EP1265836A1 - Procede d'oxydation d'hydrocarbures en acides - Google Patents

Procede d'oxydation d'hydrocarbures en acides

Info

Publication number
EP1265836A1
EP1265836A1 EP01913954A EP01913954A EP1265836A1 EP 1265836 A1 EP1265836 A1 EP 1265836A1 EP 01913954 A EP01913954 A EP 01913954A EP 01913954 A EP01913954 A EP 01913954A EP 1265836 A1 EP1265836 A1 EP 1265836A1
Authority
EP
European Patent Office
Prior art keywords
fluorinated
catalyst
perfluorinated
oxidation
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01913954A
Other languages
German (de)
English (en)
Inventor
Eric Fache
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fache Eric
Rhodia Polyamide Intermediates SAS
Original Assignee
Rhodia Polyamide Intermediates SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Polyamide Intermediates SAS filed Critical Rhodia Polyamide Intermediates SAS
Publication of EP1265836A1 publication Critical patent/EP1265836A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/10Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons
    • C07C27/12Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons with oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • C07C29/50Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • C07C51/313Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • C07C2601/20Systems containing only non-condensed rings with a ring being at least seven-membered the ring being twelve-membered

Definitions

  • the present invention relates to a process for the oxidation of hydrocarbons, in particular of branched or unbranched saturated aliphatic hydrocarbons, of cycloaliphatic or alkylaromatic hydrocarbons to acid or polyacid compounds
  • It relates more particularly to oxidation by an oxidizing agent containing molecular oxygen of cyclohexane to adipic acid
  • adipic acid is an important chemical compound used as raw material in many manufacturing such as the production of polymers such as polyamides, polyesters or polyurethanes
  • One of the aims of the present invention is to propose a process for the oxidation of hydrocarbons in a single step to produce acids or polyacids, in a liquid medium under the conditions of the oxidation reaction and allowing separation of the acid produced and recycling of the catalyst by simple operations with acceptable yields
  • the invention provides a process for the oxidation of substituted or unsubstituted saturated aliphatic or cycloahphatic hydrocarbons or of alkylaromatic hydrocarbons to acids or polyacids in a liquid medium by an oxidizing agent comprising molecular oxygen, characterized in that one of the constituents of the liquid medium is a fluorinated organic compound
  • the fluorinated organic compound is a compound which must form, at the temperature and pressure conditions of the oxidation reaction, at least one homogeneous liquid phase with the hydrocarbon (s) to be oxidized.
  • the fluorinated compound may be, advantageously at least partially miscible with the hydrocarbon (s) to be oxidized, under the temperature and pressure conditions used to carry out the oxidation reaction.
  • At least partially miscible is meant that, under the conditions of the oxidation reaction, the solubility of one compound in the other is at least greater than 2% by weight, and that a homogeneous liquid phase comprising at least one part of the hydrocarbons to be oxidized and of the fluorinated organic compound is formed.
  • the miscibility between the hydrocarbon and the fluorinated compound is such that, under the conditions of implementation of the invention, these two compounds form a single homogeneous liquid phase.
  • fluorinated compound it is necessary to understand either a single compound, or a mixture of fluorinated compounds. These compounds may be liquid or solid, in the latter case they will be dissolved in the hydrocarbon to be oxidized, in particular under the conditions of implementation of the invention.
  • these fluorinated compounds are stable at least, under the conditions for carrying out the oxidation reaction described later.
  • these suitable fluorinated compounds can be chosen from the group comprising
  • fluorinated aliphatic hydrocarbons or perfluorinated cyclic or acyclic, aromatic fluorinated hydrocarbons such as perfluorotoluene, perfluoromethylcyclohexane, perfluorohexane, perfluoroheptane, perfluorooctane, perfluorononane, perfluorodecalin, perfluoromethyldecalin, ⁇ , ⁇ , ⁇ -trifluorotoluene, 1, 3-bis (methyl trifluoropropyl) benzene.
  • Fluorinated or perfluorinated acids such as frifluoromethyl benzoic acids, pentafluorobenzoic acid, hexanoic, heptanoic, octanoic, nonanoic acid, perfluorinated adipic acid, perfluorinated
  • Fluorinated or perfluorinated halides such as perfluorinated iodo octane, perfluorinated bromooctane - Fluorinated or perfluorinated amines such as perfluorinated tpropylamine, perfluorinated tributylamine, perfluorinated tripentylamine
  • the concentration of fluorinated compounds in the liquid oxidation medium can vary within wide limits. Thus, it can be between 1 and 99% by weight relative to the total weight of the liquid medium, more advantageously it can be between 10 and 80. % by weight of the liquid medium
  • This catalyst advantageously comprises a metallic element chosen from the group comprising Cu, Ag, Au, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Ga , In, Tl, Se, Y, Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, Cr, Mo, W, Mn, Te, Re, Fe, Ru, Os, Co, Rh, Ir , Ni, Pd, Pt, lanthanides like Ce and combinations thereof
  • catalytic elements are used either in the form of compounds advantageously at least partially soluble in the liquid oxidation medium under the conditions for carrying out the oxidation reaction, or supported, absorbed or linked to an inert support such as silica , alumina
  • the catalyst is preferably, in particular under the conditions for carrying out the oxidation reaction
  • the catalyst used is soluble in the hydrocarbon to be oxidized and / or in the fluorinated compound to allow recycling of this catalyst
  • soluble it is meant that the catalyst is at least partially soluble in the medium considered
  • the catalytically active metallic elements are supported or incorporated in a micro or mesoporous mineral matrix or in a polyme ⁇ que matrix or are in the form of organometallic complexes grafted onto an organic or mineral support
  • incorporated it is meant that the metal is an element of the support or that one works with complexes sterically trapped in porous structures under the conditions of oxidation
  • the homogeneous or heterogeneous catalyst consists of salts or metal complexes of groups IVb (group of Ti), Vb (group of V), Vllb (group of Cr), Vllb ( Mn group), VIII (Fe or Co or Ni group), Ib (Cu group), and cerium, alone or as a mixture
  • the preferred elements are, in particular, Co and / or Mn and / or Cr and / or Zr, Hf, Ce and or Zr, Hf
  • the metal concentration in the liquid oxidation medium varies between 0.00001 and 5% (% by weight), preferably between 0.001% and 2%
  • the invention applies more particularly to the oxidation of cycloaliphatic compounds such as cyclohexane, cyclododecane leading respectively to adipic acid and dodecanoic acid
  • the invention relates to the direct oxidation of cyclohexane to adipic acid, by an oxygen-containing gas, in liquid medium and in the presence of a catalyst.
  • the catalyst preferably comprises cobalt
  • the oxidation reaction is carried out at a temperature between 50 ° C and 200 ° C, preferably between 70 ° C and 180 ° C. It can be carried out under atmospheric pressure However, it is generally carried out under pressure for maintain the components of the reaction medium in liquid form
  • the pressure can be between 10 KPa (0.1 bar) and 20,000 KPa (200 bar), preferably between 100Kpa (1 bar) and 10,000 Kpa (100 bar)
  • the oxygen used can be in pure form or in admixture with an inert gas such as nitrogen or helium. It is also possible to use air more or less enriched with oxygen.
  • the quantity of oxygen supplied to the medium is advantageously between 1 and 1000 moles per mole of compounds to be oxidized
  • the oxidation process can be carried out continuously or according to a discontinuous process
  • the liquid reaction medium leaving the reactor is treated according to known methods allowing on the one hand to separate and recover the acid produced and on the other hand to recycle non-oxidized or partially oxidized organic compounds such as cyclohexane, cyclohexanol and / or cyclohexanone, the catalyst and the fluorinated compound.
  • the amount of catalyst is generally between 0.00001% and 5% and preferably between 0.001% and 2%, without these values being critical. '' have sufficient activity while not using too large quantities of a catalyst which must then be separated from the final reaction mixture and recycled
  • the catalyst in addition to cobalt, can also comprise other compounds based on metals chosen from the group comprising manganese, copper, cerium, vanadium, chromium, zirconium, hafnium or a combination of some of these elements It is advantageous to also use a compound which initiates the oxidation reaction, such as for example a ketone or an aldehyde Cyclohexanone which is a reaction intermediate in the case of the oxidation of cyclohexane, is very particularly indicated Generally, the initiator represents from 0.01% to 20% by weight of the weight of the reaction mixture used, without these proportions having a critical value. The initiator is especially useful when starting the oxidation and when perform
  • the oxidation can also be carried out in the presence of water introduced from the initial stage of the process.
  • the reaction mixture resulting from the oxidation is subjected to different operations of separation of some of its constituents for, by example, allowing the recycling of certain constituents such as the non-oxidized hydrocarbon, the oxidation intermediates, the catalyst, at the level of the oxidation and the recovery of the acids produced.
  • a medium comprising a solid phase consisting essentially of acid, at least one organic liquid phase containing essentially the unreacted compound to be oxidized, optionally the dissolved fluorinated compound and / or the oxidation intermediates, (or more organic phases if the fluorinated compound and the hydrocarbon are not completely miscible at low temperature) and an aqueous liquid phase essentially containing acid by-products of oxidation and the water formed.
  • the catalyst can be in one of the organic phases if it is soluble in said phase, or in the aqueous phase
  • the organic and aqueous liquid phases constituting the filtrate or the cent ⁇ fugat are separated, if necessary, by decantation, the organic phase or phases can be recycled in a new oxidation reaction II can be advantageous to carry out, prior to the acid crystallization operation, a concentration of the reaction mixture
  • the final raw reaction mixture can be drawn off hot, for example at a temperature which can reach 75 ° C.
  • the reaction mixture then settles in at least two liquid phases one or more organic phases containing essentially the unreacted hydrocarbon, the fluorinated compound and possibly the oxidation intermediates and an aqueous liquid phase containing essentially the acids formed and the water formed Depending on the solubility and the nature of the catalyst, this can be present in the organic phase or phases and recycled with the recycling of these or recovers by solid / liquid separation before precipitation or crystallization of the acid formed in the case of '' heterogeneous catalysis or by liquid / liquid extraction, electrodyahse, treatment on resins if it is soluble in the aqueous phase
  • the liquid phases are separated by decantation the organic phase or phases can be recycled in a new oxidation reaction
  • the fluorinated compound used in accordance with the invention is generally contained or forms an essential element of the organic phase or phases Consequently, after separation of the acid formed and optionally from the liquid phase containing the water formed , the oxidation intermediates, the catalyst and the fluorinated compound are recycled in the oxidation step with the hydrocarbon not having been oxidized
  • the fluorinated compound is solid in a phase of treatment of the reaction medium, it will advantageously be separated and recovered by implementing solid / liquid separation processes either before treatment of the reaction medium to recover the acid produced, or with the acid produced In the latter case, the acid can be recovered by extraction with water
  • water can be added to the reaction medium to obtain better dissolution of the acid byproducts of oxidation and better recovery of the acid formed.
  • the acid is generally recovered by precipitation during the cooling of the reaction medium.
  • the acid thus recovered can be purified according to usual techniques and described in numerous patents. Mention may be made, for example, of French patents no. 2749299 and 2749300
  • the non-organic or aqueous liquid phase contains the catalyst, it is extracted either before the crystallization of the acid formed by precipitation or extraction according to known methods such as liquid-liquid extraction, electrodialysis, treatment on exchange resins d for example, either after crystallization of the acid formed by extraction techniques described above or the like
  • reaction mixture After cooling and depressurization, the reaction mixture is homogenized by adding acetic acid.
  • the constituents of the mixture obtained are determined by gas chromatography
  • Example 1 is repeated in the same apparatus and under the same operating conditions, but not loading a fluorinated compound and using an amount of cyclohexane of 40.2 g (479 mmol) The following results are obtained - conversion rate (TT) cyclohexane 0.80%
  • reaction mixture After cooling and depressurization, the reaction mixture is homogenized by adding acetic acid.
  • the constituents of the mixture obtained are determined by gas chromatography.
  • cobalt is added in the form of Cobalt acetylacetonate to obtain a content of 300 ppm of Co in the reaction medium and of cyclohexanone to have a concentration of 1% by mole relative to cyclohexane.
  • the reaction is carried out at a temperature of 105 ° C under an air pressure of 100 bar for 3 hours.
  • concentrations of cyclohexane and components of the solvent are indicated in the table below and are expressed as% by weight of each component.
  • yields and selectivities obtained are also listed in the table.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention concerne un procédé d'oxydation d'hydrocarbures, notamment d'hydrocarbures aliphatiques saturés ramifiés ou non, d'hydrocarbures cycloaliphatiques ou alkylaromatiques en composés acides ou polyacides. Elle se rapporte plus particulièrement à l'oxydation par un agent oxydant contenant de l'oxygène moléculaire de cyclohexane en acide adipique, en présence d'un composé fluoré, permettant une séparation et un recyclage du cyclohexane n'ayant pas réagi, des intermédiaires d'oxydation et du catalyseur plus faciles.

Description

PROCEDE D'OXYDATION D'HYDROCARBURES EN ACIDES
La présente invention concerne un procédé d'oxydation d'hydrocarbures, notamment d'hydrocarbures aliphatiques saturés ramifiés ou non, d'hydrocarbures cycloaliphatiques ou alkylaromatiques en composés acides ou polyacides
Elle se rapporte plus particulièrement à l'oxydation par un agent oxydant contenant de l'oxygène moléculaire de cyclohexane en acide adipique
L'oxydation du cyclohexane en acide adipique est un procédé qui a été étudié depuis de nombreuses années En effet, l'acide adipique est un composé chimique important utilise comme matière première dans de nombreuses fabrications telles que la production de polymères comme les polyamides, polyesters ou polyuréthannes
Plusieurs procédés de fabrication d'acide adipique à partir d'hydrocarbures tels que benzène, phénol, cyclohexène cyclohexane ont été proposés
L'oxydation du cyclohexane soit directement soit en deux étapes sont les voies les plus avantageuses pour produire l'acide adipique
Ainsi, le brevet américain 2,223,493 publié en décembre 1940, décrit l'oxydation d'hydrocarbures cycliques en diacides correspondants, en phase liquide comportant généralement de l'acide acétique, à une température d'au moins 60°C, à l'aide d'un gaz contenant de l'oxygène et en présence d'un catalyseur d'oxydation tel qu'un composé du cobalt
De nombreux autres brevets et articles décrivent cette réaction d'oxydation directe du cyclohexane en acide adipique Toutefois, pour obtenir des rendements acceptables de production d'acide adipique, ces documents décrivent l'utilisation de l'acide acétique comme solvant, en présence soit de catalyseur homogène soit de catalyseur hétérogène On peut citer, à titre d'illustration, l'article paru dans le journal "Chemtech", 555-559 (septembre 1974) dont l'auteur est K Tanaka qui résume et commente le procédé d'oxydation directe du cyclohexane On peut également citer les brevets américains 3,231 ,608 , 4,032,569 , 4,158,73 , 4,263,453 et 5,321 ,157, le brevet européen 870751 qui décrivent différents systèmes catalytiques homogènes li a également été proposé des procédés d'oxydation directe du cyclohexane en présence de catalyseur hétérogène comme des aluminophosphates substitués par du cobalt, comme dans le brevet européen n°519569
Le choix du solvant, à savoir l'acide acétique, est une caractéristique importante pour obtenir un taux de transformation du cyclohexane et une production d'acide adipique acceptables L'utilisation d'un tel solvant présente de nombreux inconvénients provoqués par, par exemple, son caractère corrosif aux conditions de température et de pression utilisées De plus, l'utilisation de ce solvant pose de nombreux problèmes pour les étapes de séparation et extraction de l'acide adipique produit et le recyclage de divers composés
En effet, en présence d'acide acétique, il est difficile de séparer et extraire du milieu réactionnel les composés sous-produits de l'oxydation tels que la cyclohexanone et le cyclohexanol formés
En outre, l'extraction de l'acide adipique par cristallisation et sa purification sont rendues difficiles car la solubilité à froid de cet acide est plus élevée à 25°C dans l'acide acétique et moins élevée à 80°C dans l'acide acétique que dans l'eau
La séparation et le recyclage du catalyseur homogène sont également difficiles en présence d'acide acétique En effet, d'une part un recyclage du catalyseur sans extraction de celui-ci ne permet pas de conserver une activité catalytique suffisante, et d'autre part les opérations de séparation du catalyseur avant recyclage comme décrites notamment dans les brevets français n° 2722783, 2746671 , sont complexes et coûteuses De plus, ce solvant impose de réaliser une déshydratation difficile et coûteuse du milieu réactionnel
Il a également été proposé quelques procédés d'oxydation en une seule étape du cyclohexane en acide adipique sans utilisation d'acide acétique. Certains proposent de réaliser cette réaction en l'absence de solvants, d'autres avec des solvants tels que des esters organiques comme les acétates (US 4,098,817), de l'acétone (US 2,589,648) ou encore des alcools comme le butanol, le méthanol, le cyclohexanol ou l'acétonitrile (Ep 784045)
Ces procédés conduisent généralement à des sélectivités en acide adipique très faibles Par ailleurs, les solvants utilisés présentent souvent une faible stabilité dans les conditions d'oxydation de l'hydrocarbure comme le cyclohexane Cette faible stabilité provoque une consommation importante du solvant ce qui rend inexploitable de tels procédés
Un des buts de la présente invention est de proposer un procédé d'oxydation d'hydrocarbures en une seule étape pour produire des acides ou poiyacides, dans un milieu liquide aux conditions de la réaction d'oxydation et permettant une séparation de l'acide produit et un recyclage du catalyseur par des opérations simples avec des rendements acceptables
A cet effet, l'invention propose un procédé d'oxydation d'hydrocarbures aliphatiques ou cycloahphatiques saturés substitués ou non ou d'hydrocarbures alkylaromatiques en acides ou poiyacides dans un milieu liquide par un agent d'oxydation comprenant de l'oxygène moléculaire, caractérisé en ce qu'un des constituants du milieu liquide est un composé organique fluoré Selon l'invention, le composé organique fluoré est un composé qui doit former aux conditions de température et de pression de la réaction d'oxydation au moins une phase liquide homogène avec le ou les hydrocarbures à oxyder. Ainsi, le composé fluoré pourra être, avantageusement au moins partiellement miscible avec le ou les hydrocarbures à oxyder, aux conditions de température et de pression mises en œuvre pour réaliser la réaction d'oxydation.
Par au moins partiellement miscible, on entend qu'aux conditions de la réaction d'oxydation, la solubilité d'un composé dans l'autre soit au moins supérieure à 2% en poids, et qu'une phase liquide homogène comprenant au moins une partie des hydrocarbures à oxyder et du composé organique fluoré soit formée.
Dans un mode de réalisation préféré de l'invention, la miscibilité entre l'hydrocarbure et le composé fluoré est telle qu'aux conditions de mise en œuvre de l'invention, ces deux composés forment une seule phase liquide homogène.
Par composé fluoré, il faut comprendre soit un seul composé, soit un mélange de composés fluorés. Ces composés peuvent être liquides ou solides, dans ce dernier cas ils seront dissous dans l'hydrocarbure à oxyder, notamment aux conditions de mise en œuvre de l'invention.
De plus, et de manière évidente, ces composés fluorés sont stables au moins, aux conditions de mise en œuvre de la réaction d'oxydation décrites ultérieurement. Avantageusement, ces composés fluorés convenables peuvent être choisis dans le groupe comprenant
- Hydrocarbures aliphatiques fluorés ou perfluorés cycliques ou acycliques, hydrocarbures fluorés aromatiques tels le perfluorotoluène, perfluorométhylcyclohexane, perfluorohexane, perfluoroheptane, perfluorooctane, perfluorononane, perfluorodécaline, perfluorométhyldécaline, α,α,α-trifluorotoluène, 1 ,3-bis(méthyl trifluoro)benzène.
- Esters perfluorés ou fluorés tels que perfluorooctanoates d'alkyle, perfluoronanoates d'alkyle
- Cétones ou éthers fluorés ou perfluorés telles que acétone perfluorée - Alcools fluorés ou perfluorés tels que hexanol, octanoi, nonanol, décanol perfluorés, t-butanol perfluoré, isopropanol perfluoré, hexafluoro-1 , 1 ,1 , 3,3,3- propanol-2
- Nitriies fluorés ou perfluorés tels que acétonitrile perfluoré
- Acides fluorés ou perfluorés tels que acides frifluorométhyl benzoïque, acide pentafluorobenzoique, acide hexanoique, heptanoique, octanoique, nonanoique perfluorés, acide adipique perfluoré
- Halogénures fluorés ou perfluorés tels que iodo octane perfluoré, bromooctane perfluoré - Aminés fluorées ou perfluorées tels que tπpropylamine perfluorée, tributylamine perfluorée, tripentylamine perfluorée
La concentration en composés fluorés dans le milieu liquide d'oxydation peut varier dans de larges limites Ainsi, il peut être compris entre 1 et 99 % en poids par rapport au poids total du milieu liquide, plus avantageusement il peut être compris entre 10 et 80 % en poids du milieu liquide
Il est également possible sans pour cela sortir du cadre de l'invention, d'utiliser le composant fluoré en association avec un autre composé qui peut notamment avoir comme effet d'améliorer la sélectivité et/ou la productivité de la réaction d'oxydation en acide adipique
Comme exemple de tels composés, on peut citer, en particulier, les acides organiques, les nitriles Comme composés plus particulièrement convenables, on peut citer l'acide acétique, l'acide propionique, l'acide butyrique, l'acide valéπque, les acides lipophiies comprenant au moins 6 atomes de carbone, les nitnles comme l'acétonitrile, le benzonitnle, des dérivés halogènes comme le dichlorométhane
L'oxydation est réalisée, en général, en présence d'un catalyseur Ce catalyseur comprend avantageusement un élément métallique choisi dans le groupe comprenant Cu, Ag, Au, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Ga, In, Tl, Se, Y, Ti, Zr, Hf, Ge, Sn, Pb, V, Nb, Ta, Cr, Mo, W, Mn, Te, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, les lanthanides comme Ce et les combinaisons de ceux-ci
Ces éléments catalytiques sont mis en œuvre soit sous forme de composés avantageusement au moins partiellement solubles dans le milieu liquide d'oxydation aux conditions de mise en œuvre de la réaction d'oxydation, soit supportés, absorbés ou liés à un support inerte tel que silice, alumine Le catalyseur est de préférence, notamment aux conditions de mise en œuvre de la réaction d'oxydation
- Soit soluble dans l'hydrocarbure à oxyder,
- Soit soluble dans le composé fluoré,
- Soit soluble dans le mélange hydrocarbure/composé fluoré formant une phase liquide homogène aux conditions de mise en œuvre de la réaction
Selon un mode de réalisation préféré de l'invention, le catalyseur utilisé est soluble dans l'hydrocarbure à oxyder et/ou dans le composé fluoré pour permettre un recyclage de ce catalyseur
Par le terme soluble, on entend que le catalyseur soit au moins partiellement soluble dans le milieu considéré
Dans le cas d'une catalyse hétérogène, les éléments métalliques catalytiquement actifs sont supportés ou incorpores dans une matrice minérale micro ou mésoporeuse ou dans une matrice polymeπque ou sont sous forme de complexes organométalliques greffés sur un support organique ou minéral Par incorporé, on entend que le métal est un élément du support ou que l'on travaille avec des complexes stéπquement piégés dans des structures poreuses dans les conditions de l'oxydation
Dans un mode de réalisation préféré de l'invention, le catalyseur homogène ou hétérogène est constitué de sels ou de complexes de métaux des groupes IVb (groupe du Ti), Vb (groupe du V), Vllb(groupe du Cr), Vllb (groupe du Mn), VIII (groupe du Fe ou Co ou Ni), Ib (groupe du Cu), et cérium, seuls ou en mélange Les éléments préférés sont, en particulier, Co et/ou Mn et/ou Cr et/ou Zr, Hf, Ce et ou Zr, Hf La concentration en métal dans le milieu liquide d'oxydation varie entre 0,00001 et 5 % (% poids), de préférence entre 0,001 % et 2%
L'invention s'applique plus particulièrement à l'oxydation de composés cycloaliphatiques tels que le cyclohexane, le cyclododécane conduisant respectivement à l'acide adipique et l'acide dodécanoique
Selon un mode de réalisation préféré de l'invention, elle concerne l'oxydation directe du cyclohexane en acide adipique, par un gaz contenant de l'oxygène, en miiieu liquide et en présence d'un catalyseur Le catalyseur comprend préférentiellement du cobalt
La réaction d'oxydation est mise en œuvre à une température comprise entre 50°C et 200°C, de préférence entre 70°C et 180°C Elle peut être réalisée sous pression atmosphérique Toutefois, elle est généralement mise en œuvre sous pression pour maintenir les composants du milieu réactionnel sous forme liquide La pression peut être comprise entre 10 KPa (0,1 bar) et 20000 KPa (200 bars), de préférence entre 100Kpa (1 bar) et 10000 Kpa (100 bar)
L'oxygène utilisé peut être sous forme pure ou en mélange avec un gaz inerte tel que l'azote ou l'hélium. On peut également utiliser de l'air plus ou moins enrichi en oxygène. La quantité d'oxygène alimentée dans le milieu est avantageusement comprise entre 1 et 1000 moles par mole de composés à oxyder
Le procédé d'oxydation peut être réalisé de manière continue ou selon un procédé discontinu Avantageusement, le milieu réactionnel liquide sorti du réacteur est traité selon des procédés connus permettant d'une part de séparer et récupérer l'acide produit et d'autre part recycler les composés organiques non oxydés ou partiellement oxydés comme le cyclohexane, le cyclohexanol et/ou le cyclohexanone, le catalyseur et le composé fluoré.
La quantité de catalyseur, exprimée en pourcentage pondéral de cobalt par rapport au mélange réactionnel, se situe généralement entre 0,00001 % et 5 % et de préférence entre 0,001 % et 2 %, sans que ces valeurs soient critiques II s'agit cependant d'avoir une activité suffisante tout en n'utilisant pas des quantités trop importantes d'un catalyseur qu'il faut ensuite séparer du mélange réactionnel final et recycler Le catalyseur, outre le cobalt, peut également comporter d'autres composés à base de métaux choisis dans le groupe comprenant le manganèse, le cuivre, le cérium, le vanadium, le chrome, le zirconium, l'hafnium ou une association de certains de ces éléments II est avantageux de mettre en œuvre également un composé initiateur de la réaction d'oxydation, tel que par exemple une cétone ou un aldéhyde La cyclohexanone qui est un intermédiaire réactionnel dans le cas de l'oxydation du cyclohexane, est tout particulièrement indiquée Généralement l'initiateur représente de 0,01 % à 20 % en poids du poids du mélange réactionnel mis en œuvre, sans que ces proportions aient une valeur critique L'initiateur est surtout utile lors du démarrage de l'oxydation et lorsque l'on réalise l'oxydation à une température inférieure à 120°C II peut être introduit dès le début de la réaction
L'oxydation peut également être mise en œuvre en présence d'eau introduite dès le stade initial du procédé Comme indiqué ci-dessus, le mélange réactionnel issu de l'oxydation est soumis à différentes opérations de séparation de certains de ses constituants pour, par exemple, permettre le recyclage de certains constituants comme l'hydrocarbure non oxydé, les intermédiaires d'oxydation, le catalyseur, au niveau de l'oxydation et la récupération des acides produits Selon une première variante du procédé, on peut soumettre tout d'abord le mélange réactionnel brut à un refroidissement à une température de 16°C à 30°C par exemple, ce qui occasionne la cristallisation d'au moins une partie de l'acide formé. On obtient ainsi un milieu comprenant une phase solide constituée essentiellement d'acide, au moins une phase liquide organique contenant essentiellement le composé à oxyder n'ayant pas réagi, éventuellement le composé fluoré dissous et/ou les intermédiaires d'oxydation, (ou plusieurs phases organiques si le composé fluoré et l'hydrocarbure ne sont pas totalement miscibles à basse température) et une phase liquide aqueuse contenant essentiellement des sous produits acides de l'oxydation et l'eau formée. Le catalyseur peut se trouver dans une des phases organiques s'il est soluble dans ladite phase, ou dans la phase aqueuse
Après filtration ou centπfugation du solide, on procède s'il y a lieu à la séparation par décantation des phases liquides organiques et aqueuse constituant le filtrat ou le centπfugat la ou les phases organiques peuvent être recyclées dans une nouvelle réaction d'oxydation II peut être avantageux de procéder, préalablement à l'opération de cristallisation de l'acide, à une concentration du mélange réactionnel
Selon une deuxième variante du procédé, on peut soutirer à chaud le mélange réactionnel brut final, par exemple à une température pouvant atteindre 75°C. Le mélange réactionnel décante alors en au moins deux phases liquides une ou plusieurs phases organiques contenant essentiellement l'hydrocarbure n'ayant pas réagi, le compose fluoré et éventuellement les intermédiaires d'oxydation et une phase liquide aqueuse contenant essentiellement les acides formes et l'eau formée Selon la solubilité et la nature du catalyseur celui-ci peut être présent dans la ou les phases organiques et recyclé avec le recyclage de celles-ci ou récupère par séparation solide/liquide avant précipitation ou cristallisation de l'acide forme dans le cas d'une catalyse hétérogène ou par extraction liquide/liquide, électrodyahse, traitement sur résines s'il est soluble dans la phase aqueuse Comme dans la première variante, on procède à la séparation par décantation des phases liquides la ou les phases organiques peuvent être recyclées dans une nouvelle réaction d'oxydation
Dans ces modes de réalisation, le composé fluoré utilisé conformément à l'invention est généralement contenu ou forme un élément essentiel de la ou des phases organiques En conséquence, après séparation de l'acide formé et éventuellement de la phase liquide contenant l'eau formée, les intermédiaires d'oxydation, le catalyseur et le composé fluoré sont recyclés dans l'étape d'oxydation avec l'hydrocarbure n'ayant pas été oxydé
Par ailleurs, si le composé fluoré est solide dans une phase de traitement du milieu réactionnel, il sera avantageusement séparé et récupéré par mise en œuvre des procédés de séparation solide/liquide soit avant traitement du milieu réactionnel pour récupérer l'acide produit, soit avec l'acide produit Dans ce dernier cas, l'acide pourra être récupéré par extraction à l'eau
Dans ces exemples de mode de réalisation de l'invention, de l'eau peut être ajoutée au milieu réactionnel pour obtenir une meilleure dissolution des sous produits acides de l'oxydation et une meilleure récupération de l'acide formé
La récupération de l'acide est généralement réalisée par précipitation lors du refroidissement du milieu réactionnel L'acide ainsi récupère peut être purifié selon des techniques habituelles et décrites dans de nombreux brevets On peut citer, à titre d'exemple, les brevets français n° 2749299 et 2749300
Si la phase liquide non organique ou aqueuse contient le catalyseur celui-ci est extrait soit avant la cristallisation de l'acide formé par précipitation ou extraction selon des procédés connus comme l'extraction liquide - liquide, l'électrodialyse, traitement sur résines échangeuses d'ions par exemple, soit après cristallisation de l'acide formé par des techniques d'extraction décrites ci-dessus ou analogues
D'autres avantages, détails de l'invention apparaîtront plus clairement au vu des exemples donnés ci-dessous uniquement à titre indicatif et d'illustration EXEMPLE 1
Dans un autoclave de 125 ml en titane, muni de moyens de chauffage par collier chauffant, d'une turbine et de moyens d'introduction de gaz et de régulation de pression, on charge
- 16,5 g (196,4 mmol) de cyclohexane
- 23,5 g(161 mmol) de trifluorométhylbenzène
- 0,44 g (4,49 mmol) de cyclohexanone
- 0,3344 g (0,94 mmol de Co) d'acétylacétonate de Cobalt (III)
Après fermeture du réacteur, on agite à 1000 tours par minute, on crée une pression d'air (100 bar à 20°C) et on chauffe La température atteint 105°C dans la masse en 10 min et on maintient cette température pendant encore 3 heures
Après refroidissement et dépressurisation, le mélange réactionnel est homogénéisé par addition d'acide acétique. Les constituants du mélange obtenu sont dosés par Chromatographie en Phase Gazeuse
On obtient les résultats suivants
- taux de transformation (TT) du cyclohexane 3,3 %
- sélectivité (ST) en cyclohexanol par rapport au cyclohexane transformé 43,8 %
- sélectivité (ST) en cyclohexanone par rapport au cyclohexane transformé 12,7 %
- ST en acide adipique par rapport au cyclohexane transformé 29,6 %
- ST en acide adipique + cyclohexanone + cyclohexanol par rapport au cyclohexane transformé 86,1 %
- rapport molaire acide adipique/total des diacides formés (acides adipique, glutanque et succinique) 73 %
ESSAI COMPARATIF 1
On répète l'exemple 1 dans le même appareillage et dans les mêmes conditions opératoires, mais en ne chargeant pas de composé fluoré et en utilisant une quantité de cyclohexane de 40,2 g (479 mmol) On obtient les résultats suivants - taux de transformation (TT) du cyclohexane 0,80 %
- ST en acide adipique par rapport au cyclohexane transformé - < 10% EXEMPLE 2
Dans un autoclave de 125 ml en titane, muni de moyens de chauffage par collier chauffant, d'une turbine et de moyens d'introduction de gaz et de régulation de pression, on charge :
- 16,5 g (196,4 mmol) de cyclohexane
- 23,5 g(64,6 mmol) de CF3(CF2)5C02H (composé solide à température ambiante)
- 0,44 g (4,49 mmol) de cyclohexanone
- 0,3344 g (0,94 mmol de Co) d'acétylacétonate de Cobalt (III)
Après fermeture du réacteur, on agite à 1000 tours par minute, on crée une pression d'air (100 bar à 20°C) et on chauffe. La température atteint 105°C dans la - masse en 10 min et on maintient cette température pendant encore 3 heures.
Après refroidissement et dépressurisation, le mélange réactionnel est homogénéisé par addition d'acide acétique. Les constituants du mélange obtenu sont dosés par Chromatographie en Phase Gazeuse.
On obtient les résultats suivants :
- taux de transformation (TT) du cyclohexane : 8,5 %
- sélectivité (ST) en cyclohexanol par rapport au cyclohexane transformé : 15,8 %
- sélectivité (ST) en cyclohexanone par rapport au cyclohexane transformé : 7,1 %
- ST en acide adipique par rapport au cyclohexane transformé : 52,8 %
- ST en acide adipique + cyclohexanone + cyclohexanol par rapport au cyclohexane transformé : 75,6 %
- rapport molaire acide adipique/total des diacides formés (acides adipique, glutarique et succinique) : 74,4 %
EXEMPLE 3 ET ESSAI COMPARATIF 4C
Dans un réacteur agité par secousses on ajoute du cobalt sous forme acétylacétonate de Cobalt pour obtenir une teneur de 300 ppm de Co dans le milieu réactionnel et de la cyclohexanone pour avoir une concentration de 1 % en mole par rapport au cyclohexane. La réaction est réalisée à une température de 105°C sous une pression d'air de 100 bar pendant 3 heures.
Les concentrations en cyclohexane et composants du solvant sont indiquées dans le tableau ci-dessous et sont exprimées en % poids de chaque composant. Les rendements et sélectivités obtenues sont également listées dans le tableau.

Claims

REVENDICATIONS
Procédé d'oxydation de d'hydrocarbures aliphatiques ou cycloaliphatiques saturés substitués ou non ou d'hydrocarbures alkylaromatiques en milieu liquide par un agent d'oxydation comprenant de l'oxygène moléculaire en acides ou poiyacides, caractérisé en ce qu'un des constituants du milieu liquide est un composé organique fluoré
Procédé selon la revendication 1 , caractérisé en ce que l'hydrocarbure à oxyder est au moins partiellement miscible avec le composé organique fluoré, aux conditions de mise en œuvre de la réaction d'oxydation
Procédé selon l'une des revendications 1 à 2, caractérisé en ce que le composé fluoré est choisi dans le groupe comprenant les hydrocarbures aliphatiques ou cycloaliphatiques fluorés ou perfluorés, les hydrocarbures aromatiques fluorés ou perfluorés, les esters fluorés ou perfluorés, les cétones fluorés ou perfluorés, les alcools fluorés ou perfluorés, les nitriles fluorés ou perfluorés, les acides fluorés ou perfluorés, les aminés fluorés ou perfluorés, les éthers fluorés ou perfluorés
Procédé selon l'une des revendications précédentes, caractérisé en ce que le pourcentage pondéral de composés fluorés dans le milieu liquide est compris entre 1 et 99 % en poids par rapport au poids total du milieu liquide
5 Procédé selon la revendication 4, caractérisé en ce que le pourcentage pondéral précité est compris entre 10 et 80 % en poids
6 Procédé selon l'une des revendications précédentes, caractérisé en ce que l'oxydation est réalisée en présence d'un catalyseur
7 Procédé selon la revendication 6, caractérisé en ce que le catalyseur est soluble dans le milieu liquide aux conditions de mise en œuvre de la réaction d'oxydation
8. Procédé selon la revendication 6, caractérisé en ce que le catalyseur est insoluble dans le milieu liquide aux conditions de mise en œuvre de la réaction d'oxydation
9. Procédé selon la revendication 8, caractérisé en ce que le catalyseur est un catalyseur supporté comprenant un support minéral ou polyméπque
10. Procédé selon l'une des revendications précédentes, caractérise en ce que l'hydrocarbure à oxyder est choisi dans le groupe comprenant le cyclohexane, le cyclododécane.
1 1. Procédé selon la revendication 10, caractérisé en ce que l'acide produit est l'acide adipique ou l'acide dodecanedioi'que
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que le milieu liquide après oxydation, est décanté, en au moins une phase organique formée par l'hydrocarbure non oxydé et le composé fluoré, lesdites phases organiques étant recyclées dans une nouvelle oxydation, l'acide produit étant extrait de la phase liquide aqueuse.
13. Procédé selon la revendication 12, caractérisé en ce que l'acide est extrait de la phase liquide aqueuse par cristallisation.
14. Procédé selon l'une des revendications 8 et 12 ou 13, caractense en ce que le catalyseur est recyclé avec la ou les phases organiques.
15. Procédé selon l'une des revendications 9 et 12 ou 13, caractérisé en ce que le catalyseur est séparé du milieu liquide par décantation ou séparation solide/liquide.
16, Procédé selon l'une des revendications 12 ou 13. caractérisé en ce que le catalyseur soiuble dans la phase liquide aqueuse est extrait par extraction liquide/liquide, séparation sur résines, électrodialyse
17 Procédé selon l'une des revendications précédentes, caractérisé en ce que le catalyseur comprend du cobalt comme élément catalytiquement actif.
EP01913954A 2000-03-08 2001-03-07 Procede d'oxydation d'hydrocarbures en acides Withdrawn EP1265836A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0002995 2000-03-08
FR0002995A FR2806078B1 (fr) 2000-03-08 2000-03-08 Procede d'oxydation d'hydrocarbures en acides
PCT/FR2001/000685 WO2001066506A1 (fr) 2000-03-08 2001-03-07 Procede d'oxydation d'hydrocarbures en acides

Publications (1)

Publication Number Publication Date
EP1265836A1 true EP1265836A1 (fr) 2002-12-18

Family

ID=8847879

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01913954A Withdrawn EP1265836A1 (fr) 2000-03-08 2001-03-07 Procede d'oxydation d'hydrocarbures en acides

Country Status (6)

Country Link
EP (1) EP1265836A1 (fr)
KR (1) KR20020079994A (fr)
CN (1) CN1430593A (fr)
FR (1) FR2806078B1 (fr)
TW (1) TW574202B (fr)
WO (1) WO2001066506A1 (fr)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947494A (en) * 1972-12-20 1976-03-30 Standard Oil Company Quality of phthalic acids improved by haloacetic acid
JP2730390B2 (ja) * 1992-04-10 1998-03-25 日本鋼管株式会社 ナフタレンジカルボン酸の製造方法
FR2722783B1 (fr) * 1994-07-21 1996-08-30 Rhone Poulenc Chimie Procede de preparation d'acide adipique par oxydattion directe du cyclohexane et recyclage du catalyseur
FR2732678B1 (fr) * 1995-04-07 1997-05-23 Rhone Poulenc Chimie Procede d'oxydation d'hydrocarbures, d'alcools ou de cetones par catalyse heterogene
FR2761984B1 (fr) * 1997-04-10 1999-05-21 Rhone Poulenc Fibres Procede d'oxydation d'hydrocarbures, d'alcools et/ou de cetones
CN1339021A (zh) * 1999-02-04 2002-03-06 Rpc公司 在氟代化合物存在下烃氧化成酸的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0166506A1 *

Also Published As

Publication number Publication date
CN1430593A (zh) 2003-07-16
FR2806078B1 (fr) 2004-01-30
FR2806078A1 (fr) 2001-09-14
WO2001066506A1 (fr) 2001-09-13
TW574202B (en) 2004-02-01
KR20020079994A (ko) 2002-10-21

Similar Documents

Publication Publication Date Title
EP1890990B1 (fr) Procede de fabrication d&#39;acides carboxyliques
FR2846651A1 (fr) Procede de fabrication d&#39;acides carboxyliques
EP1060157B1 (fr) Procede de separation et de purification de l&#39;acide adipique
EP1268384B1 (fr) Procede d&#39;oxydation de cyclohexane en acides
EP1165481B1 (fr) Procede d&#39;oxydation de cycloalcanes, de cycloalcanols et/ou de cycloalcanones
EP1412316B1 (fr) Procede d&#39;oxydation d&#39;hydrocarbures en acides
WO2002090309A1 (fr) Procede d&#39;oxydation d&#39;hydrocarbures
EP0934244B1 (fr) Procede de preparation selective d&#39;un acide 2-hydroxybenzoique et d&#39;un 4-hydroxybenzaldehyde et derives
EP1265836A1 (fr) Procede d&#39;oxydation d&#39;hydrocarbures en acides
EP1492754B1 (fr) Procede de fabrication d&#39;acides carboxyliques
FR2839973A1 (fr) Procede d&#39;oxydation d&#39;hydrocarbures, d&#39;alcools et/ou cetones
EP1556328A1 (fr) Procede de fabrication d&#39;acides carboxyliques
FR2810904A1 (fr) Procede d&#39;oxydation d&#39;hydrocarbures, d&#39;alcools et/ou de cetones
EP1114019A1 (fr) Procede de separation et de purification de l&#39;acide carboxylique issu de l&#39;oxydation directe d&#39;un hydrocarbure
FR2795720A1 (fr) Procede de cristallisation d&#39;acide carboxylique et procede de fabrication d&#39;acide carboxylique cristallise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021003

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FACHE, ERIC

Owner name: RHODIA POLYAMIDE INTERMEDIATES

17Q First examination report despatched

Effective date: 20030806

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030217

R18D Application deemed to be withdrawn (corrected)

Effective date: 20040217