EP1390338A1 - Procede d'oxydation d'hydrocarbures - Google Patents

Procede d'oxydation d'hydrocarbures

Info

Publication number
EP1390338A1
EP1390338A1 EP02727704A EP02727704A EP1390338A1 EP 1390338 A1 EP1390338 A1 EP 1390338A1 EP 02727704 A EP02727704 A EP 02727704A EP 02727704 A EP02727704 A EP 02727704A EP 1390338 A1 EP1390338 A1 EP 1390338A1
Authority
EP
European Patent Office
Prior art keywords
group
radicals
oxidation
chosen
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02727704A
Other languages
German (de)
English (en)
Inventor
Eric Fache
Jean-Pierre Simonato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Polyamide Intermediates SAS
Original Assignee
Rhodia Polyamide Intermediates SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Polyamide Intermediates SAS filed Critical Rhodia Polyamide Intermediates SAS
Publication of EP1390338A1 publication Critical patent/EP1390338A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/10Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons
    • C07C27/12Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons with oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • C07C51/313Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • C07C2601/20Systems containing only non-condensed rings with a ring being at least seven-membered the ring being twelve-membered

Definitions

  • the present invention relates to a process for the oxidation of hydrocarbons, in particular of branched or unbranched saturated aliphatic hydrocarbons, of cycloaliphatic or alkylaromatic hydrocarbons into alcohol, ketone and / or acid, polyacid compounds.
  • adipic acid is an important chemical compound used as a raw material in many manufacturing such as the production of polymers such as polyamides, polyesters or polyurethanes.
  • Oxidation of cyclohexane either directly or in two stages are the most advantageous ways to produce adipic acid.
  • This oxidation also constitutes the first stage of the process for manufacturing adipic acid, the second stage being a nitric oxidation of the Cyclohexanone / cyclohexanol mixture.
  • cyclohexanone is an important raw material for the manufacture of epsilon-caprolactam, the monomer of polyamide 6.
  • the catalytic systems used for these oxidation reactions are generally based on a metallic compound such as chromium, cobalt, iron, nickel, cerium, zirconium or manganese compounds.
  • One of the aims of the present invention is to provide a process for the oxidation of hydrocarbons by oxygen or an oxygen-containing gas in the presence of a catalytic system comprising a catalyst based on a metallic compound and on a cocatalyst making it possible to improve the activity of the catalyst based on a metallic compound without reducing the selectivity in the desired oxidation product (s), more particularly in ketone, alcohol and / or carboxylic acids.
  • the invention proposes a process for the oxidation of substituted or unsubstituted saturated aliphatic or cycloaliphatic hydrocarbons or alkyl aromatic hydrocarbons by an oxidizing agent comprising molecular oxygen, characterized in that the oxidation is carried out in the presence of a catalytic system comprising a catalyst based on at least one metallic compound and a cocatalyst comprising an imide function and corresponding to one of the following general formulas:
  • - R1, R2 which are different or identical may be hydrogen, an aliphatic, aromatic, cycloaliphatic, arylaliphatic, alkylaromatic hydrocarbon radical comprising from 1 to 12 carbon atoms and which may include heteroatoms, a halogen atom, a group hydroxyl, an alkoxy group, a carboxyl group, an ester group, a carbonyl group, the radicals R1 and R2 can be linked together to form a cycloaromatic radical which can comprise several aromatic rings in condensed form or not or a cycloaliphatic radical which can comprise a or several cycles in condensed form or not.
  • R3, R4 different or identical can be hydrogen, an aliphatic, aromatic, cycloaliphatic, arylaliphatic, alkylaromatic hydrocarbon radical comprising from 1 to 20 carbon atoms and which can comprise heteroatoms, the radicals R3 and R4 being able to be linked together for forming a cycloaromatic radical which can comprise several aromatic rings in condensed form or not or a cycloaliphatic radical which can comprise one or more rings in condensed form or not.
  • the oxidation reaction can be carried out in the gas phase or in the liquid phase.
  • the oxidation reaction is carried out in order preferably to obtain, as oxidation products, alcohols and / or ketones.
  • the solvent used is advantageously the hydrocarbon to be oxidized.
  • other solvents such as other non-oxidizable hydrocarbons, nitriles, esters, aromatic derivatives, alcohols.
  • the oxidation of the hydrocarbon is carried out to directly obtain an acid or polyacid.
  • suitable lipophilic acid compounds is meant aromatic, aliphatic, arylaliphatic or alkylaromatic organic compounds comprising at least 6 carbon atoms, which may include several acid functions and having a low solubility in water, ie a solubility of less than 10% by weight at room temperature (10 ° C; 30 ° C).
  • lipophilic organic compound there may be mentioned, for example, hexanoic, heptanoic, octanoic, 2-ethylhexanoic, nonanoic, decanoic, undecanoic, dodecanoic, stearic (octadecanoic) acids and their permethyl derivatives (total substitution of methylene group hydrogens by the group methyl), 2-octadecylsuccinic acid, 2,5-ditertiobutyl benzoic, 4-tertiobutylbenzoic, 4-octylbenzoic, tertiobutyl hydrogen orthophthalate, naphthenic or anthracene acids substituted by alkyl groups, preferably of the tertiobutyl type, substituted phthalic acids, fatty diacids such as the fatty acid dimer.
  • the concentration of acid compound in the reaction medium is determined to obtain a molar ratio between the number of moles of acid and the number of moles of metal forming the catalyst of between 0.5 and 1 000 000, preferably between 1 and 100 000.
  • the concentration of acid compound in the liquid oxidation medium can vary within wide limits. Thus, it can be between 1 and 99% by weight relative to the total weight of the liquid medium, more advantageously it can be between 10 and 80% by weight of the liquid medium.
  • the acid component in combination with another compound which may in particular have the effect of improving the productivity and / or the selectivity of the oxidation reaction in adipic acid, and in particular the solubilization of oxygen.
  • nitriles such as acetonitrile, benzonitrile, halogenated derivatives such as dichloromethane, fluorinated compounds such as:
  • Cyclic or acyclic fluorinated or perfluorinated aliphatic hydrocarbons aromatic fluorinated hydrocarbons such as perfluorotoluene, perfluoromethylcyclohexane, perfluorohexane, perfluoroheptane, perfluorooctane, perfluorononane, perfluorodecaline, perfluoromethyldecene trifluoromethane, ⁇ -trifluoromethane, ⁇ -trifluoride, trifluoromethyldecene, trifluoromethyldecene, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, trifluoromethane, tri
  • Fluorinated or perfluorinated acids such as trifluoromethyl benzoic acids, pentafluorobenzoic acid, hexanoic, heptanoic, octanoic, nonanoic acid, perfluorinated adipic acid, perfluorinated
  • the catalyst based on a metallic compound advantageously comprises a compound of at least one metallic element chosen from the group comprising Cu , Ag, Au, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Se, In, Tl, Y, Ga, Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, Cr , Mo, W, Mn, Te, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, lanthanides like Ce and combinations thereof.
  • compound of a metallic element is meant the compounds comprising at least one atom of said metal in association with other chemical elements such as, for example, oxygen, but also the metal alone.
  • metallic catalytic elements are used either in the form of compounds advantageously at least partially soluble in the liquid oxidation medium under the conditions for carrying out the oxidation reaction mode of implementation called hereinafter “homogeneous catalysis” , either supported, absorbed or linked, more generally impregnated, to an inert support such as silica, alumina, for example.
  • This mode of implementation is hereinafter called “heterogeneous catalysis”.
  • This latter form of catalyst is particularly suitable for carrying out oxidation in the gas phase.
  • the metal catalyst is preferably, in particular under the conditions for carrying out the oxidation reaction:
  • the catalyst used is soluble in one of these media at room temperature or at the recycling temperature of these media in a new oxidation.
  • soluble it is meant that the catalyst is at least partially soluble in the medium considered.
  • the catalytically active metallic elements are supported or incorporated in a micro or mesoporous mineral matrix or in a polymer matrix or are in the form of organometallic complexes grafted or incorporated on an organic or mineral support.
  • the metal is an element of the support or that one works with complexes or compounds of the catalytically active metal sterically and / or chemically trapped in the structure, for example porous, of the support, under the conditions of the 'oxidation.
  • the homogeneous or heterogeneous metal catalyst consists of salts or metal complexes of groups IVb (group of Ti), Vb (group of V), Vlb (group of Cr), Vllb (Mn group), VIII (Fe or Co or Ni group), Ib (Cu group), and cerium, alone or as a mixture.
  • the preferred elements are, in particular, Co and or Mn and / or Cr and / or Zr, Hf, Ce and / or Zr and / or Hf.
  • the metal concentration in the liquid oxidation medium, in homogeneous catalysis varies between 0.00001 and 5% (% by weight), preferably between 0.00001% and 1% relative to the whole of the reaction mass.
  • the catalytic system comprises a cocatalyst consisting of an organic compound defined by the general formulas (I), (II) described above.
  • This compound is added to the oxidation medium or can be incorporated on a support in the case of implementation of a heterogeneous catalysis, the support advantageously comprising the catalytically active metal.
  • the term "incorporated" has the meaning given above.
  • the molar ratio of the cocatalyst in the oxidation medium can vary within wide limits.
  • this ratio can be between 0.001 mole and 1 mole of cocatalyst for one mole of hydrocarbon to be oxidized.
  • this ratio can be between 0.001 mole and 0.2 mole.
  • R1 and R2 represent hydrogen or alkyl radicals such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, decyl, dodecyl or branched radicals.
  • R1 and R2 can also represent an aromatic group such as phenyl, benzyl, naphthyl toluyl groups. Mention may also be made, as radicals represented by R1 and R2, of cycloalkyl radicals such as cyclohexyl, cyclopentyl, cyclooctyl.
  • R1 and R2 can also represent, as indicated above, an alkoxy, carbonyl or acyl radical.
  • alkoxy, carbonyl or acyl radical As preferred radicals, mention may be made of methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, pentoxycarbonyl, formyl, acetyl, propionyl, butyryl, valeryl, pivaloyl radicals.
  • R1 and R2 can be linked together by a single or double bond to form an aromatic or aliphatic ring in condensed form or not.
  • These cycles can also be aromatic or aliphatic heterocycles.
  • Examples of compounds corresponding to formula (I) suitable for the invention there may be mentioned N-bromosuccinimide, N-bromomaleimide, N-bromohexahydrophthalimide, N, N'-dibromocyciohexanetetracarboximide, N-bromophthalimide , N-bromotrimellitimide, N, N'-dibromopyromeilitimide.
  • cocatalysts corresponding to formula (II) are in particular those in which R3 and R4, different or identical, represent the radicals indicated for R1 and R2. Mention may be made, as preferred radicals, of the N-bromosuccinimide, N-bromophthalimide or N-bromonaphthalimide radicals.
  • These compounds are either commercially available, such as for example the compounds cited above, or can be obtained by a conventional imide formation process, for example by reaction between an acid anhydride and hydroxylamine followed by a reaction with a brominating agent such as hypobromite or sodium bromite.
  • the invention applies more particularly to the oxidation of cycloaliphatic compounds such as cyclohexane, cyclododecane into corresponding linear diacids, or into corresponding alcohols and ketones.
  • the invention relates to the direct oxidation of cyclohexane to adipic acid, by a gas containing oxygen, in a liquid medium and in the presence of a catalyst.
  • the catalyst preferably comprises cobalt or manganese.
  • the oxidation reaction is carried out at a temperature between 50 ° C and 200 ° C, preferably between 70 ° C and 180 ° C. It can be carried out at atmospheric pressure. However, it is generally carried out under pressure to maintain the components of the reaction medium in liquid form.
  • the pressure can be between 10 KPa (0.1 bar) and 20,000 KPa (200 bar), preferably between 100Kpa (1 bar) and 10,000 Kpa (100 bar).
  • the oxygen used can be in pure form or mixed with an inert gas such as nitrogen or helium. It is also possible to use air more or less enriched with oxygen.
  • the quantity of oxygen supplied to the medium is advantageously between 1 and 1000 moles per mole of compounds to be oxidized.
  • the oxidation process can be carried out continuously or according to a batch process.
  • the liquid reaction medium leaving the reactor is treated according to known methods allowing on the one hand to separate and recover the acid produced and on the other hand to recycle the non-oxidized or partially oxidized organic compounds such as cyclohexane, cyclohexanol and / or cyclohexanone, the catalytic system and the acidic compound used as a solvent.
  • the amount of metal catalyst is generally between 0.00001% and 5% and preferably between 0.00001% and 1%, without these values being critical. However, it is a question of having sufficient activity while not using excessively large amounts of catalyst which must then be separated from the final reaction mixture and recycled.
  • the metal catalyst in addition to cobalt and / or manganese, can also comprise other compounds based on metals chosen from the group comprising manganese, copper, cerium, vanadium, chromium, zirconium, hafnium , cobalt or a combination of some of these.
  • a compound which initiates the oxidation reaction such as for example a ketone or an aldehyde.
  • Cyclohexanone which is a reaction intermediate in the case of the oxidation of cyclohexane, is very particularly indicated.
  • the initiator represents from 0.01% to 20% by weight of the weight of the reaction mixture used, without these proportions having a critical value.
  • the initiator is especially useful when starting the oxidation and when carrying out the oxidation at a temperature below 120 ° C. It can be introduced at the start of the reaction. Oxidation can also be carried out in the presence of water introduced from the initial stage of the process.
  • the reaction mixture resulting from the oxidation is subjected to different operations of separation of some of its constituents to, for example, allow their recycling at the level of oxidation and the recovery of the acids produced.
  • the crude reaction mixture can firstly be subjected to cooling to a temperature of 16 ° C. to 30 ° C. for example, which causes the crystallization of at least part of the acid. form.
  • a medium comprising a solid phase consisting essentially of acids, at least one organic liquid phase essentially containing the unreacted compound to be oxidized, optionally the acid compound and the oxidation intermediates, (or more organic phases if the acid compound and the hydrocarbon are not completely miscible at low temperature) and an aqueous liquid phase essentially containing acid by-products of oxidation and the water formed.
  • the system catalytic can be in one of the organic phases if it is soluble in said phase, or in the lower aqueous phase.
  • the organic and aqueous liquid phases constituting the filtrate or the centrifuge are separated by decantation if necessary: the organic phase or phases can be recycled in a new oxidation reaction.
  • the final raw reaction mixture can be drawn off hot, for example at a temperature which can reach 75 ° C.
  • the reaction mixture then settles into at least two liquid phases: one or more organic phases containing essentially the unreacted hydrocarbon, optionally the acid compound, the oxidation intermediates and an aqueous liquid phase containing essentially the acids formed and l water formed.
  • this can be present in the organic phase or phases, recovered by solid / liquid separation before precipitation or crystallization of the acid formed in the case of heterogeneous catalysis or if it is soluble in the aqueous phase, extracted by liquid / liquid extraction, on resin or electrodialysis.
  • the liquid phases are separated by decantation: the organic phase or phases can be recycled in a new oxidation reaction.
  • the acidic compound used as solvent is generally contained or forms an essential element of the organic phase or phases. Consequently, after separation of the acid formed and optionally from the liquid phase containing the water formed, the oxidation by-products and the catalyst, the acid compound is recycled in the oxidation step with the hydrocarbon n 'not having been oxidized and the oxidation intermediates.
  • the acidic compound is solid in a phase of treatment of the reaction medium, it will advantageously be separated and recovered by implementing solid / liquid separation processes either before treatment of the reaction medium to recover the acid produced, or with the acid produced. In the latter case, the acid produced can be recovered by extraction with water.
  • water can be added to the reaction medium to obtain better dissolution of the acid byproducts of the oxidation and better recovery of the acid formed.
  • the acid is generally recovered by precipitation during the cooling of the reaction medium.
  • the acid thus recovered can be purified according to usual techniques and described in numerous patents. By way of example, mention may be made of French patents Nos. 2749299 and 2749300.
  • the non-organic or aqueous liquid phase contains the catalyst, the latter is extracted either before the crystallization of the acid formed by precipitation or extraction according to known methods such as liquid-liquid extraction, electrodialysis, treatment on exchange resins ion for example, either after crystallization of the acid formed by extraction techniques described above or the like.
  • the invention advantageously applies to the oxidation of cycloalkanes to cycloalkanones and cycloalkanols, more particularly to the oxidation of cyclohexane to cyclohexanol and cyclohexanone.
  • the catalytic systems can be identical to those described for direct oxidation to acids.
  • the reaction medium does not comprise an acid type solvent, the hydrocarbon to be oxidized, for example cyclohexane, being advantageously the solvent for the reaction products.
  • the operating conditions for carrying out the oxidation reaction are advantageously a temperature between 130 ° C and 200 ° C and a pressure between 1 and 10 bar.
  • the products of the oxidation reaction are separated and recovered by distillation, the catalytic system being advantageously recycled after separation by conventional methods such as decantation, electrodialysis, precipitation or filtration.
  • the cyclohexanol / cyclohexanone mixture can be used for the production of adipic acid by nitric oxidation or can be treated in a dehydrogenation stage to transform cyclohexanol into cyclohexanone, according to known methods.
  • the reaction mixture After cooling and depressurization, the reaction mixture comprises a phase comprising cyclohexane and a precipitate.
  • the mixture is homogenized by adding acetic acid.
  • the constituents of the mixture are analyzed by gas chromatography.
  • the conversion rate (TT) of cyclohexane is: 6.5%
  • the selectivity for acids is 32.7%.
  • the selectivity as a cyclohexanol / cyclohexanone mixture is 51.4%.
  • the molar ratio of adipic acid / all of the acids is 73.2%.
  • the selectivity for compound X is the yield of this compound calculated relative to the transformed cyclohexane.
  • Example 1 is repeated in the same apparatus and under the same operating conditions, with the introduction of the following reagents - 12.52 g (86.94 mmol) of octanoic acid
  • the mixture after homogenization by addition of acetic acid, is analyzed by gas chromatography.
  • the conversion rate (TT) of cyclohexane is: 4.0%
  • the selectivity for acids is 44.1%.
  • the selectivity as a cyclohexanol / cyclohexanone mixture is 39.6%.
  • the adipic acid / total acid molar ratio is 76.6%
  • Example 1 is repeated with a starting reaction mixture having the following composition: - 12.65 g (87.84 mmol) of octanoic acid
  • the mixture after homogenization by addition of acetic acid, is analyzed by gas chromatography.
  • the conversion rate (TT) of cyclohexane is: 5.4%
  • the selectivity for acids is 25.9%.
  • the selectivity as a cyclohexanol / cyclohexanone mixture is 58.9%.
  • the adipic acid / total acid molar ratio is 69.4%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

La présente invention concerne un procédé d'oxydation d'hydrocarbures, notamment d'hydrocarbures aliphatiques saturés ramifiés ou non, d'hydrocarbures cycloaliphatiques ou alkylaromatiques en composés alcools, cétones et/ou acides, polyacides. Elle se rapporte plus particulièrement à l'oxydation par un agent oxydant contenant de l'oxygène moléculaire de cyclohexane en cyclohexanol, cyclohexanone et/ou acide adipique. L'oxydation est réalisée en présence d'un système catalytique comprenant un catalyseur à base d'au moins un composé métallique et un cocatalyseur comprenant une fonction imide tel que le N-bromosuccinimide, le N-bromomaléimide, le N-bromohexahydrophtalimide, le N,N'-dibromocyclohexanetétracarboximide, le N-bromophtalimide, le N-bromotrimellitimide, le N,N'-dibromopyromellitimide.

Description

PROCEDE D'OXYDATION D'HYDROCARBURES
La présente invention concerne un procédé d'oxydation d'hydrocarbures, notamment d'hydrocarbures aliphatiques saturés ramifiés ou non, d'hydrocarbures cycloaliphatiques ou alkylaromatiques en composés alcools, cétones et/ou acides, polyacides.
Elle se rapporte plus particulièrement à l'oxydation par un agent oxydant contenant de l'oxygène moléculaire de cyclohexane en cyclohexanol, cyclohexanone et/ou acide adipique. L'oxydation du cyclohexane en acide adipique est un procédé qui a été étudié depuis de nombreuses années. En effet, l'acide adipique est un composé chimique important utilisé comme matière première dans de nombreuses fabrications telles que la production de polymères comme les polyamides, polyesters ou polyuréthannes.
Plusieurs procédés de fabrication d'acide adipique à partir d'hydrocarbures tels que benzène, phénol, cyclohexène, cyclohexane ont été proposés.
L'oxydation du cyclohexane soit directement soit en deux étapes sont les voies les plus avantageuses pour produire l'acide adipique.
Ainsi, le brevet américain 2,223,493 publié en décembre 1940, décrit l'oxydation d'hydrocarbures cycliques en diacides correspondants, en phase liquide comportant généralement de l'acide acétique, à une température d'au moins 60°C, à l'aide d'un gaz contenant de l'oxygène et en présence d'un catalyseur d'oxydation tel qu'un composé du cobalt.
De nombreux autres brevets et articles décrivent cette réaction d'oxydation directe du cyclohexane en acide adipique. Toutefois, pour obtenir des rendements acceptables de production d'acide adipique, ces documents décrivent l'utilisation de l'acide acétique comme solvant, en présence soit de catalyseur homogène soit de catalyseur hétérogène. On peut citer, à titre d'illustration, l'article paru dans le journal "Chemtech", 555-559 (septembre 1974) dont l'auteur est K. Tanaka qui résume et commente le procédé d'oxydation directe du cyclohexane. On peut également citer les brevets américains 3,231 ,608 ; 4,032,569 ; 4,158,73 ; 4,263,453 et 5,321,157, le brevet européen 870751 qui décrivent différents systèmes catalytiques homogènes.
Il a également été proposé quelques procédés d'oxydation en une seule étape du cyclohexane en acide adipique sans utilisation d'acide acétique. Certains proposent de réaliser cette réaction en l'absence de solvants, d'autres avec des solvants tels que des esters organiques comme les acétates (US 4,098,817), de l'acétone (US 2,589,648) ou encore des alcools comme le butanol, le méthanol, le cyclohexanol ou l'acétonitrile (Ep 784045). L'oxydation du cyclohexane en cyclohexanone et/ou cyclohexanol est également un procédé industriel important car ces composés sont des intermédiaires chimiques importants pour la synthèse de nombreux produits. Cette oxydation constitue également la première étape du procédé de fabrication de l'acide adipique, la seconde étape étante une oxydation nitrique du mélange Cyclohexanone/cyclohexanol. Par ailleurs, la cyclohexanone est une matière première importante pour la fabrication de l'epsilon- caprolactame, le monomère du polyamide 6.
De nombreux brevets et publications ont décrit l'oxydation du cyclohexane en cyclohexanone/cyclohexanol par oxydation par l'oxygène ou un gaz contenant de l'oxygène . Le cyclohexanol est converti en cyclohexanone par une réaction de déshydrogenation comme décrit dans "Handbook of Chemistry: Applied Chemistry" page 356, version de 1986, édité par Nippon Kagaku-Kai.
Les systèmes catalytiques utilisés pour ces réactions d'oxydation sont généralement à base d'un composé métallique tel que les composés du chrome, du cobalt, du fer, du nickel, du cérium, du zirconium ou du manganèse.
Pour améliorer l'activité de ces catalyseurs, il a notamment été proposé d'ajouter un composé comprenant des fonctions imides, plus particulièrement le N-hydroxyphtalimide comme décrit dans les brevets européens 1074537, 824 962, 1074536, par exemple. Un des buts de la présente invention est de proposer un procédé d'oxydation d'hydrocarbures par l'oxygène ou un gaz contenant de l'oxygène en présence d'un système catalytique comprenant un catalyseur à base d'un composé métallique et d'un cocatalyseur permettant d'améliorer l'activité du catalyseur à base de composé métallique sans dimminuer la sélectivité dans le ou les produits d'oxydation désirés, plus particulièrement en cétone, alcool et/ou acides carboxyliques.. A cet effet, l'invention propose un procédé d'oxydation d'hydrocarbures aliphatiques ou cycloaliphatiques saturés substitués ou non ou d'hydrocarbures alkylaromatiques par un agent d'oxydation comprenant de l'oxygène moléculaire, caractérisé en ce que l'oxydation est réalisée en présence d'un système catalytique comprenant un catalyseur à base d'au moins un composé métallique et un cocatalyseur comprenant une fonction imide et répondant à l'une des formules générales suivantes :
dans lesquelles, - R1 , R2 différents ou identiques peuvent être l'hydrogène, un radical hydrocarboné aliphatique, aromatique, cycloaliphatique, arylaliphatique, alkylaromatique comprenant de 1 à 12 atomes de carbone et pouvant comprendre des heteroatomes, un atome d'halogène, un groupe hydroxyle, un groupe alcoxy, un groupe carboxyle, un groupe ester, un groupe carbonyle, les radicaux R1 et R2 pouvant être reliés entre eux pour former un radical cycloaromatique pouvant comprendre plusieurs cycles aromatiques sous forme condensée ou non ou un radical cycloaliphatique pouvant comprendre un ou plusieurs cycles sous forme condensée ou non.,
- R3, R4 différents ou identiques peuvent être l'hydrogène, un radical hydrocarboné aliphatique, aromatique, cycloaliphatique, arylaliphatique, alkylaromatique comprenant de 1 à 20 atomes de carbone et pouvant comprendre des heteroatomes, les radicaux R3 et R4 pouvant être reliés entre eux pour former un radical cycloaromatique pouvant comprendre plusieurs cycles aromatiques sous forme condensée ou non ou un radical cycloaliphatique pouvant comprendre un ou plusieurs cycles sous forme condensée ou non. La réaction d'oxydation peut être réalisée en phase gaz ou en phase liquide.
Dans un mode de réalisation, la réaction d'oxydation est conduite pour préférentiellement obtenir comme produits d'oxydation des alcools et/ou des cétones. Dans ce mode de réalisation le solvant utilisé est avantageusement l'hydrocarbure à oxyder. Toutefois, il est possible d'utiliser d'autres solvants comme d'autres hydrocarbures non oxydables, les nitriles, les esters, les dérivés aromatiques, les alcools. Dans un autre mode de réalisation de l'invention, l'oxydation de l'hydrocarbure est réalisée pour obtenir directement un acide ou polyacide. Dans ce mode de réalisation, il est préférable d'utiliser un solvant choisi parmi las acides carboxyliques tels que l'acide acétique, l'acide glutarique, l'acide octanoïque, les acides lipophiles en général. De tels solvants sont déjà décrits
Par composés acides lipophiles convenables, on entend les composés organiques aromatiques, aliphatiques, arylaliphatiques ou alkylaromatiques comprenant au moins 6 atomes de carbone, pouvant comprendre plusieurs fonctions acides et présentant une faible solubilité dans l'eau, c'est à dire une solubilité inférieure à 10 % en poids à température ambiante(10°C ; 30°C).
Comme composé organique lipophile on peut citer par exemple, les acides hexanoïque, heptanoïque, octanoïque, éthyi-2 hexanoïque, nonanoïque, decanoïque, undécanoïque, dodécanoïque, stéarique (octadécanoïque) et leurs dérivés perméthylés (substitution totale des hydrogènes des groupes méthylènes par le groupe méthyle), l'acide 2-octadécylsuccinique, 2,5-ditertiobutyl benzoïque, 4-tertiobutylbenzoïque, 4- octylbenzoïque, l'hydrogénoorthophtalate de tertiobutyle, les acides naphténiques ou anthracéniques substitués par des groupements alkyles, de préférence de type tertiobutyle, les dérivés substitués des acides phtaliques, les diacides gras comme le dimère d'acide gras. On peut également citer des acides appartenant aux familles précédentes et porteurs de différents substituants électrodonneurs (groupements avec hétéroatome du type O ou N) ou électroaccepteurs (halogènes, sulfonimides, groupements nitro, sulfonato ou analogue).
Selon une autre caractéristique de l'invention, la concentration en composé acide dans le milieu réactionnel est déterminée pour obtenir un rapport molaire entre le nombre de mole d'acide et le nombre de mole de métal formant le catalyseur compris entre 0,5 et 1 000 000, de préférence entre 1 et 100 000. La concentration en composé acide dans le milieu liquide d'oxydation peut varier dans de larges limites. Ainsi, il peut être compris entre 1 et 99 % en poids par rapport au poids total du milieu liquide, plus avantageusement il peut être compris entre 10 et 80 % en poids du milieu liquide.
Il est également possible, sans pour cela sortir du cadre de l'invention, d'utiliser le composant acide en association avec un autre composé qui peut notamment avoir comme effet d'améliorer la productivité et/ou la sélectivité de la réaction d'oxydation en acide adipique, et notamment la solubilisation de l'oxygène.
Comme exemple de tels composés, on peut citer, en particulier, les nitriles, les composés halogènes, plus avantageusement les composés fluorés. Comme composés plus particulièrement convenables, on peut citer les nitriles comme l'acétonitrile, le benzonitrile, des dérivés halogènes comme le dichlorométhane, les composés fluorés comme :
- Hydrocarbures aliphatiques fluorés ou perfluorés cycliques ou acycliques, hydrocarbures fluorés aromatiques tels le perfluorotoluène, perfluorométhylcyclohexane, perfluorohexane, perfluoroheptane, perfluorooctane, perfluorononane, perfluorodécaline, perfluorométhyldécaline, α,α,α-trifluorotoluène, 1,3-bis(méthyl trifluoro)benzène. - Esters perfluorés ou fluorés tels que perfluorooctanoates d'alkyle, perfluoronanoates d'alkyle
- Cétones fluorées ou perfluorées telles que acétone perfluorée
- Alcools fluorés ou perfluorés tels que hexanol, octanol, nonanol, décanol perfluorés, t-butanol perfluoré, isopropanol perfluoré, hexafluoro-1 ,1 ,1 ,3,3,3- propanol-2
- Nitriles fluorés ou perfluorés tels que acétonitrile perfluoré
- Acides fluorés ou perfluorés tels que acides trifluorométhyl benzoïque, acide pentafluorobenzoique, acide hexanoique, heptanoique, octanoïque, nonanoïque perfluorés, acide adipique perfluoré
- Halogénures fluorés ou perfluorés tels que iodo octane perfluoré, bromooctane perfluoré
- Aminés fluorées ou perfluorées tels que tripropylamine perfluorée, tributylamine perfluorée, tripentylamine perfluorée : Dans les modes de réalisation de l'invention, le catalyseur à base de composé métallique comprend avantageusement un composé d'au moins un élément métallique choisi dans le groupe comprenant Cu, Ag, Au, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Se, In, Tl, Y, Ga, Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, Cr, Mo, W, Mn, Te, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, les lanthanides comme Ce et les combinaisons de ceux-ci. Par composé d'élément métallique il faut comprendre les composés comprenant au moins un atome dudit métal en association avec d'autres éléments chimiques comme par exemple l'oxygène, mais également le métal seul.
Ces éléments catalytiques métalliques sont mis en œuvre soit sous forme de composés avantageusement au moins partiellement solubles dans le milieu liquide d'oxydation aux conditions de mise en œuvre de la réaction d'oxydation mode de mise en œuvre appelé ci-après "catalyse homogène", soit supportés, absorbés ou liés, plus généralement imprégnés, à un support inerte tel que silice, alumine, par exemple. Ce mode de mise en œuvre est appelé ci-après "catalyse hétérogène". Cette dernière forme de catalyseur est notamment convenable pour la réalisation de l'oxydation en phase gaz. En catalyse homogène, le catalyseur métallique est de préférence, notamment aux conditions de mise en œuvre de la réaction d'oxydation :
- Soit soluble dans l'hydrocarbure à oxyder,
- Soit soluble dans le composé acide utilisé comme solvant,
- Soit soluble dans le mélange hydrocarbure/composé acide formant une phase liquide homogène aux conditions de mise en œuvre de la réaction.
Selon un mode de réalisation préféré de l'invention, le catalyseur utilisé est soluble dans l'un de ces milieux à température ambiante ou à la température de recyclage de ces milieux dans une nouvelle oxydation. Par le terme soluble, on entend que le catalyseur soit au moins partiellement soluble dans le milieu considéré.
Dans le cas d'une catalyse hétérogène, les éléments métalliques catalytiquement actifs sont supportés ou incorporés dans une matrice minérale micro ou mésoporeuse ou dans une matrice polymérique ou sont sous forme de complexes organométalliques greffés ou incorporés sur un support organique ou minéral. Par incorporé, on entend que le métal est un élément du support ou que l'on travaille avec des complexes ou composés du métal catalytiquement actif stériquement et/ou chimiquement piégés dans la structure, par exemple poreuse, du support, dans les conditions de l'oxydation. Dans un mode de réalisation préféré de l'invention, le catalyseur métallique homogène ou hétérogène est constitué de sels ou de complexes de métaux des groupes IVb (groupe du Ti), Vb (groupe du V), Vlb(groupe du Cr), Vllb (groupe du Mn), VIII (groupe du Fe ou Co ou Ni), Ib (groupe du Cu), et cérium, seuls ou en mélange. Les éléments préférés sont, en particulier, Co et ou Mn et/ou Cr et/ou Zr, Hf, Ce et/ou Zr et/ou Hf. La concentration en métal dans le milieu liquide d'oxydation, en catalyse homogène, varie entre 0,00001 et 5 % (% poids), de préférence entre 0,00001% et 1% par rapport à la totalité de la masse réactionnelle.
Selon l'invention, le système catalytique comprend un cocatalyseur constitué par un composé organique défini par les formules générales (I), (II) décrites ci-dessus. Ce composé est ajouté dans le milieu d'oxydation ou peut être incorporé sur un support dans le cas d'une mise en œuvre d'une catalyse hétérogène, le support comprenant avantageusement le métal catalytiquement actif. Le terme "incorporé" a la signification indiquée ci-dessus.
Le rapport molaire du cocatalyseur dans le milieu d'oxydation peut varier dans de larges limites. A titre d'exemple, ce rapport peut être compris entre 0,001 mole et 1 mole de cocatalyseur pour une mole d'hydrocarbure à oxyder. Avantageusement, ce rapport peut être compris entre 0,001 mole et 0,2 mole.
Comme cocatalyseurs convenables pour l'invention, on peut citer les composés répondant à la formule (I) dans laquelle R1 et R2, identiques ou différents, représentent l'hydrogène ou des radicaux alkyles tels que méthyl, éthyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, decyl, dodecyl ou des radicaux ramifiés. R1 et R2 peuvent également représenter un groupe aromatique comme les groupes phényl, benzyl, naphtyl toluyl. On peut citer également comme radicaux représentés par R1 et R2, les radicaux cycloalkyles comme le cyclohexyl, cyclopentyl, cyclooctyl.
R1 et R2 peuvent également représenter, comme indiqué ci-dessus, un radical alkoxy, carbonyl ou acyl. Comme radicaux préférrés on peut citer le méthoxycarbonyl, l'ethoxycarbonyl, le propoxycarbonyl, l'isopropoxycarbonyl, le butoxycarbonyl, le pentoxycarbonyl, les radicaux formyl, acétyl, propionyl, butyryl, valéryl, pivaloyl.
En outre, R1 et R2 peuvent être liés entre eux par une liaison simple ou double pour former un cycle aromatique ou aliphatique sous forme condensée ou non. Ces cycles peuvent être également des hétérocycles aromatiques ou aliphatiques. A titre d'exemple de cycles ainsi formés, on peut citer les cycles benzènique et naphtènique pour les aromatiques et cyclohexane, cyclododécane pour les cycles aliphatiques.
A titre d'exemple de composés répondant à la formule (I) convenables pour l'invention, on peut citer le N-bromosuccinimide, le N-bromomaléimide, le N- bromohexahydrophtalimide, le N,N'-dibromocyciohexanetétracarboximide, le N- bromophtalimide, le N-bromotrimellitimide, le N,N'-dibromopyromeilitimide.
Les cocatalyseurs répondant à la formule (II) sont notamment ceux dans lesquels R3 et R4, différents ou identiques, représentent les radicaux indiqués pour R1 et R2. On peut citer comme radicaux préférrés, les radicaux N-bromosuccinimide, N- bromophtalimide ou N-bromonaphtalimide..
Ces composés sont soit commercialement disponibles, comme par exemple les composés cités ci-dessus, soit peuvent être obtenus par un procédé classique de formation d'imide, par exemple par réaction entre un anhydride d'acide et l'hydroxylamine suivie par une réaction avec un agent bromant tel que l'hypobromite ou le bromite de sodium.
L'invention s'applique plus particulièrement à l'oxydation de composés cycloaliphatiques tels que le cyclohexane, le cyclododécane en diacides linéaires correspondants, ou en alcools et cétones correspondantes.
Selon un mode de réalisation préféré de l'invention, elle concerne l'oxydation directe du cyclohexane en acide adipique, par un gaz contenant de l'oxygène, en milieu liquide et en présence d'un catalyseur. Le catalyseur comprend préférentiellement du cobalt ou du manganèse.
La réaction d'oxydation est mise en œuvre à une température comprise entre 50°C et 200°C, de préférence entre 70°C et 180°C. Elle peut être réalisée sous pression atmosphérique. Toutefois, elle est généralement mise en œuvre sous pression pour maintenir les composants du milieu réactionnel sous forme liquide. La pression peut être comprise entre 10 KPa (0,1 bar) et 20000 KPa (200 bars), de préférence entre 100Kpa (1 bar) et 10000 Kpa (100 bar).
L'oxygène utilisé peut être sous forme pure ou en mélange avec un gaz inerte tel que l'azote ou l'hélium. On peut également utiliser de l'air plus ou moins enrichi en oxygène. La quantité d'oxygène alimentée dans le milieu est avantageusement comprise entre 1 et 1000 moles par mole de composés à oxyder. Le procédé d'oxydation peut être réalisé de manière continue ou selon un procédé discontinu. Avantageusement, le milieu réactionnel liquide sorti du réacteur est traité selon des procédés connus permettant d'une part de séparer et récupérer l'acide produit et d'autre part recycler les composés organiques non oxydés ou partiellement oxydés comme le cyclohexane, le cyclohexanol et/ou le cyclohexanone, le système catalytique et le composé acide utilisé comme solvant.
La quantité de catalyseur métallique, exprimée en pourcentage pondéral de métal par rapport au mélange réactionnel, se situe généralement entre 0,00001 % et 5 % et de préférence entre 0,00001 % et 1 %, sans que ces valeurs soient critiques. Il s'agit cependant d'avoir une activité suffisante tout en n'utilisant pas des quantités trop importantes de catalyseur qui devra être ensuite séparé du mélange réactionnel final et recyclé.
Le catalyseur métallique, outre le cobalt et/ou le manganèse, peut également comporter d'autres composés à base de métaux choisis dans le groupe comprenant le manganèse, le cuivre, le cérium, le vanadium, le chrome, le zirconium, l'hafnium, le cobalt ou une association de certains de ces éléments .
Il est avantageux de mettre en œuvre également un composé initiateur de la réaction d'oxydation, tel que par exemple une cétone ou un aldéhyde. La cyclohexanone qui est un intermédiaire réactionnel dans le cas de l'oxydation du cyclohexane, est tout particulièrement indiquée. Généralement l'initiateur représente de 0,01 % à 20 % en poids du poids du mélange réactionnel mis en œuvre, sans que ces proportions aient une valeur critique. L'initiateur est surtout utile lors du démarrage de l'oxydation et lorsque l'on réalise l'oxydation à une température inférieure à 120°C. Il peut être introduit dès le début de la réaction. L'oxydation peut également être mise en œuvre en présence d'eau introduite dès le stade initial du procédé.
Comme indiqué ci-dessus, le mélange réactionnel issu de l'oxydation est soumis à différentes opérations de séparation de certains de ses constituants pour, par exemple, permettre leur recyclage au niveau de l'oxydation et la récupération des acides produits. Selon une première variante du procédé, on peut soumettre tout d'abord le mélange réactionnel brut à un refroidissement à une température de 16°C à 30°C par exemple, ce qui occasionne la cristallisation d'au moins une partie de l'acide formé. On obtient ainsi un milieu comprenant une phase solide constituée essentiellement d'acides, au moins une phase liquide organique contenant essentiellement le composé à oxyder n'ayant pas réagi, éventuellement le composé acide et les intermédiaires d'oxydation, (ou plusieurs phases organiques si le composé acide et l'hydrocarbure ne sont pas totalement miscibles à basse température) et une phase liquide aqueuse contenant essentiellement des sous produits acides de l'oxydation et l'eau formée. Le système catalytique peut se trouver dans une des phases organiques s'il est soluble dans ladite phase, ou dans la phase aqueuse inférieure.
Après filtration ou centrifugation du solide, on procède s'il y a lieu à la séparation par décantation des phases liquides organiques et aqueuse constituant le filtrat ou le centrifugeât : la ou les phases organiques peuvent être recyclées dans une nouvelle réaction d'oxydation.
Il peut être avantageux de procéder, préalablement à l'opération de cristallisation de l'acide, à une concentration du mélange réactionnel.
Selon une deuxième variante du procédé, on peut soutirer à chaud le mélange réactionnel brut final, par exemple à une température pouvant atteindre 75°C. Le mélange réactionnel décante alors en au moins deux phases liquides : une ou plusieurs phases organiques contenant essentiellement l'hydrocarbure n'ayant pas réagi, éventuellement le composé acide, les intermédiaires d'oxydation et une phase liquide aqueuse contenant essentiellement les acides formés et l'eau formée. Selon la solubilité et la nature du système catalytique celui-ci peut être présent dans la ou les phases organiques, récupéré par séparation solide/liquide avant précipitation ou cristallisation de l'acide formé dans le cas d'une catalyse hétérogène ou s'il est soluble dans la phase aqueuse, extrait par extraction liquide/liquide, sur résine ou électrodialyse.
Comme dans la première variante, on procède à la séparation par décantation des phases liquides : la ou les phases organiques peuvent être recyclées dans une nouvelle réaction d'oxydation.
Dans ces modes de réalisation, le composé acide utilisé comme solvant est généralement contenu ou forme un élément essentiel de la ou des phases organiques. En conséquence, après séparation de l'acide formé et éventuellement de la phase liquide contenant l'eau formée, les sous-produits d'oxydation et le catalyseur, le composé acide est recyclé dans l'étape d'oxydation avec l'hydrocarbure n'ayant pas été oxydé et les intermédiaires d'oxydation.
Par ailleurs, si le composé acide est solide dans une phase de traitement du milieu réactionnel, il sera avantageusement séparé et récupéré par mise en œuvre des procédés de séparation solide/liquide soit avant traitement du milieu réactionnel pour récupérer l'acide produit, soit avec l'acide produit. Dans ce dernier cas, l'acide produit pourra être récupéré par extraction à l'eau.
Dans ces exemples de mode de réalisation de l'invention, de l'eau peut être ajouté au milieu réactionnel pour obtenir une meilleure dissolution des sous produits acides de l'oxydation et une meilleure récupération de l'acide formé.
La récupération de l'acide est généralement réalisée par précipitation lors du refroidissement du milieu réactionnel. L'acide ainsi récupéré peut être purifié selon des techniques habituelles et décrites dans de nombreux brevets. On peut citer, à titre d'exemple, les brevets français n° 2749299 et 2749300.
Si la phase liquide non organique ou aqueuse contient le catalyseur, celui-ci est extrait soit avant la cristallisation de l'acide formé par précipitation ou extraction selon des procédés connus comme l'extraction liquide - liquide, l'électrodialyse, traitement sur résines échangeuses d'ions par exemple, soit après cristallisation de l'acide formé par des techniques d'extraction décrites ci-dessus ou analogues.
Dans le mode de réalisation d'oxydation des hydrocarbures en alcools et cétones, l'invention s'applique avantageusement à l'oxydation des cycloalcanes en cycloalcanones et cycloalcanols, plus particulièrement à l'oxydation du cyclohexane en cyclohexanol et cyclohexanone.
Dans ce mode de réalisation les systèmes catalytiques peuvent être identiques à ceux décrits pour l'oxydation directe en acides.
Le milieu réactionnel ne comprend pas de solvant du type acide, l'hydrocarbure à oxyder, par exemple le cyclohexane, étant avantageusement le solvant des produits de la réaction. Les conditions opératoires de mise en oeuvre de la réaction d'oxydation sont avantageusement une température comprise entre 130°C et 200°C et une pression comprise entre 1 et 10 bar.
Les produits de la réaction d'oxydation sont séparés et récupérés par distillation, le système catalytique étant avantageusement recyclé après séparation par des méthodes classiques telles que décantation, électrodialyse, précipitation ou filtration.
Le mélange cyclohexanol/cyclohexanone peut être utilisé pour la fabrication d'acide adipique par oxydation nitrique ou traiter dans une étape de déshydrogenation pour transformer le cyclohexanol en cyclohexanone, selon des procédés connus. D'autres avantages, détails de l'invention apparaîtront plus clairement au vu des exemples donnés ci-dessous uniquement à titre indicatif et d'illustration.
Exemple 1 :
Dans un autoclave de 125 ml en titane, muni de moyens de chauffage par collier chauffant, d'une turbine et de moyens d'introduction de gaz et de régulation de pression, on charge :
- 12,51g (86,87 mmol) d'acide octanoïque
- 0,527 g (5,38 mmol) de cyclohexanone - 37,88 g (450,9 mmol) de cyclohexane
- 0,4431 g (1,245 mmol de Co) d'acétylacétonate de cobalt
- 0,9853 g (5,535 mmol) de N-bromosuccinimide (1,2% molaire par rapport au cyclohexane) Après fermeture du réacteur, on agite à 1000 tours par minute, on crée une pression d'air (100 bar à 20°C) et on chauffe. La température atteint 105°C dans la masse en 10 min et on maintient cette température pendant encore 3 heures.
Après refroidissement et dépressurisation, le mélange réactionnel comprend une phase comprenant le cyclohexane et un précipité.
Le mélange est homogénéisé par addition d'acide acétique. Les constituants du mélange sont analysés par chromatographie en phase gazeuse. Le taux de transformation (TT) du cyclohexane est de : 6,5% La sélectivité en acides est de 32,7%. La sélectilivité en mélange cyclohexanol/cyclohexanone est de 51 ,4%. Le rapport molaire acide adipique/totalité des acides est de 73,2% La sélectivité en composé X est le rendement de ce composé calculé par rapport au cyclohexane transformé.
Exemple compratif 2 :
On répète l'exemple 1 dans le même appareillage et dans les mêmes conditions opératoires, avec introduction des réactifs suivants - 12,52g (86,94 mmol) d'acide octanoïque
- 0,5137 g (5,24 mmol) de cyclohexanone
- 37,53 g (446,7 mmol) de cyclohexane
- 0,4477 g (1 ,257 mmol de Co) d'acétylacétonate de cobalt
Le mélange, après homogénéisation par addition d'acide acétique, est analysé par chromatographie en phase gazeuse.
Le taux de transformation (TT) du cyclohexane est de : 4,0%
La sélectivité en acides est de 44,1%.
La sélectilivité en mélange cyclohexanol/cyclohexanone est de 39,6%.
Le rapport molaire acide adipique/totalité des acides est de 76,6%
Exemple 3:
L'exemple 1 est répété avec un mélange réactionnel de départ présentant la composition suivante : - 12,65g (87,84 mmol) d'acide octanoïque
- 0,5124 g (5,23 mmol) de cyclohexanone
- 37,72 g (44 mmol) de cyclohexane
- 0,4496 g (1,285 mmol de Co) d'acétylacétonate de cobalt - 2,0119 g (11 ,3 mmol) de N-bromosuccinimide (2,5% molaire par rapport au cyclohexane)
Le mélange, après homogénéisation par addition d'acide acétique, est analysé par chromatographie en phase gazeuse. Le taux de transformation (TT) du cyclohexane est de : 5,4% La sélectivité en acides est de 25,9%.
La sélectilivité en mélange cyclohexanol/cyclohexanone est de 58,9%. Le rapport molaire acide adipique/totalité des acides est de 69,4%

Claims

REVENDICATIONS
1. Procédé d'oxydation d'hydrocarbures par un agent d'oxydation comprenant de l'oxygène moléculaire, caractérisé en ce qu'il est réalisé en présence d'un système catalytique comprenant un catalyseur à base d'au moins un composé métallique et d'un cocatalyseur comprenant au moins une fonction imide et répondant à l'une des formules générales suivantes :
dans lesquelles,
- R1 , R2 différents ou identiques peuvent être l'hydrogène, un radical hydrocarboné aliphatique, aromatique, cycloaliphatique, arylaliphatique, alkylaromatique comprenant de 1 à 12 atomes de carbone et pouvant comprendre des heteroatomes, un atome d'halogène, un groupe hydroxyle, un groupe alcoxy, un groupe carboxyle, un groupe ester, un groupe carbonyle, les radicaux R1 et R2 pouvant être reliés entre eux pour former un radical cycloaromatique pouvant comprendre plusieurs cycles aromatiques sous forme condensée ou non ou un radical cycloaliphatique pouvant comprendre un ou plusieurs cycles sous forme condensée ou non.,
- R3, R4 différents ou identiques peuvent être l'hydrogène, un radical hydrocarboné aliphatique, aromatique, cycloaliphatique, arylaliphatique, alkylaromatique comprenant de 1 à 20 atomes de carbone et pouvant comprendre des heteroatomes, les radicaux R3 et R4 pouvant être reliés entre eux pour former un radical cycloaromatique pouvant comprendre plusieurs cycles aromatiques sous forme condensée ou non ou un radical cycloaliphatique pouvant comprendre un ou plusieurs cycles sous forme condensée ou non.
2. Procédé selon la revendication 1 , caractérisé en ce qu'il est mis en œuvre en phase gaz ou en phase liquide.
3. Procédé selon l'une des revendications 1 ou 2, caractérisé en ce qu'un solvant est utilisé pour la mise en œuvre du procédé en milieu liquide.
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que les hydrocarbures sont des hydrocarbures aliphatiques saturés ou cycloaliphatiques saturés.
5. Procédé selon la revendication 4, caractérisé en ce que les hydrocarbures sont choisis dans le groupe comprenant le cyclohexane, le cyclododécane.
6. Procédé selon l'une des revendications précédentes, caractérisé en ce que les produits obtenus sont des alcools et/ou des cétones.
7. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que les produits obtenus sont des acides ou polyacides.
8. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que les produits obtenus sont un mélange d'acides, alcools, cétones.
9. Procédé selon la revendication 3, caractérisé en ce que le solvant est un acide carboxylique choisi dans le groupe comprenant l'acide acétique, l'acide glutarique, l'acide octanoïque, les acides lipophiles.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que le système catalytique est soluble dans le milieu réactionnel
11. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le système catalytique est incorporé sur un support insoluble dans le milieu d'oxydation.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que le catalyseur comprend au moins un composé d'au moins un élément métallique choisi dans le groupe comprenant Cu, Ag, Au, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Se, In, Tl, Y,
Ga, Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, Cr, Mo, W, Mn, Te, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, les lanthanides comme Ce et les combinaisons de ceux-ci.
13. Procédé selon l'une des revendications précédentes, caractérisé en ce que le catalyseur métallique comprend un composé des éléments métalliques choisis dans le groupe comprenant Co et/ou Mn et/ou Cr et ou Zr, Hf, Ce et/ou Zr et/ou Hf.
14. Procédé selon l'une des revendications précédentes, caractérisé en ce que R1 et R2 de la formule (I) identiques ou différents représentent l'hydrogène ou des radicaux alkyles choisis dans le groupe comprenant les radicaux méthyl, éthyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, decyl, dodecyl ou des radicaux ramifiés, ou des radicaux aromatiques choisi dans le groupe comprenant les radicaux phényl, benzyl, naphtyl toluyi, ou des radicaux cycloalkyles choisi dans le groupe comprenant le cyclohexyl, cyclopentyl, cyclooctyl, ou des radicaux alkoxy, carbonyl ou acyl choisis dans le groupe comprenant les radicaux méthoxycarbonyl, l'ethoxycarbonyl, le propoxycarbonyl, l'isopropoxycarbonyl, le butoxycarbonyl, le pentoxycarbonyl, les radicaux formyl, acétyl, propionyl, butyryi, valéryl, pivaloyl, ou R1 et R2 peuvent être liés entre eux par une liaison simple ou double pour former un cycle aromatique ou aliphatique sous forme condensée ou non.
15. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que R3 et R4 de la formule (II) identiques ou différents représentent l'hydrogène ou des radicaux alkyles choisis dans le groupe comprenant les radicaux méthyl, éthyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, t-butyl, pentyl, hexyl, heptyl, octyl, decyl, dodecyl ou des radicaux ramifiés, ou des radicaux aromatiques choisi dans le groupe comprenant les radicaux phényl, benzyl, naphtyl toluyi, ou des radicaux cycloalkyles choisi dans le groupe comprenant le cyclohexyl, cyclopentyl, cyclooctyl, ou des radicaux alkoxy, carbonyl ou acyl choisis dans le groupe comprenant les radicaux méthoxycarbonyl, l'ethoxycarbonyl, le propoxycarbonyl, l'isopropoxycarbonyl, le butoxycarbonyl, le pentoxycarbonyl, les radicaux formyl, acétyl, propionyl, butyryi, valéryl, pivaloyl, ou R1 et R2 peuvent être liés entre eux par une liaison simple ou double pour former un cycle aromatique ou aliphatique sous forme condensée ou non
16. Procédé selon l'une des revendications précédentes, caractérisé en ce que la cocatalyseur est choisi dans le groupe comprenant le N-bromosuccinimide, le N- bromomaléimide, le N-bromohexahydrophtalimide, le N,N'- dibromocyclohexanetétracarboximide, le N-bromophtalimide, le N-bromotrimellitimide, le N,N'-dibromopyromellitimide.
17. Procédé selon l'une des revendications précédentes caractérisé en ce que la quantité de cocatalyseur présente dans le milieu réactionnel est comprise entre 0,001 mole et 2 mole de cocatalyseur pour une mole d'hydrocarbure à oxyder
18. Procédé selon la revendication 17, caractérisé en ce que la concentration en catalyseur à base de composés métalliques dans le milieu réactionnel est comprise entre 0,00001 et 5 % (% poids d'élément métallique), de préférence entre 0,00001% et 2%.
EP02727704A 2001-05-04 2002-04-30 Procede d'oxydation d'hydrocarbures Withdrawn EP1390338A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0106016A FR2824322A1 (fr) 2001-05-04 2001-05-04 Procede d'oxydation d'hydrocarbures
FR0106016 2001-05-04
PCT/FR2002/001492 WO2002090309A1 (fr) 2001-05-04 2002-04-30 Procede d'oxydation d'hydrocarbures

Publications (1)

Publication Number Publication Date
EP1390338A1 true EP1390338A1 (fr) 2004-02-25

Family

ID=8863003

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02727704A Withdrawn EP1390338A1 (fr) 2001-05-04 2002-04-30 Procede d'oxydation d'hydrocarbures

Country Status (8)

Country Link
US (1) US20040147777A1 (fr)
EP (1) EP1390338A1 (fr)
KR (1) KR20040007525A (fr)
CN (1) CN1511132A (fr)
BR (1) BR0209448A (fr)
FR (1) FR2824322A1 (fr)
TW (1) TW581759B (fr)
WO (1) WO2002090309A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403765B2 (ja) 2003-09-29 2010-01-27 住友化学株式会社 シクロアルカノール及び/又はシクロアルカノンの製造方法
CN1305829C (zh) * 2004-11-12 2007-03-21 中国科学院兰州化学物理研究所 环己烷选择氧化制环己酮的方法
US7456313B2 (en) * 2006-01-10 2008-11-25 Rohm And Haas Company Liquid-phase (AMM)oxidation process
CN100364663C (zh) * 2006-04-07 2008-01-30 浙江大学 负载型纳米金催化剂及制备方法
CN112125795B (zh) * 2019-06-24 2023-08-29 中国石油化工股份有限公司 环己烷氧化制己二酸的方法
CN112742366B (zh) * 2019-10-29 2023-06-09 中国石油化工股份有限公司 纳米碳基材料及其制备方法和环烷烃的催化氧化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958821A (en) * 1996-02-07 1999-09-28 Daicel Chemical Industries, Ltd. Oxidation catalytic system and oxidation process using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02090309A1 *

Also Published As

Publication number Publication date
BR0209448A (pt) 2004-08-03
TW581759B (en) 2004-04-01
US20040147777A1 (en) 2004-07-29
CN1511132A (zh) 2004-07-07
KR20040007525A (ko) 2004-01-24
FR2824322A1 (fr) 2002-11-08
WO2002090309A1 (fr) 2002-11-14

Similar Documents

Publication Publication Date Title
EP1890990B1 (fr) Procede de fabrication d'acides carboxyliques
FR2846651A1 (fr) Procede de fabrication d'acides carboxyliques
EP1390338A1 (fr) Procede d'oxydation d'hydrocarbures
EP1268384B1 (fr) Procede d'oxydation de cyclohexane en acides
EP1412316B1 (fr) Procede d'oxydation d'hydrocarbures en acides
EP0536012B1 (fr) Procédé de débromation de dérivés dibromés du naphtol
EP1492754B1 (fr) Procede de fabrication d'acides carboxyliques
WO2003099755A1 (fr) Procede d'oxydation d'hydrocarbures, d'alcools et/ou de cetones
FR2806078A1 (fr) Procede d'oxydation d'hydrocarbures en acides
WO2004041768A1 (fr) Procede de fabrication d'acides carboxyliques

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SIMONATO, JEAN-PIERRE

Inventor name: FACHE, ERIC

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20041103