WO2004040635A1 - 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜 - Google Patents

低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜 Download PDF

Info

Publication number
WO2004040635A1
WO2004040635A1 PCT/JP2003/013691 JP0313691W WO2004040635A1 WO 2004040635 A1 WO2004040635 A1 WO 2004040635A1 JP 0313691 W JP0313691 W JP 0313691W WO 2004040635 A1 WO2004040635 A1 WO 2004040635A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
film
forming
amorphous silica
substrate
Prior art date
Application number
PCT/JP2003/013691
Other languages
English (en)
French (fr)
Inventor
Akira Nakashima
Miki Egami
Michio Komatsu
Yoshihiro Nakata
Ei Yano
Katsumi Suzuki
Original Assignee
Catalysts & Chemicals Industries Co.,Ltd.
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts & Chemicals Industries Co.,Ltd., Fujitsu Limited filed Critical Catalysts & Chemicals Industries Co.,Ltd.
Priority to KR1020057007529A priority Critical patent/KR100983426B1/ko
Priority to US10/533,238 priority patent/US7232769B2/en
Priority to EP03758926.4A priority patent/EP1564798B1/en
Publication of WO2004040635A1 publication Critical patent/WO2004040635A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31695Deposition of porous oxides or porous glassy oxides or oxide based porous glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Definitions

  • the present invention relates to a method for forming a smooth low dielectric constant amorphous silica-based film having a low dielectric constant (2.5) or less, high film strength and excellent hydrophobicity on a substrate. And a low dielectric constant amorphous silica-based film obtained by the method.
  • the interlayer insulating film provided for the above purpose is generally formed on a semiconductor substrate by using a vapor deposition method such as a chemical vapor deposition (CVD) method or a coating method such as a spin coating method.
  • a vapor deposition method such as a chemical vapor deposition (CVD) method
  • a coating method such as a spin coating method.
  • silica-based coatings obtained using the latest technology of CVD can achieve a dielectric constant of 3 or less, but have a dielectric constant of about 2.5. It is said that the formation of a film is the limit, and as in the case of the conventional coating method, there is a drawback that the film strength of the film decreases with a decrease in the relative dielectric constant.
  • a CVD film of a polyaryl resin, a fluorine-added polyimide resin, a fluorine resin, or the like, or a film formed using these coating solutions has a relative dielectric constant of about 2, but has poor adhesion to the substrate surface.
  • the relative dielectric constant can be reduced by using a coating liquid for forming a low dielectric constant silica-based film containing an alkoxysilane and / or a halogenated silane or a hydrolyzate thereof and an organic template material (described in Patent Document 5, etc.).
  • Chemical resistance such as adhesion to coating surface, coating strength, alkali resistance, etc. ⁇ Excellent crack resistance and smoothness of coating surface, as well as oxygen plasma resistance and etching resistance It has been found that a film excellent in process suitability can be formed.
  • the present inventors have repeatedly conducted a test for forming a low dielectric constant silica-based film on various semiconductor substrates using these coating solutions and a conventionally known film forming method (spin coating method or other coating methods).
  • spin coating method or other coating methods As a result, although a film having the above-mentioned characteristics was obtained, the film strength was reduced when a film having a relative dielectric constant of 2.5 or less was formed. It has been found that it is difficult to stably obtain a material having a Young's Modulus higher than GPa (gigapascal).
  • tetraethyl orthosilicate dissolved in ethyl alcohol TEOS
  • TPAOH tetrapropylammonium hydroxide
  • the zeolite coating obtained by this method has a Young's modulus of 16 to 18 GPa, it has a high hygroscopicity, so it absorbs moisture in the air and the relative dielectric constant increases rapidly (for example, there is a problem that the relative dielectric constant is increased to 2.3, and to 3.9), which makes it unsuitable for practical use. Therefore, a method has been proposed in which the zeolite film obtained in this manner is subjected to silane treatment (Silylation) to make the surface hydrophobic, and the dielectric constant of the film is kept at 2. "! To 2.3. (Described in Non-Patent Document 1 and Patent Document 6, etc.)
  • the surface of the obtained zeolite coating is considerably rough because the zeolite particles contained in the coating are as large as about 20 nm, and means such as a polishing operation are required to smooth the surface. It has been. Further, since only the surface of the hydrophobized zeolite film is hydrophobized, if the film is subjected to fine processing such as resist coating or etching treatment to form a wiring pattern or a through hole, the surface is hydrophobized.
  • the exposed portion may be exposed and absorb moisture from that portion, resulting in problems such as degrading the relative dielectric constant of the coating (ie, increasing the relative dielectric constant).
  • the inventors of the present application have conducted intensive studies with the aim of solving the above-mentioned problems, and prepared a coating liquid for forming a film having a novel composition and properties as shown below.
  • the present invention was completed.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-315812
  • Patent Document 3 International Application Publication WO OOZ1 8847
  • Patent Document 4 International Application Publication WOOOZ1 26'40
  • Patent Document 6 United States Patent Application Publication US 2000/0060364 A1
  • Non-Patent Document 1 Advanced Material 2001, 13, No.19, October 2, Page 1453
  • the present invention is intended to solve the above-mentioned problems, and has a characteristic that the relative dielectric constant is as small as 2.5 or less, and the Young's elastic modulus representing the film strength is 6.0 GPa or more.
  • An object of the present invention is to provide a method for forming a smooth, low-dielectric-constant amorphous silica-based coating having excellent hydrophobicity on a substrate and a low-dielectric-constant amorphous silica-based coating obtained by the method.
  • the first method for forming a low dielectric constant amorphous silica-based coating according to the present invention
  • a method of forming a smooth, low-dielectric-constant amorphous silica-based coating having high film strength and excellent hydrophobicity on a substrate
  • Gaylin obtained by hydrolyzing tetraalkylorthosilicate (TA0S) and alkoxysilane (AS) represented by the following general formula (I) in the presence of tetraalkylammonium hydroxide-containing oxide (TAA0H) Preparing a liquid composition containing the compound,
  • X represents a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group
  • R represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • n is an integer of 0 to 3.
  • the second method for forming a low dielectric constant amorphous silica-based film according to the present invention comprises forming a flat low dielectric constant amorphous silica-based film having high film strength and excellent hydrophobicity on a substrate.
  • the tetraalkyl orthosilicate (TAOS) used in the preparation step (a) is tetraethylorthosilicate (TEOS), tetramethylorthosilicate (TEOS). TMOS) or a mixture thereof.
  • the alkoxysilane used in the preparation step (a) is preferably methyltrimethoxysilane (MTMS), methyltriethoxysilane (MTES) or a mixture thereof.
  • MTMS methyltrimethoxysilane
  • MTES methyltriethoxysilane
  • the tetraalkyl ammonium hydroxide mouth oxide (TAAOH) used in the preparation step (a) is tetrapropyl ammonium hydroxide mouth oxide (TPAOH), tetrabutyl ammonium hydroxide mouth oxide (TBAOH) or a mixture thereof. It is preferable that there is.
  • bromine (Br), chlorine (CI) and the like contained in the tetraalkyl ammonium hydroxide (TAAOH) used in the preparation step (a) are used.
  • the content of impurities composed of compounds of any halogen group elements is based on the respective elements.
  • the molar ratio of tetraalkyl ortho silicate are one bets to be used in the preparation process (a) (TAOS) and the alkoxysilane (AS) (TAOSZAS) is, Si0 2 in terms of criteria 6 4-2 8 Is preferably within the range.
  • the molar ratio (TAAOH / CTAOS + AS) of the tetraalkylammonium hydroxide (TAAOH) and the silica-based film forming component (TAOS + AS) used in the preparation step (a) is Si0 It is preferably in the range of 110 to 710 on a 2 conversion basis.
  • each operation of the coating step (b), the heat treatment step (c), and the baking treatment step () is performed using the following method.
  • the operation of the coating step (b) is performed by a spin coating method.
  • the low-dielectric-constant amorphous silica-based coating according to the present invention is a coating obtained by the above-described coating forming method, and has a relative dielectric constant of 2.5 or less and a Young's modulus (Young's Modulus) of 6.0 GPa or more. It is characterized by having a high film strength. Further, the coating is an amorphous silica-based coating having no X-ray diffraction peak such as an MFI crystal structure.
  • the coating preferably has an average pore diameter of pores contained in the coating of 3 nm or less and a pore volume content of micropores of 2 nm or less of 70% or more.
  • the coating preferably has a smooth surface with a surface roughness (Rms) of 1 nm or less.
  • the surface roughness is a root mean square roughness of a value measured by an atomic force microscope AFM.
  • a preferable use of the coating is an interlayer insulating film formed on a semiconductor substrate.
  • Fig. 1 shows the results of X-ray diffraction of the silica-based coating (amorphous coating) formed on the substrate 1-2 of the example
  • Fig. 2 shows the silica-based coating formed on the substrate 3 of the comparative example.
  • the result of X-ray diffraction of the (crystalline film) is shown.
  • the X-ray diffraction peaks (peaks at 2 ° to 8 °, 9 °, and 23 °) in FIG. 2 indicate that the film has a crystal structure (ie, a ZSM-5 type zeolite film). Is shown.
  • a tetraalkyl orthosilicate (TAOS) and an alkoxysilane represented by the following general formula (I) are used as a coating solution for forming a film.
  • TAOS tetraalkyl orthosilicate
  • I alkoxysilane represented by the following general formula (I)
  • a liquid composition containing a gay compound obtained by hydrolyzing AS) in the presence of a trialkylammonium hydroxide (TAAOH) is used as a coating solution for forming a film.
  • X represents a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group
  • R represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • n is an integer of 0 to 3.
  • the tetraalkyl orthosilicate includes tetramethylorthosilicate, tetraethylorthosilicate, tetrapropylorthosilicate, tetraisopropylorthosilicate, tetrabutylorthosilicate, and the like.
  • TAOS tetraalkyl orthosilicate
  • TEOS tetraethylorthosilicate
  • TMOS tetramethylorthosilicate
  • alkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, octyltrimethoxysilane, and Octyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, trimethoxysilane, triethoxysilane, triisopropoxysilane, fluorotrimethoxysilane, fluorotriethoxysilane , Dimethyldimethoxysilane, dimethyljetoxysilane, ethisoresylmethoxysilane, getyljetoxysilane, dimethoxysilane, diethoxysilane, di
  • the tetraalkyl ammonium hydroxide oxide includes tetramethyl ammonium hydroxide oxide, tetraethyl ammonium hydroxide, tetrapropyl ammonium hydroxide oxide, tetrabutyl ammonium hydroxide. Mouth oxide, tetra-n-octylammonium hydride mouth oxide, n-hexadecyltrimethylammonium hydride mouth oxide, n-octadecyltrimethylammonium hydride mouth oxide, and the like.
  • TPAOH tetrapropyl ammonium hydroxide mouth oxide
  • TAAOH pertrapyl ammonium hydroxide mouth oxide
  • TAAOH tetraalkylammonium hydroxide
  • TAAOH tetraalkylammonium hydroxide
  • impurities composed of compounds of alkali metal elements such as sodium (Na) and potassium (K) are contained in amounts of more than 50 ppb on an element basis, the impurities diffuse into the transistor portion of the semiconductor substrate and deteriorate. May cause.
  • impurities composed of compounds of halogen elements such as bromine (Br) and chlorine (CI) are contained in an amount of more than 1 ppm by weight on an element basis, aluminum wiring, copper wiring and the like constituting a semiconductor substrate are not included. Can corrode and cause catastrophic damage.
  • the present inventors have found that when the impurities of the alkali metal element compound is contained more than 50 wt PP b, alkoxysilanes represented by the tetraalkyl ortho silicate gate (TAOS) and the general formula (I) (AS) has been found to act as a catalyst for this impurity when hydrolyzing in the presence of tetraalkylammonium hydroxide oxide (TAAOH), and the resulting gay compound becomes zeolite-like crystalline silica.
  • TAAOH tetraalkylammonium hydroxide oxide
  • the tetraalkylammonium hydroxide mouth oxide (TAAOH) used in the method of the present invention is obtained by treating a commercially available tetraalkylammonium hydroxide mouth oxide with a cation exchange resin treatment step and an anion exchange resin treatment step.
  • impurities contained therein such as compounds of alkali metal elements such as sodium (Na) and potassium (K) and compounds of halogen group elements such as bromine (Br) and chlorine (CI), are substantially eliminated. It is preferable to remove the carbon and purify it.
  • the tetraalkyl ortho silicate are one preparative (TAOS) and the molar ratio before Symbol alkoxysilane (TAOS / AS) is, Si0 2 equivalent value in 6 4-2 Roh 8, the good Mashiku 5 It is desirable to be in the range of 5 to 3/7.
  • TAOS / AS the molar ratio
  • the molar ratio exceeds 64, the resulting silica-based coating will have poor water-freeness.
  • the molar ratio is less than 2/8, the template effect due to the tetraalkyl ammonium hydroxide oxide (TAAOH) is reduced, so that the fine particles (pore volume) formed in the film are reduced.
  • the method for preparing the liquid composition that is, the coating liquid for coating formation (coating liquid A) used in the method of the present invention is as follows.
  • the coating solution for forming a film (coating solution A) used in the method of the present invention is:
  • the tetraalkyl orthosilicate (TAOS) and It can be prepared as a liquid composition containing a silicon compound which is a hydrolyzate of the alkoxysilane (AS).
  • a mixed solution of tetraalkylorthosilicate (TAOS), alkoxysilane (AS) and an organic solvent prepared in G) is mixed under the same conditions as above (temperature: 10 to 30 ° C, stirring speed: 100 ° C). ⁇ 200 rpm) into the aqueous solution of the tetraalkyl ammonium hydroxide (TAAOH) of (ii) above for 30 to 90 minutes.
  • TAOS tetraalkyl orthosilicate
  • AS alkoxysilane
  • TAAOH Tetraalkyl ammonium hydroxide oxide
  • Examples of the organic solvent used in the method of the present invention include alcohols, ketones, ethers, esters, and hydrocarbons, and more specifically, for example, methanol, ethanol, propanol, butanol and the like.
  • Alcohols, ketones such as methylethyl ketone, methyl isobutyl ketone, glycol ethers such as methyl sorb, ethyl sorb, glycol ether such as propylene glycol monopropyl ether, ethylene glycol, propylene glycol, hexylene glycol, etc.
  • Examples include glycols, esters such as methyl acetate, ethyl acetate, methyl lactate, and ethyl lactate; hydrocarbons such as hexane, cyclohexane, and octane; and aromatic hydrocarbons such as toluene, xylene, and mesitylene.
  • esters such as methyl acetate, ethyl acetate, methyl lactate, and ethyl lactate
  • hydrocarbons such as hexane, cyclohexane, and octane
  • aromatic hydrocarbons such as toluene, xylene, and mesitylene.
  • it is preferable to use alcohols such as ethanol.
  • the amount of the organic solvent used is not particularly limited, but the weight mixing ratio (organic solvent / TTAOS + AS) to the silica-based film forming component (TAOS + AS) is from 1 / ⁇ to It is desirably in the range of 31, preferably 1 Z1 -2.5X1.
  • the aqueous solution of tetraalkylammonium hydroxide (TAAOH) dropped into the above-mentioned mixed organic solvent is prepared by adding 5 to 40 tetraalkylammonium hydroxide (TAAOH) in distilled water or ultrapure water. weight 0/0, it is desirable preferably containing at a ratio of 1 0 to 30 by weight%.
  • TAOS tetraalkylorthosilicate
  • AS alkoxysilane
  • TAAOH tetraalkyl ammonium hydroxide oxide
  • the reaction conditions of the hydrolysis 30 to 80 ° C, preferably at a temperature of 35 to 60 ° C, with stirring "! ⁇ 72 hours, this preferably is preferably carried out over a period of 1 0 to 48 hours c
  • the number average molecular weight of the silicon compound (TAOS and AS hydrolyzate) contained in the liquid composition thus obtained is in the range of 500 to 100,000, preferably 1,000 to 100,000 in terms of polystyrene.
  • a coating liquid for forming a coating film that is, the liquid composition
  • the coating liquid for forming a film may include, as necessary, at least one silicon selected from the group consisting of an alkoxysilane represented by the following general formula (I) and a halogenated silane represented by the following general formula (II).
  • Compound and Z or their hydrolysates It can be included polysiloxane (PS) force is the reaction product of a silica-based fine particles having a particle size of 5 to 50 nm.
  • X represents a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group
  • R represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • X ′ represents a halogen atom c
  • n is an integer of 0 to 3.
  • the silica-based fine particles can be obtained by mixing at least one of the alkoxysilanes of the general formula (I) with an organic solvent and subjecting the mixture to hydrolysis and polycondensation in the presence of water and ammonia,
  • a silica-based coating is formed on a substrate by using a coating solution containing polysiloxane (PS) obtained by reacting the above-mentioned alkoxysilane and a hydrolyzate of silane or halogenated silane on the surface thereof.
  • PS polysiloxane
  • the silica-based coating film forming component (TAOS + AS) weight mixing ratio (PSZ (TAOS + AS)) is 1 3 hereinafter with Si0 2 in terms of reference , Preferably 14 or less.
  • the film strength of the formed silicon-based film becomes weak, and the film strength consisting of Young's modulus of 6.0 GPa or more Cannot be obtained. Furthermore, the relative dielectric constant increases, and it becomes difficult to obtain a silica-based coating having a relative dielectric constant of 2.5 or less.
  • the reason for this is that as the amount of tetraalkyl orthosilicate (TAOS) decreases, the template effect of tetraalkylammonium hydroxide (TAAOH) decreases.
  • the silica-based film-forming components thus obtained ie, a) a silicon compound which is a hydrolyzate of tetraalkyl orthosilicate (TAOS) and alkoxysilane (AS), or b) a tetraalkylorthosilicate
  • TAOS tetraalkyl orthosilicate
  • AS alkoxysilane
  • the silica-based film forming component Gay-containing compound, or Kei-containing compounds and PS
  • Si0 2 preferably it is desirable to contain in the range of 5 to 20 wt%.
  • the liquid composition containing the silica-based film-forming component obtained by the above method may be used as it is as a coating solution for forming a film.
  • the concentration of the component for forming the silicic film is adjusted to the above level before use.
  • the organic solvent and water contained in the liquid composition, and alcohols by-produced by hydrolysis of alkoxysilane (AS) and the like are separated and removed.
  • the liquid composition is included before being subjected to the process. It is desirable that the organic solvent and water are kept in the range of 0.1 to 40% by weight, preferably 1 to 30% by weight, respectively, based on the total amount of the liquid composition.
  • Coating solution B This makes it possible to obtain a coating liquid for forming a smooth low dielectric constant amorphous silica-based film having high film strength and excellent hydrophobicity.
  • a tetraalkyl orthosilicate is used as a coating liquid for forming a film.
  • AS alkoxysilane
  • AS alkoxysilane
  • a liquid composition containing a silicon compound obtained by hydrolyzing the whole is used.
  • X represents a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group
  • R represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • n is an integer of 0 to 3.
  • TAOS tetraalkyl orthosilicate
  • AS alkoxysilane
  • TAAOH tetraalkylammonium hydride oxide
  • TAAOH tetraalkylammonium hydroxide mouth oxide
  • impurities such as compounds of alkali metal elements such as sodium (Na) and potassium (K) and compounds of halogen group elements such as bromine (Br) and chlorine (CI) contained therein Must be removed beforehand.
  • the content of impurities composed of compounds of alkali metal elements such as sodium (Na) and potassium (K) contained therein should be set to 50 wt ppb or less on an element basis, and bromine (Br) or chlorine (GI ) And other halogen elements It is necessary that the content of impurities consisting of the above compounds be 1 ppm by weight or less on an elemental basis.
  • This liquid composition (coating solution B) is prepared by hydrolyzing or partially hydrolyzing a tetraalkylorthosilicate (TAOS), and then mixing the alkoxysilane (AS) or its hydrolyzate or partial hydrolyzate, Further, if necessary, some or all of them are hydrolyzed.
  • TAOS tetraalkylorthosilicate
  • the alkoxysilane (AS) is preliminarily hydrolyzed or partially hydrolyzed) and then mixed, the tetraalkylorthosilicate (TAOS) is hydrolyzed (or partially hydrolyzed).
  • TAOS tetraalkylorthosilicate
  • the tetraalkyl ammonium hydroxide mouth oxide (TAAOH) is used for each of the silica-based film forming components, that is, the tetraalkyl orthosilicate (TAOS) and the alkoxysilane (AS).
  • the method for preparing the liquid composition that is, the coating solution for coating formation (coating solution B) used in the present invention is as follows.
  • coating solution B is
  • TAAOH tetraalkylammonium hydroxide
  • the coating solution for forming a film (coating solution B) used in the present invention is:
  • Tetraalkyl orthosilane KTA0S
  • organic solvent e.g., benzyl alcohol
  • tetraalkylammonium hydroxide is added to the mixed solution under stirring.
  • the aqueous solution of the side (TAAOH) is added dropwise over 5 to 20 minutes, the mixture is further stirred at a temperature of 10 to 30 ° C for 30 to 90 minutes at a speed of 100 to 200 rpm,
  • TAA0H of (ii) above is added dropwise to the mixed solution of TAOS and the organic solvent prepared in (i) above, (V) in a mixed solution of AS and organic solvent
  • TAOS tetraalkyl orthosilicate
  • an organic solvent is added under the same conditions as above (at a temperature of 10 to 30 ° C).
  • stirring speed is 100-200 rpm) in the aqueous solution of tetraalkylammonium hydroxide (TAA0H) of ((1)) for 30-90 minutes.
  • TAA0H tetraalkylammonium hydroxide
  • AS alkoxysilane
  • AS alkoxysilane
  • the tetraalkylammonium hydroxide (TAAOH) of (V) may be slowly dropped into the aqueous solution of the tetraalkylammonium hydroxide (TAAOH) of (V) for 30 to 90 minutes.
  • TAAOH tetraalkylammonium hydroxide
  • the tetraalkyl orthosilicate (TAOS), the alkoxysilane (AS) and The tetraalkyl ammonium hydroxide (TAAOH) is used by being mixed or added so as to have the above molar ratio, respectively.
  • the organic solvent the same organic solvents as those exemplified for preparing the coating liquid A can be used.
  • the respective organic solvents to be mixed with the tetraalkylorthosilicate (TAOS) and the above-mentioned alkoxysilane (AS) may be different as long as their types (for example, alcohols) are the same, It is desirable that they be the same.
  • the amount of the organic solvent to be used is not particularly limited, but as in the case of the coating solution A, the weight mixing ratio (organic solvent ZCTAOS + AS)) is in the range of 1/1 to 3Z1, preferably 1Z1 to 2.5 / 1. Therefore, the weight mixing ratio (organic solvent / (TAOS + AS)) of the organic solvent and the silica-based film forming component (TAOS + AS) after mixing them is 1 / ⁇ , as in the case of the coating solution A. 331, preferably 11 12.5 / 1.
  • the aqueous solution of the tetraalkyl ammonium hydroxide (TAAOH) dropped into the mixed organic solvent is a tetraalkyl ammonium hydroxide in distilled water or ultrapure water. It is desirable to contain 5 to 40% by weight, preferably 10 to 30% by weight, of a hydroxide (TAAOH).
  • the tetraalkyl orthosilicide (TAOS) or the alkoxysilicone may be used.
  • the time for hydrolyzing the orchids (AS) alone may be short, it is desirable that the next step be performed for a time sufficient to completely hydrolyze them (for example, 10 to 30 hours).
  • the number average molecular weight of the silicon compound (the hydrolyzate of TAOS and AS) contained in the liquid composition thus obtained is 500 to 10000000 in terms of polyethylene oxide, similarly to the case of the coating solution A. And preferably in the range of 1,000 to 100,000.
  • the coating solution for forming a film may be formed from an alkoxysilane represented by the following general formula (I) and a halogenated silane represented by the following general formula (II), if necessary.
  • PS polysiloxane which is a reaction product of at least one silicon compound selected from the group consisting of and / or a hydrolyzate thereof and silica-based fine particles having a particle size of 5 to 50 nm can be contained. .
  • X represents a hydrogen atom, a fluorine atom, or an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group, an aryl group or a vinyl group
  • R represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • X ′ represents a halogen atom c
  • n is an integer of 0 to 3.
  • the content of the polysiloxane (PS) is such that the weight mixing ratio (PSZ (TAOS + AS)) with respect to the silica-based film-forming component (TAOS + AS) is Si0 2 It is desirably 13 or less, preferably 14 or less on a conversion basis.
  • the silica-based film-forming components thus obtained ie, a) a tetraalkyl orthosilicide (TA0S) and a silicon compound which is a hydrolyzate of alkoxysilane (AS), or b) a tetraalkyl orthosilicate
  • a liquid composition containing a hydrolyzate of a TA0S) and an alkoxysilane (AS) and a polysiloxane (PS) is used as a coating liquid for forming a film, similar to the case of the coating liquid A
  • the silica-based film-forming component a gay compound or a gay compound and The PS 2 to 40% by weight Si0 2 in terms of standards, it is desirable that preferably contains in the range of 5 to 20 wt%.
  • the liquid composition containing the silica-based film-forming component obtained by the above method is used as it is as a coating liquid for forming a film.
  • the organic solvent component contained in the liquid composition may be converted to propylene glycol monopropyl ether (PGP), propylene glycol monomethyl ether (PGME), propylene glycol monoethyl ether acetate (PGMEA) using a rotary evaporator or the like.
  • the silica-based film-forming component is used after adjusting the concentration of the silica-based film-forming component to the above-mentioned level after the step of solvent replacement with an organic solvent selected from the above.
  • the organic solvent and water contained in the liquid composition, and alcohols by-produced by hydrolysis of alkoxysilane (AS) and the like are separated and removed.
  • the liquid composition the total amount in pairs respectively 0.1 to 40 weight 0/0 of the liquid composition and the organic solvent and moisture contained in before being subjected to the process, preferably 1 to 30 wt% It is desirable to keep them within the range.
  • a spin coating method In general, as a method for applying such a coating solution, a spin coating method, a dip coating method, a roll coating method, a transfer method, or the like is adopted. In the present invention, such a conventionally known method is used. A low dielectric constant amorphous silica-based coating can be formed. Among them, when a coating liquid for forming a coating is applied on a semiconductor substrate or the like, the spin coating method is preferable, and is excellent in uniformity of the coating film thickness and low dust generation. Therefore, in the present invention, it is desirable to employ the coating method by the spin coating method. However, when the coating method is applied on a large-diameter semiconductor substrate, a transfer method may be employed. .
  • this heat treatment is desirably performed by increasing the temperature stepwise within the range of 80 to 350 ° C as necessary. Furthermore, if this heat treatment is performed at a temperature lower than 80 ° C, most of the organic solvent contained in the above-mentioned coating film often remains in the coating film without evaporating. In addition to not being able to achieve the object, there is a case where unevenness occurs in the film thickness of the formed film.
  • the heat treatment varies depending on the thickness of the coating film, but it is preferable to perform the heat treatment over a period of 10 minutes, preferably 2 to 5 minutes.
  • it is preferable to perform the treatment under an air atmosphere because the treatment is performed at a relatively low temperature of 350 ° C. or less. Since it is performed for a short time under the conditions, even if the heat treatment is performed in an air atmosphere containing a relatively large amount of oxygen, the metal wiring provided on the semiconductor substrate will not be damaged by metal oxidation or the like.
  • the organic solvent contained in the above-mentioned coating film evaporates, and the polyalkylammonium hydroxide oxide (TAAOH) contained in the coating film is decomposed and desorbed.
  • TAAOH polyalkylammonium hydroxide oxide
  • the polymerization of the silica-based film-forming component which is a solid component, progresses and cures, the melt viscosity of the polymer decreases in the process of heating, and the reflow property of the film increases. The result is improved.
  • this heat treatment is preferably performed by placing the substrate obtained in the coating step on a single-wafer hot plate. (d) Firing process
  • the film subjected to the heat treatment is calcined (cured) at a temperature of 350 to 450 ° C. in an atmosphere of an inert gas.
  • an inert gas it is desirable to use nitrogen gas.
  • an oxygen gas or air is added to the inert gas to contain a small amount of oxygen (for example, about 500 to 10,000 ppm by volume of oxygen).
  • An inert gas may be used. (Described in International Application Publication WO 01/48806, etc.)
  • the firing temperature is determined based on the type and amount of tetraalkylammonium hydroxide (TAAOH) used in preparing the coating solution for forming a film, or the gay compound contained in the coating solution (that is, a silica-based coating). Although it depends on the properties of the (forming component), in order to obtain a low dielectric constant amorphous silica-based film with moisture absorption resistance (hydrophobicity) and high film strength, select from a temperature range of 350 to 450 ° C. It is desired to do. Here, if the temperature of the baking treatment is lower than 350 ° C., it is difficult to crosslink the precursor of the silica-based film-forming component, so that a film having sufficient film strength cannot be obtained. If the temperature exceeds ° C, aluminum wiring and copper wiring constituting the semiconductor substrate may be oxidized or melted, and may cause fatal damage to the wiring layer.
  • TAAOH tetraalkylammonium hydroxide
  • the baking treatment varies depending on the type of the coating solution for forming the film, the film thickness of the film, and the like, but is preferably performed for 5 to 90 minutes, preferably 10 to 60 minutes. Further, this baking treatment is preferably performed by placing the substrate on a single-wafer hot plate, as in the case of the heating step.
  • the thickness of the silica-based coating obtained in this way varies depending on the semiconductor substrate on which the coating is formed and its purpose. For example, it is usually 100 to 600 nm on a silicon substrate (silicon wafer) in a semiconductor device. The thickness is usually 100 to 1,000 nm between wiring layers of the multilayer wiring.
  • the low dielectric constant amorphous silica-based coating according to the present invention is a coating obtained by the above-described coating forming method, and has a relative dielectric constant of 2.5 or less and a Young's modulus (Young's modulus) of 6.0 GPa or more. Modulus). Further, according to the above-mentioned method for forming a film, a silica-based film having an average pore diameter of pores contained in the film of 3 nm or less and a pore content of 70% or more of micropores of 2 nm or less is used. Can be easily formed. These physical properties are one of the important factors in providing the low relative dielectric constant and high film strength. Therefore, in the present invention, it is possible to provide a silica-based coating that meets the demands of the recent semiconductor manufacturing industry.
  • a silica-based film having a smooth surface with a surface roughness (Rms) of 1 nm or less can be easily formed.
  • This surface roughness is the root-mean-square of the value measured by an atomic force microscope AMF.
  • the silica-based coating according to the present invention is an amorphous silica-based coating having no X-ray diffraction peak such as the MFI crystal structure of a zeolite coating.
  • the silica-based coating according to the present invention is formed on a conductive substrate, between wiring layers of a multilayer wiring structure, on a substrate provided with an element surface and / or a PN junction, or between multilayer wiring layers provided on the substrate.
  • the silica-based coating according to the present invention is preferably used as an interlayer insulating film formed on a semiconductor substrate or the like. According to the method of the present invention, even if the surface of the coating is not subjected to silane treatment or the like, the relative dielectric constant is as small as 2.5 or less and the coating has a Young's modulus of at least 6.0 GPa.
  • a low dielectric constant amorphous silica-based coating having a smooth surface with a surface roughness (Rms) of 1 nm or less can be obtained without polishing the surface of the coating. Can be formed on.
  • the silica-based coating obtained by the method of the present invention is excellent in chemical resistance such as adhesion to a coating surface such as a semiconductor substrate, alkali resistance and the like, crack resistance, and oxygen resistance. It has excellent characteristics in process suitability such as plasma properties and etching processability. That is, the silica-based coating according to the present invention has a relative permittivity as small as 2.5 or less and a Young's value of 6.0 GPa or more, in addition to those achieved by the inventions filed by the present inventors in the past. An effect having both high film strength consisting of an elastic modulus and moisture absorption resistance (hydrophobicity) can be obtained.
  • the present invention will be described in detail with reference to Examples, but the present invention is not limited to these Examples.
  • Ultrapure water was added to the obtained aqueous solution of tetrapropyl ammonium hydroxide (TPAOH) to adjust the concentration to 10% by weight, and sodium (Na) and potassium (K) contained as impurities in the aqueous solution were adjusted.
  • TPAOH tetrapropyl ammonium hydroxide
  • Na sodium
  • K potassium
  • the compounds of the halogen group elements of bromine (Br) and chlorine (CI) were determined by the atomic absorption method (AAS method, polarized Zeeman atomic absorption spectrophotometer Z-5710 manufactured by Hitachi, Ltd.).
  • ion chromatography DIONEX 2020i).
  • ultrapure water is added to the tetrapropylammonium hydroxide aqueous solution (commercially available) before the above-mentioned ion exchange treatment to adjust the concentration to 10% by weight.
  • the content of the contained impurities was measured.
  • the amount of impurities contained in the aqueous solution before the ion exchange treatment was 50 ppm by weight of sodium, 2500 ppm by weight of potassium, 225 ppm by weight of bromine, and 13 ppm by weight of chlorine on an elemental basis.
  • the content of impurities contained in the aqueous solution after the ion-exchange treatment is, on an elemental basis, less than 10% by weight of sodium (detection limit), 10% by weight of potassium (detection limit), 1% by weight of bromine and less than 1% by weight of chlorine.
  • the purification of the aqueous solution of tetrapropylammonium hydrate at the mouth could be carried out to a level of not more than ppm by weight c, that is, to the allowable impurity level required in the present invention.
  • tetraethyl orthosilane TEOS manufactured by Tama Chemical Industry Co., Ltd.
  • MTMS methyltrimethoxysilane
  • EOH Wako Pure Chemical Industries, Ltd.
  • the highly purified tetrapropylammonium hydride oxide aqueous solution (containing 10% by weight of TPAOH) was dropped into these mixed solutions at a ratio shown in Table 1 over 10 minutes, and further added at 20 ° C. At 200 rpm for 1 hour. Thereafter, the mixture was heated to a temperature of 50 ° C., and the silica-based film forming components (TEOS and MTMS) were hydrolyzed for 20 hours while stirring at a speed of 200 rpm under this temperature condition.
  • ethanol (organic solvent) in the mixed solution containing the hydrolyzate of the silica-based film-forming component was mixed with propylene glycol monopropyl ether (PGP, PGP, using a rotary evaporator (R-114 manufactured by Shibata Kagaku Co., Ltd.)).
  • PGP propylene glycol monopropyl ether
  • R-114 rotary evaporator
  • the concentration of the gay compound which consists of the hydrolyzate of tetraethyl orthosilicide (TEOS) and methyltrimethoxysilane (MTMS) was adjusted.
  • TEOS tetraethyl orthosilicide
  • MTMS methyltrimethoxysilane
  • the substrates were baked at 400 ° C. for 30 minutes in a nitrogen gas atmosphere with the substrates placed on a single-wafer hot plate.
  • these substrates (Example substrates I-1 to I-8) were cooled to a temperature close to room temperature, and then taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained (a spectroscopic ellipsometer-ESVG manufactured by SOPRA) was about 500 nm.
  • EMD-1000 Electro Science Co., Ltd.
  • Coating strength Young's Modulus, Young's Modulus, nanoindentation method, MTS Systems Corp Nanoindenter — XP
  • iv Surface Roughness (Rms, AFM method)
  • pore distribution average pore diameter and pore volume content of 2 mri or less: nitrogen adsorption method
  • X-ray diffraction peaks crystalline film and amorphous Determination of coating: X-ray diffraction method
  • FIG. 1 shows the result of X-ray diffraction of the silica-based film formed on Example substrate I-2.
  • Example coating liquid 2 A liquid composition containing 2% by weight (Example coating liquid 2) was obtained.
  • the preparation requirements for this liquid composition are as shown in Table 1. Under the same conditions as in Example 1, 5 ml of the thus-obtained coating liquid for forming a film was applied onto an 8-inch silicon substrate (semiconductor substrate) by spin coating.
  • this substrate was subjected to a heat treatment step and a baking treatment step. Further, this substrate (Example substrate 1) was cooled to a temperature close to room temperature, and then taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • Example 2 the relative permittivity of the silica-based coating formed on the substrate, the change in the amount of water absorbed by the coating before and after oxygen plasma irradiation, the coating strength, the surface roughness, the pore distribution (average The pore diameter and the pore volume content of 2 nm or less) and the X-ray diffraction peak (determination of crystalline film and amorphous film) were measured.
  • TEOS tetraethylorthosilicate
  • MTES methyltriethoxysilane
  • EOH Wako Pure Chemical Industries, Ltd.
  • Example coating solution 3 a liquid composition containing 12% by weight (Example coating solution 3) was obtained.
  • the preparation requirements for this liquid composition are as shown in Table 1. Under the same conditions as in Example 1, 5 ml of the thus-obtained coating liquid for forming a film was applied on an 8-inch silicon L: L substrate (semiconductor substrate) by spin coating.
  • this substrate was subjected to a heat treatment step and a baking treatment step. Further, the substrate (Example substrate 3) was cooled to a temperature close to room temperature, and then taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • TPAOH tetrapropylammonium hydride oxide
  • ultrapure water was added to this aqueous solution to adjust the concentration to 10% by weight, and the aqueous solution was contained as an impurity.
  • Na sodium
  • potassium (K) alkali metal compounds and bromine (Br) and chlorine (CI) halogen compounds are determined by atomic absorption spectrometry (AAS) and ion chromatography, respectively. It was measured by the method.
  • ultrapure water is added to the tetrabutylammonium hydroxide aqueous solution (commercially available) before the above-mentioned ion exchange treatment to adjust the concentration to 10% by weight.
  • the content of the contained impurities was measured.
  • the amount of impurities contained in the aqueous solution before the ion exchange treatment was 50 ppm by weight of sodium, 3000 ppm by weight of potassium, 2500 ppm by weight of bromine, and 14 ppm by weight of chlorine on an elemental basis.
  • the content of impurities contained in the aqueous solution after the ion-exchange treatment is, on an elemental basis, less than 10% by weight of sodium (detection limit), 10% by weight of potassium (detection limit), 1% by weight of bromine and less than 1% by weight of chlorine.
  • TEOS tetraethyl orthosilicate
  • MTMS methyltrimethoxysilane
  • Example coating liquid 4 The preparation requirements for this liquid composition (coating solution for forming a film) are as shown in Table 1. Under the same conditions as in Example 1, 5 ml of the thus-obtained coating liquid for forming a film was applied onto an 8-inch silicon wafer substrate (semiconductor substrate) by spin coating.
  • this substrate was subjected to a heat treatment step and a baking treatment step. Further, this substrate (Example substrate 1) was cooled to a temperature close to room temperature, and then taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • a highly purified aqueous solution of the above-mentioned tetrapropylammoniumhydroxide (208.8% by weight containing TPAOH) was added dropwise over 10 minutes, and further at 150 ° C. at a temperature of 20 ° C. Stir at speed for 1 hour. Thereafter, the mixture is heated to a temperature of 50 ° C. and stirred at a speed of 200 rpm under this temperature condition for 25 hours, and methyltrimethoxysilane and other components to be hydrolyzed (partial hydrolysis of tetraethylorthosilicate) are performed. Hydrolysis).
  • Example coating solution 5 The preparation requirements for this liquid composition (coating solution for forming a film) are as shown in Table 1. Under the same conditions as in Example 1, 5 ml of the thus-obtained coating liquid for forming a film was applied on an 8-inch silicon substrate (semiconductor substrate) by spin coating.
  • this substrate was subjected to a heat treatment step and a baking treatment step. Further, this substrate (Example substrate 1) was cooled to a temperature close to room temperature, and then taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • Example 2 the relative dielectric constant of the silica-based coating formed on the substrate, the change in the amount of water adsorbed on the coating before and after oxygen plasma irradiation, the coating strength, the surface roughness, the pore distribution (average Pore diameter and pore volume content of 2 nm or less) and X-ray diffraction peak (Determination of a crystalline film or an amorphous film) was performed.
  • Table 5 shows the results.
  • TEOS tetraethyl orthosilicate
  • EOH ethanol
  • beat 1 0 component force ⁇ only look quotient a highly purified tetrapropyl ammonium Niu arm Hyde port oxide water ⁇ ml solution 89. 5 g (1 including TPAOH 0 weight 0/0), The mixture was further stirred at a temperature of 20 ° C at a speed of 150 rpm for 5 hours. Thereafter, the mixture was heated to a temperature of 50 ° C., and partially hydrolyzed tetraethyl orthosilicate for 40 hours while stirring at a speed of 200 rpm under this temperature condition.
  • methyltrimethoxysilane 127.3 g of methyltrimethoxysilane (MTMS, manufactured by Shin-Etsu Chemical Co., Ltd.) and 342, 1 g of ethanol having a concentration of 99.5% by weight (ETOH, manufactured by Wako Pure Chemical Industries, Ltd.) were mixed. The mixed solution was kept at a temperature of 20 ° C. and stirred at a speed of 150 rpm for 30 minutes.
  • 208.8 g (containing 10% by weight of TPAOH) of the highly purified aqueous solution of tetrapropylammonium hydroxide was dropped over 10 minutes, and the solution was further added at a temperature of 20 ° C. The mixture was stirred at a speed of 50 rpm for 2 hours. Thereafter, the mixture was heated to a temperature of 50 ° C. and partially hydrolyzed with methyltrimethoxysilane (MTMS) for 5 hours while stirring at a speed of 200 rpm under this temperature condition.
  • MTMS
  • Example coating solution 6 The preparation requirements for this liquid composition (coating liquid for forming a film) are as shown in Table 1.
  • Example 2 Under the same conditions as in Example 1, 5 ml of the thus-obtained coating liquid for forming a film was applied onto an 8-inch silicon substrate (semiconductor substrate) by spin coating.
  • this substrate was subjected to a heat treatment step and a baking treatment step. Further, this substrate (Example substrate 1) was cooled to a temperature near room temperature, and then taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • Tetraethyl orthosilicide 77.1 g (TEOS, manufactured by Tama Chemical Industry Co., Ltd.), methyltrimethoxysilane 14.5 g (MTMS, Shin-Etsu Chemical Co., Ltd.), polysiloxane 80.
  • Og PS, 10% by weight of Si02 conversion product, prepared by the method described in JP-A-9-315812
  • EOH 99.5% by weight of ethanol
  • Example coating solution 7 Si0 liquid composition containing 1 2% by weight 2 equivalent value (example coating solution 7) was obtained.
  • the preparation requirements for this liquid composition are as shown in Table 1. Under the same conditions as in Example 1, 5 ml of the thus-obtained coating liquid for forming a film was applied onto an 8-inch silicon wafer substrate (semiconductor substrate) by spin coating.
  • this substrate was subjected to a heat treatment step and a baking treatment step. Further, this substrate (Example substrate 1) was cooled to a temperature near room temperature, and then taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • Example coating liquid I-2 5 ml of the coating liquid for forming a film prepared in Example 1 (Example coating liquid I-2) was spin-coated using an 8-inch silicon wafer substrate (semiconductor substrate).
  • these substrates were placed on a single-wafer hot plate and subjected to a heat treatment under an air atmosphere under the temperature conditions shown in Table 2 for 3 minutes.
  • the organic solvent (PGP) and the like contained in the film evaporate and were discharged out of the system.
  • the processing environment was changed from an air atmosphere to a nitrogen gas atmosphere, and the temperature was changed under the temperature conditions shown in Table 2.
  • a baking treatment was performed for 30 minutes.
  • these substrates (Example substrates # -1 to # -6) were cooled to a temperature near room temperature, and then taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • Tetraethyl orthosilicate (TEOS, manufactured by Tama Chemical Industry Co., Ltd.), methyltrimethoxysilane (MTMS, manufactured by Shin-Etsu Chemical Co., Ltd.) and 99.5 wt. (Manufactured by Yakuhin Co., Ltd.) at the ratio shown in Table 3, and the mixed solution was kept at a temperature of 20 ° C. and stirred at a speed of 150 rpm for 30 minutes.
  • a highly purified aqueous solution of the above-mentioned tetrapropylammonium hydroxide (containing 10% by weight of TPAOH) was added dropwise to these mixed solutions over a period of 10 minutes at a ratio shown in Table 1 and further added at 20 ° C.
  • the mixture was stirred at a temperature of C at a speed of 250 rpm for 1 hour. Thereafter, the mixture was heated to a temperature of 50 ° C., and the silica-based film-forming components (TEOS and MTMS) were hydrolyzed for 20 hours while stirring at a speed of 250 rpm under this temperature condition.
  • TEOS and MTMS silica-based film-forming components
  • Example 2 Under the same conditions as in Example 1, 5 ml of the thus-obtained coating liquid for forming a film was applied onto an 8-inch silicon wafer substrate (semiconductor substrate) by spin coating. Next, under the same conditions as in Example 1, these substrates were subjected to a heat treatment step and a baking treatment step. Further, these substrates (comparative substrates # -1 to # -4) were cooled to a temperature near room temperature, and then taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • the relative permittivity of the silica-based coating formed on the substrate (when moisture is adsorbed, the relative permittivity after being left in air for 1 day is also measured), and the oxygen plasma Changes in water adsorption, film strength, surface roughness, pore distribution (average pore diameter and pore volume content of 2 nm or less) before and after irradiation, and X-ray diffraction peaks (determination of crystalline and amorphous films) ) was measured.
  • Table 5 shows the results.
  • TEOS manufactured by Tama Chemical Industry Co., Ltd.
  • MTMS methyltrimethoxysilane
  • ethanol 488. 7g were mixed (ETOH, produced by Wako pure Chemical Industries, Ltd.), holding the mixed solution at a temperature of 20 ° C, and stirred for 30 minutes at a speed of 1 50r P m.
  • this substrate was subjected to a heat treatment step and a baking treatment step. Further, after cooling the substrate (comparative example substrate No. 1) to a temperature near room temperature, it was taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • the relative permittivity of the silica-based coating formed on the substrate (when moisture is adsorbed, the relative permittivity after being left in air for 1 day is also measured), and the oxygen plasma Changes in moisture adsorption of the coating before and after irradiation, coating strength, surface roughness, pore distribution (average pore diameter and pore volume content of 2 nm or less), and X-ray diffraction peaks (determination of crystalline and amorphous coatings) ) was measured.
  • Table 5 shows the results.
  • Non-Patent Document 1 Using a method similar to that described in the above-mentioned known examples (Non-Patent Document 1, Patent Document 6, etc.), 285.7 g of tetraethyl orthosilicate (TE0S, manufactured by Tama Chemical Industry Co., Ltd.) and 577.3 g (ETOH, manufactured by Wako Pure Chemical Industries, Ltd.) of 99.5% by weight ethanol was mixed, and the mixed solution was kept at a temperature of 20 ° C. and stirred at a speed of 150 rpm for 30 minutes.
  • TE0S tetraethyl orthosilicate
  • EOH manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 3 the ethanol (organic solvent) contained in this mixed solution was subjected to a solvent replacement process with propylene glycol monopropyl ether (PGP) using a rotary evaporator, and at the same time, tetramethyl Orthosilicate
  • PGP propylene glycol monopropyl ether
  • tetramethyl Orthosilicate By adjusting the concentration of gay-containing compound comprising a hydrolyzate of (TEOS), to give the compound Si0 liquid composition comprising 1 2 wt% in 2 equivalent value (Comparative Example coating liquid 3).
  • the preparation requirements for this liquid composition are as shown in Table 3.
  • Example 2 Under the same conditions as in Example 1, 5 ml of the thus-obtained coating liquid for forming a film was applied onto an 8-inch silicon wafer substrate (semiconductor substrate) by spin coating.
  • this substrate was subjected to a heat treatment step and a baking treatment step. Further, after cooling the substrate (comparative substrate 3) to a temperature near room temperature, it was taken out of the system.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • the relative permittivity of the silica-based coating formed on the substrate (when moisture is adsorbed, the relative permittivity after being left in air for 1 day is also measured), and the oxygen plasma Changes in water adsorption, film strength, surface roughness, pore distribution (average pore diameter and pore volume content of 2 nm or less) before and after irradiation, and X-ray diffraction peaks (determination of crystalline and amorphous films) ) was measured.
  • Table 5 shows the results.
  • Fig. 2 shows the results of X-ray diffraction of the silica-based coating formed on this substrate.
  • Example 2 the ethanol (organic solvent) contained in this mixed solution was subjected to a solvent replacement process with propylene glycol monopropyl ether (PGP) using a rotary evaporator, and at the same time, tetramethyl by adjusting the concentration of gay-containing compound comprising a hydrolyzate of ortho silicate gate (TEOS), to give the compound Si0 liquid composition comprising 1 2 wt% in 2 equivalent value (Comparative example coating liquid 4).
  • the preparation requirements for this liquid composition (coating liquid for forming a film) are as shown in Table 3. Under the same conditions as in Example 1, 5 ml of the thus-obtained coating liquid for forming a film was applied to an 8-inch silicon substrate (semiconductor substrate) using a spin coating method.
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • the relative permittivity of the silica-based coating formed on the substrate (when moisture is adsorbed, the relative permittivity after being left in air for 1 day was measured) Changes in moisture adsorption of the coating before and after irradiation, coating strength, pore distribution (average pore size and pore volume content of 2 nm or less), and measurement of X-ray diffraction peaks (determining crystalline and amorphous coatings) was done. Table 5 shows the results.
  • Example coating liquid I 5 ml of the coating liquid for forming a film prepared in Example 1 (Example coating liquid I) was coated on an 8-inch silicon wafer substrate (semiconductor substrate) by spin coating. Was applied. Next, these substrates were placed on a single-wafer hot plate and subjected to a heat treatment under an air atmosphere under the temperature conditions shown in Table 4 for 3 minutes. In this heat treatment step, the organic solvent (PGP) and the like contained in the film evaporate and were discharged out of the system. Furthermore, with these substrates placed on a single-wafer hot plate, the processing environment was changed from an air atmosphere to a nitrogen gas atmosphere, and the baking treatment was performed for 30 minutes under the temperature conditions shown in Table 4. gave. Next, after cooling these substrates (comparative example substrates # -1 to # -6) to a temperature near room temperature, they were taken out of the system.
  • PGP organic solvent
  • the thickness of the silica-based film formed on the substrate thus obtained was about 500 nm.
  • the silica-based coating itself has excellent hydrophobicity (moisture absorption resistance)
  • the silica-based coating includes a silane treatment recommended in the above-mentioned known examples (Non-Patent Document 1, Patent Document 6, etc.). Even without surface treatment, I can maintain the hydrophobic property for a long time, and as a result, the relative permittivity does not decrease.
  • this amorphous silica-based coating is not only superior in hydrophobicity to crystalline coatings such as zeolite coatings, but also has a very smooth surface of 1 nm or less. did.
  • the average pore diameter contained in the silica-based coating was 3 nm or less, and the pore volume content of micropores of 2 nm or less was 0% or more.
  • sodium (Na), potassium (Na) contained in tetraalkylammonium hydride oxide (TAAOH) used in the preparation step are used.
  • TAAOH tetraalkylammonium hydride oxide
  • Compounds of alkali metal elements such as K) and bromine (Br), salts It has been found that it is necessary to remove impurities composed of compounds of halogen group elements such as nitrogen (CI) to the above level in advance.
  • the coating solution for forming a film When preparing the coating solution for forming a film, it is used in the preparation process.
  • the desired relative dielectric constant and a silica-based film having film strength was obtained, a part of the film was crystallized, and a surface roughness (Rms) exceeding 1 nm was observed.
  • TPAOH tripropylammonium hydroxide oxide
  • a low dielectric constant amorphous silica-based coating with high strength which is small and has a Young's modulus of 6.0 GPa or more, it is not only resistant to adhesion such as adhesion to the coating surface of the substrate and alkali resistance. It is possible to obtain a silica-based coating that has excellent chemical resistance, excellent crack resistance, and excellent process compatibility such as oxygen plasma resistance and etching processability.
  • the thickness of the formed film will not be uneven, and aluminum wiring and copper wiring of the semiconductor substrate will be damaged. I will not give it.
  • a film is formed on a substrate using the methods of the heat treatment step and the baking treatment step shown in the comparative example, some of the above-mentioned performances can be obtained, but all of the performances or effects cannot be exhibited. There was found.
  • the method of the present invention is the most suitable method for forming a smooth low dielectric constant amorphous silica-based film having high film strength and excellent hydrophobicity on a substrate.
  • the yank bullet is the rate of change in the amount of adsorbed moisture on the semiconductor substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Formation Of Insulating Films (AREA)
  • Paints Or Removers (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

明細書 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非 晶質シリカ系被膜 技術分野
本発明は、比誘電率(Dielectric Constant:)が 2. 5以下と小さぐしかも高い膜強 度と疎水性に優れた平滑な低誘電率非晶質シリカ系被膜を基板上に形成する方 法および該方法より得られる低誘電率非晶質シリカ系被膜に関する。 背景技術
近年における半導体装置の高集積化に伴い、多層配線を有する 0. 25ミクロン ルール以下の半導体装置においては、金属配線間隔が狭くなるため、静電誘導 による金属配線のインピーダンスが増大し、応答速度の遅れや消費電力の増大 などが懸念されている。このため、半導体基板とアルミニウム配線層などの金属 配線層との間、あるいは金属配線層間に設けられる層間絶縁膜の誘電率をでき るだけ小さくすることが必要とされている。
上記のような目的で設けられる層間絶縁膜は、一般に CVD法(Chemical Vapor Deposition Method)などの気相成長法やスピンコート法などの塗布法を用いて半 導体基板上に形成されている。
しかしながら、 CVD法の最新技術を用いて得られるシリカ系被膜 (特許文献 1な どに記載)では、比誘電率が 3以下のものが得られるものの、 2. 5前後の比誘電 率を有する被膜を形成することが限界であると言われており、また従来の塗布法 の場合と同様、比誘電率の低下に伴って被膜の膜強度も低下するという欠点が ある。また、ポリアリール樹脂、フッ素添加ポリイミド樹脂やフッ素樹脂などの CVD 被膜、あるいはこれらの塗布液を用いて形成される被膜では、比誘電率が 2前後 となるが、基板表面との密着性が悪く、また微細加工に用いるレジスト材料との密 着性も悪ぐさらには耐薬品性や耐酸素プラズマ性に劣るなどの問題がある。 また、従来から広く用いられているアルコキシシランおよび Zまたはハロゲン化 シランの部分加水分解物またはこれらの加水分解物を含むシリカ系被膜形成用 塗布液を用いて得られる被膜では、比誘電率が 3以下のものが得られるものの、 2. 5以下の比誘電率を達成することは困難であり、しかも被塗布面との密着性が 悪いなどの問題がある。 本願発明者らは、これらの問題を解決するため鋭意研究を行ったところ、 a)アル コキシシランおよび Zまたはハロゲン化シランまたはこれらの加水分解物とシリカ 微粒子との反応物であるポリシロキサンを含む低誘電率シリカ系被膜形成用塗 布液 (特許文献 2などに記載)、 b)アルコキシシランおよびノまたはハロゲン化シ ランまたはこれらの加水分解物と、 500°C以下の温度で分解または揮散する易 分解性樹脂とを含む低誘電率シリカ系被膜形成用塗布液 (特許文献 3などに記 載)、 c)アルコキシシランおょぴ またはハロゲン化シランまたはこれらの加水分 解物とシリカ微粒子との反応物であるポリシロキサンと、 500°C以下の温度で分 解または揮散する易分解性樹脂とを含む低誘電率シリカ系被膜形成用塗布液 (特許文献 4などに記載)、 d)アルコキシシランおよび/またはハロゲン化シラン またはこれらの加水分解物と有機テンプレート材を含む低誘電率シリカ系被膜形 成用塗布液(特許文献 5などに記載)などを用いれば、比誘電率が 3以下と小さぐ しかも被塗布面との密着性、被膜強度、耐アルカリ性などの耐薬品性ゃ耐クラッ ク性および被膜表面の平滑性に優れ、さらには耐酸素プラズマ性やエッチング加 ェ性などのプロセス適合性にも優れた被膜を形成できることを見出した。
しかし、本発明者らは、これらの塗布液と従来公知の被膜形成法 (スピンコート 法やその他の塗布法)を用いて種々の半導体基板上に低誘電率シリカ系被膜を 形成する試験を繰り返し行ったところ、前記の特性を有する被膜は得られるもの の、 2. 5以下の比誘電率を有する被膜を形成しょうとすると被膜強度が低下し、 昨今の半導体製造業界から要望のある 6. 0 GPa (ギガパスカル)以上のヤング 弾性率 (Young's Modulus)を有するものを安定的に得ることは難しいことを見出し た。 一方、米国カルフォルニア大学より、高い被膜強度を有する低誘電率被膜を得 ることを目的として、エチルアルコールに溶解されたテトラェチルオルソシリゲート (TEOS)をテトラプロピルアンモニゥムハイド口オキサイド(TPAOH)の存在下で加 水分解させて得られたゼォライト微粒子から比較的粒径の大きい粒子を分離-除 去した懸濁液を用いて半導体基板上にゼォライト被膜 (ΜΠ結晶構造を有するシ リカゼォライト被膜)を形成する方法が提案されている。しかし、この方法から得ら れるゼオライト被膜は、 1 6〜1 8 GPaのヤング弾性率を有しているものの、吸湿 性が高いため空気中の水分を吸着して比誘電率が急激に増加 (例えば、比誘電 率が 2. 3力、ら 3. 9に増加)して実用に耐えなくなってしまうという問題がある。そこ で、このようにして得られたゼォライト被膜にシラン処理(Silylation)を施してその 表面を疎水化し、この被膜の比誘電率を 2. "!〜 2. 3に保つ方法などが提案され ている。(非特許文献 1および特許文献 6などに記載。)
し力、しな力ら、このようなシラン処理 (CVD法による処理)を施すためには、設備 投資のほかに煩雑な操作を必要とするため、かなりのコスト高となってしまうとしヽ う欠点がある。また、得られるゼォライト被膜の表面が、該被膜中に含まれるゼォ ライト微粒子の大きさが 20nm前後と大きいため、かなり粗くなり、その表面を平 滑にするために研磨操作などの手段が必要とされている。さらに、疎水化処理さ れたゼオライト被膜は、その表面しか疎水化されないため、該被膜にレジスト塗布 やエッチング処理などの微細加工を施して配線パターンやスルーホールなどを形 成すると、疎水化されていない部分が露出してその部分から水分を吸着し、結果 として被膜の比誘電率を悪化 (すなわち、比誘電率の増加)させてしまうなどの問 題が生じる場合がある。 そこで、本願発明者らは、上記のような問題を解決することを目的として鋭意研 究を続けたところ、以下に示すような新規な組成と性状からなる被膜形成用塗布 液を調製し、これを基板上に塗布した後、一定の条件下でこの基板に加熱処理と 焼成処理を順々に施して非晶質のシリカ系被膜を形成すればよいことを見出し、 本発明を完成するに至った。
【特許文献 1】 特開 2000— 349083号公報
【特許文献 2】 特開平 9— 31 581 2号公報 【特許文献 3】 国際出願公開 WO OOZ1 8847公報
【特許文献 4】 国際出願公開 WOOOZ1 26'40公報
【特許文献 5】 特開 2002— 30249号公報
【特許文献 6】 米国特許出願公開公報 US 2000/0060364 A1
【非特許文献 1】 Advanced Material 2001 , 13, No.19, October 2, Page 1453—
1466 発明の開示
本発明は、上記のような問題点を解決しょうとするものであって、比誘電率が 2. 5以下と小さ《さらに被膜強度を表わすヤング弾性率が 6. 0 GPa以上である特 性を備え、しかも疎水性に優れた平滑な低誘電率非晶質シリカ系被膜を基板上 に形成する方法および該方法より得られる低誘電率非晶質シリカ系被膜を提供 することを目的としている。 本発明による第一の低誘電率非晶質シリカ系被膜の形成方法は、
高い膜強度を有し、疎水性に優れた平滑な低誘電率非晶質シリカ系被膜を基板 上に形成する方法であって、
(a)テトラアルキルオルソシリゲート (TA0S)および下記一般式 (I)で示されるアルコ キシシラン(AS)をテトラアルキルアンモニゥムハイド口オキサイド(TAA0H)の存 在下で加水分解して得られるゲイ素化合物を含む液状組成物を調製する工程、
XnSi(OR)4.n (I)
(式中、 Xは水素原子、フッ素原子、または炭素数 1〜8のアルキル基、フッ素置換 アルキル基、ァリール基もしくはビニル基を表し、 Rは水素原子、または炭素数 1 〜8のアルキル基、ァリール基もしくはビニル基を表す。また、 nは 0〜3の整数で ある。)
(b)該液状組成物を基板上に塗布する工程、
(c)該基板を 80〜 350°Cの温度で加熱処理する工程、および
(d)該基板を 350〜450°Cの温度で焼成処理する工程
を含むことを特徴としている。 また、本発明による第二の低誘電率非晶質シリカ系被膜の形成方法は、 高い膜強度を有し、疎水性に優れた平坦な低誘電率非晶質シリカ系被膜を基板 上に形成する方法であって、
(a)テトラアルキルオルソシリゲート(TAOS)をテトラアルキルアンモニゥムハイド口 オキサイド (TAAOH)の存在下で加水分解または部分加水分解した後、上記一般 式 (I)で示されるアルコキシシラン (AS)またはその加水分解物もしくは部分加水分 解物と混合し、さらに必要に応じてこれらの一部または全部を加水分解して得ら れるゲイ素化合物を含む液状組成物を調製する工程、
(b)該液状組成物を基板上に塗布する工程、
(c)該基板を 80〜350°Cの温度で加熱処理する工程、および
(cl)該基板を 350〜450°Cの温度で焼成処理する工程
を含むことを特徴としている。 これらの非晶質シリカ系被膜の形成方法において、前記調製工程 (a)で使用され るテトラアルキルオルソシリゲート(TAOS)は、テトラェチルオルソシリケ一ト (TEOS)、テトラメチルオルソシリケート(TMOS)またはその混合物であることが好 ましい。
また、前記調製工程 (a)で使用されるアルコキシシランは、メチルトリメトキシシラ ン(MTMS)、メチルトリエトキシシラン(MTES)またはその混合物であることが好ま しい。
前記調製工程 (a)で使用されるテトラアルキルアンモニゥムハイド口オキサイド (TAAOH)は、テトラプロピルアンモニゥ厶ハイド口オキサイド(TPAOH)、テトラブ チルアンモニゥムハイド口オキサイド (TBAOH)またはその混合物であることが好 ましい。ここで、前記調製工程 (a)で使用されるテトラアルキルアンモニゥムハイド 口オキサイド (TAAOH)中に含まれる、ナトリウム(Na)、カリウム(K)などのアル力 リ金属元素の化合物からなる不純物の含有量は、それぞれ元素基準で 50重量 p pb以下であることが好ましい。さらに、前記調製工程 (a)で使用されるテトラアルキ ルアンモニゥムハイド口オキサイド (TAAOH)中に含まれる、臭素(Br)、塩素(CI)な どのハロゲン族元素の化合物からなる不純物の含有量は、それぞれ元素基準で
1重量 ppm以下であることが好ましい。 本発明方法において、前記調製工程 (a)で使用されるテトラアルキルオルソシリ ケ一ト(TAOS)と前記アルコキシシラン(AS)のモル比(TAOSZAS)は、 Si02換算 基準で 6 4〜2 8の範囲にあることが好ましい。
さらに、前記調製工程 (a)で使用される亍トラアルキルアンモニゥムハイドロォキ サイド (TAAOH)とシリカ系被膜形成成分(TAOS+AS)のモル比(TAAOH/CTAOS +AS))は、 Si02換算基準で 1 1 0〜7 1 0の範囲にあることが好ましい。
また、前記塗布工程 (b)、前記加熱処理工程 (c)および前記焼成処理工程 ( の 各操作は、以下の方法を用いて行うことが好ましい。
(i)前記塗布工程 (b)の操作をスピンコート法で行う。
(Π)前記加熱処理工程 (c)の操作を"!〜 1 0分間、窒素ガス雰囲気下または空気雰 囲気下で行う。
(iii)前記焼成処理工程 (d)の操作を 1 0〜90分間、窒素雰囲気下で行う。 一方、本発明による低誘電率非晶質シリカ系被膜は、上記の被膜形成方法より 得られる被膜で、 2. 5以下の比誘電率と 6. 0 GPa以上のヤング弾性率 (Young's Modulus)からなる被膜強度を有することを特徴としている。さらに、前記被膜は、 MFI結晶構造などの X線回折ピークを有しない非晶質のシリカ系被膜であることを 特徴としている。
また、前記被膜は、該被膜中に含まれる細孔の平均細孔径が 3nm以下で、し かも 2nm以下のミクロポア(Micropores)の細孔容積含有率が 70%以上であるこ とが好ましい。
これに加えて、前記被膜は、該被膜の表面粗さ(Rms)が 1 nm以下である平滑な 表面を有していることが好ましい。ここで、この表面粗さは、原子間力顕微鏡 AFM にて測定された値の二乗平均粗さである。
さらに、前記被膜の好ましき用途としては、半導体基板上に形成される層間絶 縁膜などがある。 図面の簡単な説明
図 1は、実施例基板①- 2上に形成されたシリカ系被膜(非晶質被膜)を X線回 折した結果を示し、図 2は、比較例基板③上に形成されたシリカ系被膜 (結晶質被 膜)を X線回折した結果を示す。なお、図 2における X線回折ピーク(2 Θ〜8° 、 9° 、23° の位置にあるピーク)は、 ΜΠ結晶構造を有する被膜 (すなわち、 ZSM- 5型のゼォライト被膜)であることを示している。 発明を実施するための最良の形態
以下、本発明の低誘電率非晶質シリカ系被膜の形成方法および該方法より得ら れる低誘電率非晶質シリカ系被膜について具体的に説明する。
[低誘電率非晶質シリカ系被膜の形成方法]
(a)塗布液の調製工程
塗布液 A
本発明による第一の低誘電率非晶質シリカ系被膜の形成方法においては、被 膜形成用塗布液として、テトラアルキルオルソシリゲート (TAOS)および下記一般 式 (I)で示されるアルコキシシラン(AS)を亍トラアルキルアンモニゥムハイドロォキ サイド (TAAOH)の存在下で加水分解して得られるゲイ素化合物を含む液状組成 物が使用される。
XnSi(OR)4.n (I)
(式中、 Xは水素原子、フッ素原子、または炭素数 1〜8のアルキル基、フッ素置換 アルキル基、ァリール基もしくはビニル基を表し、 Rは水素原子、または炭素数 1 〜8のアルキル基、ァリール基もしくはビニル基を表す。また、 nは 0〜3の整数で ある。)
ここで、前記テトラアルキルオルソシリケ一ト(TAOS)としては、テ卜ラメチルオル ソシリゲート、テトラェチルオルソシリゲート、テトラプロピルオルソシリゲート、テト ライソプロピルオルソシリゲート、テトラブチルオルソシリゲートなどが挙げられる。 この中でも、テトラエチルオルソシリケ一 TEOS)、テトラメチルオルソシリケ一ト (TMOS)またはその混合物を使用することが好ましい。 また、前記アルコキシシラン(AS)としては、メチルトリメトキシシラン、メチルトリエ トキシシラン、メチルトリイソプロポキシシラン、ェチルトリメトキシシラン、ェチルト リエトキシシラン、ェチルトリイソプロポキシシラン、ォクチル卜リメトキシシラン、ォ クチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フエ ニルトリメトキシシラン、フエニルトリエトキシシラン、トリメトキシシラン、トリエトキシ シラン、トリイソプロポキシシラン、フルォロトリメトキシシラン、フルォロトリエトキシ シラン、ジメチルジメトキシシラン、ジメチルジェトキシシラン、ジェチソレジメトキシシ ラン、ジェチルジェ卜キシシラン、ジメトキシシラン、ジエトキシシラン、ジフルォロジ メトキシシラン、ジフルォロジェトキシシラン、トリフルォロメチルトリメトキシシラン、 トリフルォロメチルドリエトキシシランなどが挙げられる。この中でも、メチルトリメト キシシラン(MTMS)、メチルトリエトキシシラン(MTES)またはその混合物を使用す ることが好ましい。
さらに、前記テトラアルキルアンモニゥムハイド口オキサイド (TAAOH)としては、 テトラメチルアンモニゥムハイド口オキサイド、テトラェチルアンモニゥムハイドロォ キサイド、テトラプロピルアンモニゥムハイド口オキサイド、テトラプチルアンモニゥ ムハイド口オキサイド、テトラ n-ォクチルアンモニゥムハイド口オキサイド、 n-へキ サデシルトリメチルアンモニゥムハイド口オキサイド、 n-ォクタデシルトリメチルァ ンモニゥムハイド口オキサイドなどが挙げられる。この中でも、テトラプロピルアン モニゥムハイド口オキサイド (TPAOH)、亍トラプチルアンモニゥムハイド口ォキサ イド (TBAOH)またはその混合物を使用することが好ましい。 通常、一般的な用途のために市販されているテトラアルキルアンモニゥムハイド 口オキサイド (TAAOH)中には、不純物としてナトリウム(Na)、カリウム(K)などの アルカリ金属元素の化合物、および臭素(Br)、塩素(CI)などのハロゲン族元素の 化合物がそれぞれ元素基準で数 1 00重量 ppm〜数重量%のレベルで含有され ていることが知られている。
しかし、ナトリウム(Na)やカリウム(K)などのアルカリ金属元素の化合物からな る不純物がそれぞれ元素基準で 50重量 ppbより多く含まれると、半導体基板を 構成するトランジスタ部分へ拡散し、トランジスタの劣化を引き起こすことがある。 また、臭素(Br)や塩素(CI)などのハロゲン元素の化合物からなる不純物がそれ ぞれ元素基準で 1重量 ppmより多く含まれると、半導体基板を構成するアルミ二 ゥム配線や銅配線などが腐食して、致命的な損傷を与えることがある。
さらに、本発明者らは、これらのアルカリ金属元素化合物の不純物が 50重量 PP bより多く含まれると、テトラアルキルオルソシリゲート (TAOS)および前記一般式 (I)で示されるアルコキシシラン (AS)をテトラアルキルアンモニゥムハイド口ォキサ イド (TAAOH)の存在下で加水分解する際に、この不純物力触媒として作用し、 果として得られるゲイ素化合物がゼォライト状の結晶性シリカとなることを見出し た。その結果、基板上に形成されるシリカ系被膜がゼォライト結晶質となるため、 その被膜表面が凹凸となり、平滑な表面が得られないことが分かった。 したがって、上記のような性状を有する市販のテトラアルキルアンモニゥムハイ ドロオキサイド (TAAOH)を使用する場合には、その中に含まれる前記不純物をあ らかじめ上記レベルまで取り除いておく必要がある。すなわち、本発明方法で使 用されるテ卜ラアルキルアンモニゥムハイド口オキサイド(TAAOH)は、市販のテ卜 ラアルキルアンモニゥムハイド口オキサイドを陽イオン交換樹脂処理工程および 陰イオン交換樹脂処理工程に供することにより、その中に含まれるナトリウム (Na)、カリウム(K)などのアルカリ金属元素の化合物および臭素(Br)、塩素(CI) などのハロゲン族元素の化合物からなる不純物を実質的に除去して高純度化す ることが好ましい。
本発明において使用される、前記テトラアルキルオルソシリケ一ト(TAOS)と前 記アルコキシシランのモル比(TAOS/AS)は、 Si02換算基準で 6 4〜2ノ 8、好 ましくは 5 5〜3/7の範囲にあることが望ましい。ここで、前記モル比(TAOS/ AS)が 6 4を超えると、得られるシリカ系被膜の竦水性が悪くなる。また、当該モ ル比が 2/8未満であると、亍トラアルキルアンモニゥムハイド口オキサイド (TAAOH)によるテンプレート効果が小さくなるので、被膜中に形成される細子し(細 孔容積)が少なくなリ、 2. 5以下の比誘電率を有するシリカ系被膜を得ることが難 しくなる。 さらに、本発明方法で使用される、前記テトラアルキルアンモニゥムハイド口才 キサイド (TAAOH)とシリカ系被膜形成成分 (TAOS+AS)のモル比
(TAAOH/(TAOS +AS))は、 Si02換算基準で 1 / Λ 0-7/1 0、好ましくは 1 /1 0 〜6Z1 0の範囲にあることが望ましい。ここで、前記モル比(TAAOH (TAOS + AS) )が 1 1 0未満であると、テンプレート材としての機能が弱いため、被膜中に 形成される細孔 (細孔容積)が少なくなリ、 . 5以下の比誘電率を有するシリカ系 被膜を得ることが難しくなる。また、当該モル比が 7 1 0を超えると、テンプレート 材としての機能が強いため、被膜中に形成される細孔 (細孔容積)が多くなリ、 6. 0 GPa以上のヤング弾性率からなる膜強度のシリカ系被膜を得ることが難しくな る。さらに、半導体基板上にシリカ系被膜を形成した場合、該被膜中に一部、残存 して、半導体としての機能に悪影響を及ぼす可能性もある。 次に、前記液状組成物、すなわち本発明方法で使用される被膜形成用塗布液 (塗布液 A)の調製方法を述べれば、以下のとおりである。
本発明方法で使用される被膜形成用塗布液(塗布液 A)は、
(i)テトラアルキルオルソシリゲート(TAOS)および上記一般式(I)で示されるアル コキシシラン (AS)を有機溶媒と混合した後、 1 0〜30°Cの温度でこれらの成分が 十分に混合するまで 1 00〜200rpmの速度で攪拌し、
(Π)次に、攪拌下にある該混合溶液中にテトラアルキルアンモニゥムハイドロォキ サイド (TAA0H)の水溶液を 5〜20分かけて滴下した後、さらに 1 0〜30°Cの温 度で 30〜90分間、 1 00〜200rpmの速度で攪拌し、
(iii)次いで、 30〜80°Cの温度に加熱した後、この温度に保ちながら 1〜72時間、 1 00〜200rpmの速度で撹拌することにより、前記テトラアルキルオルソシリケー ト (TAOS)および前記アルコキシシラン (AS)の加水分解物であるケィ素化合物を 含む液状組成物として調製することができる。この場合、上記に示す滴下方法 (す なわち、前記 G)で調製された TAOS、 ASおよび有機溶媒からなる混合溶液中に 前記 (Π)の TAAOHの水溶液を滴下する方法)に代えて、前記 G)で調製されたテ トラアルキルオルソシリゲート(TAOS)、アルコキシシラン(AS)および有機溶媒か らなる混合溶液を、上記と同様な条件下(温度 1 0〜30°C、攪拌速度 1 00〜200 rpm)で、前記(ii)のテトラアルキルアンモニゥムハイド口オキサイド(TAAOH)の 水溶液中に 30〜90分かけてゆっくりと滴下し もよい。(すなわち、これらの方法 は、本発明で使用される被膜形成用塗布液の第一の調製方法である。 ) ここで、前記テトラアルキルオルソシリゲート(TAOS)、前記アルコキシシラン (AS)および前記テトラアルキルアンモニゥムハイド口オキサイド (TAAOH)は、そ れぞれ上記のモル比となるように混合または添加して使用される。
本発明方法で使用される有機溶媒としては、アルコール類、ケトン類、エーテル 類、エステル類、炭化水素類などが挙げられ、より具体的には、例えばメタノール、 エタノール、プロパノール、ブタノ一ルなどのアルコール類、メチルェチルケトン、メ チルイソブチルケトンなどのケトン類、メチルセ口ソルブ、ェチルセ口ソルブ、プロピ レングリコールモノプロピルエーテルなどのグリコールエーテル類、エチレングリコ ール、プロピレングリコール、へキシレングリコールなどのグリコール類、酢酸メチ ル、酢酸ェチル、乳酸メチル、乳酸ェチルなどのエステル類、へキサン、シクロへ キサン、オクタンなどの炭化水素類やトルエン、キシレン、メシチレンなどの芳香族 炭化水素類が挙げられる。この中でも、エタノールなどのアルコール類を使用する ことが好ましい。
また、この有機溶媒の使用量は、特に限定されるものではなし、が、前記のシリカ 系被膜形成成分 (TAOS +AS)に対する重量混合比(有機溶媒 /TTAOS+AS))が 1 /Λ〜3 1、好ましくは 1 Z1 -2. 5X1の範囲にあることが望ましい。 さらに、前記の混合有機溶媒中に滴下されるテトラアルキルアンモニゥムハイド 口オキサイド (TAAOH)の水溶液は、蒸留水または超純水中にテトラアルキルアン モニゥ厶ハイド口オキサイド(TAAOH)を 5〜40重量0 /0、好ましくは 1 0〜30重 量%の割合で含んでいることが望ましい。し力、し、この水溶液中に含まれる水は、 テトラアルキルオルソシリケ一ト(TAOS)およびアルコキシシラン (AS)の加水分解 反応を生起させるために使用されるので、その加水分解反応に必要な量を含むも のでなければならない。なお、この加水分解反応を促進させるための触媒として は、テトラアルキルアンモニゥ厶ハイド口オキサイド (TAAOH)がその機能を有して いるので、特別にその他の触媒 (たとえば、アンモニア)を外部から添加する必要 はない。
前記加水分解の反応条件としては、 30〜80°C、好ましくは 35〜60°Cの温度 で、攪拌しながら"!〜 72時間、好ましくは 1 0〜48時間かけて行うことが望ましい c このようにして得られた液状組成物中に含まれるケィ素化合物 (TAOSおよび ASの加水分解物)の数平均分子量は、ポリスチレン換算で 500〜1 000000、 好ましくは 1 000〜 1 00000の範囲にあることが望ましい。この数平均分子量が 上記の範囲にあれば、優れた経時安定性と良好な塗工性を示す被膜形成用塗布 液 (すなわち、前記液状組成物)を調製することができる。 さらに、この被膜形成用塗布液には、必要に応じて下記一般式 (I)で示されるァ ルコキシシランおよび下記一般式 (II)で示されるハロゲン化シランからなる群から 選ばれる 1種以上のケィ素化合物および Zまたはこれらの加水分解物と、 5〜50 nmの粒径を有するシリカ系微粒子との反応物であるポリシロキサン(PS)を含ま せること力できる。
XnSi(OR)4.n (I)
XnSiX'4.n (II)
(式中、 Xは水素原子、フッ素原子、または炭素数 1〜8のアルキル基、フッ素置換 アルキル基、ァリール基もしくはビニル基を表し、 Rは水素原子、または炭素数 1 〜8のアルキル基、ァリール基もしくはビニル基を表し、 X'はハロゲン原子を表す c また、 nは 0〜3の整数である。)
ここで、シリカ系微粒子は、前記一般式 (I)のアルコキシシランの一種以上を有機 溶媒に混合して、水およびアンモニアの存在下で加水分解'縮重合させることによ つて得ることができ、またその表面に前記のアルコキシシランおよびノまたはハロ ゲン化シランの加水分解物を反応させて得られるポリシロキサン(PS)を含む塗布 液を用いて基板上にシリカ系被膜を形成した場合、比誘電率が 3. 0以下と小さぐ しかも比較的、疎水性に優れた被膜が得られることが知られている。(その詳細に ついては、特開平 9— 31 581 2号公報などを参照のこと。 ) し力、し、このポリシロキサン(PS)の含有量は、前記のシリカ系被膜形成成分 (TAOS +AS)に対する重量混合比(PSZ(TAOS+AS))が Si02換算基準で 1 3以 下、好ましくは 1 4以下であることが望ましい。
ここで、この重量混合比(PSZ(TAOS+AS))が 1 3を超えると、形成されるシリ 力系被膜の膜強度が弱くなリ、 6. 0 GPa以上のヤング弾性率からなる被膜強度 を有するものが得られなくなる。さらに、比誘電率が増加して、 2. 5以下の比誘電 率を有するシリカ系被膜を得ることが難しくなる。その理由は、テトラアルキルオル ソシリケ一ト(TAOS)の量が少なくなつて、テトラアルキルアンモニゥムハイドロォ キサイド (TAAOH)によるテンプレート効果が小さくなるためである。
このようにして得られたシリカ系被膜形成成分、すなわち a)テトラアルキルオル ソシリケ一ト(TAOS)およびアルコキシシラン(AS)の加水分解物であるケィ素化 合物、または b)テトラアルキルオルソシリケ一卜 (TAOS)およびアルコキシシラン (AS)の加水分解物であるケィ素化合物とポリシロキサン (PS)を含む液状組成物 を被膜形成用塗布液として使用する場合には、その塗布液中に該シリカ系被膜 形成成分 (ゲイ素化合物、またはケィ素化合物および PS)を、 Si02換算基準で 2 〜40重量%、好ましくは 5〜20重量%の範囲で含んでいることが望ましい。 ここで、この含有量が 40重量%を超えると、塗布液の経時安定性が悪くなリ、ま た 2重量%未満であると、均一な被膜を形成することが難しくなる。 なお、本発明の塗布液 Aにおいては、上記の方法で得られた前記シリカ系被膜 形成成分を含む液状組成物をそのまま被膜形成用塗布液として使用してもよい 力 該液状組成物中に含まれる有機溶媒成分を、ロータリーエバポレーターなど を用いてプロピレングリコールモノプロピルエーテル(PGP)、プロピレングリコール モノメチルエーテル(PGME)、プロピレングリコールモノェチルエーテルアセテート (PGMEA)などから選ばれた有機溶媒と溶媒置換する工程に供した後、前記シリ 力系被膜形成成分の濃度を上記レベルに調整して使用することが好ましい。この 溶媒置換工程では、前記液状組成物中に含まれる有機溶媒および水分、さらに はアルコキシシラン (AS)などの加水分解で副生されるアルコール類などが分離- 除去されるが、これより得られる液状組成物には、当該工程に供する前に含まれ ていた有機溶媒および水分を該液状組成物の全量に対しそれぞれ 0. 1〜40重 量%、好ましくは 1〜30重量%の範囲で、残存させておくことが望ましい。
これにより、高い膜強度を有し、疎水性に優れた平滑な低誘電率非晶質シリカ 系被膜を形成するための塗布液を得ることができる。 塗布液 B
本発明による第二の低誘電率非晶質シリカ系被膜の形成方法においては、被 膜形成用塗布液として、テトラアルキルオルソシリゲート(TAOS)をテトラアルキル アンモニゥムハイド口オキサイド (TAAOH)の存在下で加水分解または部分加水 分解した後、下記一般式 (I)で示されるアルコキシシラン (AS)またはその加水分解 物もしくは部分加水分解物と混合し、さらに必要に応じてこれらの一部または全部 を加水分解して得られるケィ素化合物を含む液状組成物が使用される。
XnSi(OR)4.n (I)
(式中、 Xは水素原子、フッ素原子、または炭素数 1 ~8のアルキル基、フッ素置換 アルキル基、ァリール基もしくはビニル基を表し、 Rは水素原子、または炭素数 1 〜8のアルキル基、ァリール基もしくはビニル基を表す。また、 nは 0〜3の整数で ある。)
ここで、前記の亍トラアルキルオルソシリケ一ト(TAOS)、アルコキシシラン(AS) およびテトラアルキルアンモニゥムハイド口オキサイド(TAAOH)は、塗布液 Aの調 製用に例示したものと同じものを使用することができる。 また、前記テトラアルキルアンモニゥムハイド口オキサイド (TAAOH)は、塗布液 Aの場合と同様に、市販のテトラアルキルアンモニゥムハイド口オキサイドを陽ィ オン交換樹脂処理工程および陰イオン交換樹脂処理工程に供することにより、そ の中に含まれるナトリウム(Na)、カリウム(K)などのアルカリ金属元素の化合物 および臭素(Br)、塩素(CI)などのハロゲン族元素の化合物からなる不純物を実 質的に除去しておく必要がある。すなわち、この中に含まれるナトリウム(Na)や力 リウム(K)などのアルカリ金属元素の化合物からなる不純物の含有量をそれぞれ 元素基準で 50重量 ppb以下とし、また臭素(Br)や塩素(GI)などのハロゲン元素 の化合物からなる不純物の含有量をそれぞれ元素基準で 1重量 ppm以下とする 必要がある。
この液状組成物(塗布液 B)の調製は、テトラアルキルオルソシリゲート(TAOS) を加水分解または部分加水分解した後、アルコキシシラン (AS)またはその加水 分解物もしくは部分加水分解物を混合し、さらに必要に応じてそれらの一部また は全部を加水分解させる形で行われる。
ここで、前記アルコキシシラン (AS)をあらかじめ加水分解ほたは部分加水分 解)した後に混合する場合には、前記テトラアルキルオルソシリケ一ト (TAOS)の 加水分解(または部分加水分解)の場合と同様に、前記テトラアルキルアンモニゥ ムハイド口オキサイド (TAAOH)の存在下で行うことが望まれる。 この場合、テトラアルキルアンモニゥムハイド口オキサイド (TAAOH)は、塗布液 Aの場合と同様に、各シリカ系被膜形成成分、すなわちテトラアルキルオルソシリ ケ一卜(TAOS)およびアルコキシシラン(AS)に対するモル比(TAAOH/TAOSおよ び TAAOH/AS) )力 それぞれ Si02換算基準で 1 /1 0-7/1 0、好ましくは 1ノ 1 0〜6 1 0の範囲となるように添加することが望ましい。従って、これらを混合し た後のテトラアルキルアンモニゥムハイド口オキサイド (TAAOH)とシリカ系被膜形 成成分(TAOS+AS)のモル比(TAAOH/(TAOS+AS))は、塗布液 Aの場合と同様 に、 Si02換算基準で 1 /Λ 0-7/1 0、好ましくは 1 1 0〜6 1 0の範囲となる。 また、これらの成分を混合する場合、塗布液 Aの場合と同様に、前記テトラアル キルオルソシリゲート(TAOS)と前記アルコキシシラン (AS)のモル比(TA0SZ AS)力 Si02換算基準で 6ノ 4〜2 8、好ましくは 5 5〜3/7の範囲となるよう に混合することが望ましい。 次に、前記液状組成物、すなわち本発明で使用される被膜形成用塗布液(塗布 液 B)の調製方法を述べれば、以下のとおりである。
本発明で使用される被膜形成用塗布液 (塗布液 B)は、
(i)テトラアルキルオルソシリケ一ト(TAOS)を有機溶媒と混合した後、 1 0〜30°C の温度でこれらの成分が十分に混合するまで 1 00〜200rpmの速度で攪拌し、 (ii)次に、攪拌下にある該混合溶液中にテトラアルキルアンモニゥムハイドロォキ サイド (TAAOH)の水溶液を 5~ 20分かけて滴下した後、さらに 1 0〜30°Cの温 度で 30〜90分間、 1 00〜200rpmの速度で攪拌し、
(Hi)次いで、 30〜80°Cの温度に加熱した後、この温度に保ちながら 0. 5〜72時 間、 1 00〜200rpmの速度で撹拌して、前記テトラアルキルオルソシリケ一ト (TAOS)の加水分解物およびノまたは部分加水分解物を含む混合溶液を調製し、 (iv)さらに、上記一般式(I)で示されるアルコキシシラン (AS)またはこれを有機溶 媒と混合したものを、前記 (Hi)で得られた混合溶液中に混合した後、 1 0〜30°C の温度でこれらの成分が十分に混合するまで 1 00〜200rpmの速度で攪拌し、 (V)次に、攪拌下にある該混合溶液中にテトラアルキルアンモニゥムハイドロォキ サイド (TAAOH)の水溶液を 5〜20分かけて滴下した後、さらに 1 0〜30°Cの温 度で 30〜90分間、 1 00〜200rpmの速度で攪拌し、
(νί)次いで、前記 (V)で得られた混合溶液を 30〜80°Cの温度に加熱した後、この 温度に保ちながら 1 0〜30時間、 1 00〜200rpmの速度で撹袢することにより、 前記テトラアルキルオルソシリゲート (TAOS)および前記アルコキシシラン (AS)の 加水分解物であるゲイ素化合物を含む液状組成物として調製することができる。 この場合、上記に示す滴下方法 (すなわち、前記 (ί)で調製された TAOSおよび有 機溶媒からなる混合溶液中に前記 (ii)の TAAOHの水溶液を滴下する方法)に代 えて、前記(i)で調製されたテトラアルキルオルソシリゲート (TAOS)および有機溶 媒からなる混合溶液を、上記と同様な条件下 (温度 1 0〜30°C、攪拌速度 1 00〜 200rpm)で、前記(ii)のテトラアルキルアンモニゥムハイド口オキサイド
(TAAOH)の水溶液中に 30〜90分かけてゆっくりと滴下してもよい。(すなわち、 これらの方法は、本発明で使用される被膜形成用塗布液の第二の調製方法であ る。) さらに、本発明で使用される被膜形成用塗布液 (塗布液 B)は、
(i)テトラアルキルオルソシリケ一 KTA0S)を有機溶媒と混合した後、 1 0〜30°C の温度でこれらの成分が十分に混合するまで 1 00〜200rpmの速度で攪拌し、 (Π)次に、攪拌下にある該混合溶液中にテトラアルキルアンモニゥ厶ハイドロォキ サイド (TAAOH)の水溶液を 5〜20分かけて滴下した後、さらに 1 0〜30°Cの温 度で 30〜90分間、 1 00〜200rpmの速度で攪拌し、
(Πί)次いで、 30〜80°Cの温度に加熱した後、この温度に保ちながら 0. 5〜72時 間、 1 00〜200rpmの速度で撹拌して、前記テトラアルキルオルソシリゲート (TAOS)の加水分解物および Zまたは部分加水分解物を含む混合溶液を調製し, (ίν)さらに、上記一般式 (I)で示されるアルコキシシラン (AS)を有機溶媒と混合し た後、 1 0〜30°Cの温度でこれらの成分が十分に混合するまで 1 00~200rpm の速度で攪拌し、
(V)次に、攪拌下にある該混合溶液中にテトラアルキルアンモニゥムハイドロォキ サイド (TAA0H)の水溶液を 5〜20分かけて滴下した後、さらに 1 0〜30°Cの温 度で 30〜90分間、 1 00〜200rpmの速度で攪拌し、
(vi)次いで、 30〜80°Cの温度に加熱した後、この温度に保ちながら 0. 5〜72時 間、 1 00〜200rpmの速度で撹拌して、前記アルコキシシラン(AS)の加水分解 物および または部分加水分解物を含む混合溶液を調製し、
(vii)次に、前記 ( iii)で得られた混合溶液と前記 (vi)で得られた混合溶液を混合し た後, 1 0〜30°Cの温度でこれらの成分が十分に混合するまで 1 00〜200rpm の速度で攪拌し、
(viH)さらに、必要に応じ前記 (vii)で得られた溶液を 30〜80°Cの温度に加熱した 後、この温度に保ちながら 1 0〜30時間、 1 00〜200rpmの速度で撹拌すること により、
前記テトラアルキルオルソシリケ一ト (TAOS)および前記アルコキシシラン (AS)の 加水分解物であるゲイ素化合物を含む液状組成物として調製することができる。 この場合、上記に示す滴下方法 (すなわち、前記 (i)で調製された TAOSおよび有 機溶媒からなる混合溶液中に前記 (ii)の TAA0Hの水溶液を滴下すると共に、前 記 (ίν)で調製された ASおよび有機溶媒からなる混合溶液中に前記 (V)の
TAA0Hの水溶液を滴下する方法)に代えて、前記(i)で調製されたテトラアルキ ルオルソシリケ一ト (TAOS)および有機溶媒からなる混合溶液を、上記と同様な条 件下(温度 1 0〜30°C、攪拌速度 1 00〜200rpm)で前記(Π)のテトラアルキルァ ンモニゥムハイド口オキサイド(TAA0H)の水溶液中に 30〜90分かけてゆっくり と滴下すると共に、前記(iv)で調製されたアルコキシシラン (AS)および有機溶媒 からなる混合溶液を、上記と同様な条件下(温度 1 0〜30°C、攪拌速度 1 00〜2 OOrpm)で、前記(V)のテトラアルキルアンモニゥムハイド口オキサイド(TAAOH) の水溶液中に 30〜90分かけてゆっくりと滴下してもよい。(すなわち、これらの方 法は、本発明で使用される被膜形成用塗布液の第三の調製方法である。 ) ここで、前記テトラアルキルオルソシリゲート(TAOS)、前記アルコキシシラン (AS)および前記テトラアルキルアンモニゥムハイド口オキサイド (TAAOH)は、そ れぞれ上記のモル比となるように混合または添加して使用される。
前記の有機溶媒としては、塗布液 Aの調製用に例示したものと同じものを使用 することができる。ここで、前記テトラアルキルオルソシリゲート (TAOS)および前 記アルコキシシラン (AS)と混合するそれぞれの有機溶媒は、その種類(たとえば, アルコール類)が同じであれば異なっていてよし、が、できるだけ同一なものである ことが望ましい。
また、この有機溶媒の使用量は、特に限定されるものではないが、塗布液 Aの 場合と同様に、前記の各シリカ系被膜形成成分 (TAOSおよび AS)に対する重量 混合比(有機溶媒 ZCTAOS+AS))が 1 /1〜3Z1、好ましくは 1 Z1〜2. 5/1の 範囲にあることが望ましい。従って、これらを混合した後の有機溶媒とシリカ系被 膜形成成分 (TAOS+AS)の重量混合比(有機溶媒/ (TAOS+AS))は、塗布液 A の場合と同様に、 1 /Λ〜3 1、好ましくは 1 1〜2. 5/ 1の範囲となる。
さらに、前記の混合有機溶媒中に滴下される亍トラアルキルアンモニゥムハイド 口オキサイド (TAAOH)の水溶液は、塗布液 Aの場合と同様に、蒸留水または超 純水中にテトラアルキルアンモニゥムハイド口オキサイド(TAAOH)を 5〜40重 量%、好ましくは 1 0〜30重量%の割合で含んでいることが望ましい。 前記加水分解の反応条件としては、塗布液 Aの場合と同様に、 30〜80°C、好 ましくは 35〜60°Cの温度で、攪 ί半しな力《ら 0. 5〜72時間、好ましくは 1 0〜48 時間かけて行うことが望ましい。この場合、前記の第二調製方法および第三調製 方法において、前記テトラアルキルオルソシリゲート(TAOS)またはアルコキシシ ラン (AS)を単独で加水分解する時間は短くてもよいが、次のステップではこれら が完全に加水分解する程度の時間(たとえば、 1 0〜30時間)をかけて行うことが 望ましい。
このようにして得られた液状組成物中に含まれるケィ素化合物 (TAOSおよび ASの加水分解物)の数平均分子量は、塗布液 Aの場合と同様に、ポリエチレンォ キサイド換算で 500〜1 000000、好ましくは 1 000〜 1 00000の範囲にあるこ とが望ましい。 さらに、この被膜形成用塗布液には、塗布液 Aの場合と同様に、必要に応じて下 記一般式 (I)で示されるアルコキシシランおよび下記一般式 (II)で示されるハロゲン 化シランからなる群から選ばれる 1種以上のケィ素化合物および またはこれら の加水分解物と、 5〜50nmの粒径を有するシリカ系微粒子との反応物であるポ リシロキサン(PS)を含ませることができる。
XnSi(OR)4.n (I)
XnSiX'4.n (ID
(式中、 Xは水素原子、フッ素原子、または炭素数 1〜8のアルキル基、フッ素置換 アルキル基、ァリール基もしくはビニル基を表し、 Rは水素原子、または炭素数 1 〜8のアルキル基、ァリール基もしくはビニル基を表し、 X'はハロゲン原子を表す c また、 nは 0〜3の整数である。)
しかし、このポリシロキサン (PS)の含有量は、塗布液 Aの場合と同様に、前記の シリカ系被膜形成成分(TAOS +AS)に対する重量混合比(PSZ(TAOS+AS))が、 Si02換算基準で 1 3以下、好ましくは 1 4以下であることが望ましい。 このようにして得られたシリカ系被膜形成成分、すなわち a)テトラアルキルオル ソシリゲート(TA0S)およびアルコキシシラン (AS)の加水分解物であるケィ素化 合物、または b)テトラアルキルオルソシリゲート(TA0S)およびアルコキシシラン (AS)の加水分解物であるゲイ素化合物とポリシロキサン (PS)を含む液状組成物 を被膜形成用塗布液として使用する場合には、塗布液 Aの場合と同様に、その塗 布液中に該シリカ系被膜形成成分 (ゲイ素化合物、またはゲイ素化合物および PS)を Si02換算基準で 2〜40重量%、好ましくは 5〜20重量%の範囲で含んで いることが望ましい。
なお、本発明の塗布液 Bにおいては、塗布液 Aの場合と同様に、上記の方法で 得られた前記シリカ系被膜形成成分を含む液状組成物をそのまま被膜形成用塗 布液として使用してもよいが、該液状組成物中に含まれる有機溶媒成分を、ロー タリーエバポレーターなどを用いてプロピレングリコールモノプロピルエーテル (PGP)、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコール モノェチルエーテルアセテート (PGMEA)などから選ばれた有機溶媒と溶媒置換す る工程に供した後、前記シリカ系被膜形成成分の濃度を上記レベルに調整して使 用することが好ましい。この溶媒置換工程では、前記液状組成物中に含まれる有 機溶媒および水分、さらにはアルコキシシラン (AS)などの加水分解で副生される アルコール類などが分離'除去されるが、これより得られる液状組成物には、当該 工程に供する前に含まれていた有機溶媒および水分を該液状組成物の全量に対 しそれぞれ 0. 1〜40重量0 /0、好ましくは 1〜30重量%の範囲で、残存させておく ことが望ましい。
これにより、高い膜強度を有し、疎水性に優れた平滑な低誘電率非晶質シリカ 系被膜を形成するための塗布液を得ることができる。
(b)塗布工程
一般に、このような塗布液の塗布方法としては、スピンコート法、ディップコート法、 ロールコート法、転写法などが採用されているが、本発明においても、このような 従来公知の方法を用いて低誘電率非晶質シリカ系被膜を形成することができる。 この中でも、半導体基板上などに被膜形成用塗布液を塗布する場合には、スピン コート法が好適で、塗布膜厚の均一性や低発麈性などにおいて優れている。従つ て、本発明においては、このスピンコート法による塗布法を採用することが望まし し、が、大口径の半導体基板上などに塗布する場合には、転写法などを採用しても よい。
(c)加熱処理工程 このようにして基板上に塗布された被膜は、 80〜350°Cの温度にて加熱処理さ れる。
ここで、この加熱処理を、 350°Cを超えた温度で行うと、上記の塗布被膜中に含 まれる有機溶媒が急激に蒸発して、被膜中に比較的、大口径の細孔や空隙を形 成してしまうことになるので、その被膜強度が大幅に低下することがある。従って、 この加熱処理は、必要に応じその温度を 80〜350°Cの範囲で段階的に上げて 行うことが望ましい。さらに、この加熱処理を 80°C未満の温度で行うと、上記の塗 布被膜中に含まれる有機溶媒の殆どが蒸発せずにそのまま被膜中に残ってしま うことが多く、この加熱処理の目的を達成することができないばかりでな 形成さ れる被膜の膜厚にムラが生じることがある。
また、この加熱処理は、被膜の膜厚などによっても異なるが、 "!〜 1 0分、好まし くは 2〜5分をかけて行うことが望ましい。 さらに、この加熱処理は、不活性ガスとしての窒素ガス雰囲気下または空気雰 囲気下で行うことができる。しかし、本発明方法においては、空気雰囲気下で行う ことが好ましい。これは、この処理が 350°C以下という比較的、低い温度条件下 で短時間行われるので、たとえ酸素を比較的多量に含んでいる空気雰囲気下で 加熱処理しても半導体基板上に配設された金属配線に対し金属酸化などによる ダメージを与えないからである。また微量の酸素が被膜中に取り込まれる可能性 が高まるので、後段の焼成処理工程 (c)で処理する過程で Si— 0— Si結合の架橋 の進んだシリカ系被膜が生成され、耐吸湿性 (疎水性)と高被膜強度を有する低 誘電率非晶質シリカ系被膜を形成し易くなる。
このようにして加熱処理を施すと、上記の塗布被膜中に含まれる有機溶媒が蒸 発するとともに、該被膜中に含まれる亍トラアルキルアンモニゥムハイド口ォキサ イド (TAAOH)が分解して脱離し、また一方では固形成分であるシリカ系被膜形成 成分の重合が進んで硬化するとともに、加熱の過程で重合体の溶融粘度が低下 して被膜のリフロー性が増大し、得られる被膜の平坦性が向上する結果となる。 なお、この加熱処理は、前記の塗布工程で得られた基板を枚葉式のホットプレー ト上に載置して行うことが好ましい。 (d)焼成処理工程
次いで、前記の加熱処理を施された被膜は、不活性ガスの雰囲気下で、 350〜 450°Cの温度にて焼成処理(キュア)される。前記不活性ガスとしては、窒素ガス を用いることが望ましぐさらに必要に応じて、これに酸素ガスまたは空気を加えて, 少量の酸素(例えば、 500〜1 0000容量 ppm程度の酸素)を含む不活性ガスを 用いてもよい。(国際出願公開 WO 01 /48806公報などに記載。)
前記焼成温度は、上記の被膜形成用塗布液の調製時に使用されるテトラアル キルアンモニゥムハイド口オキサイド (TAAOH)の種類と量、あるいは塗布液中に 含まれるゲイ素化合物 (すなわち、シリカ系被膜形成成分)の性状などによっても 異なるが、耐吸湿性 (疎水性)と高被膜強度を有する低誘電率非晶質シリカ系被 膜を得るためには、 350〜450°Cの温度範囲から選択することが望まれる。ここ で、焼成処理の温度が 350°C未満であると、シリカ系被膜形成成分の前駆体の 架橋が進みにくいので充分な被膜強度を有する被膜が得られず、またこの焼成 処理の温度が 450°Cを越えると、半導体基板を構成するアルミニウム配線や銅 配線などが酸化されたり、あるいは溶融されたりして、当該配線層に致命的な損 傷を与えることが、ある。
また、この焼成処理は、被膜形成用塗布液の種類や被膜の膜厚などによっても 異なるが、 5〜90分、好ましくは 1 0〜60分かけて行うことが望ましい。さらに、こ の焼成処理は、前記加熱工程の場合と同様に、枚葉式のホットプレート上に基板 を載せて行うことが好ましい。
このようにして得られるシリカ系被膜の膜厚は、被膜を形成する半導体基板や その目的によっても異なるが、例えば、半導体装置におけるシリコン基板(シリコ ンウェハー)上では通常、 1 00〜600nmであり、また多層配線の配線層間では 通常、 1 00〜1 000nmである。
[低誘電率非晶質シリカ系被膜]
本発明による低誘電率非晶質シリカ系被膜は、上記の被膜形成方法より得られ る被膜で、 2. 5以下の比誘電率と 6. 0 GPa以上のヤング弾性率 (Young's Modulus)からなる被膜強度を有している。また、上記の被膜形成方法によれば、 被膜中に含まれる細孔の平均細孔径が 3nm以下で、しかも 2nm以下のミクロポ ァ(Micropores)の細孔含有率が 70%以上であるシリカ系被膜を容易に形成する ことができる。これらの物理的特性は、前記の低い比誘電率と高い膜強度を与え る上で重要な要素の一つである。よって、本発明においては、昨今の半導体製造 業界からの要望に合致したシリカ系被膜を提供することができる。
さらに、上記の被膜形成方法によれば、被膜の表面粗さ(Rms)が 1 nm以下であ る平滑な表面を有するシリカ系被膜を容易に形成することができる。(この表面粗 さは、原子間力顕微鏡 AMF で測定された値の二乗平均粗さである。)これにより, 基板上に形成された被膜の表面を平坦化するための煩雑な研磨処理などを施す 必要性が必ずしもなくなるので、上述したゼォライト被膜のもつ欠点を解消するこ とができる。 これに加えて、本発明によるシリカ系被膜は、それ自体が疎水性 (耐吸湿性)に 優れた被膜であるので、たとえ飽和水蒸気を含む空気雰囲気下に放置しても、上 述したゼオライト被膜のように比誘電率の悪化 (すなわち、比誘電率の増加)を招 くことがなし、。従って、前記ゼォライト被膜で必要とされるシラン処理(Silylation)な どをその被膜の表面に施す必要もない。なお、本発明によるシリカ系被膜は、ゼ オライト被膜がもつ MFI結晶構造などの X線回折ピークを有しない非晶質のシリカ 系被膜である。
また、本発明によるシリカ系被膜は、 導体基板上、多層配線構造の配線層間, 素子表面および または PN接合部を設けてなる基板上、あるいは当該基板上に 設けられた多層の配線層間などに形成して使用される。この中でも、本発明によ るシリカ系被膜は、半導体基板上などに形成される層間絶縁膜の用途として用い ることが好適である。 本発明方法によれば、被膜の表面にシラン処理などを施さなくても、比誘電率が 2. 5以下と小さぐしかも 6. 0 GPa以上のヤング弾性率からなる高い被膜強度と 耐吸湿性 (疎水性)を備えた低誘電率非晶質シリカ系被膜を基板上に形成するこ とカできる。さらに、本発明方法によれば、被膜の表面に研磨処理などを施さなく とも、その表面粗さ(Rms)が 1 nm以下である平滑な表面を有する低誘電率非晶 質シリカ系被膜を基板上に形成することができる。
また、本発明方法より得られるシリカ系被膜は、上記の性状のほかに、半導体 基板などの被膜形成面との密着性、耐アルカリ性などの耐薬品性ゃ耐クラック性 に優れ、さらには耐酸素プラズマ性やエッチング加工性などのプロセス適合性に おいても優れた特性を備えている。すなわち、本発明によるシリカ系被膜では、本 願発明者らが過去に出願した発明などで達成されたものに加えて、比誘電率が 2. 5以下と小さぐしかも 6. 0 GPa以上のヤング弾性率からなる高い膜強度と耐吸 湿性 (疎水性)を兼ね備えた効果を奏することができる。 以下、本発明を実施例に基づき詳細に説明するが、本発明はこれらの実施例に 限定されるものではない。
【実施例 1】
テトラプロピルアンモニゥムハイド口オキサイドを 40重量%含む水溶液 1 kg (TPAOH、ライオン(株)製)に、陽イオン交換樹脂の粉末 300g(WK— 40、三菱化 学 (株)製)を添加し、室温条件下、 1 00rpmの速度で 1時間撹拌した後、添加し た陽イオン交換樹脂粉末を濾過して取り除いた。次に、陰イオン交換樹脂の粉末 21 OOg (SAT— 10、三菱化学(株)製)を添加し、室温条件下、 1 OOrpmの速度で 時間攪拌した後、添加した陰イオン交換樹脂粉末を濾過して取り除いた。
得られたテトラプロピルアンモニゥムハイド口オキサイド (TPAOH)の水溶液に超 純水を加えて、 1 0重量%の濃度に調整し、該水溶液中に不純物として含まれる ナトリウム(Na)およびカリウム(K)のアルカリ金属元素の化合物、並びに臭素 (Br)および塩素(CI)のハロゲン族元素の化合物の量をそれぞれ原子吸光法 (AAS法、(株)日立製作所製偏光ゼーマン原子吸光光度計 Z- 5710)およぴィォ ンクロマト法(DIONEX製 2020i)で測定した。
さらに、上記のイオン交換処理を行う前の前記テトラプロピルアンモニゥムハイド 口オキサイドの水溶液 (市販品)に超純水を加えて、 1 0重量%の濃度に調整した 後、同様にその中に含まれる不純物の含有量を測定した。 その結果、イオン交換処理前の水溶液中に含まれていた不純物量が元素基準 でナ卜リウム 50重量 ppm、カリウム 2500重量 ppm、臭素 225Q重量 ppmおよ び塩素 1 3重量 ppmであったのに対し、イオン交換処理後の水溶液中に含む不純 物の含有量は、元素基準でナトリウム 1 0重量 ppb以下(検出限界)、カリウム 1 0 重量 ppb (検出限界)、臭素 1重量 ppm以下および塩素 1重量 ppm以下であった c すなわち、本発明で求められる許容不純物レベルまで、テトラプロピルアンモニゥ ムハイド口オキサイド水溶液 (市販品)の高純度化を行うことができた。
次に、テトラェチルオルソシリケ一 TEOS、多摩化学工業(株)製)、メチルトリメ トキシシラン(MTMS、信越化学工業 (株)製)および 99. 5重量%濃度のエタノール (ETOH、和光純薬 (株)製)を表 1に示す割合で混合し、この混合溶液を 20°Cの温 度に保持し、 1 50rpmの速度で 30分間撹拌した。
これらの混合溶液に、高純度化された前記テトラプロピルアンモニゥムハイド口 オキサイド水溶液(1 0重量%の TPAOHを含む)を表 1に示す割合で 1 0分かけて 滴下し、さらに 20°Cの温度で 200rpmの速度で 1時間撹袢した。その後、 50°C の温度に加熱し、この温度条件下にて 200rpmの速度で攪拌しながら 20時間、 前記のシリカ系被膜形成成分(TEOSおよび MTMS)の加水分解を行った。 次いで、シリカ系被膜形成成分の加水分解物を含む混合溶液中のエタノール (有機溶媒)を、ロータリーエバポレーター (柴田科学 (株)製 R- 1 14)を用いてプロ ピレングリコールモノプロピルエーテル (PGP、日本乳化剤(株)製)と溶媒置換す る工程に供した後、テトラェチルオルソシリゲート(TEOS)とメチルトリメトキシシラ ン (MTMS)の加水分解物からなるゲイ素化合物の濃度を調整して、この化合物を Si02換算基準で" I 2重量%含む液状組成物 (実施例塗布液① -1〜①- 8)を得た。 なお、これらの液状組成物(被膜形成用塗布液)の調製要件については、表 1に 示すとおりである。
このようにして得られた被膜形成用塗布液 5mlを、従来公知のスピンコート法 (東京エレクトロン (株)製 ACT- 8)を用いて 8インチサイズのシリコンウェハー基 板(半導体基板)上に滴下して、 2000rpmの速度で 20秒間、塗布処理を行った c 次に、これらの基板を枚葉式のホットプレート上に載置して、窒素雰囲気下、 1 5 0°Cの温度にて 3分間、加熱処理を行った。この加熱処理工程では、被膜中に含 まれる有機溶媒 (PGP)などが蒸発してくるので、これらを系外に排出した。
さらに、これらの基板を枚葉式のホットプレート上に載せたまま、窒素ガス雰囲 気下、 400°Cの温度にて 30分間、焼成処理を行った。次に、これらの基板(実施 例基板①- 1〜①- 8)を室温近くの温度まで冷却した後、系外に取り出した。 このようにして得られた基板上に形成されたシリカ系被膜の膜厚 (SOPRA製分 光エリプソメータ一 ESVG)は、約 500nmであった。
次いで、基板上に形成されたシリカ系被膜の(i)比誘電率 (水銀プローブ法、周 波数 1 MHz、 Solid State Measurements製 SSM495)、 (ii)酸素プラズマ照射前後 における被膜の水分吸着量変化(TDS法: Thermal Desorption Mass- Spectroscopy.電子科学 (株)製 EMD- 1000)、(iii)被膜強度 (ヤング弾性率 Young's Modulus,ナノインデンテーション法、 MTS Systems Corp製ナノインデンタ — XP)、(iv)表面粗さ(Rms、AFM法)、(v)細孔分布(平均細孔径および 2mri以 下の細孔容積含有率:窒素吸着法)および (vi) X線回折ピーク (結晶質被膜と非 晶質被膜を判定: X線回折法)の測定を行った。(なお、この実施例 1で使用された 上記の処理装置および測定■分析装置については、以下に示す実施例 2〜8およ ぴ比較例 1〜5でも同じものを使用した。)
その結果を表 5に示す。さらに、実施例基板①- 2上に形成されたシリカ系被膜 を X線回折した結果を図 1に示す。
【実施例 2】
テトラメチルオルソシリケ一ト 60. 8g (TM0S、多摩化学工業(株)製)、メチルトリ メトキシシラン 1 27. 3g (MTMS、信越化学工業 (株)製)および 99. 5重量%濃度 のエタノール 51 3. 6g (ET0H、和光純薬 (株)製)を混合し、この混合溶液を 20°C の温度に保持し、 1 50rpmの速度で 30分間撹拌した。
この混合溶液に、高純度化された前記テトラプロピルアンモニゥムハイドロォキ サイドの水溶液 298. 3g( 1 0重量%の TPA0Hを含む)を 1 0分力、けて滴下し、さ らに 20°Cの温度で 1 50rpmの速度で 1時間、撹拌した。その後、 50°Cの温度に 加熱し、この温度条件下にて 200rpmの速度で攪拌しながら 20時間、前記のシ リカ系被膜形成成分(TMOSおよび MTMS)の加水分解を行った。
次に、実施例 1の場合と同様に、シリカ系被膜形成成分の加水分解物を含む混 合溶液中のエタノール(有機溶媒)を、ロータリーエバポレーターを用いてプロピレ ングリコールモノプロピルエーテル(PGP)と溶媒置換する工程に供した後、テトラ メチルオルソシリゲート(TMOS)とメチルトリメトキシシラン(MTMS)の加水分解物 からなるゲイ素化合物の濃度を調整して、この化合物を Si02換算基準で 1 2重 量%含む液状組成物 (実施例塗布液②)を得た。なお、この液状組成物 (被膜形 成用塗布液)の調製要件については、表 1に示すとおりである。 このようにして得られた被膜形成用塗布液 5mlを、実施例 1と同じ条件下で、ス ピンコート法を用いて 8インチサイズのシリコンゥヱハー基板(半導体基板)上に塗 布した。
次いで、実施例 1と同じ条件下で、この基板を加熱処理工程および焼成処理ェ 程に供した。さらに、この基板 (実施例基板②)を室温近くの温度まで冷却した後、 系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次に、実施例 1の場合と同様に、基板上に形成されたシリカ系被膜の比誘電率, 酸素プラズマ照射前後における被膜の水分吸着量変化、被膜強度、表面粗さ、 細孔分布(平均細孔径および 2nm以下の細孔容積含有率)および X線回折ピー ク (結晶質被膜と非晶質被膜を判定)の測定を行った。
その結果を表 5に示す。
【実施例 3】
テトラエチルオルソシリケ一ト 85. 7g(TEOS、多摩化学工業(株)製)、メチルトリ エトキシシラン 1 66. 2g(MTES、信越化学工業 (株)製)および 99. 5重量%濃度 のエタノール 449. 8g (ETOH、和光純薬 (株)製)を混合し、この混合溶液を 20°C の温度に保持し、 1 50rpmの速度で 30分間撹拌した。
この混合溶液に、高純度化された前記テトラプロピルアンモニゥムハイドロォキ サイドの水溶液 298. 3§ ( 1 0重量%の TPAOHを含む)を 1 0分かけて滴下し、さ らに 20°Cの温度で 1 50rpmの速度で 1時間、撹拌した。その後、 50°Cの温度に 加熱し、この温度条件下にて 200rpmの速度で攪拌しながら 20時間、前記のシ リカ系被膜形成成分(TEOSおよび MTES)の加水分解を行った。
次に、実施例 1の場合と同様に、シリカ系被膜形成成分の加水分解物を含む混 合溶液中のエタノール(有機溶媒)を、ロータリーエバポレーターを用いてプロピレ ングリコールモノプロピルエーテル (PGP)と溶媒置換する工程に供した後、テトラ メチルオルソシリケ一卜 (TEOS)とメチルトリエトキシシラン(MTES)の加水分解物 からなるゲイ素化合物の濃度を調整して、この化合物を Si02換算基準で 1 2重 量%含む液状組成物 (実施例塗布液③)を得た。なお、この液状組成物 (被膜形 成用塗布液)の調製要件については、表 1に示すとおりである。 このようにして得られた被膜形成用塗布液 5mlを、実施例 1と同じ条件下で、ス ピンコート法を用いて 8インチサイズのシリコンゥ: Lハー基板(半導体基板)上に塗 布した。
次いで、実施例 1と同じ条件下で、この基板を加熱処理工程および焼成処理ェ 程に供した。さらに、この基板 (実施例基板③)を室温近くの温度まで冷却した後、 系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次に、実施例 1の場合と同様に、基板上に形成されたシリカ系被膜の比誘電率, 酸素プラズマ照射前後における被膜の水分吸着量変化、被膜強度、表面粗さ、 細孔分布(平均細孔径および 2nm以下の細孔容積含有率)および X線回折ピ一 ク (結晶質被膜と非晶質被膜を判定)の測定を行った。その結果を表 5に示す。
【実施例 4】
テトラプチルアンモニゥムハイド口オキサイドを 40重量%含む水溶液 1 kg (TBAOH、ライオン (株)製)に、陽イオン交換樹脂の粉末 300g(WK— 40、三菱化 学 (株)製)を添加し、室温条件下、 200rpmの速度で 1時間、撹拌した後、添加し た陽イオン交換樹脂粉末を濾過して取り除いた。次に、陰イオン交換樹脂の粉末 21 OOg(SAT— 10、三菱化学(株)製)を添加し、室温条件下、 200rpmの速度で 1時間攪袢した後、添加した陰イオン交換樹脂粉末を濾過して取り除いた。
実施例 1に示すテトラプロピルルアンモニゥ厶ハイド口オキサイド(TPAOH)の場 合と同様に、この水溶液に超純水を加えて 1 0重量%の濃度に調整し、該水溶液 中に不純物として含まれるナトリウム(Na)およびカリウム(K)のアルカリ金属元素 の化合物、並びに臭素(Br)および塩素(CI)のハロゲン族元素の化合物の量をそ れぞれ原子吸光法 (AAS法)およびイオンクロマト法で測定した。
さらに、上記のイオン交換処理を行う前の前記テトラプチルアンモニゥムハイド 口オキサイドの水溶液(市販品)に超純水を加えて、 1 0重量%の濃度に調整した 後、同様にその中に含まれる不純物の含有量を測定した。 その結果、イオン交換処理前の水溶液中に含まれていた不純物量が元素基準 でナ卜リウム 50重量 ppm、カリウム 3000重量 ppm、臭素 2500重量 ppmおよ ぴ塩素 1 4重量 ppmであったのに対し、イオン交換処理後の水溶液中に含む不純 物の含有量は、元素基準でナトリウム 1 0重量 ppb以下(検出限界)、カリウム 1 0 重量 ppb (検出限界)、臭素 1重量 ppm以下および塩素 1重量 ppm以下であった c 次に、テトラェチルオルソシリゲート 85. 7g(TEOS、多摩化学工業(株)製)、メ チルトリメトキシシラン 1 27. 3g (MTMS、信越化学工業 (株)製)および 99. 5重 量%濃度のエタノール 406. 4g (ET0H、和光純薬(株)製)を混合し、この混合溶 液を 20°Cの温度に保持し、 1 50rPmの速度で 30分間撹拌した。
これらの混合溶液に、高純度化された前記テトラプチルアンモニゥムハイド口才 キサイド水溶液 380. 6§ ( 1 0重量%の TBAOHを含む)を 1 0分かけて滴下し、さ らに 20°Cの温度で 1 50rpmの速度で 1時間撹拌した。その後、 50°Cの温度に加 熱し、この温度条件下にて 200rpmの速度で攪拌しながら 20時間、前記のシリカ 系被膜形成成分(TEOSおよび MTMS)の加水分解を行った。
次に、実施例 1の場合と同様に、シリカ系被膜形成成分の加水分解物を含む混 合溶液中のエタノール(有機溶媒)を、ロータリーエバポレーターを用いてプロピレ ングリコールモノプロピルエーテル (PGP)と溶媒置換する工程に供した後、テトラ メチルオルソシリゲート(TEOS)とメチルトリメトキシシラン(MTMS)の加水分解物 からなるゲイ素化合物の濃度を調整して、この化合物を Si02換算基準で 1 2重 量%含む液状組成物(実施例塗布液④)を得た。なお、この液状組成物 (被膜形 成用塗布液)の調製要件については、表 1に示すとおりである。 このようにして得られた被膜形成用塗布液 5mlを、実施例 1と同じ条件下で、ス ピンコート法を用いて 8インチサイズのシリコンウェハー基板(半導体基板)上に塗 布した。
次いで、実施例 1と同じ条件下で、この基板を加熱処理工程および焼成処理ェ 程に供した。さらに、この基板 (実施例基板④)を室温近くの温度まで冷却した後、 系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次に、実施例 1の場合と同様に、基板上に形成されたシリカ系被膜の比誘電率, 酸素プラズマ照射前後における被膜の水分吸着量変化、被膜強度、表面粗さ、 細孔分布(平均細孔径および 2nm以下の細孔容積含有率)および X線回折ピー ク (結晶質被膜と非晶質被膜を判定)の測定を行った。その結果を表 5に示す
【実施例 5】
テトラェチルオルソシリケ一ト 85. 7g (TEOS 多摩化学工業(株)製)および 99. 5重量%濃度のエタノール 1 46. 6g (ETOH、和光純薬 (株)製)を混合し、この混 合溶液を 20°Cの温度に保持し、 1 50rpmの速度で 30分間撹拌した。次に、高純 度化された前記テトラプロピルアンモニゥ厶ハイド口オキサイドの水溶液 89. 5g ( 1 0重量%の TPAOHを含む)を 1 0分かけて滴下し、さらに 20°Cの温度にて 1 5 Orpmの速度で 2時間撹拌した。その後、 50°Cの温度に加熱し、この温度条件下 にて 200rpmの速度で攪拌しながら 40時間、テトラェチルオルソシリケ一卜の加 水分解を行った。 次いで、この混合溶液に、メチルトリメトキシシラン 1 27. 3g(MTMS、信越化学 工業(株)製)と 99. 5重量1 ½濃度のエタノール 342. 1 g (ETOH、和光純薬(株) 製)を混合した溶液を混合し、 20°Cの温度に保持しながら、 1 5 Orpmの速度で 1 0分間、撹拌した。次に、高純度化された前記テトラプロピルアンモニゥムハイド口 オキサイドの水溶液 208. 8 1 0重量%の TPAOHを含む)を 1 0分かけて滴下 し、さらに 20°Cの温度で 1 50rpmの速度で 1時間、撹拌した。その後、 50°Cの温 度に加熱し、この温度条件下にて 200rpmの速度で攪拌しながら 25時間、メチ ルトリメトキシシランおよびその他の被加水分解成分 (テトラェチルオルソシリケー 卜の部分加水分解物など)の加水分解を行った。
次に、実施例 1の場合と同様に、シリカ系被膜形成成分の加水分解物を含む混 合溶液中のエタノールを、ロータリ一エバポレーターを用いてプロピレングリコール モノプロピルエーテル(PGP)と溶媒置換する工程に供した後、テトラメチルオルソ シリケ一 TEOS)とメチルトリメトキシシラン(MTMS)の加水分解物からなるケィ 素化合物の濃度を調整して、この化合物を Si02換算基準で 1 2重量%含む液状 組成物 (実施例塗布液⑤)を得た。なお、この液状組成物 (被膜形成用塗布液)の 調製要件ついては、表 1に示すとおりである。 このようにして得られた被膜形成用塗布液 5mlを、実施例 1と同じ条件下で、ス ピンコート法を用いて 8インチサイズのシリコンゥ Iハ一基板(半導体基板)上に塗 布した。
次いで、実施例 1と同じ条件下で、この基板を加熱処理工程および焼成処理ェ 程に供した。さらに、この基板 (実施例基板⑤)を室温近くの温度まで冷却した後、 系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次に、実施例 1の場合と同様に、基板上に形成されたシリカ系被膜の比誘電率、 酸素プラズマ照射前後における被膜の水分吸着量変化、被膜強度、表面粗さ、 細孔分布(平均細孔径および 2nm以下の細孔容積含有率)および X線回折ピー ク (結晶質被膜或いは非晶質被膜を判定)の測定を行った。その結果を表 5に示 す。
【実施例 6】
テトラェチルオルソシリケ一ト 85.フ g (TEOS、多摩化学工業 (株)製)および 99. 5重量%濃度のエタノール 1 46. 6g(ETOH、和光純薬(株)製)を混合し、この混 合溶液を 20°Cの温度に保持し、 1 50rPmの速度で 30分間撹拌した。
次に、高純度化された前記テトラプロピルアンモニゥムハイド口オキサイドの水 ί容液 89. 5g ( 1 0重量0 /0の TPAOHを含む)を 1 0分力ヽけてミ商下し、さらに 20°Cの 温度にて 1 50rpmの速度で 5時間撹拌した。その後、 50°Cの温度に加熱し、この 温度条件下にて 200rpmの速度で攪拌しながら 40時間、テトラェチルオルソシリ ゲートの部分加水分解を行った。
さらに、メチルトリメトキシシラン 1 27· 3g (MTMS、信越化学工業 (株)製)と 99. 5重量%濃度のエタノール 342, 1 g (ETOH、和光純薬 (株)製)を混合し、この混 合溶液を 20°Cの温度に保持し、 1 50rpmの速度で 30分間撹拌した。次に、高純 度化された前記テトラプロピルアンモニゥムハイド口オキサイドの水溶液 208. 8g ( 1 0重量%の TPAOHを含む)を 1 0分かけて滴下し、さらに 20°Cの温度で 1 50r pmの速度で 2時間撹袢した。その後、 50°Cの温度に加熱し、この温度条件下に て 200rpmの速度で攪拌しながら 5時間、メチルトリメトキシシラン(MTMS)の部 分加水分解を行った。
次いで、これらの混合溶液を混合し、 50°Cの温度に加熱し、この温度条件下に て 200rPmの速度で攪拌しながら 20時間、前記のシリカ系被膜形成成分 (TEOS および MTMSの部分加水分解物)の加水分解を行った。 次に、実施例 1の場合と同様に、シリカ系被膜形成成分の加水分解物を含む混 合溶液中のエタノールを、ロータリ一エバポレーターを用いてプロピレングリコール モノプロピルエーテル(PGP)と溶媒置換する工程に供した後、テトラメチルオルソ シリケ一KTEOS)とメチルトリメトキシシラン(MTMS)の加水分解物からなるケィ 素化合物の濃度を調整して、この化合物を SiO,換算基準で 1 2重量%含む液状 組成物(実施例塗布液⑥)を得た。なお、この液状組成物 (被膜形成用塗布液)の 調製要件については、表 1に示すとおりである。
このようにして得られた被膜形成用塗布液 5mlを、実施例 1と同じ条件下で、ス ピンコート法を用いて 8インチサイズのシリコンゥ: ハー基板(半導体基板)上に塗 布した。
次いで、実施例 1と同じ条件下で、この基板を加熱処理工程および焼成処理ェ 程に供した。さらに、この基板(実施例基板⑥)を室温近くの温度まで冷却した後、 系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次に、実施例 1の場合と同様に、基板上に形成されたシリカ系被膜の比誘電率, 酸素プラズマ照射前後における被膜の水分吸着量変化、被膜強度、表面粗さ、 細孔分布(平均細孔径および 2nm以下の細子 L容積含有率)および X線回折ピー ク (結晶質被膜と非晶質被膜を判定)の測定を行った。その結果を表 5に示す。
【実施例 7】
テトラェチルオルソシリゲート 77. 1 g(TEOS、多摩化学工業(株)製)、メチルトリ メトキシシラン 1 1 4. 5g(MTMS、信越化学工業(株)製)、ポリシロキサン 80. Og (PS、 Si02換算で 1 0重量%濃度品、特開平 9 _31 581 2号公報記載の方法で 調製)および 99. 5重量%濃度のエタノール 430. 1 g(ETOH、和光純薬(株)製) を混合し、この混合溶液を 20°Cの温度に保持し、 1 50rpmの速度で 30分間撹拌 した。
この混合溶液に、高純度化された前記テトラプロピルアンモニゥムハイドロォキ サイドの水溶液 298. 3g ( 1 0重量%の TPAOHを含む)を 1 0分力、けて滴下し、さ らに 20°Cの温度で 1 50rpmの速度で 1時間撹拌した。その後、 50°Cの温度に加 熱し、この温度条件下にて 200rpmの速度で攪拌しながら 20時間、前記のシリカ 系被膜形成成分 (TEOSおよび MTMS)の加水分解を行った。
次に、実施例 1の場合と同様に、シリカ系被膜形成成分の加水分解物を含む混 合溶液中のエタノールを、口一タリーエバポレーターを用いてプロピレングリコール モノプロピルエーテル(PGP)と溶媒置換する工程に供した後、テトラメチルオルソ シリゲート(TEOS)とメチルトリメトキシシラン(MTMS)の加水分解物からなるケィ 素化合物の濃度を調整して、この化合物を Si02換算基準で 1 2重量%含む液状 組成物 (実施例塗布液⑦)を得た。なお、この液状組成物 (被膜形成用塗布液)の 調製要件については、表 1に示すとおりである。 このようにして得られた被膜形成用塗布液 5mlを、実施例 1と同じ条件下で、ス ピンコート法を用いて 8インチサイズのシリコンウェハー基板(半導体基板)上に塗 布した。
次いで、実施例 1と同じ条件下で、この基板を加熱処理工程および焼成処理ェ 程に供した。さらに、この基板 (実施例基板⑦)を室温近くの温度まで冷却した後、 系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次に、実施例 1の場合と同様に、基板上に形成されたシリカ系被膜の比誘電率, 酸素プラズマ照射前後における被膜の水分吸着量変化、被膜強度、表面粗さ、 細孔分布(平均細孔径および 2nm以下の細孔容積含有率)および X線回折ピー ク (結晶質被膜と非晶質被膜を判定)の測定を行った。その結果を表 5に示す。
【実施例 8】
実施例 1で調製された被膜形成用塗布液 (実施例塗布液①- 2) 5mlを、実施例 1と同じ条件下で、スピンコート法を用いて 8インチサイズのシリコンウェハ一基板 (半導体基板)上に塗布した。
次に、これらの基板を枚葉式のホットプレート上に載置して、空気雰囲気下、表 2 に示す温度条件下にて 3分間、加熱処理を施した。この加熱処理工程では、被膜 中に含まれる有機溶媒 (PGP)などが蒸発してくるので、これらを系外に排出した。 さらに、これらの基板を枚葉式のホットプレート上に載せたまま、その処理環境 を空気雰囲気下から窒素ガス雰囲気下に変更して、表 2に示す温度条件下にて 30分間、焼成処理を施した。次に、これらの基板(実施例基板⑧ -1〜⑧ -6)を室 温近くの温度まで冷却した後、系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次いで、基板上に形成されたシリカ系被膜の比誘電率、酸素プラズマ照射前後 における被膜の水分吸着量変化、被膜強度、およびその他事項 (被膜の外観ま たは半導体基板上への損傷の有無)の測定を行った。その結果を表 6に示す。
【比較例 1】
テトラェチルオルソシリケ一ト (TEOS、多摩化学工業(株)製)、メチルトリメトキシ シラン(MTMS、信越化学工業(株)製)および 99. 5重量 <½濃度のエタノール (ETOH、和光純薬 (株)製)を表 3に示す割合で混合し、この混合溶液を 20°Cの温 度に保持し、 1 50rpmの速度で 30分間撹拌した。
これらの混合溶液に、高純度化された前記テトラプロピルアンモニゥムハイド口 オキサイドの水溶液(1 0重量%の TPAOHを含む)を表 1に示す割合で 1 0分かけ て滴下し、さらに 20°Cの温度で 250rpmの速度で 1時間撹拌した。その後、 50°C の温度に加熱し、この温度条件下にて 250rpmの速度で攪拌しながら 20時間、 前記のシリカ系被膜形成成分(TEOSおよび MTMS)の加水分解を行った。
次に、実施例 1の場合と同様に、シリカ系被膜形成成分の加水分解物を含む混 合溶液中のエタノール(有機溶媒)を、ロータリーエバポレーターを用いてプロピレ ングリコールモノプロピルエーテル (PGP)と溶媒置換する工程に供した後、テトラ メチルオルソシリゲート(TEOS)とメチルトリメトキシシラン(MTMS)の加水分解物 からなるケィ素化合物の濃度に調整して、この化合物を Si02換算基準で 1 2重 量%含む液状組成物(比較例塗布液① -1〜① -4)を得た。なお、この液状組成物 (被膜形成用塗布液)の調製要件については、表 3に示すとおりである。 このようにして得られた被膜形成用塗布液 5mlを、実施例 1と同じ条件下で、ス ピンコート法を用いて 8インチサイズのシリコンウェハ一基板 (半導体基板)上に塗 布した。 次いで、実施例 1と同じ条件下で、これらの基板を加熱処理工程および焼成処 理工程に供した。さらに、これらの基板(比較例基板① -1〜①- 4)を室温近くの温 度まで冷却した後、系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次に、実施例 1の場合と同様に、基板上に形成されたシリカ系被膜の比誘電率 (水分吸着があるときは、空気中に 1日放置後の比誘電率も測定)、酸素プラズマ 照射前後における被膜の水分吸着量変化、被膜強度、表面粗さ、細孔分布 (平均 細孔径および 2nm以下の細孔容積含有率)および X線回折ピーク (結晶質被膜 と非晶質被膜を判定)の測定を行った。その結果を表 5に示す。
【比較例 2】
テトラェチルオルソシリゲート 85. 7g (TE0S、多摩化学工業(株)製)、メチルトリ メトキシシラン 1 27. 3g(MTMS、信越化学工業 (株)製)および 99. 5重量%濃度 のエタノール 488. 7g (ETOH、和光純薬 (株)製)を混合し、この混合溶液を 20°C の温度に保持し、 1 50rPmの速度で 30分間撹拌した。
これらの混合溶液に、高純度化されていない不純物含有のテトラプロピルアンモ ニゥムハイド口オキサイドの水溶液 298. 3§( 1 0重量%の TPAOHを含む)を 1 0 分かけて滴下し、さらに 20°Cの温度で 1 50rpmの速度で 1時間撹拌した。その後, 50°Cの温度に加熱し、この温度条件下にて 200rpmの速度で攪拌しながら 20 時間、前記のシリカ系被膜形成成分(TEOSおよび MTMS)の加水分解を行った。 次に、実施例 1の場合と同様に、シリカ系被膜形成成分の加水分解物を含む混 合溶液中のエタノール(有機溶媒)を、ロータリーエバポレーターを用いてプロピレ ングリコールモノプロピルエーテル(PGP)と溶媒置換する工程に供した後、亍トラ メチルオルソシリケ一KTEOS)とメチルトリメトキシシラン(MTMS)の加水分解物 からなるケィ素化合物の濃度を調整して、この化合物を Si02換算基準で 1 2重 量%含む液状組成物(比較例塗布液②)を得た。なお、この液状組成物 (被膜形 成用塗布液)の調製要件については、表 3に示すとおりである。 このようにして得られた被膜形成用塗布液 5mlを、実施例 1と同じ条件下で、ス ピンコート法を用いて 8インチサイズのシリコンゥ Iハー基板(半導体基板)上に塗 布した。
次いで、実施例 1と同じ条件下で、この基板を加熱処理工程および焼成処理ェ 程に供した。さらに、この基板(比較例基板②)を室温近くの温度まで冷却した後、 系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次に、実施例 1の場合と同様に、基板上に形成されたシリカ系被膜の比誘電率 (水分吸着があるときは、空気中に 1日放置後の比誘電率も測定)、酸素プラズマ 照射前後における被膜の水分吸着量変化、被膜強度、表面粗さ、細孔分布 (平均 細孔径および 2nm以下の細孔容積含有率)および X線回折ピーク (結晶質被膜 と非晶質被膜を判定)の測定を行った。その結果を表 5に示す。
【比較例 3】
上記の公知例(非特許文献 1、特許文献 6など)に記載されたものと同様な方法 を用いて、テトラェチルオルソシリゲート 285. 7g (TE0S、多摩化学工業(株)製) および 99. 5重量%濃度のエタノール 574. 3g(ETOH、和光純薬(株)製)を混合 し、この混合溶液を 20°Cの温度に保持し、 1 50rpmの速度で 30分間撹拌した。 この混合溶液に、高純度化されていない不純物含有のテトラプロピルアンモニゥ 厶ハイド口オキサイドの水溶液 1 40· 0g(21 . 3重量%の TPAOHを含む)を 2時 間かけて滴下し、さらに 20°Cの温度にて 1 50rpmの速度で 3日間撹拌した。その 後、 80°Cの温度に加熱し、この温度条件下にて 200rpmの速度で攪拌しながら 3日間、テトラエチルオルソシリケ一 TEOS)の加水分解を行った。
次に、白濁した混合溶液が得られたので、これを 2000rpmの速度で 20分間、 遠心分離器にかけて、粗大粒子を除去した。
次いで、実施例 1の場合と同様に、この混合溶液に含まれるエタノール(有機溶 媒)を、ロータリーエバポレーターを用いてプロピレングリコールモノプロピルエー テル(PGP)と溶媒置換する工程に供すると共に、テトラメチルオルソシリゲート (TEOS)の加水分解物からなるゲイ素化合物の濃度を調整して、この化合物を Si02換算基準で 1 2重量%含む液状組成物(比較例塗布液③)を得た。なお、この 液状組成物 (被膜形成用塗布液)の調製要件については、表 3に示すとおりであ る。
このようにして得られた被膜形成用塗布液 5mlを、実施例 1と同じ条件下で、ス ピンコート法を用いて 8インチサイズのシリコンウェハ一基板 (半導体基板)上に塗 布した。
次いで、実施例 1と同じ条件下で、この基板を加熱処理工程および焼成処理ェ 程に供した。さらに、この基板(比較例基板③)を室温近くの温度まで冷却した後、 系外に取り出した。 このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次に、実施例 1の場合と同様に、基板上に形成されたシリカ系被膜の比誘電率 (水分吸着があるときは、空気中に 1日放置後の比誘電率も測定)、酸素プラズマ 照射前後における被膜の水分吸着量変化、被膜強度、表面粗さ、細孔分布 (平均 細孔径および 2nm以下の細孔容積含有率)および X線回折ピーク (結晶質被膜 と非晶質被膜を判定)の測定を行った。
その結果を表 5に示す。さらに、この基板上に形成されたシリカ系被膜を X線回 折した結果を図 2に示す。
【比較例 4】
比較例 3の場合と同様に、テトラエチルオルソシリケ一ト 285. 7g (TEOS、多摩 化学工業(株)製)および 99. 5重量%濃度のエタノール 574. 3g (ETOH、禾ロ光純 薬(株)製)を混合し、この混合溶液を 20°Cの温度に保持し、 1 50rpmの速度で 3 0分間、撹拌した。
この混合溶液に、高純度化された前記亍トラプロピルアンモニゥムハイドロォキ サイドの水溶液 1 40. 0g(21 . 3重量%の TPAOHを含む)を 2時間かけて滴下し、 さらに 20°Cの温度にて 1 50rpmの速度で 3日間撹拌した。その後、 80°Cの温度 に加熱し、この温度条件下にて 200rpmの速度で攪拌しながら 3日間、テトラエチ ルオルソシリゲート(TEOS)の加水分解を行った。し力、し、比較例 3の場合とは異 なり、白濁物は得られなかった。
次いで、実施例 1の場合と同様に、この混合溶液に含まれるエタノール(有機溶 媒)を、ロータリーエバポレーターを用いてプロピレングリコールモノプロピルエー テル(PGP)と溶媒置換する工程に供すると共に、テトラメチルオルソシリゲート (TEOS)の加水分解物からなるゲイ素化合物の濃度を調整して、この化合物を Si02換算基準で 1 2重量%含む液状組成物 (比較例塗布液④)を得た。なお、この 液状組成物 (被膜形成用塗布液)の調製要件については、表 3に示すとおりであ る。 このようにして得られた被膜形成用塗布液 5mlを、実施例 1と同じ条件下で、ス ピンコート法を用いて 8インチサイズのシリコンゥ: Lハー基板(半導体基板)上に塗 布した。
次いで、実施例 1と同じ条件下で、これらの基板を加熱処理工程および焼成処 理工程に供した。さらに、この基板 (比較例基板④)を室温近くの温度まで冷却し た後、系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次に、実施例 1の場合と同様に、基板上に形成されたシリカ系被膜の比誘電率 (水分吸着があるときは、空気中に 1日放置後の比誘電率も測定)、酸素プラズマ 照射前後における被膜の水分吸着量変化、被膜強度、細孔分布 (平均細孔径ぉ よび 2nm以下の細孔容積含有率)および X線回折ピーク (結晶質被膜と非晶質 被膜を判定)の測定を行った。その結果を表 5に示す。
【比較例 5】
実施例 1で調製された被膜形成用塗布液 (実施例塗布液②) 5mlを、実施例 1と 同じ条件下で、スピンコート法を用いて 8インチサイズのシリコンウェハー基板(半 導体基板)上に塗布した。 次に、これらの基板を枚葉式のホットプレート上に載置して、空気雰囲気下、表 4 に示す温度条件下にて 3分間、加熱処理を施した。この加熱処理工程では、被膜 中に含まれる有機溶媒 (PGP)などが蒸発してくるので、これらを系外に排出した。 さらに、これらの基板を枚葉式のホットプレート上に載せたまま、その処理環境 を空気雰囲気下から窒素ガス雰囲気下に変更して、表 4に示す温度条件下にて 30分間、焼成処理を施した。次に、これらの基板 (比較例基板⑤ -1〜⑤ -6)を室 温近くの温度まで冷却した後、系外に取り出した。
このようにして得られた基板上に形成されたシリカ系被膜の膜厚は、約 500nm であった。
次いで、基板上に形成されたシリカ系被膜の比誘電率、酸素プラズマ照射前後 における被膜の水分吸着量変化、被膜強度およびその他事項 (被膜の外観また は半導体基板上への損傷の有無)の測定を行った。その結果を表 6に示す。 表 5に示す測定結果からも明らかなように、本発明方法による被膜形成用塗布 液を用いて基板上に被膜を形成すると、 2. 5以下の比誘電率と 6. 0 GPa以上の ヤング弾性率からなる被膜強度を有する低誘電率非晶質シリカ系被膜を形成で きることが分かった。
また、このシリカ系被膜は、それ自体が優れた疎水性 (耐吸湿性)を有している ので、前記の公知例(非特許文献 1、特許文献 6など)で推奨されるシラン処理な どの表面処理を施さなくても、長期にわたし J疎水性を保つことができ、結果として 比誘電率の低下を招くこともなし、。これに加えて、非晶質であるこのシリカ系被膜 は、ゼォライト被膜などの結晶質被膜に比べて、疎水性に優れているばかりでなぐ その表面が 1 nm以下と極めて平滑であることが判明した。また、このシリカ系被 膜中に含まれる平均細孔径は 3nm以下で、しかも 2nm以下のミクロポアの細孔 容積含有率はフ 0%以上であった。 さらに、本発明による被膜形成用塗布液を調製する際には、その調製工程で使 用されるテ卜ラアルキルアンモニゥムハイド口オキサイド (TAAOH)中に含まれるナ トリウム(Na)、カリウム(K)などのアルカリ金属元素の化合物および臭素(Br)、塩 素(CI)などのハロゲン族元素の化合物からなる不純物をあらかじめ上記のレべ ルまで除去しておく必要があることが分かった。
また、この被膜形成用塗布液の調製に際しては、その調製工程で使用される
TEOSなどのテトラアルキルオルソシリゲート(TAOS)と MTMSなどのアルコキシ シラン(AS)のモル比(TAOSZAS)を Si02換算基準で 6Z4~2Z8の範囲とし、 しかもテトラアルキルアンモニゥムハイド口オキサイド (TAAOH)とシリカ系被膜形 成成分(TAOS+AS)のモル比(TAAOH/CTAOS+AS))を Si02換算基準で 1 1 0 〜7Z1 0の範囲に保たないと、必ずしも所望するシリカ系被膜が得られないこと が分かった。さらに、ポリシロキサン (PS)を上記の混合割合で含んでいても、被 膜の比誘電率や被膜強度に悪影響を及ぼさないことが判明した。 これに対し、比較例に示す被膜形成用塗布液を用いて基板上に被膜を形成す ると、上記に示す性能の一部は得られるものの、その全ての性能または効果を発 揮できないことが判明した。すなわち、昨今の半導体製造業界からの要望に合致 するものであるとは言えないものである。
比較例基板③および④ (MTMSなどのアルコキシシラン(AS)を含ませないで調 製された被膜形成用塗布液を使用)では、 6. 0 GPa以上のヤング弾性率を有す る被膜は得られるものの、その表面がかなり粗く、しかも該基板を空気中に 1日放 置すると、比誘電率が 2. 3力、ら 3. 0まで急激に増加することが判明した。よって、 これらの基板を使用するためには、上述したように、被膜表面の研磨処理とシラン 処理(Silylation)が必要であると言えよう。また、比較例基板② (高純度化されてい ない不純物含有の亍トラプロピルアンモニゥムハイド口オキサイド (TPAOH)を用 いて調製された被膜形成用塗布液を使用)では、所望の比誘電率と被膜強度を 有するシリカ系被膜は得られるものの、その被膜の一部が結晶質化しており、 1 n mを超える表面粗さ(Rms)が観測された。
さらに、比較例基板①- 1およぴ①- 3では、所望の被膜強度が得られず、また比 較例基板①- 2およぴ① -4では、所望の比誘電率が得られないことが分かった。 これに加えて、比較例基板①- 2では、水分の吸着量増加が見られ、この基板を 空気中に 1日放置すると、比誘電率が悪化する傾向を示した。 次に、表 6に示す測定結果からも明らかなように、本発明方法における加熱処 理工程および焼成処理工程の方法を用いて基板上に被膜を形成すると、比誘電 率が 2. 5以下と小さく、しかも 6. 0 GPa以上のヤング弾性率からなる高い被膜 強度を有する低誘電率非晶質シリカ系被膜が得られるばかりでな《基板の被膜 形成面との密着性、耐アルカリ性などの耐薬品性ゃ耐クラック性に優れ、さらには 耐酸素プラズマ性やエッチング加工性などのプロセス適合性においても優れた特 性を有するシリカ系被膜を得ることができる。
さらに、前記の加熱工程および焼成工程を本発明で特定する操作条件下で行え ば、形成される被膜の膜厚にムラを生じさせることもな また半導体基板のアル ミニゥム配線や銅配線にダメージを与えることもない。 これに対し、比較例に示す加熱処理工程および焼成処理工程の方法を用いて 基板上に被膜を形成すると、上記に示す性能の一部は得られるものの、その全て の性能または効果を発揮できないことが判明した。
特に、加熱処理を 80°C未満の温度または 350°Cを超えた温度で行うと、被膜 の膜厚にムラが生じることが分かった。また、焼成処理を 350°C未満の温度で行 うと、被膜の水分吸着量が増大し、またこの処理を 450°Cを超えた温度で行うと、 半導体基板に損傷を与え易いことが分かった。
上記からも明らかなように、本発明方法は、高い膜強度を有し、疎水性に優れた 平滑な低誘電率非晶質シリカ系被膜を基板上に形成するための最も好適な方法 であると言うことができる。 表 1 塗布液の実施例 実 TEOS TMS ETOH TPAOH TAOS / ΤΑΑΟΗΛΤΑ 施 又は 又は の混合 又は ASのモ OS+AS)のモ 例 TMOS MTES M( TBAOH ル比 ル比(Si02
No. の混合 の混合 溶液の添 (Si02換 換算基準)
Kg) M Kg) 加量(g) 算基準)
①- 1 57.1 145.5 499.1 298.3 2/ 8 1.1 / 10
①- 2 85.7 127.3 488.7 298.3 3/7 1.1 / 10
①- 3 85.7 127.3 488.7 1084.7 3/ 7 4 / 10
①- 4 53.6 79.5 273.7 593.2 3/ 7 7 / 10
①- 5 142.9 90.9 467.9 298.3 5/5 1.1110
①- 6 142.9 90.9 467.9 1084.7 5/5 4 / 10
①- 7 89.3 56.8 260.7 593.2 5/5 7 / 10
Φ-8 171.4 72.7 457.6 298.3 6/4 1.1 / 10
② 60.8 127.3 513.6 298.3 3/7 1.1 / 10 (TMOS)
③ 85.7 166.2 449.8 298.3 3/7 1.1 / 10
(MTES)
④ 85.7 127.3 406.4 380.6 3/ 7 1.1 / 10
(TBAOH)
⑤ 85.7 127.3 488.7 298.3 3/ 7 1.1/ 10
(総量) (総量)
⑥ 85.7 127.3 488.7 298.3 3/ 7 1.1/ 10
(総量) (総量)
⑦ 77.1 114.5 430.1 298.3 3/7 1.1/ 10
(PSを 10重 量%含む)
表 2 加熱処理及び焼成処理の実施例
Figure imgf000046_0001
表 3 塗布液の比較例 比 TEOS MTMS ΕΤΟΗ TPAOH水溶 TAOS/MT TAAOH / 早父 の混 の混 の混 液の添加量 (g) MSのモル (TAOS+AS) 例 ム α ·§■ ム兽 ム
里 Π里 α里 比 (Si02 のモル比
No. (g) (ε) (g) 換算基準) (Si02換算 基準)
①- 1 28.6 163.6 509.5 298.3 1 /9 1.1 / 10
①- 2 200.0 54.5 447.2 298.3 7 /3 1.1 / 10
①- 3 85.7 127.3 597.2 189.8 3/ 7 0.7 / 10
Φ-4 53.6 79.5 189.0 677.9 3/ 7 8 / 10
② 85.7 127.3 488.7 298.3 3/ 7 1.1 / 10
(不純物含有)
③ 285.7 0 574.3 140.0 10/0 1,1/ 10
(不純物含有)
④ 285.7 0 574.3 140.0 10/0 1.1 / 10 表 4 加熱処理及び焼成処理の比較例 比 加熱処理工程 焼成処理工程
較 処理温度 処理 処理時 処理温度 処理雰囲気 処理時 例 (°C) 雰囲 間 (分) (°C) 間 (分)
No.
⑤- 1 70 空気 3 400 窒素ガス 30
⑤- 2 360 3 400 窒素ガス 30
⑤ -3 1 50 3 340 窒素ガス 30
⑤- 4 1 50 空気 3 460 窒素ガス 30
⑤- 5 250 3 340 窒素ガス 30
⑤ -6 250 3 460 窒素ガス 30
表 5 被膜の測定結果 A 実 比 被膜の 酸素プラズ 被膜 被膜 被膜中の X線回析ピ 施 早父 •Cし口乃 ¾ マ照射後の 強度 の表 平均細孔 ークの有無 例 例 率(括 被膜の水分 (ヤン ta l 径 (nm) (結晶質或
No. No. 弧内は 吸着量変化 グ弾 さ 及び 2nm いは非晶
1曰放 性率) (Rms) 以下の細 質) 後) (Gpa) (nm) 孔容積含
有率(%)
①- 1 2.2 変化なし 6 0.7 2.7 / 72 非曰曰質
① -2 2.3 変化なし 9 0.6 2.5 / 75 非晶質
①- 3 2.3 変化なし 9 0.5 2.4 / 75 非晶質
①- 4 2.3 変化なし 8 0.6 2.3 / 76 非晶質
①- 5 2.4 変化なし 9 0.6 2.1 / 76 非晶質
Φ-6 2.4 変化なし 9 0.6 2.1 / 75 非曰曰
① -7 2.4 変化なし 8 0.6 2.6 / 78 非晶質
①- 8 2.4 変化なし 10 0.7 2.2 / 77 非曰曰質
② 2.3 変化なし 10 0.6 2.3 / 77 非晶質
③ 2.3 変化なし 9 0.7 2.4 / 76 非晶質
④ 2.3 変化なし 8 0.6 2.4 1 77 曰曰
⑤ 2.4 変化なし 6 0.6 2.3 / 75 非晶質
⑥ 2.4 変化なし 6 0.6 2.3 / 76 非晶質
⑦ 2.4 変化なし 7 0.6 2.4 / 75 非晶質
ノ ,
①- 1 2.9 化なし 2 2.5 2.8 / /1
①- 2 2.6 吸着量増加 10 0.7 2.2 / 78 曰曰
(3.0)
①- 3 2.4 変化なし 5 0.6 2.3 / 73 非晶質
① -4 2.6 変化なし 7 0.6 2.5 / 71 非曰曰
② 2.3 変化なし 12 2.7 2.4/ 75 Pliipn日日 吸着量増加 1 1 4.1 2.2 / 74 : i:曰
③ 2.3 il'P曰曰員
(3.0)
④ 2.3 吸着量増加 9 3.1 2.4 / 72 非晶質
(3.0) 表 6 被膜の測定結果 B 実 比 被莫の 酉奉プ ズマ昭 被膜強度 被膜の外観ヌ
トレき宋雷
施 畢、 身寸後の被膜の (ヤンク弾 は半導体基板 例 例 率 水分吸着量変 性率) への損傷の有
No. No. 化 (Gpa)
⑧- 1 2.3 変化なし 5 異常なし
(8)-2 2.3 変化なし 5 異常なし
⑧- 3 2.2 変化なし 6 異常なし
(§)-4 2.1 变化なし 8 里常なし
⑧- 5 2.2 変化なし 6 異常なし
⑧- 6 2.2 変化なし 6 異常なし
⑤- 1 2.3 変化なし 7 膜厚にムラあり
⑤- 2 2.3 変化なし 10 膜厚にムラあり
⑤ -3 2.5 吸着量増加 6 異常なし
(3.0)
⑤- 4 2.7 吸着量増加 1 1 基板に損傷あり
(3.0)
⑤- 5 2.5 吸着量増加 6 異常なし
(3.0)
⑤- 6 2.7 吸着量増加 1 1 基板に損傷あり (3.0)

Claims

言青求の範囲 . 高い膜強度を有し、疎水性に優れた平滑な低誘電率非晶質シリカ系被膜を 基板上に形成する方法であって、
(a)テトラアルキルオルソシリケ一ト(TAOS)および下記一般式 (I)で示されるアルコ キシシラン(AS)をテトラアルキルアンモニゥ厶ハイド口オキサイド (TAAOH)の存 在下で加水分解して得られるゲイ素化合物を含む液状組成物を調製する工程、
XnSi(OR)4_n (I)
(式中、 Xは水素原子、フッ素原子、または炭素数 1〜8のアルキル基、フッ素置換 アルキル基、ァリール基もしくはビニル基を表し、 Rは水素原子、または炭素数 1 〜8のアルキル基、ァリール基もしくはビニル基を表す。また、 nは 0〜3の整数で ある。)
(b)該液状組成物を基板上に塗布する工程、
(c)該基板を 80〜350°Cの温度で加熱処理する工程、および
(d)該基板を 350〜450°Cの温度で焼成処理する工程
を含むことを特徴とする低誘電率非晶質シリカ系被膜の形成方法。
2. 高い膜強度を有し、疎水性に優れた平滑な低誘電率非晶質シリカ系被膜を 基板上に形成する方法であって、
(a)テトラアルキルオルソシリケ一ト(TAOS)をテトラアルキルアンモニゥムハイド口 オキサイド (TAAOH)の存在下で加水分解または部分加水分解した後、上記一般 式 (I)で示されるアルコキシシラン (AS)またはその加水分解物もしくは部分加水分 解物と混合し、さらに必要に応じてこれらの一部または全部を加水分解して得ら れるケィ素化合物を含む液状組成物を調製する工程、
(b)該液状組成物を基板上に塗布する工程、
(c)該基板を 80〜350°Cの温度で加熱処理する工程、および
(d)該基板を 350〜450°Cの温度で焼成処理する工程
を含むことを特徴とする低誘電率非晶質シリカ系被膜の形成方法。
3. 前記調整工程 (a)で使用されるテトラアルキルオルソシリケ一ト (TAOS)が、テ トラェチルオルソシリゲート(TEOS)、テトラメチルオルソシリゲート(TMOS)または その混合物であることを特徴とする請求項 1〜2のいずれかに記載の低誘電率非 晶質シリカ系被膜の形成方法。
4. 前記調整工程 (a)で使用されるアルコキシシラン (AS)力 メチルトリメトキシシ ラン(MTMS)、メチルトリエトキシシラン(MTES)またはその混合物であることを特 徴とする請求項"!〜 3のいずれかに記載の低誘電率非晶質シリカ系被膜の形成 方法。
5. 前記調製工程 (a)で使用されるテトラアルキルアンモニゥムハイドロォキサイ ド(TAAOH)力《、テトラプロピルアンモニゥムハイド口オキサイド(TPAOH)、テトラブ チルアンモニゥムハイド口オキサイド (TBAOH)またはその混合物であることを特 徵とする請求項 1〜4のいずれかに記載の低誘電率非晶質シリカ系被膜の形成 方法。
6. 前記調製工程 (a)で使用されるテトラアルキルアンモニゥムハイドロォキサイ ド (TAAOH)中に含まれる、ナトリゥム(Na)、カリウム(K)などのアルカリ金属元素 の化合物からなる不純物の含有量が、それぞれ元素基準で 50重量 ppb以下で あることを特徴とする請求項 1〜5のいずれかに記載の低誘電率非晶質シリカ系 被膜の形成方法。
7. 前記調製工程 (a)で使用される亍トラアルキルアンモニゥムハイドロォキサイ ド (TAAOH)中に含まれる、臭素(Br)、塩素(CI)などのハロゲン族元素の化合物 からなる不純物の含有量が、それぞれ元素基準で 1重量 ppm以下であることを特 徴とする請求項 1〜6のいずれかに記載の低誘電率非晶質シリカ系被膜の形成 方法。
8. 前記調製工程 (a)で使用されるテトラアルキルオルソシリケー卜 (TAOS)と前 記アルコキシシラン (AS)のモル比(TAOSZAS)が、 Si02換算基準で 6 4〜2Z 8の範囲にあることを特徴とする請求項 1〜7のいずれかに記載の低誘電率非晶 質シリカ系被膜の形成方法。
9. 前記調製工程 (a)で使用されるテトラアルキルアンモニゥムハイドロォキサイ ド(TAAOH)とシリカ系被膜形成成分(TAOS+ AS)のモル比(TAAOH
(TAOS+AS))が、 Si02換算基準で 1 Z1 0〜7ノ 1 0の範囲にあることを特徴とする 請求項 1〜8のいずれかに記載の低誘電率非晶質シリカ系被膜の形成方法。
1 0. 前記塗布工程 (b)における操作をスピンコート法にて行うことを特徴とする 請求項 1〜9のいずれかに記載の低誘電率非晶質シリカ系被膜の形成方法。 1 1 · 前記加熱処理工程 (c)における操作を 1〜1 0分間、窒素雰囲気下または空 気雰囲気下で行うことを特徴とする請求項 1〜1 0のいずれかに記載の低誘電率 非晶質シリカ系被膜の形成方法。
1 2. 前記焼成処理工程 (d)における操作を 5〜90分間、窒素ガス雰囲気下で行 うことを特徴とする請求項 1〜1 1のいずれかに記載の低誘電率非晶質シリカ系 被膜の形成方法。
1 3. 請求項 1〜1 2に記載の方法を用いて得られる被膜力 2. 5以下の比誘電 率と 6. 0 GPa以上のヤング弾性率 (Young's Modulus)からなる膜強度を有するこ とを特徴とする低誘電率非晶質シリカ系被膜。
1 4. 前記被膜は、該被膜中に含まれる細孔の平均細孔径が 3nm以下で、しか も 2nm以下のミクロポア(Micropores)の細孔容積含有率が 70%以上であることを 特徴とする請求項 1 3に記載の低誘電率非晶質シリカ系被膜。
1 5. 前記被膜が、該被膜の表面粗さ (Rms)が 1 nm以下である平滑な表面を有 することを特徴とする請求項 1 3〜 1 4のいずれかに記載の低誘電率非晶質シリカ 系被膜。
1 6. 前記被膜が、 ΜΠ結晶構造などの X線回折ピークを有しない非晶質のシリ 力系被膜であることを特徴とする請求項 1 3〜1 5のいずれかに記載の低誘電率 非晶質シリカ系被膜。
1 7. 前記被膜が、半導体基板上に形成された層間絶縁膜であることを特徴とす る請求項 1 3〜 1 6のいずれかに記載の低誘電率非晶質シリカ系被膜。
PCT/JP2003/013691 2002-10-31 2003-10-27 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜 WO2004040635A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020057007529A KR100983426B1 (ko) 2002-10-31 2003-10-27 저유전율 비정질 실리카계 피막의 형성방법 및 상기 방법에의해 얻을 수 있는 저유전율 비정질 실리카계 피막
US10/533,238 US7232769B2 (en) 2002-10-31 2003-10-27 Method of forming amorphous silica-based coating film with low dielectric constant and thus obtained silica-based coating film
EP03758926.4A EP1564798B1 (en) 2002-10-31 2003-10-27 Method of forming low-dielectric-constant amorphous silica coating and low-dielectric-constant amorphous silica coating obtained by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-318418 2002-10-31
JP2002318418A JP4225765B2 (ja) 2002-10-31 2002-10-31 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜

Publications (1)

Publication Number Publication Date
WO2004040635A1 true WO2004040635A1 (ja) 2004-05-13

Family

ID=32211772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013691 WO2004040635A1 (ja) 2002-10-31 2003-10-27 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜

Country Status (7)

Country Link
US (1) US7232769B2 (ja)
EP (1) EP1564798B1 (ja)
JP (1) JP4225765B2 (ja)
KR (1) KR100983426B1 (ja)
CN (1) CN100380608C (ja)
TW (1) TWI280263B (ja)
WO (1) WO2004040635A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728065B2 (en) 2006-02-14 2010-06-01 Fujitsu Limited Material for forming exposure light-blocking film, multilayer interconnection structure and manufacturing method thereof, and semiconductor device
WO2022196656A1 (ja) 2021-03-15 2022-09-22 AC Biode株式会社 人工鉱物の製造方法及び人工鉱物

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471564B2 (ja) * 2002-10-31 2010-06-02 日揮触媒化成株式会社 低誘電率非晶質シリカ系被膜形成用塗布液および該塗布液の調製方法
KR100618850B1 (ko) * 2004-07-22 2006-09-01 삼성전자주식회사 반도체 소자 제조용 마스크 패턴 및 그 형성 방법과 미세패턴을 가지는 반도체 소자의 제조 방법
JP4893905B2 (ja) 2004-08-31 2012-03-07 独立行政法人産業技術総合研究所 ゼオライト用原料液体、ゼオライト結晶作成方法、ゼオライト用原料液体の作成方法、およびゼオライト薄膜
JP4798330B2 (ja) * 2004-09-03 2011-10-19 Jsr株式会社 絶縁膜形成用組成物、絶縁膜、およびその形成方法
JP4798329B2 (ja) * 2004-09-03 2011-10-19 Jsr株式会社 絶縁膜形成用組成物、絶縁膜、およびその形成方法
JP5161571B2 (ja) * 2004-09-15 2013-03-13 ハネウェル・インターナショナル・インコーポレーテッド 処理剤物質
KR100640587B1 (ko) * 2004-09-23 2006-11-01 삼성전자주식회사 반도체 소자 제조용 마스크 패턴 및 그 형성 방법과 미세패턴을 가지는 반도체 소자의 제조 방법
JP2006124410A (ja) * 2004-09-30 2006-05-18 Jsr Corp 表面疎水化用組成物、表面疎水化方法、半導体装置およびその製造方法
JP4780276B2 (ja) * 2004-09-30 2011-09-28 Jsr株式会社 表面疎水化方法、および半導体装置の製造方法
JP2006104418A (ja) * 2004-10-08 2006-04-20 Jsr Corp 表面疎水化用組成物、表面疎水化方法、半導体装置およびその製造方法
JP4756128B2 (ja) * 2004-10-20 2011-08-24 日揮触媒化成株式会社 半導体加工用保護膜形成用塗布液、その調製方法およびこれより得られる半導体加工用保護膜
JP2006117763A (ja) * 2004-10-20 2006-05-11 Catalysts & Chem Ind Co Ltd 低誘電率非晶質シリカ系被膜形成用塗布液、その調製方法およびこれより得られる低誘電率非晶質シリカ系被膜
KR100692212B1 (ko) 2005-07-06 2007-03-14 주식회사 태성환경연구소 다공성 유·무기 혼성 실리카 겔을 유효성분으로 하는 공기중 휘발성 유기화합물 혹은 수중 오일 성분 흡착제
JP4860953B2 (ja) 2005-07-08 2012-01-25 富士通株式会社 シリカ系被膜形成用材料、シリカ系被膜及びその製造方法、多層配線及びその製造方法、並びに、半導体装置及びその製造方法
JP4563894B2 (ja) * 2005-08-19 2010-10-13 富士通株式会社 シリカ系被膜の製造方法および半導体装置の製造方法
JP4616154B2 (ja) 2005-11-14 2011-01-19 富士通株式会社 半導体装置の製造方法
US8686101B2 (en) 2005-12-22 2014-04-01 Jgc Catalysts And Chemicals Ltd. Coating liquid for forming low dielectric constant amorphous silica-based coating film and the coating film obtained from the same
JP4949692B2 (ja) * 2006-02-07 2012-06-13 東京応化工業株式会社 低屈折率シリカ系被膜形成用組成物
JP4579181B2 (ja) 2006-03-24 2010-11-10 富士通セミコンダクター株式会社 多層配線における配線の還元方法、多層配線の製造方法、並びに、半導体装置の製造方法
US7446058B2 (en) * 2006-05-25 2008-11-04 International Business Machines Corporation Adhesion enhancement for metal/dielectric interface
KR100791138B1 (ko) 2006-06-12 2008-01-02 이진일 중금속 흡착용 실리카 화합물 및 이의 합성 방법
JP5014709B2 (ja) * 2006-08-28 2012-08-29 日揮触媒化成株式会社 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜
JP2008201832A (ja) * 2007-02-16 2008-09-04 Shin Etsu Chem Co Ltd シロキサン重合体とその製造方法、該重合体を含有する多孔質膜形成用塗布液ならびに多孔質膜と、該多孔質膜を用いた半導体装置
JP2008201833A (ja) 2007-02-16 2008-09-04 Shin Etsu Chem Co Ltd 膜形成用組成物、低誘電率絶縁膜、低誘電率絶縁膜の形成方法及び半導体装置
JP2008205008A (ja) * 2007-02-16 2008-09-04 Shin Etsu Chem Co Ltd 半導体層間絶縁膜形成用組成物とその製造方法、膜形成方法と半導体装置
JP5551885B2 (ja) * 2008-05-01 2014-07-16 日揮触媒化成株式会社 低誘電率シリカ系被膜の形成方法及び該方法から得られる低誘電率シリカ系被膜
US7783012B2 (en) * 2008-09-15 2010-08-24 General Electric Company Apparatus for a surface graded x-ray tube insulator and method of assembling same
JP5565314B2 (ja) * 2008-12-08 2014-08-06 富士通株式会社 半導体装置の製造方法及びその製造装置
KR101669301B1 (ko) 2008-12-23 2016-10-25 쓰리엠 이노베이티브 프로퍼티즈 컴파니 미세다공성 유기실리케이트 재료를 갖는 유기 화학적 센서
KR101821936B1 (ko) 2008-12-23 2018-01-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 미세다공성 유기실리케이트 재료를 갖는 유기 화학적 센서
US8461462B2 (en) 2009-09-28 2013-06-11 Kyocera Corporation Circuit substrate, laminated board and laminated sheet
US9485877B2 (en) 2009-09-28 2016-11-01 Kyocera Corporation Structure for circuit board used in electronic devices and method for manufacturing the same
KR101419662B1 (ko) * 2010-09-10 2014-07-15 미쓰이 가가쿠 가부시키가이샤 반도체 장치의 제조 방법 및 린스액
KR101942725B1 (ko) * 2014-03-07 2019-01-28 삼성전기 주식회사 칩 전자부품 및 그 제조방법
JP6314019B2 (ja) * 2014-03-31 2018-04-18 ニッタ・ハース株式会社 半導体基板の研磨方法
WO2016019268A1 (en) * 2014-08-01 2016-02-04 3M Innovative Properties Company Substrate with amorphous, covalently-bonded layer and method of making the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051446A1 (en) * 2000-05-16 2001-12-13 Jsr Corporation Method of manufacturing insulating film-forming material, the insulating film-forming material, and insulating film
JP2002020689A (ja) * 2000-07-07 2002-01-23 Jsr Corp 膜形成用組成物の製造方法、膜形成用組成物、膜の形成方法およびシリカ系膜
JP2002069375A (ja) * 2000-08-28 2002-03-08 Jsr Corp 膜形成用組成物および絶縁膜形成用材料
JP2003027001A (ja) * 2001-07-16 2003-01-29 Jsr Corp 膜形成用組成物、膜の形成方法およびシリカ系膜
JP2003249495A (ja) * 2002-02-26 2003-09-05 Asahi Kasei Corp 層間絶縁膜製造用塗布組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0791509B2 (ja) 1985-12-17 1995-10-04 住友化学工業株式会社 半導体用絶縁膜形成塗布液
IT1295267B1 (it) * 1997-10-03 1999-05-04 Enichem Spa Processo per preparare zeoliti legate
WO2000012640A1 (en) 1998-09-01 2000-03-09 Catalysts & Chemicals Industries Co., Ltd. Coating fluid for forming low-permittivity silica-based coating film and substrate with low-permittivity coating film
WO2000018847A1 (fr) 1998-09-25 2000-04-06 Catalysts & Chemicals Industries Co., Ltd. Fluide de revetement permettant de former une pellicule protectrice a base de silice dotee d'une faible permittivite et substrat recouvert d'une pellicule protectrice de faible permittivite
WO2001048806A1 (fr) * 1999-12-28 2001-07-05 Catalysts & Chemicals Industries Co., Ltd. Procede de production d'un film a faible constante dielectrique et substrat semi-conducteur pourvu de ce film a faible constante dielectrique
JP4195773B2 (ja) * 2000-04-10 2008-12-10 Jsr株式会社 層間絶縁膜形成用組成物、層間絶縁膜の形成方法およびシリカ系層間絶縁膜
US6576568B2 (en) * 2000-04-04 2003-06-10 Applied Materials, Inc. Ionic additives for extreme low dielectric constant chemical formulations
JP3705122B2 (ja) 2000-05-16 2005-10-12 Jsr株式会社 有機ケイ素系重合体の製造方法、膜形成用組成物、膜の形成方法およびシリカ系膜
JP2004504716A (ja) * 2000-07-13 2004-02-12 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア シリカゼオライト低誘電率薄膜
JP4021131B2 (ja) * 2000-07-14 2007-12-12 触媒化成工業株式会社 低誘電率シリカ系被膜形成用塗布液および低誘電率シリカ系被膜付基板
US6878616B1 (en) * 2003-11-21 2005-04-12 International Business Machines Corporation Low-k dielectric material system for IC application
WO2005109475A2 (en) * 2004-05-04 2005-11-17 California Institute Of Technology Zeolite films for low k applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010051446A1 (en) * 2000-05-16 2001-12-13 Jsr Corporation Method of manufacturing insulating film-forming material, the insulating film-forming material, and insulating film
JP2002020689A (ja) * 2000-07-07 2002-01-23 Jsr Corp 膜形成用組成物の製造方法、膜形成用組成物、膜の形成方法およびシリカ系膜
JP2002069375A (ja) * 2000-08-28 2002-03-08 Jsr Corp 膜形成用組成物および絶縁膜形成用材料
JP2003027001A (ja) * 2001-07-16 2003-01-29 Jsr Corp 膜形成用組成物、膜の形成方法およびシリカ系膜
JP2003249495A (ja) * 2002-02-26 2003-09-05 Asahi Kasei Corp 層間絶縁膜製造用塗布組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1564798A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728065B2 (en) 2006-02-14 2010-06-01 Fujitsu Limited Material for forming exposure light-blocking film, multilayer interconnection structure and manufacturing method thereof, and semiconductor device
US7830012B2 (en) 2006-02-14 2010-11-09 Fujitsu Limited Material for forming exposure light-blocking film, multilayer interconnection structure and manufacturing method thereof, and semiconductor device
WO2022196656A1 (ja) 2021-03-15 2022-09-22 AC Biode株式会社 人工鉱物の製造方法及び人工鉱物

Also Published As

Publication number Publication date
JP4225765B2 (ja) 2009-02-18
EP1564798A4 (en) 2006-01-18
CN100380608C (zh) 2008-04-09
TWI280263B (en) 2007-05-01
US20060084277A1 (en) 2006-04-20
CN1708839A (zh) 2005-12-14
TW200500494A (en) 2005-01-01
US7232769B2 (en) 2007-06-19
EP1564798A1 (en) 2005-08-17
EP1564798B1 (en) 2017-08-02
JP2004153147A (ja) 2004-05-27
KR20050060108A (ko) 2005-06-21
KR100983426B1 (ko) 2010-09-20

Similar Documents

Publication Publication Date Title
WO2004040635A1 (ja) 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜
JP4471564B2 (ja) 低誘電率非晶質シリカ系被膜形成用塗布液および該塗布液の調製方法
JP5160237B2 (ja) 低誘電率非晶質シリカ系被膜形成用塗布液および該塗布液から得られる低誘電率非晶質シリカ系被膜
KR101225277B1 (ko) 반도체 가공용 보호막 형성용 도포액, 그 조제 방법 및이로부터 얻어지는 반도체 가공용 보호막
US20080011987A1 (en) Coating Liquid for Forming Low Dielectric Constant Amorphous Silica-Based Coating Film, Method for Preparing the Same, and Low Dielectric Constant Amorphous Silica-Based Coating Film Obtained From the Same
WO1997035939A1 (fr) Fluide pour realiser un revetement de silice a permittivite basse et substrat portant ce revetement a permittivite basse
JP5014709B2 (ja) 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜
JP4681822B2 (ja) 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜
JP2008053658A (ja) 低誘電率非晶質シリカ系被膜の形成方法および該方法より得られる低誘電率非晶質シリカ系被膜

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057007529

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A26121

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2003758926

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003758926

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006084277

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10533238

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057007529

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003758926

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10533238

Country of ref document: US