carboxyliques
EP1265836A1 (fr) Procede d'oxydation d'hydrocarbures en acides
CA2413848A1 (fr) Procede d'oxydation d'hydrocarbures, d'alcools et/ou de cetones
CA2343013A1 (fr) Procede de separation et de purification de l'acide carboxylique issu de l'oxydation directe d'un hydrocarbure
BE633934A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006106251

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533212

Country of ref document: US

Ref document number: 2004549261

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020057007651

Country of ref document: KR

Ref document number: 788/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003778477

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038A39460

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2005116249

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020057007651

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003778477

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10533212

Country of ref document: US