WO2004038463A1 - 偏光子、その製造方法、光学フィルムおよび画像表示装置 - Google Patents

偏光子、その製造方法、光学フィルムおよび画像表示装置 Download PDF

Info

Publication number
WO2004038463A1
WO2004038463A1 PCT/JP2003/013349 JP0313349W WO2004038463A1 WO 2004038463 A1 WO2004038463 A1 WO 2004038463A1 JP 0313349 W JP0313349 W JP 0313349W WO 2004038463 A1 WO2004038463 A1 WO 2004038463A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
film
polymer
liquid crystal
fine particles
Prior art date
Application number
PCT/JP2003/013349
Other languages
English (en)
French (fr)
Inventor
Mariko Hirai
Takashi Kamijo
Minoru Miyatake
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to US10/532,059 priority Critical patent/US7622167B2/en
Priority to EP03754177A priority patent/EP1555550A4/en
Publication of WO2004038463A1 publication Critical patent/WO2004038463A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/03Viewing layer characterised by chemical composition
    • C09K2323/031Polarizer or dye

Definitions

  • the present invention relates to a polarizer and a method for manufacturing the same.
  • the present invention also relates to a polarizing plate and an optical film using the polarizer.
  • the present invention relates to an image display device such as a liquid crystal display device, an organic EL display device, and a PDP using the polarizer, the polarizing plate, and the optical film.
  • An image display device such as a liquid crystal display device uses a polarizer (polarizing plate) because of its display principle.
  • polarizer polarizing plate
  • the demand for polarizers has been increasing along with the increase in the area and diversification of image display devices, and the demand for improved quality and durability has been increasing.
  • extremely high heat resistance is required for liquid crystal display devices that are assumed to be used in harsh outdoor environments such as mobile phones and PDAs, for in-car navigation systems, and for liquid crystal projectors. Is done.
  • a stretched polybutyl alcohol film dyed with a dichroic material i.e., an iodine dye having dichroism sincerity
  • a dichroic material i.e., an iodine dye having dichroism sincerity
  • Iodine-based polarizers are obtained by coloring a film with an aqueous solution containing amorphous iodine and then subjecting the film to stretching treatment.They have high polarizability to visible light and can be used to produce large polarizers. It is.
  • the film material of the polarizer may be, in addition to polybutyl alcohol, polystyrene, cellulose derivative, polychlorinated vinyl, polypropylene, acrylic polymer, polyamide, polyester, saponified ethylene monovinyl acetate copolymer, etc. Is also used.
  • a polarizer used in the field of optical devices such as optical communication and optical recording / reproducing devices that require heat resistance at high temperatures metallic particles having light absorption anisotropy are provided on an isotropic substrate.
  • Dispersed polarizers are used.
  • a polarizer for example, a polarizer obtained by depositing metal particles in a glass by a reduction reaction or the like and stretching the glass particles is used.
  • a polarizer in which metallic fine particles are dispersed on an isotropic substrate requires a high thermal process because the gold attribute fine particles are arranged by a vacuum evaporation method or the like, and is not suitable for mass production.
  • a polarizing film can be obtained by dispersing metallic fine particles having anisotropy in a polyimide and subjecting it to uniaxial stretching treatment. 84701).
  • a polarizing film is formed of polyimide, it has a yellow color even after the uniaxial stretching treatment, and has a problem of poor transmittance.
  • the polarizing performance is exhibited by orienting the dichroic material in the stretching direction.
  • the absorption spectrum measured when polarized light is incident on such a polarizer is represented by an absorption spectrum (MD spectrum) when the incident polarization plane is parallel to the stretching direction of the polarizer, and
  • the absorption spectrum (TD spectrum) when the polarizer is perpendicular to the stretching direction has the same spectrum shape (the absorption peak wavelength is almost the same) and the absorbance is MD spectrum> TD spectrum. It becomes a relationship.
  • the absorption spectrum “shifts the absorption peak vertically” depending on the direction of the incident polarization plane with respect to the polarizer.
  • the absorbance at the absorption peak of the MD spectrum must be made larger and the absorbance at the absorption peak of the TD spectrum must be made as small as possible. That is, it was necessary to make the difference between the absorbance of the MD spectrum and the absorbance of the TD spectrum as large as possible. Disclosure of the invention
  • An object of the present invention is to provide a polarizer having good heat resistance and a method for producing the same, which can be produced by a simple method.
  • the present invention also provides a polarizer having good heat resistance and good transmittance, and a method for producing the same.
  • the purpose is to provide the law.
  • Another object of the present invention is to provide a polarizer having good polarization performance when the difference in absorbance between the MD spectrum and the TD spectrum is small.
  • Still another object of the present invention is to provide a polarizing plate using the polarizer, and to provide an optical film using the polarizer or the polarizing plate. Further, another object is to provide an image display device using the polarizer, the polarizing plate, or the optical film.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that the above object can be achieved by the following polarizer, and have completed the present invention.
  • the present invention relates to a polarizer comprising a film having a structure in which metallic fine particles are dispersed in a polymer matrix,
  • the polymer forming the polymer matrix is a light-transmitting polymer having a transmittance of 88% or more when measured at a thickness of l mm, and the film is uniaxially stretched. .
  • the polarizer of the present invention has a structure in which metallic fine particles are dispersed in a polymer matrix, the polarizer has heat resistance when used as an image display device, and is suitable for applications requiring heat resistance. Used.
  • a translucent polymer having a transmittance of 88% or more is used for the polymer matrix, and the transmittance is good.
  • the transmissivity of the translucent polymer is preferably as high as possible, and is preferably 88% or more, more preferably 90% or more.
  • the transmittance is the total light transmittance when a translucent polymer formed into a film having a thickness of l mm is measured using UV-3150 manufactured by Shimadzu Corporation.
  • the metallic fine particles dispersed in the polymer matrix cause surface plasmon absorption and absorb light of a certain wavelength, and that the translucent polymer as a medium is uniaxially stretched by a uniaxial stretching treatment.
  • the polarizer of the present invention has exhibited polarization characteristics by exhibiting optical anisotropy due to having birefringence. Plus, Mont absorption is due to the resonance between the vibration of the incident light at the interface of the fine particles and the plasma vibration caused by the electrons in the fine particles. At this time, the metal exhibits large absorption characteristics.
  • the wavelength region having polarization characteristics is determined by the plasmon absorption wavelength of the metallic fine particles and the characteristics such as the refractive index of the light-transmitting polymer, which is the medium, so that the birefringence of the light-transmitting polymer is used.
  • a polarizer having an arbitrary optical property it is possible to design a polarizer having an arbitrary optical property.
  • an iodine dichroic dye is used as the absorbing material, but in the present invention, metal is used as the absorbing material by utilizing the characteristics of metallic fine particles.
  • the minute region formed by the metallic fine particles has an average particle diameter of 100 nm or less and an aspect ratio (maximum length / minimum length) of 2 or less. That is, it is preferable that the minute region is close to (spherical shape) having almost no anisotropy in shape.
  • the average particle size of the microscopic region is preferably 100 nm or less, more preferably 50 nm or less.
  • the aspect ratio is preferably 2 or less, more preferably 1.8 or less, and further preferably 1.5 or less. The average particle size and aspect ratio of the minute region are described in detail in Examples.
  • the present invention provides a uniaxial solution after forming a mixed solution in which metallic fine particles are dispersed and contained in a solution containing a translucent polymer having a transmittance of 88% or more when measured at a thickness of l mm. Stretching the polarizer.
  • the polarizer of the present invention can provide a polarizer with good heat resistance and transmittance by a simple method. Since the wavelength region having the polarization characteristic is determined by the plasmon absorption wavelength of the metallic fine particles and the characteristics such as the refractive index of the transparent polymer as the medium, the material of the transparent polymer and the metallic fine particles, etc. By appropriately selecting and controlling the birefringence of a film formed of a translucent polymer by uniaxial stretching, a polarizer having any optical properties can be produced.
  • the present invention also relates to a polarizer, wherein metallic fine particles are dispersed in a matrix formed of a liquid crystalline material.
  • the liquid crystalline material is uniaxially oriented.
  • the polarizer of the present invention Since the polarizer of the present invention has a structure in which metallic fine particles are dispersed in a matrix, it has heat resistance when used as an image display device, and is suitable for applications requiring heat resistance. Used.
  • the polarizer of the present invention having such a structure can be manufactured by a simple method.
  • the liquid crystal material is a liquid crystal polymer, so the manufacturing method is simple. Yes, it is preferred.
  • the metallic fine particles dispersed in the matrix cause surface plasmon absorption and absorb light of a certain wavelength, and also exhibit optical anisotropy due to the liquid crystalline material as the medium, which causes It is considered that the polarizer of the present invention exhibited polarization characteristics.
  • the plasmon absorption is due to the resonance between the vibration of the incident light at the particle interface and the plasma vibration due to the electrons in the particles.
  • the metal exhibits large absorption characteristics. Since the wavelength region having polarization characteristics is determined by the plasmon absorption wavelength of the metallic fine particles and the characteristics such as the refractive index of the liquid crystal material that is the medium, the wavelength region is arbitrary by utilizing the birefringence of the liquid crystal material.
  • a polarizer having the following optical characteristics.
  • iodine or a dichroic dye is used as the absorbing substance, but in the present invention, a metal is used as the absorbing substance by utilizing the characteristics of metallic fine particles.
  • the minute region formed by the metallic fine particles has an average particle size of 1 O Onm or less and an aspect ratio (maximum length / minimum length) of 2 or less. That is, it is preferable that the minute region is close to (spherical shape) having almost no anisotropy in shape. If the aspect ratio exceeds 2, it is necessary to arrange the major axis in the arrangement direction when it is necessary to arrange the metallic fine particles, but if the aspect ratio is 2 or less, the process of arranging the major axis and the minor axis is necessary. This is because it becomes unnecessary.
  • the average particle size of the microscopic region is preferably 100 nm or less, and more preferably 50 nm or less.
  • the aspect ratio is preferably 2 or less, more preferably 8 or less, and even more preferably 1.5 or less. The average particle size and the aspect ratio of the minute regions are described in detail in Examples.
  • the present invention relates to the method for producing a polarizer, wherein a mixed solution in which metallic fine particles are dispersed and contained in a solution containing a liquid crystalline material is formed.
  • a polarizer having good heat resistance can be obtained by a simple method. Further, since the wavelength region having the polarization characteristic is determined by the plasmon absorption wavelength of the metallic fine particles and the characteristics such as the refractive index of the liquid crystalline material as the medium, the material of the liquid crystalline material and the metallic fine particles are appropriately determined. By selecting and controlling the birefringence of a film formed of a liquid crystalline material, a polarizer having arbitrary optical characteristics can be manufactured. (3) Further, the present invention is a polarizer having an absorption peak measured at a certain wavelength, the absorption spectrum measured when polarized light is incident,
  • the present invention relates to a polarizer characterized in that, when the direction of the plane of incident polarization with respect to the polarizer is changed, the absorption peak wavelength shifts with the change.
  • the absorption peak wavelength itself changes depending on the direction of the incident polarization plane.
  • the absorption spectrum “shifts the absorption peak horizontally” depending on the direction of the incident polarization plane with respect to the polarizer.
  • the polarizer has the longest absorption peak wavelength of the absorption spectrum measured when the direction of the incident polarization plane with respect to the polarizer is changed (this wavelength is assumed to be ⁇ 1).
  • this wavelength is assumed to be ⁇ 1.
  • the absorption peak wavelength When the direction of the polarization plane is gradually increased from 0 °, the absorption peak wavelength also shifts to a shorter wavelength, and
  • the absorption peak wavelength becomes the shortest wavelength (this wavelength is referred to as I 2).
  • the polarizer of the present invention has the longest absorption peak wavelength ( ⁇ 1) in the MD spectrum.
  • the polarization spectrum becomes The absorption peak wavelength gradually shifts to the shorter wavelength side, and when rotated 90 ° (TD spectrum), the peak wavelength becomes the shortest wavelength ( ⁇ 2), but the reverse is also true.
  • the absorption characteristics of the polarizer of the present invention as described herein are clearly different from the absorption characteristics of a polarizer using an iodine polarizer or a dichroic colorant.
  • a polarizer in which metallic fine particles are dispersed in an organic matrix having birefringence in a film plane can be used.
  • the polarization characteristics observed in the polarizer are presumed to be due to the fact that metallic fine particles dispersed in an organic matrix absorb light of a certain wavelength by causing surface plasmon absorption. Plasmon absorption is due to the resonance between the vibration of the incident light at the interface of the fine particles and the plasma vibration due to the electrons in the fine particles. At this time, the metal exhibits large absorption characteristics.
  • This absorption characteristic is determined by the plasmon absorption wavelength of the metallic fine particles, the characteristics such as the refractive index of the organic material serving as the medium, and the dispersion state of the fine regions of the metallic fine particles. Therefore, when the refractive index differs depending on the in-plane direction of the film (that is, in the case of a birefringent medium), if the direction of the incident polarization plane is different, the absorption characteristics are different, and a wavelength shift occurs. It is considered that the absorption anisotropy, that is, the polarization performance, is expressed by the above principle.
  • the polarizer of the present invention since the polarizer of the present invention has a structure in which metallic fine particles are dispersed, it has heat resistance when used as an image display device. For this reason, extremely high heat resistance is required for liquid crystal displays intended for use in harsh outdoor environments such as mobile phones and PDAs, as well as for liquid crystal displays for in-vehicle navigation and liquid crystal projectors. It is suitable for various uses.
  • the organic matrix is formed of a polymer matrix, and the polymer forming the polymer matrix is a translucent polymer having a transmittance of at least 88% when measured at a thickness of l mm, and the film is uniaxial. Stretched materials can be suitably used.
  • a material formed of a liquid crystal material can be suitably used as the organic matrix. It is preferable that the liquid crystal material is uniaxially oriented. Further, the liquid crystal material is preferably a liquid crystal polymer, because the production method is simple.
  • the minute region formed by the metallic fine particles has an average particle diameter of 100 nm or less and an aspect ratio (maximum length / minimum length) of 2 or less.
  • the minute region has a shape close to (spherical shape) with almost no anisotropy in shape. If the aspect ratio exceeds 2, it is necessary to arrange the major axis in the arrangement direction when it is necessary to arrange the metallic fine particles, but if the aspect ratio is 2 or less, the major axis, This is because the step of arranging the short axes is not required.
  • the average particle size in the microscopic region is preferably 100 nm or less, more preferably 50 nm or less.
  • the aspect ratio is preferably 2 or less, more preferably 1.8 or less, and even more preferably 1.5 or less.
  • the average particle size and the aspect ratio of the minute region are described in detail in Examples. Note that the change in the absorption peak due to the orientation of the incident polarization plane of the polarizer of the present invention depends not only on the anisotropy of the refractive index of the matrix material but also on the distribution state of the minute regions formed by the metallic fine particles. Controlled.
  • the present invention also relates to a polarizing plate having a transparent protective layer provided on at least one surface of the polarizer.
  • the present invention also relates to an optical film, wherein at least one of the polarizer and the polarizing plate is laminated.
  • the present invention relates to an image display device, wherein the polarizer, the polarizing plate or the optical film is used.
  • FIG. 1 is an absorption spectrum of the polarizer of Example 1 measured by changing the direction of the plane of incidence of polarization.
  • the polarizer of the present invention is formed of an organic matrix having birefringence.
  • the organic matrix material include a material obtained by uniaxially stretching a non-liquid crystalline polymer (translucent polymer) and a material obtained by uniaxially aligning a liquid crystalline material.
  • a translucent polymer having a transmittance of 88% or more when measured at a thickness of 1 mm is preferably used.
  • the translucent polymer those having the above-mentioned transmittance can be suitably used without any particular limitation.
  • Examples of the translucent polymer include polyvinyl alcohol and derivatives thereof.
  • Derivatives of polybutyl alcohol include polyvinyl formal, polyvinyl acetal, etc., as well as ethylene, propylene and other olefins, unsaturated carboxylic acids such as atarilic acid, methacrylic acid, crotonic acid, etc., modified with alkyl esters, acrylamide, etc. What was done.
  • Polyvinyl alcohol having a degree of polymerization of about 100 to about 1000 is generally used, while a degree of polymerization of about 80 to about 100 mol% is generally used.
  • additives such as a plasticizer can also be contained in the polyvinyl alcohol-based film.
  • plasticizer examples include a polyol and a condensate thereof, such as glycerin, diglycerin, triglycerin, ethylen glycol, propylene glycol, and polyethylene glycol.
  • the amount of the plasticizer is not particularly limited, but is preferably 20% by weight or less in the polyvinyl alcohol-based film.
  • polyester resins such as polyethylene terephthalate-polyethylene naphthalate; styrene resins such as polystyrene and atarilonitrile-styrene copolymer (AS resin); polyethylene, polypropylene, cyclo- or Examples thereof include polyolefins having a norbornene structure, and olefin-based resins such as an ethylene-propylene copolymer.
  • vinyl chloride resin, cell mouth resin, acrylic resin, amide resin, imide resin, sulfone polymer, polyether sulfone resin, polyether ether ketone resin polymer examples include a polyphenylene sulfide-based resin, a vinylidene chloride-based resin, a butyl butyral-based resin, an arylate-based resin, a polyoxymethylene-based resin, a silicone-based resin, and a urethane-based resin. These can be used alone or in combination of two or more.
  • a cured product of a thermosetting or ultraviolet curable resin such as a phenolic, melamine, acrylic, urethane, acrylic urethane, epoxy, or silicone resin can also be used.
  • the film formed of the light-transmitting polymer is given uniaxial birefringence by a uniaxial stretching process. Therefore, it is preferable that the light-transmitting polymer has anisotropy that easily causes birefringence, and polyvinyl alcohol, polycarbonate, and a sulfone polymer are preferable.
  • the liquid crystal material may be either a low-molecular liquid crystal or a high-molecular liquid crystal (liquid crystal polymer), or may be an energy-ray-hard type polymerizable liquid crystal (liquid crystal monomer).
  • the liquid crystalline polymer is oriented by, for example, heating or the like, and is cooled and fixed to form a matrix. After alignment, the liquid crystalline monomer is polymerized by energy rays such as ultraviolet irradiation to form a matrix.
  • the liquid crystal material is a liquid crystal material that exhibits liquid crystallinity at room temperature, lyotropic liquid crystal, JP2003 / 013349
  • liquid crystal with one-way opening or a liquid crystal exhibiting a high temperature at high temperatures may be used.
  • liquid crystalline materials those exhibiting a nematic phase or a smectic phase are suitably used.
  • These liquid crystal materials can be used alone or as a mixture of one or more kinds.
  • liquid crystalline polymer polymers having various skeletons of a main chain type, a side chain type or a composite type thereof can be used without any particular limitation.
  • main chain type liquid crystal polymer a condensation type polymer having a structure in which a mesogen group composed of an aromatic unit or the like is bonded, for example, a polymer of a polyester type, a polyamide type, a polycarbonate type, a polyester imide type, etc. Is raised.
  • the aromatic unit to be a mesogen group include phenyl, biphenyl and naphthalene units, and these aromatic units have a substituent such as a cyano group, an alkyl group, an alkoxy group, or a halogen group. It may be.
  • polyacrylate-based polymethacrylate-based
  • the main chain of poly- ⁇ -halo acrylate, poly ⁇ -halo cyanoacrylate, polyacrylamide, polysiloxane, or polymalonate is a skeleton, and a mesogen group consisting of a cyclic unit or the like in the side chain.
  • Examples of the above-mentioned self-cyclic unit to be a mesogen group include biphenyl, phenylbenzoate, phenylcyclohexane, azoxybenzene, azomethine, azobenzene, phenylpyrimidine, diphenylacetylene, diphenyl Examples include lupenzoate, bicyclohexane, cyclohexylbenzene, and terphenyl.
  • the terminal of these cyclic units may have a substituent such as a cyano group, an alkyl group, an alkenyl group, an alkoxy group, a halogen group, a haloalkyl group, a haloalkoxy group, a haloalkenyl group, and the like.
  • a substituent such as a cyano group, an alkyl group, an alkenyl group, an alkoxy group, a halogen group, a haloalkyl group, a haloalkoxy group, a haloalkenyl group, and the like.
  • mesogen group those having a halogen group can be used.
  • the mesogenic groups of any of the liquid crystal polymers may be bonded via a spacer that imparts flexibility.
  • the spacer include a polymethylene chain and a polyoxymethylene chain.
  • the number of repeating structural units that form part of the spacer is appropriately determined by the chemical structure of the mesogenic moiety, but the number of repeating units in the polymethylene chain is 0 to 20, preferably 2 to 12, polyoxymethylene chain. Repeat unit [ma 0 ⁇ It is 10 and preferably 1-3.
  • the liquid crystalline polymer has a glass transition temperature of not less than 50 ° C, more preferably not less than 80 ° C. Further, those having a weight average molecular weight of about 2,000 to 100,000 are preferable.
  • the liquid crystal monomer has a polymerizable functional group such as an acryloyl group or a methacryloyl group at a terminal, and a mesogen group comprising the above-mentioned cyclic unit. And those with a spacer section.
  • a polymer having two or more acryloyl groups or methacryloyl groups as polymerizable groups a crosslinked structure can be introduced to improve durability.
  • the metallic fine particles dispersed in the matrix to form the fine regions are not particularly limited as long as they have absorption in the visible light region.
  • the metal include silver, copper, gold, platinum, aluminum, palladium, rhodium, iron, chromium, nickel, manganese, tin, cobalt, titanium, magnesium, lithium, and alloys of these metals. These metals can be used in combination of a plurality of types.
  • the ratio of the metallic fine particles dispersed in the matrix is from 0.1 to 10 parts by weight, based on 100 parts by weight of the matrix material, from the viewpoint of obtaining a polarizer having good heat resistance and transparency. Preferably it is 0.5 to 5 parts by weight.
  • the fine regions formed by the metallic fine particles are preferably not oriented in a specific direction as described above.
  • the aspect ratio is 2 or less.
  • a metallic dopant capable of forming metallic fine particles by reduction and precipitation can be used. After the metallic dopant is mixed with the solution containing the organic matrix material, metallic fine particles can be precipitated and dispersed by reduction or the like.
  • the metallic dopant any one can be used as long as it is soluble in the solution of the organic matrix material and has an absorption in the visible light region. Examples thereof include the following.
  • the metallic dopant include an inorganic metal compound, an organic metal compound, a complex of an inorganic metal compound and an organic metal compound, and a complex of an organic metal compound and an organic metal compound.
  • metal Metal halides include metal halides, metal nitrates, metal acetates, metal trifluoroacetate compounds, metal acetylacetone compounds, metal trifluoroacetylacetone compounds, and metal hexaflurates. O-acetylacetone compounds and the like. Also, a complex obtained by mixing the above compound with acetylacetone, 1,1,1-trifluoroacetylacetone, 1,1,1,5,5,5-hexafluoroacetylacetone may be used. It is possible.
  • the method for producing the polarizer of the present invention is not particularly limited, a mixed solution in which metallic fine particles are dispersed and contained in a solution containing a matrix material is prepared.
  • the mixing ratio of the solution of the organic matrix material and the solution in which the metallic fine particles are dispersed (or the solution containing the metallic dopant) is such that the ratio of the gold attribute fine particles dispersed in the matrix in the obtained polarizer is as described above. It is appropriately adjusted so as to fall within the range.
  • the solution may contain various additives such as a dispersant, a surfactant, a hue adjuster, an ultraviolet absorber, a flame retardant, an antioxidant, a thickener, and a plasticizer.
  • Organic matrix material In the case of a light-emitting polymer, a polarizer can be obtained by forming the mixed solution into a film and then performing a uniaxial stretching treatment.
  • the solvent used for the translucent polymer solution is not particularly limited as long as the translucent polymer can be dissolved.
  • water aromatic monohydrocarbons such as toluene, xylene, etc. page; acetone, methylethyl ketone, methyl isobutyl ketone, cyclohexanone, cyclopentanone, cycloheptanone, 2-heptanone, methyl isobutyl ketone, Ketones such as butyl lactone; alcohols such as methanol, ethanol, n-propyl alcohol, is0-propyl alcohol, n-butyl alcohol, iso-butyl alcohol, tert-butyl alcohol; methyl acetate, ethyl acetate, propyl acetate Esters, such as methyl, propionate, and ethyl propionate; hydrocarbons, such as hexane and cyclohexane; dichloromethane, chloroform, formalde
  • the concentration of the translucent polymer solution is usually 5 to 50% by weight, and more preferably 0.05%. It is preferably adjusted to about 30% by weight.
  • the metallic fine particles are usually mixed with the light-transmitting polymer solution as a dispersion solution.
  • the concentration of the dispersion solution of metallic fine particles is usually preferably adjusted to about 0.1 to 15% by weight, and more preferably to about 0.1 to 10% by weight.
  • a mixed solution in which metallic fine particles are dispersed and contained in the translucent polymer solution is formed into a film to form a film.
  • Various methods such as a casting method, an extrusion molding method, a laminating molding method, an injection molding method, a roll molding method, and a casting method can be employed as a film forming method.
  • the size and dispersibility of the microscopic region can be controlled by adjusting the viscosity and the drying speed of the solution.
  • uniaxial stretching is performed to impart uniaxial birefringence to the translucent polymer forming the polymer matrix. Since the wavelength region having polarization characteristics is determined by the plasmon absorption wavelength of the metallic fine particles and the characteristics such as the refractive index of the translucent polymer, the birefringence of the translucent polymer is controlled by uniaxial stretching to control the polarizer. Optical characteristics can be controlled.
  • the uniaxial stretching treatment may be dry stretching by stretching in air, contact with a metal roll, or wet stretching in water when the translucent polymer is water-soluble such as polybutyl alcohol. .
  • the stretching is performed at a temperature at which stretching is possible near the glass transition temperature, depending on the translucent polymer.
  • the stretching ratio is not particularly limited, but is usually preferably about 1.0 to 30 times, about 3 to 30 times, and 5 to 20 times. Further, it is preferably about 5 to 8 times, and more preferably 3 to 8 times.
  • the mixed solution is prepared, the mixed solution is uniaxially oriented, and a polarizer is obtained by forming a film.
  • halogenated hydrocarbons such as chloroform, dichloromethane, dichloroethane, tetrachloroethane, trichloroethylene, tetrachloroethylene, and chlorobenzene, phenol, and phenol.
  • Phenols such as black phenol, aromatic hydrocarbons such as benzene, toluene, xylene, methoxybenzene and 2-dimethoxybenzene, and other bases Ton, ethyl acetate, tert-butyl alcohol, glycerin, ethylene glycol, triethylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylcellosolve, butylcellosolve, 2-pyrrolidone, N-methyl- 2-Pyrrolidone, pyridine, triethylamine, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethylsulfoxide, acetonitrile, ptyronitrile, carbon disulfide, hexahexanone, and the like can be used.
  • the concentration of the liquid crystal material solution is preferably adjusted to about 5 to 50% by weight, more preferably to about 0.05 to 30% by weight.
  • metallic fine particles are usually mixed with the liquid crystalline material solution as a dispersion solution. Concentration of the dispersion solution of metal fine particles is usually 0. Upper ⁇ ] L 0 wt 0/6 or so, more 0. 0 preferably adjusted to 1 to 5 wt%.
  • a mixed solution in which metallic fine particles are dispersed and contained in a solution of the liquid crystalline material is formed into a film and formed into a film.
  • the liquid crystalline material is uniaxially oriented.
  • the alignment of the liquid crystalline material can be performed by forming a film on an alignment substrate.
  • the alignment substrate various types of conventionally known substrates can be used. For example, a method of forming a thin alignment film made of polyimide, polyvinyl alcohol, or the like on a substrate and rubbing it.
  • a stretched film obtained by stretching a substrate a stretched film obtained by stretching a substrate, a polymer having a cinnamate skeleton and a azobenzene skeleton, or a material obtained by irradiating a polarized purple tato ray to a polyimide or the like can be used.
  • a method for applying the mixed solution to the alignment substrate for example, a roll coating method, a gravure coating method, a spin coating method, a bar coating method, or the like can be employed.
  • the solvent is removed to form a film.
  • the size and dispersibility of a minute region can be controlled by adjusting the viscosity and drying rate of the solution.
  • the conditions for removing the solvent are not particularly limited, and it is sufficient that the solvent can be substantially removed and the film does not flow or even run down.
  • the solvent is removed by drying at room temperature, drying in a drying oven, heating on a hot plate, or the like.
  • the orientation of the liquid crystal material is, for example, at a temperature at which the liquid crystal material shows a liquid crystal state.
  • the heat treatment temperature depends on the liquid crystalline material. Adjust as appropriate.
  • the heat treatment can be performed by the same method as the above-described drying method.
  • an alignment substrate can be used, and an alignment treatment can be performed by an electric field, a magnetic field, stress, or the like.
  • liquid crystal monomer When a liquid crystal monomer is used as the liquid crystal material, polymerization is performed after alignment. A polymerization initiator is appropriately blended with the liquid crystal monomer.
  • a polymerization initiator is appropriately blended with the liquid crystal monomer.
  • various means can be adopted according to the kind of the liquid crystal monomer.
  • a photopolymerization method by light irradiation can be adopted.
  • the light irradiation is performed by, for example, ultraviolet irradiation.
  • the ultraviolet irradiation conditions are preferably in an inert gas atmosphere in order to sufficiently promote the reaction. High-pressure mercury ultraviolet lamps are commonly used. Other types of lamps, such as metahalide UV lamps and incandescent tubes, can also be used.
  • the thickness of the polarizer is not particularly limited, but is usually about 0.1 to 100 ⁇ m, preferably 5 to 800 ⁇ .
  • the obtained polarizer can be made into a polarizing plate having a transparent protective layer provided on at least one side thereof according to a conventional method.
  • the transparent protective layer can be provided as a coating layer made of a polymer or as a laminate layer of a film.
  • an appropriate transparent material can be used, but a material having excellent transparency, mechanical strength, heat stability, moisture barrier property and the like is preferably used.
  • polyester polymers such as polyethylene terephthalate / polyethylene naphthalate, cellulosic polymers such as cellulose diacetate and cellulose triacetate, and acrylic polymers such as polymethyl methacrylate.
  • styrene-based polymers such as polystyrene-acrylonitrile-styrene copolymer (AS resin), and polyolefin-based polymers are listed.
  • Polyamides such as polyethylene, polypropylene, polyolefins having a cyclo- or norbornene structure, polyolefin polymers such as ethylene-propylene copolymers, amide polymers such as Shii-Dan-Bull polymers, and amides such as Nia-Nin® aromatic polyamides.
  • Polymers, imide polymers, sulfone polymers, polyethersulfone polymers, polyetheretherketone polymers, polyphenylene sulfide polymers, bul alcohol polymers, vinylidene chloride polymers, butylbutyral -Based polymer, arylate-based polymer, polyoxymethylene-based polymer, epoxy-based polymer, or blend of the above polymers And the like are also examples of the polymer forming the transparent protective layer.
  • a polymer film described in JP-A-2001-343529 (WOO 1/37007), for example, (A) a thermoplastic resin having a substituted and / or unsubstituted imido group in a side chain; B) A resin composition containing a thermoplastic resin having a substituted and / or unsubstituted phenyl and a nitrile group in a side chain.
  • a specific example is a film of a resin composition containing an alternating copolymer of isobutylene and N_methylmaleimide and an attarylonitrile'styrene copolymer.
  • a film made of a mixed extruded product of a resin composition or the like can be used.
  • a transparent protective layer that can be particularly preferably used in view of polarization characteristics and durability is a triacetylcellulose film whose surface has been subjected to Genich treatment with an alkali or the like.
  • the thickness of the transparent protective layer is generally 500 m or less, more preferably 1 to 300 im, and particularly preferably 5 to 300 m for the purpose of reducing the thickness of the polarizing plate.
  • a transparent protective layer is provided on both sides of the polarizer, a transparent protective film made of a different polymer or the like on the front and back sides can be used.
  • a protective film having a retardation value in the film thickness direction represented by the formula (1) of from 190 nm to 1075 nm is preferably used.
  • the retardation value in the thickness direction (R th) is more preferably ⁇ 80 nm to 1060 nm, and particularly preferably 170 nm to 105 nm.
  • the surface of the transparent protective film on which the polarizer is not adhered may be subjected to a hard coat layer, an anti-reflection treatment, a treatment for preventing stinging, and a treatment for diffusion or anti-glare.
  • the hard coat treatment is performed for the purpose of preventing the polarizing plate surface from being scratched, and for example, transparently protects a cured film having excellent hardness and sliding properties with an appropriate ultraviolet-curable resin such as an acrylic or silicone resin.
  • an appropriate ultraviolet-curable resin such as an acrylic or silicone resin.
  • the anti-reflection treatment is performed for the purpose of preventing the reflection of external light on the polarizing plate surface, and can be achieved by forming an anti-reflection film or the like according to the related art.
  • the anti-stating treatment is performed to prevent adhesion to the adjacent layer.
  • the anti-glare treatment is performed to prevent external light from being reflected on the surface of the polarizing plate and obstructing the visible light transmitted through the polarizing plate.
  • the transparent protective film is formed by applying a fine uneven structure to the surface of the transparent protective film by an appropriate method such as a sandblasting method, a roughening method by an embossing method, or a compounding method of transparent fine particles.
  • an appropriate method such as a sandblasting method, a roughening method by an embossing method, or a compounding method of transparent fine particles.
  • the fine particles to be contained in the formation of the surface fine unevenness include a conductive material composed of, for example, silica, alumina, titania, zirconia, tin oxide, indium oxide, oxidized domium, and diantimony oxide having an average particle size of 0.5 to 5.
  • Transparent fine particles such as inorganic fine particles which may have properties and organic fine particles made of a crosslinked or uncrosslinked polymer or the like are used.
  • the amount of the fine particles used is generally about 2 to 50 parts by weight to 100 parts by weight of the transparent resin forming the fine surface unevenness structure, and 5 to 25 parts by weight. Parts are preferred.
  • the anti-glare layer may also serve as a diffusion layer (such as a viewing angle expanding function) for diffusing light transmitted through the polarizing plate to increase the viewing angle and the like.
  • the anti-reflection layer, anti-stating layer, diffusion layer, anti-glare layer and the like can be provided on the transparent protective film itself, or can be separately provided as an optical layer separately from the transparent protective layer.
  • An adhesive is used for the bonding between the polarizer and the transparent protective film.
  • the adhesive include an isocyanate-based adhesive, a polybutyl alcohol-based adhesive, a gelatin-based adhesive, a bull-based latex-based adhesive, and a 7_-based polyester.
  • the adhesive is usually used as an adhesive composed of a 7_ ⁇ solution, and usually contains a solid content of 0.5 to 60% by weight.
  • the polarizing plate of the present invention is obtained by laminating the transparent protective film and the polarizer using the adhesive.
  • the adhesive may be applied to either the transparent protective film or the polarizer, or may be applied to both.
  • a drying step is performed to form an adhesive layer composed of a coating and drying layer.
  • Lamination of polarizer and transparent protective film Can be performed by a roll laminator or the like.
  • the thickness of the adhesive layer is not particularly limited, but is usually 0.1 to 5 m.
  • the polarizing plate of the present invention can be used as an optical film laminated with another optical layer in practical use.
  • the optical layer is not particularly limited. For example, it is used for forming a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including a half-wave plate such as 1/2 or 1/4), and a viewing angle compensation film.
  • a liquid crystal display device such as a reflection plate, a semi-transmission plate, a retardation plate (including a half-wave plate such as 1/2 or 1/4), and a viewing angle compensation film.
  • One or more optical layers that may be used may be used.
  • a reflective polarizing plate or a transflective polarizing plate in which a reflecting plate or a transflective reflecting plate is further laminated on the polarizing plate of the present invention an elliptically polarizing plate or a circular polarizing plate in which a retardation plate is further laminated on a polarizing plate
  • a polarizing plate, a wide viewing angle polarizing plate in which a viewing angle compensation film is further laminated on the polarizing plate, or a polarizing plate in which a brightness enhancement film is further laminated on the polarizing plate are preferable.
  • the reflective polarizing plate is a polarizing plate provided with a reflective layer, and is used to form a liquid crystal display device or the like that reflects and reflects light incident from the viewing side (display side). It has the advantage that the built-in light source such as a light can be omitted and the thickness of the liquid crystal display device can be easily reduced.
  • the reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer made of metal or the like is provided on one side of the polarizing plate via a transparent protective layer or the like as necessary.
  • the reflective polarizing plate include a transparent protective film that has been subjected to a matte treatment as necessary, and a reflective layer formed by attaching a foil made of a reflective metal such as aluminum to a vapor-deposited film on one surface.
  • a transparent protective film containing fine particles to form a fine surface unevenness structure and a reflective layer having a fine unevenness structure thereon.
  • the reflective layer having the above-mentioned fine uneven structure has an advantage that the incident light is diffused by irregular reflection to prevent a directional glare and to suppress uneven brightness.
  • the transparent protective film containing fine particles has an advantage that the incident light and its reflected light are diffused when transmitted through the protective film, so that uneven brightness can be further suppressed.
  • the reflective layer having a fine uneven structure reflecting the fine uneven structure on the surface of the transparent protective film is formed by depositing metal by an appropriate method such as a vacuum evaporation method, an ion plating method, or a sputtering method. It can be performed by, for example, directly attaching to the surface of the transparent protective layer.
  • the reflection plate can be used as a reflection sheet in which a reflection layer is provided on an appropriate film according to the transparent film, instead of the method of directly applying the reflection plate to the transparent protective film of the polarizing plate.
  • the reflective layer is usually made of metal
  • the use form in which the reflective surface is covered with a transparent protective film ⁇ a polarizing plate or the like prevents the reduction of the reflectance due to oxidation and, as a result, maintains the initial reflectance for a long time. This is more preferable in terms of avoiding the separate provision of a protective layer and the like.
  • the transflective polarizing plate can be obtained by forming a transflective reflective layer such as a half-mirror that reflects and transmits light on the reflective layer.
  • a transflective polarizing plate is usually provided on the back side of a liquid crystal cell.
  • a liquid crystal display device When a liquid crystal display device is used in a relatively bright atmosphere, an image is displayed by reflecting incident light from the viewing side (display side).
  • a built-in light source such as a backlight provided on the back side of a transflective polarizing plate can be used to form a liquid crystal display device of a type for displaying an image.
  • a transflective polarizing plate can save energy for using a light source such as a backlight in a bright atmosphere, and is useful for forming a liquid crystal display device that can be used with a built-in light source even in a relatively dark atmosphere. It is.
  • An elliptically polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on a polarizing plate will be described.
  • a so-called quarter-wave plate (also referred to as a ⁇ / 4 plate) is used as a retardation plate for converting linearly polarized light into circularly polarized light or converting circularly polarized light into linearly polarized light.
  • a half-wave plate (also called ⁇ / plate) is usually used to change the polarization direction of linearly polarized light.
  • the elliptically polarizing plate compensates (prevents) the coloring (blue or yellow) caused by the birefringence of the liquid crystal layer of the super twisted nematic (STN) type liquid crystal display device, and is effective in the case of the black-and-white display without the coloring.
  • the one in which the three-dimensional refractive index is controlled is preferable because coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction can be compensated (prevented).
  • the circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflection type liquid crystal display device in which an image is displayed in color, and has a function of preventing reflection.
  • the above-mentioned retardation plate include poly-poly-ponate and polyvinyl Birefringent film obtained by stretching a film made of a suitable polymer such as alcohol, polystyrene, polymethyl methacrylate, polypropylene, or other polyolefins, polyarylates, or polyamides.
  • ⁇ ⁇ Alignment film of liquid crystal polymer liquid crystal Examples thereof include those in which a polymer oriented layer is supported by a film.
  • the retardation plate may be one having an appropriate retardation according to the intended use, such as, for example, one for the purpose of compensation for various wavelength plates or coloring due to birefringence of a liquid crystal layer or a viewing angle, and two or more types. It may be one in which retardation plates are laminated to control optical characteristics such as retardation.
  • the above-mentioned elliptically polarizing plate or reflection type elliptically polarizing plate is obtained by appropriately combining a polarizing plate or a reflection type polarizing plate with a retardation plate.
  • Such an elliptically polarizing plate or the like can also be formed by sequentially and separately laminating a (reflection type) polarizing plate and a retardation plate in a manufacturing process of a liquid crystal display device so as to form a combination.
  • the use of an optical film such as a polarizing plate has the advantage that the efficiency of a liquid crystal display device or the like can be improved due to its excellent quality stability and laminating workability.
  • the viewing angle compensation film is a film for widening the viewing angle so that an image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed from a slightly oblique direction, not perpendicular to the screen.
  • a viewing angle compensating retardation plate includes, for example, a retardation film, an alignment film such as a liquid crystal polymer, or a film in which an alignment layer such as a liquid crystal polymer is supported on a transparent substrate.
  • a normal retardation plate is a birefringent polymer film uniaxially stretched in the plane direction, whereas a retardation plate used as a viewing angle compensation film is biaxially stretched in the plane direction.
  • Bidirectional stretching such as birefringent polymer film, birefringent polymer with uniaxial stretching in the plane direction, and biaxially oriented polymer with thickness-controlled refractive index stretched in the thickness direction and also stretched in the thickness direction Film or the like is used.
  • the obliquely oriented film include, for example, a film obtained by bonding a heat shrink film to a polymer film and subjecting the polymer film to a stretching treatment and / or shrinking treatment under the action of the shrinkage force caused by heating, or a film obtained by obliquely orienting a liquid crystal polymer. And so on.
  • the same polymer as that described for the retardation plate is used to prevent coloration and the like due to a change in viewing angle based on the phase difference due to the liquid crystal cell, and to provide a viewing angle for good visibility.
  • An appropriate one for the purpose of expansion of the size and the like can be used.
  • the optically-compensated retardation in which an optically anisotropic layer composed of an alignment layer of liquid crystal polymer, particularly a tilted alignment layer of discotic liquid crystal polymer, is supported by a triacetyl cellulose film.
  • a plate can be preferably used.
  • a polarizing plate obtained by laminating a polarizing plate and a brightness enhancement film is usually used by being provided on the back side of a liquid crystal cell.
  • the brightness enhancement film reflects linearly polarized light of a predetermined polarization axis or circularly polarized light of a predetermined direction when natural light enters due to reflection from the back of a backlight of a liquid crystal display device, etc., and exhibits the property of transmitting other light.
  • the polarizing plate, in which the brightness enhancement film is laminated with the polarizing plate receives light from a light source such as a backlight to obtain transmitted light of a predetermined polarization state, and does not transmit light other than the predetermined polarization state.
  • the light reflected on the surface of the brightness enhancement film is further inverted through a reflection layer or the like provided on the rear side and re-incident on the brightness enhancement film, and a part or all of the light is transmitted as light of a predetermined polarization state to allow brightness.
  • the brightness can be improved by increasing the amount of light transmitted through the enhancement film, and by increasing the amount of light that can be used for liquid crystal display image display by supplying polarized light that is hardly absorbed by the polarizer.
  • when light is incident through a polarizer from the back side of a liquid crystal cell with a backlight or the like without using a brightness enhancement film it has a polarization direction that does not match the polarization axis of the polarizer.
  • the light is absorbed by the polarizer and does not pass through the polarizer. That is, although it depends on the characteristics of the polarizer used, about 50% of the light is absorbed by the polarizer, and the amount of light available for liquid crystal image display etc. decreases, and the image becomes darker. .
  • the brightness enhancement film light having a polarization direction that is absorbed by the polarizer is reflected by the brightness enhancement film once without being incident on the polarizer, and then inverted via a reflective layer provided on the back side. And then re-enter the brightness enhancement film, and only the polarized light whose polarization direction is reflected and inverted between the two so that it can pass through the polarizer is converted to the brightness enhancement film. Since light is transmitted to the polarizer and supplied to the polarizer, light from a backlight or the like can be efficiently used for displaying an image on the liquid crystal display device, and the screen can be brightened.
  • a diffusion plate may be provided between the brightness enhancement film and the above-mentioned reflection layer or the like.
  • the polarized light reflected by the brightness enhancement film goes to the above-mentioned reflective layer, etc., but the diffuser installed diffuses the passing light evenly and at the same time, eliminates the polarized state and turns it into a non-polarized state. It becomes. That is, the diffuser returns the polarized light to the original natural light state.
  • the light in the non-polarized state that is, the light in the natural light state, repeatedly travels toward the reflection layer and the like, is reflected through the reflection layer and the like, passes through the diffuser again, and reenters the brightness enhancement film.
  • the brightness of the display screen is maintained while the unevenness of the brightness of the display screen is reduced.
  • a brightness enhancement film one that transmits linearly polarized light of a predetermined polarization axis and reflects other light, such as a multilayer thin film of a dielectric or a multilayer laminate of thin films having different refractive index anisotropy, for example.
  • a material that reflects either left-handed or right-handed circularly polarized light and transmits other light such as an alignment film of cholesteric liquid crystal polymer or a film with its alignment liquid crystal layer supported on a film substrate. Any suitable one such as can be used.
  • the transmitted light is incident on the polarization plate as it is, with the polarization axis aligned, thereby efficiently absorbing the polarization plate while suppressing absorption loss. Can be transmitted.
  • a brightness enhancement film of the type that emits circularly polarized light such as a cholesteric liquid crystal layer
  • the light can be incident on the polarizer as it is, but from the viewpoint of suppressing absorption loss, the circularly polarized light is transmitted through a phase difference plate. It is preferable to make the light linearly polarized and make it incident on the polarizing plate. By using a quarter-wave plate as the retardation plate, circularly polarized light can be converted to linearly polarized light.
  • a retardation plate that functions as a quarter-wave plate in a wide wavelength range such as the visible light region is, for example, a retardation layer that functions as a quarter-wave plate for light-colored light with a wavelength of 550 nm, and other retardation layers. It can be obtained by a method in which a retardation layer exhibiting characteristics, for example, a retardation layer functioning as a half-wave plate is overlapped. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may be composed of one or more retardation layers.
  • the cholesteric liquid crystal layer can also reflect circularly polarized light in a wide wavelength range such as the visible light region by combining ones having different reflection wavelengths and having an arrangement structure in which one or more layers are overlapped. Based on this, it is possible to obtain transmission circularly polarized light in a wide wavelength range.
  • the polarizing plate may be formed by laminating a polarizing plate and two or three or more optical layers as in the above-mentioned polarization separation type polarizing plate. Therefore, a reflective elliptically polarizing plate or a transflective elliptically polarizing plate obtained by combining the above-mentioned reflective polarizing plate, semi-transmissive polarizing plate and retardation plate may be used.
  • An optical film in which the optical layer is laminated on a polarizing plate can also be formed by a method in which the optical film is sequentially laminated separately in a manufacturing process of a liquid crystal display device or the like. It is superior in quality stability and assembly work, and has the advantage of improving the manufacturing process of liquid crystal display devices and the like.
  • Appropriate bonding means such as an adhesive layer can be used for lamination.
  • the above-mentioned polarizing plate or the optical film in which at least one polarizing plate is laminated may be provided with an adhesive layer for bonding to another member such as a liquid crystal cell.
  • the pressure-sensitive adhesive for forming the pressure-sensitive adhesive layer is not particularly limited, but for example, an acrylic polymer, a silicone-based polymer, a polyester, a polyurethane, a polyamide, a polyether, a fluorine-based or rubber-based polymer appropriately used as a base polymer may be used. Can be selected for use. In particular, those having excellent optical transparency, such as an acrylic pressure-sensitive adhesive, exhibiting appropriate wettability, cohesiveness and adhesiveness and exhibiting excellent weather resistance and heat resistance can be preferably used.
  • an adhesive layer having a low moisture absorption rate and excellent heat resistance is preferred.
  • the adhesive layer is made of, for example, natural or synthetic resins, particularly, tackifier resins, fillers, pigments, colorants, and antioxidants made of glass fibers, glass beads, metal powders, and other inorganic powders.
  • the adhesive may contain an additive to be added to the pressure-sensitive adhesive layer. Further, it may be a pressure-sensitive adhesive layer containing fine particles and exhibiting light diffusibility.
  • the attachment of the adhesive layer to one or both sides of the polarizing plate or the optical film can be performed by an appropriate method.
  • examples thereof include dissolving or dispersing a base polymer or a composition thereof in a solvent consisting of a single solvent or a mixture of appropriate solvents such as toluene and ethyl acetate.
  • An example is a method in which an adhesive layer is formed on a separator, and is transferred onto a polarizing plate or an optical film.
  • the adhesive layer can also be provided on one or both sides of a polarizing plate or an optical film as a superposed layer of different compositions or types. When provided on both sides, an adhesive layer having a different composition, type, thickness, etc. may be formed on the front and back of the polarizing plate or the optical film.
  • the thickness of the pressure-sensitive adhesive layer can be appropriately determined depending on the purpose of use and adhesive strength, etc., and is generally 1 to 500 ⁇ m, preferably 5 to 200 m, and particularly preferably 10 to 100 m. I like it.
  • the separator may be any suitable thin film such as a plastic film, rubber sheet, paper, cloth, non-woven fabric, net, foam sheet, metal foil, or a laminate thereof, if necessary.
  • An appropriate material according to the related art such as a material treated with a coating agent with an appropriate releasing agent such as a metal, a long mirror alkyl type, a fluorine type or molybdenum sulfide, can be used.
  • each layer such as a polarizer, a transparent protective film, an optical film, or the like, which forms the above-described polarizing plate, and a layer such as an adhesive layer may be, for example, a salicylic acid ester compound, a benzophenol compound, or a benzotriazole compound ⁇
  • a material having an ultraviolet absorbing ability by a method such as a method of treating with an ultraviolet absorbent such as a salt compound or a nickel complex salt compound may be used.
  • the polarizing plate or optical film of the present invention can be preferably used for forming various devices such as a liquid crystal display device.
  • the formation of the liquid crystal display device can be performed according to a conventional method. That is, a liquid crystal display device generally includes a liquid crystal cell and a polarizing plate or an optical film, and It is formed by appropriately assembling components such as an illumination system as necessary and incorporating a drive circuit, but in the present invention, there is no particular limitation except that the polarizing plate or the optical film according to the present invention is used. No, it can be the same as before.
  • a liquid crystal display device generally includes a liquid crystal cell and a polarizing plate or an optical film, and It is formed by appropriately assembling components such as an illumination system as necessary and incorporating a drive circuit, but in the present invention, there is no particular limitation except that the polarizing plate or the optical film according to the present invention is used. No, it can be the same as before.
  • any type such as TN type, STN type, and 7T type can be used.
  • An appropriate liquid crystal display device such as a liquid crystal display device in which a polarizing plate or an optical film is arranged on one or both sides of a liquid crystal cell, or a lighting system using a backlight or a reflecting plate can be formed.
  • the polarizing plate or the optical film according to the present invention can be installed on one side or both sides of the liquid crystal cell.
  • polarizing plates or optical films are provided on both sides, they may be the same or different.
  • appropriate components such as a diffusion plate, an anti-glare layer, an anti-reflection film, a protection plate, a prism array, a lens array sheet, a light diffusion plate, and a backlight are placed at appropriate positions in one layer. Or, two or more layers can be arranged.
  • organic electroluminescence device organic EL display device
  • a transparent electrode, an organic light-emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light-emitting body (organic electroluminescent light-emitting body).
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene.
  • a structure having various combinations such as a laminate of such a light emitting layer and an electron injection layer composed of a perylene derivative, or a laminate of a hole injection layer, a light emitting layer, and an electron injection layer, etc. are known.
  • holes and electrons are injected into an organic light-emitting layer by applying a voltage to a transparent electrode and a metal electrode, and energy generated by recombination of these holes and electrons is converted into a fluorescent material. And emits light when the excited fluorescent substance returns to the ground state.
  • the mechanism of recombination on the way is similar to that of a general diode, and as can be expected from this, the current and the emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
  • At least one of the electrodes must be transparent in order to extract light emitted from the organic light-emitting layer, and is usually made of indium tin oxide (ITO).
  • ITO indium tin oxide
  • a transparent electrode made of any transparent conductor is used as an anode.
  • metal electrodes such as Mg-Ag and A1-Li are usually used.
  • the organic light emitting layer is formed of a very thin film having a thickness of about 1 O nm. For this reason, the organic light emitting layer transmits light almost completely as well as the transparent electrode. As a result, the light that enters from the surface of the transparent substrate during non-light emission, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode, returns to the surface side of the transparent substrate again, so that when viewed from the outside, However, the display surface of the organic EL display device looks like a mirror surface.
  • an organic EL display device including an organic electroluminescent luminous body having a transparent electrode on the front side of an organic light emitting layer that emits light by applying a voltage and a metal electrode on the back side of the organic light emitting layer, the surface of the transparent electrode A polarizing plate may be provided on the side, and a retardation plate may be provided between the transparent electrode and the polarizing plate.
  • the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, there is an effect that the mirror surface of the metal electrode is not visually recognized by the polarization action.
  • the phase difference plate is composed of a 1/4 wavelength plate and the angle between the polarization directions of the polarizing plate and the phase difference plate is adjusted to ⁇ / 4, the mirror surface of the metal electrode can be completely shielded. .
  • linearly polarized light is transmitted by the polarizing plate.
  • This linearly polarized light is generally converted into elliptically polarized light by a retardation plate, but becomes circularly polarized light, especially when the retardation plate is a quarter-wave plate and the angle between the polarization directions of the polarizing plate and the retardation plate is 7C / 4. .
  • This circularly polarized light passes through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, passes through the organic thin film, the transparent electrode, and the transparent substrate again, and becomes linearly polarized light again by the phase difference plate.
  • the linearly polarized light is orthogonal to the polarization direction of the polarizing plate, and cannot pass through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
  • this mixed solution is spread on a flat plate that has been subjected to a mold release treatment using an applicator so that the thickness after drying is 75 ⁇ m, and dried at 50 ° C. for 1 hour.
  • a polyvinyl alcohol film in which ultrafine silver particles were dispersed was obtained.
  • the obtained polybutyl alcohol film was uniaxially stretched at a stretching magnification of 3 while contacting a metal hole heated at 100 ° C. to obtain a polarizer having a thickness of 30 m.
  • the transmittance of the stretched film was 88%.
  • the stretched film was lightly colored yellow based on the absorption of ultrafine silver particles and exhibited dichroism.
  • an average particle size and an aspect ratio were measured for a minute region formed by the metallic fine particles.
  • the average particle size and the aspect ratio were measured by TEM.
  • the average particle size was 25 nm, and the aspect ratio was 1.3.
  • an increase in absorption was confirmed at around 400 nm.
  • the absorption characteristics were measured using U-4100 manufactured by Hitachi, Ltd.
  • the birefringence of a polybutyl alcohol film which is a matrix material of a polarizer, could not be measured directly, but an automatic birefringence meter K ⁇ manufactured by Oji Scientific Instruments Co., Ltd. After measuring the phase difference ( ⁇ ⁇ d) and d ( ⁇ : birefringence, d: film thickness) using BRA 21 ADH, ⁇ was determined to be 0.03.
  • Fig. 1 shows the absorption spectrum.
  • the absorption spectrum is measured by Hitachi, Ltd.
  • a spectrophotometer U4100 was used and a Glan-Thompson polarizing prism was installed.
  • the B peak wavelength is the longest wavelength ( ⁇ 1: 438 nm), and the direction of the incident polarization plane is rotated.
  • a polarizer was obtained in the same manner as in Example 1 except that the silver fine particles were changed to gold fine particles.
  • the transmittance of the film after stretching was 88%.
  • the stretched film was light red in color based on the absorption of ultrafine gold particles and exhibited dichroism.
  • the average particle size of the minute region formed by the metallic fine particles was 25 nm, and the aspect ratio was 1.2.
  • a film in which silver fine particles were dispersed at the same ratio as in Example 1 in polyimide having a transmittance of 68% was stretched 1.1 times to obtain a polarizer.
  • the stretched film turned deep yellow and exhibited dichroism due to both coloring of polyimide and absorption of ultrafine silver particles.
  • the transmittance of Polymer Matritas is the value obtained by measuring the total light transmittance (%) at a wavelength of 550 nm using U_4100 manufactured by Nissho Co., Ltd.
  • the polarizer was left in an environment of 100 ° C. for 24 hours, dried, and then visually observed, and evaluated according to the following criteria. ⁇ : No color loss or color change was visually observed.
  • a liquid crystalline monomer having one atalyloyl group in the molecule 100 parts by weight dissolved in toluene, and a photopolymerization initiator (Ciba Special) 5 parts by weight of Irgakiure (907) manufactured by Tik Chemicals and 0.5 parts by weight of a leveling agent (BYK-361) were added to prepare a solution having a liquid crystal monomer concentration of 20% by weight.
  • a 1% by weight dispersion of silver ultrafine particles (average particle diameter: 10 nm) dispersed in toluene was previously mixed, and the mixture was sufficiently stirred to obtain a concentration of about 1%.
  • a 1% by weight dispersion of silver ultrafine particles average particle diameter: 10 nm
  • This mixed solution was spin-coated on an alignment film formed by rubbing a thin layer of polyvinyl alcohol formed on a glass substrate, and dried at 110 ° C. for 3 minutes. Further, a 1 ⁇ m-thick polarizer was obtained by performing UV polymerization by UV irradiation. With respect to the obtained polarizer, an aspect ratio was measured for a minute region formed by metallic fine particles. The average particle size and aspect ratio were measured by TEM. The aspect ratio was 1.3. Measure the absorption characteristics of the obtained polarizer As a result, an increase in absorption was confirmed at 42 O nm. In addition, the measurement of the light absorption characteristic was performed using U-4100 manufactured by Hitachi, Ltd.
  • a side-chain type liquid crystalline polymer having a cyanobiphenyl group (which becomes a nematic liquid crystal layer at 70 to 190 ° C.) was dissolved in toluene to prepare a solution having a concentration of 20% by weight.
  • a 20% by weight dispersion liquid in which ultrafine silver particles (average particle size: 1 O nm) were dispersed in toluene was mixed well and stirred sufficiently to obtain a concentration of about ultrafine silver particles.
  • a 1% mixed solution was prepared.
  • This mixed solution is spin-coated on an alignment film obtained by rubbing a thin layer of polyvinyl alcohol formed on glass, dried at 110 ° C. for 3 minutes, and dried to a thickness of 2 / m.
  • a polarizer was obtained.
  • an aspect ratio was measured for a minute region formed by metallic fine particles.
  • the average particle size and aspect ratio were measured by TEM.
  • the aspect ratio was 1.3.
  • an increase in absorption was confirmed at around 420 nm and 550 nm.
  • the present invention is useful as a polarizer, and a polarizing plate or an optical film using the polarizer can be suitably applied to an image display device such as a liquid crystal display device, an organic EL display device, a CRT, and a PDP.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

 本発明の偏光子は、ポリマーマトリクス中に、金属性微粒子が分散されている構造のフィルムからなる偏光子であって、ポリマーマトリクスを形成するポリマーは、厚み1mmで測定した時の透過率が88%以上の透光性ポリマーであり、かつフィルムは一軸延伸されていることを特徴とする。本発明の偏光子は、耐熱性がよく、しかも透過性の良好な偏光子である。

Description

明細書 偏光子、 その製造方法、 光学フィルムおよび画像表示装置 技術分野
本発明は偏光子およびその製造方法に関する。 また本発明は当該偏光子を用い た偏光板、 光学フィルムに関する。 さらには当該偏光子、 偏光板、 光学フィルム を用いた液晶表示装置、有機 E L表示装置、 P D P等の画像表示装置に関する。 背景技術
液晶表示装置等の画像表示装置には、 その表示原理から偏光子 (偏光板) が用 いられている。 近年では、 画像表示装置の大面積化、 多様ィヒに伴い、偏光子の需 要も拡大しており、 かつ品質向上'耐久性への要求は大きくなつている。 特に、 携帯電話、 P D Aなどの屋外での過酷な環境下での使用を想定した液晶表示装置 や、 車載用ナビゲ一シヨン、液晶プロジェクタ用の液晶表示装置等には非常に高 い耐熱性が要求される。
従来、画像表示装置用の偏光子としては、 主に延伸したポリビュルアルコール フィルムに二色性の誠実を持つョゥ素ゃ染料である二色性材料で染色したものが 広く用いられている (たとえば、 特開 2 0 0 1 - 2 9 6 4 2 7号公報参照) 。 ヨウ素系偏光子は、非晶性であるヨウ素を混入した水溶液によりフィルムを染 色したのち、 延伸処理を施すことによって得られ、可視光に対する高い偏光性を 有し、 大型偏光子の作製が可能である。 しかし、 ヨウ素系偏光子は、 ヨウ素が高 温で昇華したり、 または錯体構造が変ィ匕するために偏光性能を維持することが難 しい。 一方、二色性染料を用いた染料系偏光子は、 ヨウ素系偏光子に比べて耐熱 性はよいものの、染料の二色比が十分でないことゃ耐候性などに劣ることなどか ら、 一部の用途を除いては広く採用はされていない。 なお、偏光子のフィルム材 料としては、 ポリビュルアルコールのほかに、 ポリスチレン、 セルロース誘導体 、 ポリ塩化ビュル、 ポリプロピレン、 アクリル系重合体、 ポリアミ ド、 ポリエス テル、 ェチレン一酢酸ビニル共重合体ケン化物なども用いられている。 また高温での耐熱性の要求される光通信、 光記録再生装置などの光デバイス分 野で用いられる偏光子としては、等方性の基板上に、 光吸収異方性を有する金属 性粒子を分散させた偏光子が用いられている。 かかる偏光子としては、 たとえば 、 ガラス中に還元反応などによって金属粒子を析出させ、延伸したものなどが用 いられている。 しかし、等方性基板上へ金属性微粒子を分散させた偏光子は、金 属性微粒子の配置を真空蒸着法等により行うため、 高い熱プロセスが必要であり 、量産に適していない。
また、 異方性を持つ金属性微粒子をポリイミド中に分散し、一軸延伸処理する ことにより耐熱性のよレ、偏光性フィルムが得られることが知られている (たとえ ば、特開平 8 _ 1 8 4 7 0 1号公報参照) 。 しかし、 かかる偏光性フィルムは、 ポリイミドにより形成されているため、一軸延伸処理後も黄色く色づいており、 透過性に劣つているという問題がある。
またヨウ素を含む上述の二色性材料を用いた偏光子では、 二色性材料を延伸方 向に配向させることによつて偏光性能が発揮される。 このような偏光子に偏光を 入射したときに測定される吸光スぺクトルは、一般に、 入射偏光面が、偏光子の 延伸方向に平行な場合の吸光スぺクトル (M Dスぺクトル) と、 偏光子の延伸方 向に垂直方向に平行な場合の吸光スぺクトル (T Dスぺクトル) は、 スペクトル の形状は同じ (吸収ピーク波長もほぼ同じ) で、 吸光度が M Dスペクトル >T D スぺクトルの関係になる。 つまり、 吸光スぺクトルは、 偏光子に対する、 入射偏 光面の方位によって、 『吸収ピークが縦にシフトする』。 このとき、偏光性能を 上げるためには、 M Dスペクトルの吸収ピークの吸光度をより大きくし、 T Dス ぺクトルの吸収ピークの吸光度をできるだけ小さくしなければならない。 すなわ ち、 M Dスペクトルと T Dスぺクトルの吸光度の差をできるだけ大きくする必要 があった。 発明の開示
本発明は、簡便な手法にて製造可能な耐熱性のよい偏光子およびその製造方法 を提供することを目的とする。
また本発明は、耐熱性がよく、 しかも透過性の良好な偏光子およびその製造方 法を提供することを目的とする。
また本発明は、 M Dスペクトルと T Dスぺクトルの吸光度の差が小さい場合で あって、 偏光性能の良好な偏光子を提供することを目的とする。
さらには本発明は、 前記偏光子を用いた偏光板を提供すること、 前記偏光子ま たは偏光板を用いた光学フィルムを提供することを目的とする。 さらには当該偏 光子、偏光板または光学フィルムを用いた画像表示装置を提供することを目的と する。
本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、 以下に示す偏光 子により前記目的を達成できることを見出し本発明を完成するに至った。
( 1 ) すなわち本発明は、 ポリマーマトリクス中に、金属性微粒子が分散され ている構造のフィルムからなる偏光子であって、
ポリマーマトリクスを形成するポリマ一は、厚み l mmで測定した時の透過率 が 8 8 %以上の透光性ポリマ一であり、 かつフィルムは一軸延伸されていること を特徴とする偏光子、 に関する。
上記本発明の偏光子は、 ポリマーマトリクス中に、金属性微粒子が分散された 構造を有することから、画像表示装置として用いた場合の耐熱性を有し、耐熱性 の要求される用途において好適に用いられる。 また、 ポリマーマトリクスには透 過率が 8 8 %以上の透光性ポリマ一を用いており、透過性が良好である。 透光性 ポリマーの透過率は高いほど好ましく、 8 8 %以上、 さらには 9 0 %以上である のが好適である。 なお、透過率は、厚み l mmに製膜した透光性ポリマーを、 ( 株) 島津製作所製 U V— 3 1 5 0を用いて測定した時の全光線透過率である。 ポリマーマトリクス中に分散された金属性微粒子は表面プラズモン吸収を起こ し、 一定波長の光を吸収することによるものと推定され、 また媒質である透光性 ポリマ一がー軸延伸処理により一軸性の複屈折を有することから光学異方性を発 現し、 これにより本発明の偏光子は偏光特性を発現したものと思われる。 プラス、 モン吸収は、微粒子界面における入射光の振動と微粒子内の電子によるブラズマ 振動の共振によるものであり、 このとき金属は大きな吸収特性を示す。 偏光特性 を持つ波長領域は、金属性微粒子のプラズモン吸収波長と、媒質である透光性ポ リマ一の屈折率等の特性により決定されるため、透光性ポリマーの複屈折性を利 用することにより任意の光 性を持つ偏光子の設計が可能である。 通常、 吸収 物質としてはョゥ素ゃ二色染料が使用されるが、 本発明においては金属性微粒子 の特性を利用して金属を吸収物質としている。
前記偏光子において、金属性微粒子により形成される微小領域が、平均粒径 1 0 0 n m以下であり、 かつァスぺクト比 (最大長/最小長) が 2以下であること が好ましい。 すなわち、 当該微小領域は、 形状の異方性が殆どない (球形) に近 いものであるのが良好である。 ァスぺクト比が 2を超えると、金属性微粒子を配 列させる必要があるときに、 配列方向に長軸を並べる必要があるが、 アスペクト 比が 2以下であれば長軸、短軸について並べる工程が不要となるからである。 微 小領域の平均粒径は 1 0 0 n m以下、 さらには 5 0 n m以下であるのが好ましい 。 またアスペクト比は 2以下、 さらには 1 . 8以下、 さらには 1 . 5以下である のが好ましい。 なお、微小領域の平均粒径、 アスペクト比は詳しくは実施例の記 載による。
また本発明は、厚み l mmで測定した時の透過率が 8 8 %以上の透光性ポリマ —を含有する溶液に、金属性微粒子を分散含有させた混合溶液を、製膜した後、 一軸延伸することを特徴とする前記偏光子の 方法、 に関する。
本発明の偏光子は、 簡便な方法にて、耐熱性および透過性のよい偏光子を得る ことができる。 また偏光特性を持つ波長領域は、金属性微粒子のブラズモン吸収 波長と、媒質である透光性ポリマーの屈折率等の特性により決定されるため、透 光性ポリマ一、金属性微粒子の材料等を適宜に選択し、一軸延伸により透光性ポ リマーにより形成されるフィルムの複屈折性を制御する とにより任意の光学特 性を持つ偏光子を製造することができる。
( 2 ) また本発明は、液晶性材料により形成されるマトリクス中に、金属性微 粒子が分散されていることを特徴とする偏光子、 に関する。 前記偏光子は、液晶 性材料が、一軸配向していることが好ましい。
上記本発明の偏光子は、 マトリクス中に、 金属性微粒子が分散された構造を有 することから、画像表示装置として用いた場合の耐熱性を有し、 耐熱性の要求さ れる用途において好適に用いられる。 かかる構造の本発明の偏光子は、簡便な手 法により製法可能である。 液晶性材料は、液晶ポリマ一であるのが製法が簡便で あり好適である。
マトリクス中に分散された金属性微粒子は表面プラズモン吸収を起こし、一定 波長の光を吸収することによるものと推定され、 また媒質である液晶性材料によ り光学異方性を発現し、 これにより本発明の偏光子は偏光特性を発現したものと 思われる。 プラズモン吸収は、微粒子界面における入射光の振動と微粒子内の電 子によるブラズマ振動の共振によるものであり, このとき金属は大きな吸収特性 を示す。 偏光特性を持つ波長領域は、金属性微粒子のプラズモン吸収波長と、 媒 質である液晶性材料の屈折率等の特性により決定されるため、液晶性材料の複屈 折性を利用することにより任意の光学特性を持つ偏光子の設計が可能である。 通 常、 吸収物質としてはヨウ素や二色染料が使用されるが、本発明においては金属 性微粒子の特性を利用して金属を吸収物質としている。
前記偏光子において、金属性微粒子により形成される微小領域が、平均粒径 1 O O n m以下であり、 かつアスペクト比 (最大長/最小長) が 2以下であること が好ましい。 すなわち、 当該微小領域は、 形状の異方性が殆どない (球形) に近 いものであるのが良好である。 アスペクト比が 2を超えると、金属性微粒子を配 列させる必要があるときに、配列方向に長軸を並べる必要があるが、 アスペクト 比が 2以下であれば長軸、 短軸について並べる工程が不要となるからである。 微 小領域の平均粒径は 1 0 0 nm以下、 さらには 5 0 n m以下であるのが好ましい 。 またアスペクト比は 2以下、 さらにはし 8以下、 さらには 1 . 5以下である のが好ましい。 なお、微小領域の平均粒径、 アスペクト比は詳しくは実施例の記 華 (こよ 。
また本発明は、液晶性材料を含む溶液に、金属性微粒子を分散含有させた混合 溶液を、製膜することを特徴とする前記偏光子の製造方法、 に関する。
前言 2¾造方法によれば、 簡便な方法にて、耐熱性のよい偏光子を得ることがで きる。 また、偏光特性を持つ波長領域は、金属性微粒子のプラズモン吸収波長と 、媒質である液晶性材料の屈折率等の特性により決定されるため、液晶性材料、 金属性微粒子の材料等を適宜に選択し、液晶性材料により形成されるフィルムの 複屈折性を制御することにより任意の光学特性を持つ偏光子を製造することがで きる。 (3) また本発明は、偏光を入射させた時に測定した吸光スペクトルが、 ある 波長において吸収ピークを有する偏光子であって、
偏光子に対する、 入射偏光面の方位を変化させると、 当該変化に伴って吸収ピ —ク波長がシフトすることを特徴とする偏光子、 に関する。
このように、 本発明の偏光子の偏光吸光スぺクトルは、入射偏光面の方位によ つて吸収ピーク波長自体が変化する。 すなわち、 吸光スぺクトルは、偏光子に対 する、入射偏光面の方位によって、 『吸収ピークが横にシフトする』 。 その結果 として、 入射偏光面の方位によって、 MDスペクトルと TDスペクトルの吸光度 の差が小さくても、 良好な偏光性能を発揮させることができる。 なお、 吸光スぺ クトルの測定は詳しくは実施例の記載による。
前記偏光子は、一般的に、偏光子に対する、入射偏光面の方位を変化させた場 合に、測定される吸収スぺクトルの吸収ピーク波長が最も長波長 (この波長を义 1とする) になるときの、 入射偏光面の方位を 0° とするとき、
当該偏光面の方位を 0° から徐々に増大させると、 吸収ピーク波長もこれに伴 つて短波長へシフトし、
入射偏光面の方位が 90° のときに、 吸収ピーク波長が最も短波長 (この波長 を; I 2とする) になる。 通常、 本発明の偏光子は、 MDスぺクトルにおける吸収 ピーク波長が最も長波長 (λ 1) になり、 この方位を基準にして、 入射偏光面の 方位を回転させた時、 偏光スぺクトルの吸収ピーク波長は徐々に短波長側へシフ 卜し、 90° 回転した時 (TDスぺクトル) にピーク波長は最も短波長 (λ 2) になるが、逆の場合もある。
前記偏光子は、 (ス 1ース 2) =10〜50nm、 を満足することをが好まし い。 望ましくは、 (ス 1一; I 2) = 20~5 Onmである。 (λ 1— 2) の値 が 10 nm未満ではシフトすべき 2つの吸収が殆ど重なるので偏光特性が発揮し 難くなる。
ここに述べたような本発明の偏光子の吸収特性は、 ョゥ素系偏光子や二色性色 素を用いた偏光子の吸収特性と明らかに異なる。
前記本発明の偏光子は、 たとえば、 フィルム面内に複屈折を有する有機マトリ クス中に、金属性微粒子が分散されているものを用いることができる。 上記偏光子にみられる偏光特性は、有機マトリクス中に分散された金属性微粒 子が、表面ブラズモン吸収を起こすことにより一定波長の光を吸収することによ るものと推定される。 プラズモン吸収は、微粒子界面における入射光の振動と微 粒子内の電子によるプラズマ振動の共振によるものであり、 このとき金属は大き な吸収特性を示す。 この吸収特性は、金属性微粒子のブラズモン吸収波長と媒質 である有機材料の屈折率等の特性、金属性微粒子の微小領域の分散状態により決 定される。 ゆえに、 フィルム面内方位によって屈折率が異なる場合 (すなわち複 屈折媒体の場合) には、 入射偏光面の方位が異なると吸収特性が異なり、波長シ フトが発生する。 以上のような原理で吸収の異方性、 すなわち偏光性能が発現し ていると考えられる。
また本発明の偏光子は、金属性微粒子が分散された構造を有することから、画 像表示装置として用いた場合の耐熱性を有する。 そのため、携帯電話、 P D Aな どの屋外での過酷な環境下での使用を想定した液晶表示装置や、 車載用ナピゲ一 ション、液晶プロジヱクタ用の液晶表示装置等には非常に高い耐熱性が要求され る用途において好適である。
有機マトリクスは、 ポリマーマトリクスにより形成されており、 ポリマ一マト リクスを形成するポリマーは、厚み l mmで測定した時の透過率が 8 8 %以上の 透光性ポリマ一であり、 かつフィルムは一軸延伸されているもの好適に用いるこ とができる。
また有機マトリクスとしては、液晶性材料により形成されているものを好適に 用いることができる。 液晶性材料が、一軸配向していることが好ましい。 また液 晶性材料は、液晶ポリマ一であるのが製法が簡便である好ましい。
前記偏光子において、金属性微粒子により形成される微小領域が、平均粒径 1 0 0 nm以下であり、 かつァスぺクト比 (最大長/最小長) が 2以下であること が好ましい。 すなわち、 当該微小領域は、形状の異方性が殆どない (球形) に近 いものであるのが良好である。 ァスぺクト比が 2を超えると、金属性微粒子を配 列させる必要があるときに、配列方向に長軸を並べる必要があるが、 ァスぺクト 比が 2以下であれば長軸、 短軸について並べる工程が不要となるからである。 微 小領域の平均粒径は 1 0 0 nm以下、 さらには 5 0 n m以下であるのが好ましく 、 アスペクト比は 2以下、 さらには 1 . 8以下、 さらには 1 . 5以下であるのが 好ましい。 微小領域の平均粒径、 アスペクト比は詳しくは実施例の記載による。 なお、本発明の偏光子の入射偏光面の方位による吸収ピークの変ィヒは、 マトリク ス材料の屈折率異方性のほか、金属性微粒子により形成される微小領域の分布状 態などによっても制御される。
また本発明は、前記偏光子の少なくとも片面に、透明保護層を設けた偏光板、 に関する。 また本発明は、前記偏光子、前記偏光板が、少なくとも 1枚積層され ていることを特徴とする光学フイルム、 に関する。 さらには本発明は、前記偏光 子、 前記偏光板または前記光学フィルムが用いられていることを特徴とする画像 表示装置、 に関する 図面の簡単な説明
図 1は、実施例 1の偏光子について、 入射偏光面の方位を変化させて測定した 吸光スぺクトルである。 発明を実施するための最良の形態
本発明の偏光子は、 複屈折を有する有機マトリクスにより形成される。 有機マ トリクス材料としては、非液晶性ポリマ一 (透光性ポリマー) を 1軸延伸したも の、 液晶性材料を 1軸配向させたものなどがあげられる。
透光性ポリマーは、厚み 1 mmで測定した時の透過率が 8 8 %以上であるもの 力好適に用いられる。 透光性ポリマ一は、 前記透過率のものを特に制限なく好適 に使用できる。
透光性ポリマ一としては、 たとえば、 ポリビニルアルコールまたはその誘導体 があげられる。 ポリビュルアルコールの誘導体としては、 ポリビニルホルマール 、 ポリビニルァセタール等があげられる他、 エチレン、 プロピレン等のォレフィ ン、 アタリル酸、 メタクリル酸、 クロトン酸等の不飽和カルボン酸そのアルキル エステル、 アクリルアミド等で変性したものがあげられる。 ポリビュルアルコ一 ルの重合度は、 1 0 0 0〜 1 0 0 0 0禾雖、 ゲン化度は 8 0〜 1 0 0モル%程度 のものが一般に用いられる。 なお、前記ポリビュルアルコール系フィルム中には可塑剤等の添加剤を含有す ることもできる。 可塑剤としては、 ポリオ一ルおよびその縮合物等があげられ、 たとえばグリセリン、 ジグリセリン、 トリグリセリン、 ェチレングリコ一ル、 プ ロピレングリコール、 ポリエチレングリコール等があげられる。 可塑剤の使用量 は、特に制限されないがポリビニルアルコール系フィルム中 2 0重量%以下とす るのが好適である。
また透光性ポリマーとしては、例えばポリエチレンテレフタレートゃポリェチ レンナフ夕レート等のポリエステル系樹脂;ポリスチレンやアタリロニトリル - スチレン共重合体(A S樹脂) 等のスチレン系樹脂;ポリエチレン、 ポリプロピ レン、 シクロ系ないしはノルボルネン構造を有するポリオレフイン、 エチレン ' プロピレン共重合体等のォレフィン系樹脂等があげられる。 さらには、塩化ビニ ル系樹脂、 セル口一ス系樹脂、 アクリル系樹脂、 アミド系樹脂、 、 イミ ド系樹脂 、 スルホン系ポリマ一、 ポリエーテルスルホン系樹脂、 ポリエーテルエーテルケ トン系樹脂ポリマー、 ポリフエ二レンスルフィド系樹脂、塩ィヒビ二リデン系樹脂 、 ビュルプチラール系樹脂、 ァリレート系樹脂、 ポリオキシメチレン系樹脂、 シ リコ一ン系樹脂、 ウレタン系樹脂等があげられる。 これらは 1種または 2種以上 を組み合わせることができる。 また、 フエノール系、 メラミン系、 アクリル系、 ウレタン系、 アクリルウレタン系、 エポキシ系、 シリコーン系等の熱硬化型また は紫外線硬化型の樹脂の硬化物を用いることもできる。
前記透光性ポリマ一により形成されるフィルムは、一軸延伸処理により、一軸 性の複屈折が付与される。 したがって、前記透光性ポリマーは、複屈折を生じや すい異方性を有するものが好ましく、 ポリビニルアルコール、 ポリカーボネート 、 スルホン系ポリマ一等が好適である。
液晶性材料は、低分子液晶または高分子液晶 (液晶ポリマー) のいずれでもよ く、 またエネルギー線硬ィヒ型の重合性液晶 (液晶モノマー) であってもよい。 液 晶性ポリマーは、 たとえば加熱等により配向し、 冷却して固定させて、 マトリク スを形成する。 液晶性モノマーは配向後に、紫外線照射等のエネルギー線により 重合してマトリクスを形成する。
前記液晶性材料は、液晶室温で液晶性を示すもの、 リオトロピック性液晶、 サ JP2003/013349
一モト口ピック性液晶、 高温で液晶性を示すもののいずれでもよい。 これら液晶 性材料としては、 ネマチック相またはスメクチック相の状態が出現するものが好 適に用いられる。 これら液晶性材料は 1種を単独でまたは 1種以上の混合物など として用いることができる。
前記液晶性ポリマ一としては、 主鎖型、 側鎖型またはこれらの複合型の各種骨 格のポリマーを特に制限なく使用できる。 主鎖型の液晶ポリマ一としては、 芳香 族単位等からなるメソゲン基を結合した構造を有する縮合系のポリマ一、 たとえ ば、 ポリエステル系、 ポリアミ ド系、 ポリカーボネート系、 ポリエステルイミ ド 系などのポリマーがあげられる。 メソゲン基となる前記芳香族単位としては、 フ ェニル系、 ビフヱニル系、 ナフタレン系のものがあげられ、 これら芳香族単位は 、 シァノ基、 アルキル基、 アルコキシ基、 ハロゲン基等の置換基を有していても よい。
側鎖型の液晶ポリマ一としては、 ポリアクリレ一ト系、 ポリメタクリレート系
、 ポリ _ α—ハローアタリレート系、 ボリ一 α—ハローシァノアクリレート系、 ポリアクリルアミ ド系、 ポリシロキサン系、 ポリマロネート系の主鎖を骨格とし 、 側鎖に環状単位等からなるメソゲン基を有するものがあげられる。 メソゲン基 となる前言己環状単位としては、 たとえば、 ビフエニル系、 フェニルべンゾェ一ト 系、 フエニルシクロへキサン系、 ァゾキシベンゼン系、 ァゾメチン系、 ァゾベン ゼン系、 フエニルピリミジン系、 ジフエニルアセチレン系、 ジフエ二ルペンゾェ —ト系、 ビシクロへキサン系、 シクロへキシルベンゼン系、 ターフェニル系等が あげられる。 なお、 これら環状単位の末端は、 たとえば、 シァノ基、 アルキル基 、 アルケニル基、 アルコキシ基、 ハロゲン基、 ハロアルキル基、 ハロアルコキシ 基、 ハロアルケニル基等の置換基を有していてもよい。 またメソゲン基のフエ二 ル基は、 ハロゲン基を有するものを用いることができる。
また、 いずれの液晶ポリマーのメソゲン基も屈曲性を付与するスぺ一サ部を介 して結合していてもよい。 スぺーサ一部としては、 ポリメチレン鎖、 ポリオキシ メチレン鎖等があげられる。 スぺ一サ一部を形成する構造単位の繰り返し数は、 メソゲン部の化学構造により適宜に決定されるがポリメチレン鎖の繰り返し単位 は 0〜 2 0、好ましくは 2〜 1 2、 ポリオキシメチレン鎖の繰り返し単位【ま 0〜 1 0、 好ましくは 1〜3である。
前記液晶性ポリマ一は、 ガラス転移 ¾J¾ 5 0 °C以上、 さらには 8 0 °C以上であ ることが好ましい。 また、重量平均分子量が 2千〜 1 0万程度のものが好ましい 液晶性モノマーとしては、末端にァクリロイル基、 メタクリロイル基等の重合 性官能基を有し、 これに前記環状単位等からなるメソゲン基、 スぺーサ部を有す るものがあげられる。 また重合性官肯基として、 ァクリロイル基、 メタァクリロ ィル基等を 2つ以上有するものを用いて架橋構造を導入して耐久性を向上させる こともできる。
前記マトリクス中に分散され、微小領域を形成している金属性微粒子は、可視 光域に吸収を持つものであれば特に制限されない。 金属としては、 たとえば、 銀 、 銅、金、 白金、 アルミニウム、 パラジウム、 ロジウム、 鉄、 クロム、 ニッケル 、 マンガン、 スズ、 コバルト、 チタン、 マグネシウム、 リチウム等、 またこれら の金属の合金を例示できる。 またこれら金属は複数の種類を組み合わせて用いる ことができる。
マトリクス中に分散している金属性微粒子の割合は、耐熱性、透過性の良好な 偏光子を得る点から、 前記マトリクス材料 1 0 0重量部に対して、 0 · 1〜 1 0 重量部、 好ましくは 0 . 5〜5重量部である。 なお、 ポリマーマトリクス中また は液晶性材料中で、金属性微粒子により形成される微小領域は、前述の通り、特 定の方向へ配向していないこと力好ましく、 また平均粒径 1 O O n m以下であり 、 かつァスぺクト比が 2以下であることが好ましい。
また、 予め形成されている金属性微粒子の代わりに、 還元 '析出等により金属 性微粒子を形成することができる金属性ド一パントを用いることができる。 金属 性ドーパントは、有機マトリクス材料を含有する溶液に混合したのち、 還元等に より金属性微粒子を析出し、 分散させることができる。 金属性ドーパントとして は、 前記有機マトリクス材料の溶液に可溶であり、 しかも可視光域に吸収を持つ ものであれば使用が可能であり、例えば以下のようなものがあげられる。 金属性 ドーパントとしては、 無機金属化合物、有機金属化合物、無機金属化合物と有機 金属化合物の錯体、 有機金属化合物と有機金属化合物の錯体があげられる。 金属 性ド一パントとしては、金属のハロゲン化物、金属の硝酸化合物、金属の酢酸化 合物、金属のトリフルォロ酢酸化合物、金属のァセチルァセトン化合物、金属の トリフルォロアセチルァセトン化合物、金属のへキサフルォロアセチルァセトン 化合物等があげられる。 また、 以上の化合物とァセチルアセトン、 1 , 1 , 1 一 トリフルォロアセチルァセトン、 1, 1, 1, 5, 5, 5—へキサフルォロアセ チルァセトンを混合することによって得られた錯体なども使用可能である。
本発明の偏光子の製造方法は特に制限されないが、 マトリクス材料含有する溶 液に、金属性微粒子を分散含有させた混合溶液を調製する。 有機マトリクス材料 の溶液と、金属性微粒子を分散させた溶液 (または金属性ドーパントを含有する 溶液) の混合割合は、 得られる偏光子において、 マトリクス中に分散している金 属性微粒子の割合が前記範囲となるように適宜に調整される。 なお、前記溶液中 には、 分散剤、 界面活性剤、色相調整剤、紫外線吸収剤、難燃剤、酸化防止剤、 增粘剤 ·可塑剤等の各種の添加剤を含有させることができる。
有機マトリクス材料力 光性ポリマ一の場合には、 前記混合溶液を製膜した後 、一軸延伸処理することにより偏光子が得られる。
透光性ポリマ一溶液に用いる溶媒としては、透光性ポリマーが溶解するもので あれば特に制限はない。 たとえば、水; トルエン、 キシレン等の芳香族単炭化水 素类頁;アセトン、 メチルェチルケトン、 メチルイソブチルケトン、 シクロへキサ ノン、 シクロペンタノン、 シクロへプタノン、 2—へプタノン、 メチルイソブチ ルケトン、 ブチルラクトン等のケトン類;メタノール、 エタノール、 n—プロピ ルアルコール、 i s 0—プロピルアルコール、 n—ブチルアルコール、 i s o— ブチルアルコール、 t e r t—ブチルアルコール等のアルコール類;酢酸メチル 、酢酸ェチル、 酢酸プロピル、 プロピオン酸メチル、 プロピオン酸ェチル等のェ ステル類;へキサン、 シク口へキサン等の炭素水素類;ジクロロメタン、 クロ口 ホルム、 四塩ィ匕炭素、 ジクロロエタン、 トリクロロェタン、 テトラクロロェタン 、 トリクロロエチレン等のハロゲン化炭素水素類;テトラヒドロフラン等のエー テル類等があげられる。 なお、 透光性ポリマーとして、 ポリビュルアルコール等 の水溶性のものを用いる場合には、溶媒としては水が好適に用いられる。
透光性ポリマ一溶液の濃度は、 通常、 5〜5 0重量% 、 さらには 0 . 0 5 〜3 0重量%程度に調整するのが好ましい。 一方、金属性微粒子は、 通常、 分散 溶液として前記透光性ポリマ一溶液に混合される。 金属性微粒子の分散溶液の濃 度は、通常、 0 . 1〜 1 5重量%程度、 さらには 0 . 1〜 1 0重量%程度に調整 するのカ好ましい。
前記透光性ポリマー溶液に、金属性微粒子を分散含有させた混合溶液は製膜し フィルム化する。 フィルムの形成方法としては、 キャスティング法、押出成形法 、 ラミネート成形法、 射出成形法、 ロール成形法、 流延成形法などの各種の方法 を採用できる。 フィルム成形にあたっては、溶液の粘度、乾燥速度を調整するこ とにより、微小領域の大きさや分散性を制御することもできる。
次いで、一軸延伸処理することにより、 ポリマ一マトリクスを形成する透光性 ポリマーに一軸性の複屈折を付与する。 偏光特性を持つ波長領域は、金属性微粒 子のブラズモン吸収波長と、透光性ポリマーの屈折率等の特性により決定される ため、一軸延伸処理による透光性ポリマーの複屈折制御により偏光子の光学特性 を制御できる。
一軸延伸処理は、 空気中での延伸、金属ロールへの接触等による乾式延伸でも よいし、透光性ポリマーがポリビュルアルコールのような水溶性の場合には、 水 中での湿式延伸でもよい。 なお、 延伸は透光性ポリマーに応じて、 そのガラス転 移温度の付近において伸長が可能である温度にて行う。 延伸倍率は特に制限され ないが、 通常、 1 . 0 5〜3 0倍程度、 3〜3 0倍程度、 5〜2 0倍とするのが 好ましい。 さらには、 し 0 5〜8倍程度、 さらには、 3〜8倍とするのが好ま しい。
マトリクス材料として液晶性材料を用いる場合には、 たとえば、 前記混合溶液 を調製し、 その混合溶液を一軸配向させ、製膜することにより偏光子が得られる 液晶性材料の溶液に用いる溶媒としては、 たとえば、 クロ口ホルム、 ジクロロ メタン、 ジクロロェタン、 テトラクロロェタン、 トリクロロエチレン、 テトラク ロロエチレン、 クロ口ベンゼンなどのハロゲン化炭化水素類、 フヱノール、 ノヽ。ラ クロ口フエノールなどのフエノール類、 ベンゼン、 トルエン、 キシレン、 メ トキ シベンゼン、 し 2—ジメ トキベンゼンなどの芳香族炭化水素類、 その他、 ァセ トン、酢酸ェチル、 t e r t—ブチルアルコール、 グリセリン、 エチレングリコ —ル、 トリエチレングリコール、 エチレングリコールモノメチルェ一テル、 ジェ チレングリコールジメチルェ一テル、 ェチルセルソルブ、 ブチルセルソルブ、 2 一ピロリ ドン、 N—メチルー 2—ピロリ ドン、 ピリジン、 トリェチルァミン、 テ トラヒドロフラン、 ジメチルホルムアミ ド、 ジメチルァセトアミ ド、 ジメチルス ルホキシド、 ァセトニトリル、 プチロニトリル、 二硫化炭素、 シク口へキサノン などを用いることができる。 液晶性材料溶液の濃度は、 通常、 5〜 5 0重量%程 度、 さらには 0 . 0 5〜3 0重量%程度に調整するのが好ましい。 一方、金属性 微粒子は、 通常、 分散溶液として前記液晶性材料溶液に混合される。 金属性微粒 子の分散溶液の濃度は、 通常、 0 . 上〜] L 0重量0 /6程度、 さらには 0 . 0 1〜5 重量%程度に調整するのが好ましい。
前記液晶性材料の溶液に、金属性微粒子を分散含有させた混合溶液を製膜しフ イルム化する。 液晶性材料は一軸配向する。 液晶性材料の配向は配向基材上で、 製膜することにより行うことができる。 配向基材としては、 従来より知られてい る各種のものを使用でき、 たとえば、基材上にポリイミ ドゃポリビュルアルコ一 ル等からなる薄層の配向膜を形成してそれをラビングする方法により形成したも の、基材を延伸処理した延伸フィルム、 シンナメート骨格ゃァゾベンゼン骨格を 有するポリマ一またはポリイミ ドに偏光紫タト線を照射したもの等を用いることが できる。
上記混合溶液の配向基材への塗工方法としては、例えば、 ロールコート法、 グ ラビアコート法、 スピンコート法、 バーコ一ト法などを採用することができる。 塗工後、溶媒を除去し、 フィルムを形成させる。 フィルム成形にあたっては、溶 液の粘度、乾燥速度を調整することにより、微小領域の大きさや分散性を制御す ることもできる。 溶媒の除去条件は、 特に限定されず、溶媒をおおむね除去でき 、 フィルムが流動したり、 流れ落ちたりさえしなければよい。 通常、室温での乾 燥、 乾燥炉での乾燥、 ホットプレート上での加熱などを利用して溶媒を除去する 液晶性材料の配向は、 たとえば、液晶性材料が液晶状態を示す温度において、 «理することにより行うことができる。 当該熱処理温度は、液晶性材料により 適宜に調整する。 熱処理方法としては、上記の乾燥方法と同様の方法で行うこと ができる。 なお、液晶性材料の配向には、配向基材を用いることができるほかに 、電場、 磁場、 応力等により配向処理することができる。
液晶性材料として、液晶モノマーを用いた場合には配向後に重合させる。 液晶 モノマーには、 重合開始剤が適宜に配合される。 重合法は、液晶モノマーの種類 に応じて各種手段を採用できるが、 たとえば、光照射による光重合性法を採用で きる。 光照射は、 たとえば、紫外線照射により行う。 紫外線照射条件は、十分に 反応を促進するために、不活性気体雰囲気中とすることが好ましい。 高圧水銀紫 外ランプが ¾的に用いられる。 メタハラィド U Vランプや白熱管などの別種ラ ンプを使用することもできる。
偏光子の厚さは、特に制限されないが、 通常、 0 . 1〜1 0 0〃m程度、好ま しくは 5〜8 0 πιである。 得られた偏光子は、 常法に従って、 その少なくとも 片面に透明保護層を設けた偏光板とすることができる。 透明保護層はポリマーに よる塗布層として、 またはフィルムのラミネート層等として設ることができる。 透明保護層を形成する、透明ポリマーまたはフィルム材料としては、適宜な透明 材料を用いうるが、透明性や機械的強度、熱安定性や水分遮断性などに優れるも のが好ましく用いられる。 前記透明保護層を形成する材料としては、例えばポリ エチレンテレフタレートゃポリェチレンナフタレート等のポリエステル系ポリマ 一、 二酢酸セルロースや三酢酸セルロース等のセルロース系ポリマ—、 ポリメチ ルメタクリレート等のァクリル系ポリマ一、 ポリスチレンゃァクリロニトリル · スチレン共重合体(A S樹脂) 等のスチレン系ポリマ一、 ポリ力一ポネ一ト系ポ リマーなどがあげられる。 また、 ポリエチレン、 ポリプロピレン、 シクロ系ない しはノルボルネン構造を有するポリオレフィン、 エチレン 'プロピレン共重合体 の如きポリオレフィン系ポリマ一、塩ィ匕ビュル系ポリマ一、 ナイ口ンゃ芳香族ポ リアミド等のァミド系ポリマ一、 ィミド系ポリマ一、 スルホン系ポリマ一、 ポリ エーテルスルホン系ポリマ一、 ポリエーテルエ一テルケトン系ポリマ一、 ポリフ ェニレンスルフィド系ポリマ一、 ビュルアルコール系ポリマ一、塩化ビニリデン 系ポリマ一、 ビュルブチラ一ル系ポリマ一、 ァリレ一ト系ポリマー、 ポリオキシ メチレン系ポリマ一、 エポキシ系ポリマ一、 あるいは前記ポリマーのブレンド物 なども前記透明保護層を形成するポリマーの例としてあげられる。
また、特開 200 1 _ 343 5 29号公報 (WOO 1/ 3 7007 ) に記載の ポリマーフィルム、 たとえば、 (A) 側鎖に置換および/または非置換イミ ド基 を有する熱可塑性樹脂と、 (B) 側鎖に置換および/非置換フエニルならびに二 トリル基を有する熱可塑性樹脂を含有する樹脂組成物があげられる。 具体例とし てはイソブチレンと N_メチルマレイミドからなる交互共重合体とアタリロニト リル 'スチレン共重合体とを含有する樹脂組成物のフィルムがあげられる。 フィ ルムは樹脂組成物の混合押出品などからなるフィルムを用いることができる。 偏光特性や耐久性などの点より、特に好ましく用いることができる透明保護層 は、表面をアルカリなどでゲンィヒ処理したトリアセチルセルロースフィルムであ る。 透明保護層の厚さは、ィ壬意であるが一般には偏光板の薄型化などを目的に 5 00 m以下、 さらには 1〜3 00 im、特に 5〜 300 mが好ましい。 なお 、偏光子の両側に透明保護層を設ける場合は、 その表裏で異なるポリマ一等から なる透明保護フイルムを用いることができる。
また、 透明保護フィルムは、 できるだけ色付きがないことが好ましい。 したが つて、 R t h= [ (nx + ny) /2 -n z] · d (ただし、 nx、 nyはフィ ルム平面内の主屈折率、 n zはフィルム厚方向の屈折率、 dはフィルム厚みであ る) で表されるフィルム厚み方向の位相差値が一 90 nm〜十 75 nmである保 護フィルムが好ましく用いられる。 かかる厚み方向の位相差値 (Rt h) が一 9 0 nm〜十 75 nmのものを使用することにより、保護フィルムに起因する偏光 板の着色 (光学的な着色) をほぼ解消することができる。 厚み方向位相差値 (R t h) は、 さらに好ましくは _ 8 O nm〜十 60 nm、特に一 70 nm〜十 4 5 nmが好ましい。
前記透明保護フィルムの偏光子を接着させない面には、 ハードコート層や反射 防止処理、 ステイツキング防止や、拡散ないしアンチグレアを目的とした処理を 施したものであつ )よい。
ハードコ一ト処理は偏光板表面の傷付き防止などを目的に施されるものであり 、例えばアクリル系、 シリコーン系などの適宜な紫外線硬化型樹脂による硬度や 滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて 形成することができる。 反射防止処理は偏光板表面での外光の反射防止を目的に 施されるものであり、 従来に準じた反射防止膜などの形成により達成することが できる。 また、 ステイツキング防止処理は隣接層との密着防止を目的に施される またァンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、例えばサンドプラスト方式 ゃェンボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式 にて透明保護フィルムの表面に微細凹凸構造を付与することにより形成すること ができる。 前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平 均粒径が 0 . 5〜5 のシリカ、 アルミナ、 チタニア、 ジルコニァ、酸化錫 、 酸化インジウム、 酸化力ドミゥム、 酸ィヒアンチモン等からなる導電性のことも ある無機系微粒子、架橋又は未架橋のポリマー等からなる有機系微粒子などの透 明微粒子が用いられる。 表面微細凹凸構造を形成する場合、微粒子の使用量は表 面微細凹凸構造を形成する透明樹脂 1 0 0重量部に対して一般的に 2〜 5 0重量 部程度であり、 5〜2 5重量部が好ましい。 アンチグレア層は、 偏光板透過光を 拡散して視角などを拡大するための拡散層 (視角拡大機能など) を兼ねるもので あってもよい。
なお、前記反射防止層、 ステイツキング防止層、拡散層やアンチグレア層等は 、透明保護フィルムそのものに設けることができるほか、 別途光学層として透明 保護層とは別体のものとして設けることもできる。
前記偏光子と透明保護フィルムとの接着処理には、 接着剤が用いられる。 接着 剤としては、 イソシァネート系接着剤、 ポリビュルアルコール系接着剤、 ゼラチ ン系接着剤、 ビュル系ラテックス系、 7_系ポリエステル等を例示できる。 前記接 着剤は、 通常、 7_Κ溶液からなる接着剤として用いられ、 通常、 0 . 5〜6 0重量 %の固形分を含有してなる。
本発明の偏光板は、 前記透明保護フィルムと偏光子を、前記接着剤を用いて貼 り合わせることにより する。 接着剤の塗布は、透明保護フィルム、偏光子の いずれに行ってもよく、両者に行ってもよい。 貼り合わせ後には、乾燥工程を施 し、 塗布乾燥層からなる接着層を形成する。 偏光子と透明保護フィルムの貼り合 わせは、 ロールラミネーター等により行うことができる。 接着層の厚さは、特に 制限されないが、通常 0 . l〜5〃m である。
本発明の偏光板は、実用に際して他の光学層と積層した光学フィルムとして用 いることができる。 その光学層については特に限定はないが、例えば反射板や半 透過板、位相差板 ( 1 /2 や 1 / 4等の波長板を含む) 、視角補償フィルムなど の液晶表示装置等の形成に用いられることのある光学層を 1層または 2層以上用 いることができる。 特に、 本発明の偏光板に更に反射板または半透過反射板が積 層されてなる反射型偏光板または半透過型偏光板、偏光板に更に位相差板が積層 されてなる楕円偏光板または円偏光板、偏光板に更に視角補償フィルムが積層さ れてなる広視野角偏光板、 あるいは偏光板に更に輝度向上フイルムが積層されて なる偏光板が好ましい。
反射型偏光板は、 偏光板に反射層を設けたもので、視認側 (表示側) からの入 射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであ り、 バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやす いなどの利点を有する。 反射型偏光板の形成は、 必要に応じ透明保護層等を介し て偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて行 うことができる。
反射型偏光板の具体例としては、必要に応じマツト処理した透明保護フィルム の片面に、 アルミニウム等の反射性金属からなる箔ゃ蒸着膜を付設して反射層を 形成したものなどがあげられる。 また前記透明保護フイルムに微粒子を含有させ て表面微細凹凸構造とし、 その上に微細凹凸構造の反射層を有するものなどもあ げられる。 前記した微細凹凸構造の反射層は、入射光を乱反射により拡散させて 指向性ゃギラギラした見栄えを防止し、 明暗のムラを抑制しうる利点などを有す る。 また微粒子含有の透明保護フィルムは、 入射光及びその反射光がそれを透過 する際に拡散されて明暗ムラをより抑制しうる利点なども有している。 透明保護 フィルムの表面微細凹凸構造を反映させた微細凹凸構造の反射層の形成は、例え ば真空蒸着方式、 イオンブレーティング方式、 スパッタリング方式等の蒸着方式 ゃメッキ方式などの適宜な方式で金属を透明保護層の表面に直接付設する方法な どにより行うことができる。 反射板は前記の偏光板の透明保護フィルムに直接付与する方式に代えて、 その 透明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シ一トなどとし て用いることもできる。 なお反射層は、通常、金属からなるので、 その反射面が 透明保護フィルムゃ偏光板等で被覆'された状態の使用形態が、酸化による反射率 の低下防止、 ひいては初期反射率の長期持続の点や、保護層の別途付設の回避の 点などより好ましい。
なお、 半透過型偏光板は、上記において反射層で光を反射し、 かつ透過するハ —フミラ一等の半透過型の反射層とすることにより得ることができる。 半透過型 偏光板は、 通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰 囲気で使用する場合には、視認側 (表示側) からの入射光を反射させて画像を表 示し、比較的暗い雰囲気においては、 半透過型偏光板のバックサイドに内蔵され ているバックライト等の内蔵光源を使用して画像を表示するタィプの液晶表示装 置などを形成できる。 すなわち、 半透過型偏光板は、 明るい雰囲気下では、 バッ クライト等の光源使用のエネルギーを節約でき、 比較的暗い雰囲気下においても 内蔵光源を用いて使用できるタイプの液晶表示装置などの形成に有用である。 偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説 明する。 直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を 直線偏光に変えたり、 あるいは直線偏光の偏光方向を変える場合に、位相差板な どが用いられる。 特に、 直線偏光を円偏光に変えたり、 円偏光を直線偏光に変え る位相差板としては、 いわゆる 1 /4波長板 ( λ /4板とも言う) が用いられる 。 1 /2波長板 ( Α / 板とも言う) は、 通常、 直線偏光の偏光方向を変える場 合に用いられる。
楕円偏光板はスーパ一ツイストネマチック (S T N) 型液晶表示装置の液晶層 の複屈折により生じた着色 (青又は黄) を補償(防止) して、前記着色のない白 黒表示する場合などに有効に用いられる。 更に、 三次元の屈折率を制御したもの は、液晶表示装置の画面を斜め方向から見た際に生じる着色も補償 (防止) する ことができて好ましい。 円偏光板は、例えば画像がカラ一表示になる反射型液晶 表示装置の画像の色調を整える場合などに有効に用いられ、 また、 反射防止の機 能も有する。 上記した位相差板の具体例としては、 ポリ力一ポネート、 ポリビニ ルアルコール、 ポリスチレン、 ポリメチルメタクリレート、 ポリプロピレンやそ の他のポリオレフイン、 ポリアリレート、 ポリアミドの如き適宜なポリマ一から なるフィルムを延伸処理してなる複屈折性フィルムゃ液晶ポリマ一の配向フィル ム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。 位相 差板は、例えば各種波長板や液晶層の複屈折による着色や視角等の補償を目的と したものなどの使用目的に応じた適宜な位相差を有するものであってよく、 2種 以上の位相差板を積層して位相差等の光学特性を制御したものなどであつてもよ い。
また上記の楕円偏光板や反射型楕円偏光板は、 偏光板又は反射型偏光板と位相 差板を適宜な組合せで したものである。 かかる楕円偏光板等は、 (反射型) 偏光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次 別個に積層することによっても形成しうるが、前記の如く予め楕円偏光板等の光 学フィルムとしたものは、 品質の安定性や積層作業性等に優れて液晶表示装置な どの 効率を向上させうる利点がある。
視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方 向から見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフ イルムである。 このような視角補償位相差板としては、例えば位相差フィルム、 液晶ポリマー等の配向フィルムゃ透明基材上に液晶ポリマ一等の配向層を支持し たものなどからなる。 通常の位相差板は、 その面方向に一軸に延伸された複屈折 を有するポリマーフィルムが用いられるのに対し、視角補償フィルムとして用い られる位相差板には、面方向に二軸に延伸された複屈折を有するポリマーフィル ムとか、面方向に一軸に延伸され厚さ方向にも延伸された厚さ方向の屈折率を制 御した複屈折を有するポリマ一や傾斜配向フイルムのような二方向延伸フイルム などが用いられる。 傾斜配向フィルムとしては、例えばポリマーフィルムに熱収 縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸 処理又は/及び収縮処理したものや、液晶ポリマ一を斜め配向させたものなどが 挙げられる。 位相差板の素材原料ポリマーは、先の位相差板で説明したポリマ一 と同様のものが用いられ、液晶セルによる位相差に基づく視認角の変化による着 色等の防止や良視認の視野角の拡大などを目的とした適宜なものを用いうる。 また良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、 特に ディスコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリァセ チルセルロースフィルムにて支持した光学補償位相差板が好ましく用いうる。 偏光板と輝度向上フィルムを貼り合わせた偏光板は、 通常液晶セルの裏側サイ ドに設けられて使用される。 輝度向上フィルムは、液晶表示装置などのバックラ ィトゃ裏側からの反射などにより自然光が入射すると所定偏光軸の直線偏光また は所定方向の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フ イルムを偏光板と積層した偏光板は、 バックライト等の光源からの光を入射させ て所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光は透過せずに 反射される。 この輝度向上フィルム面で反射した光を更にその後ろ側に設けられ た反射層等を介し反転させて輝度向上ゥィルムに再入射させ、 その一部又は全部 を所定偏光状態の光として透過させて輝度向上フィルムを透過する光の増量を図 ると共に、偏光子に吸収させにくい偏光を供給して液晶表示画像表示等に利用し うる光量の増大を図ることにより輝度を向上させうるものである。 すなわち、輝 度向上フィルムを使用せずに、 バックライトなどで液晶セルの裏側から偏光子を 通して光を入射した場合には、 偏光子の偏光軸に一致していない偏光方向を有す る光は、 ほとんど偏光子に吸収されてしまい、偏光子を透過してこない。 すなわ ち、 用いた偏光子の特性によっても異なるが、 およそ 5 0 %の光が偏光子に吸収 されてしまい、 その分、液晶画像表示等に利用しうる光量が減少し、画像が暗く なる。 輝度向上フィルムは、 偏光子に吸収されるような偏光方向を有する光を偏 光子に入射させずに輝度向上フィルムで一旦反射させ、 更にその後ろ側に設けら れた反射層等を介して反転させて輝度向上フィルムに再入射させることを繰り返 し、 この両者間で反射、反転している光の偏光方向が偏光子を通過し得るような 偏光方向になつた偏光のみを、 輝度向上フイルムは透過させて偏光子に供給する ので、 バックライトなどの光を効率的に液晶表示装置の画像の表示に使用でき、 画面を明るくすることができる。
輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。 輝度向 上フィルムによつて反射した偏光状態の光は上記反射層等に向かうが、 設置され た拡散板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態 となる。 すなわち、 拡散板は偏光を元の自然光状態にもどす。 この非偏光状態、 すなわち自然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡 散板を通過して輝度向上フィルムに再入射することを繰り返す。 このように輝度 向上フィルムと上記反射層等の間に、 偏光を元の自然光状態にもどす拡散板を設 けることにより表示画面の明るさを維持しつつ、 同時に表示画面の明るさのむら を少なくし、均一で明るい画面を提供することができる。 かかる拡散板を設ける ことにより、初回の入射光は反射の繰り返し回数が程よく増加し、 拡散板の拡散 機能と相俟つて均一の明る 、表示画面を提供することができたものと考えられる 前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が 相違する薄膜フィルムの多層積層体の如き、 所定偏光軸の直線偏光を透過して他 の光は反射する特性を示すもの、 コレステリック液晶ポリマーの配向フィルムや その配向液晶層をフィルム基材上に支持したものの如き、 左回り又は右回りのい ずれか一方の円偏光を反射して他の光は透過する特性を示すものなどの適宜なも のを用いうる。
従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィル ムでは、 その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、 偏光板による吸収ロスを抑制しつつ効率よく透過させることができる。 一方、 コ レステリック液晶層の如く円偏光を投下するタイプの輝度向上フィルムでは、 そ のまま偏光子に入射させることもできるが、 吸収ロスを抑制する点よりその円偏 光を位相差板を介し直線偏光化して偏光板に入射させることが好ましい。 なお、 その位相差板として 1 / 4波長板を用いることにより、 円偏光を直線偏光に変換 することができる。
可視光域等の広い波長範囲で 1 / 4波長板として機能する位相差板は、例えば 波長 5 5 O n mの淡色光に対して 1 / 4波長板として機能する位相差層と他の位 相差特性を示す位相差層、例えば 1 / 2波長板として機能する位相差層とを重畳 する方式などにより得ることができる。 従って、偏光板と輝度向上フィルムの間 に配置する位相差板は、 1層又は 2層以上の位相差層からなるものであってよい なお、 コレステリック液晶層についても、反射波長が相違するものの組み合わ せにして 1層又は 3層以上重畳した配置構造とすることにより、可視光領域等の 広い波長範囲で円偏光を反射するものを得ることができ、 それに基づいて広い波 長範囲の透過円偏光を得ることができる。
また偏光板は、上記の偏光分離型偏光板の如く、偏光板と 2層又は 3層以上の 光学層とを積層したものからなっていてもよい。 従って、上記の反射型偏光板や 半透過型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光 板などであってもよい。
偏光板に前記光学層を積層した光学フィルムは、液晶表示装置等の製造過程で 順次別個に積層する方式にても形成することができるが、 予め積層して光学フィ ルムとしたのものは、 品質の安定性や組立作業等に優れていて液晶表示装置など の製造工程を向上させうる利点がある。 積層には粘着層等の適宜な接着手段を用 いうる。 前記の偏光板やその他の光学フィルムの接着に際し、 それらの'光学軸は 目的とする位相差特性などに応じて適宜な配置角度とすることができる。
前述した偏光板や、 偏光板を少なくとも 1層積層されている光学フィルムには 、液晶セル等の他部材と接着するための粘着層を設けることもできる。 粘着層を 形成する粘着剤は特に制限されないが、例えばアクリル系重合体、 シリコーン系 ポリマ一、 ポリエステル、 ポリウレタン、 ポリアミ ド、 ポリエーテル、 フッ素系 やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いるこ とができる。 特に、 アクリル系粘着剤の如く光学的透明性に優れ、 適度な濡れ性 と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ま しく用いうる。
また上記に加えて、 吸湿による発泡現象ゃ剝がれ現象の防止、 熱膨張差等によ る光對寺性の低下や液晶セルの反り防止、 ひいては高品質で耐久性に優れる液晶 表示装置の形成性などの点より、 吸湿率が低くて耐熱性に優れる粘着層が好まし い。
粘着層は、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、 ガラス 繊維、 ガラスビーズ、金属粉、 その他の無機粉末等からなる充塡剤や顔料、 着色 剤、 酸化防止剤などの粘着層に添加されることの添加剤を含有していてもよい。 また微粒子を含有して光拡散性を示す粘着層などであつてもよい。
偏光板や光学フィルムの片面又は両面への粘着層の付設は、適宜な方式で行い うる。 その例としては、例えばトルエンや酢酸ェチル等の適宜な溶剤の単独物又 は混合物からなる溶媒にベースポリマーまたはその組成物を溶解又は分散させた
1 0〜4 0重量%程度の粘着剤溶液を調製し、 それを流延方式や塗工方式等の適 宜な展開方式で偏光板上または光学フィルム上に直接付設する方式、 あるいは前 記に準じセパレ一タ上に粘着層を形成してそれを偏光板上または光学フィルム上 に移着する方式などがあげられる。
粘着層は、異なる組成又は種類等のものの重畳層として偏光板や光学フィルム の片面又は両面に設けることもできる。 また両面に設ける場合に、 偏光板や光学 フィルムの表裏において異なる組成や種類や厚さ等の粘着層とすることもできる 。 粘着層の厚さは、 使用目的や接着力などに応じて適宜に決定でき、一般には 1 〜 5 0 0 u mであり、 5〜 2 0 0 mが好ましく、特に 1 0〜 1 0 0 mが好ま しい。
粘着層の露出面に対しては、実用に供するまでの間、 その汚染防止等を目的に セパレ一夕が仮着されてカバ一される。 これにより、 通例の取扱状態で粘着層に 接触することを防止できる。 セパレータとしては、上記厚さ条件を除き、例えば プラスチックフィルム、 ゴムシート、紙、 布、不織布、 ネット、 発泡シートや金 属箔、 それらのラミネート体等の適宜な薄葉体を、 必要に応じシリコーン系や長 鏡アルキル系、 フッ素系や硫化モリブデン等の適宜な剝離剤でコ一ト処理したも のなどの、従来に準じた適宜なものを用いうる。
なお本発明において、上記した偏光板を形成する偏光子や透明保護フィルムや 光学フィルム等、 また粘着層などの各層には、例えばサリチル酸エステル系化合 物やべンゾフェノール系化合物、 ベンゾトリアゾール系化合物ゃシァノアクリレ ート系化合物、 ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方 式により紫外線吸収能をもたせたものなどであつてもよい。
本発明の偏光板または光学フィルムは液晶表示装置等の各種装置の形成などに 好ましく用いることができる。 液晶表示装置の形成は、 従来に準じて行いうる。 すなわち液晶表示装置は一般に、液晶セルと偏光板または光学フィルム、及び必 要に応じての照明システム等の構成部品を適宜に組立てて駆動回路を組込むこと などにより形成されるが、 本発明においては本発明による偏光板または光学フィ ルムを用いる点を除いて特に限定はなく、 従来に準じうる。 液晶セルについても
、例えば T N型や S T N型、 7T型などの任意なタイプのものを用いうる。
液晶セルの片側又は両側に偏光板または光学フィルムを配置した液晶表示装置 や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶 表示装置を形成することができる。 その場合、本発明による偏光板または光学フ ィルムは液晶セルの片側又は両側に設置することができる。 両側に偏光板または 光学フィルムを設ける場合、 それらは同じものであってもよいし、異なるもので あってもよい。 さらに、液晶表示装置の形成に際しては、例えば拡散板、 アンチ グレア層、反射防止膜、保護板、 プリズムアレイ、 レンズアレイシート、光拡散 板、 バックライトなどの適宜な部品を適宜な位置に 1層又は 2層以上配置するこ とができる。
次いで有機エレクトロルミネセンス装置 (有機 E L表示装置) について説明す る。 一般に、有機 E L表示装置は、透明基板上に透明電極と有機発光層と金属電 極とを順に積層して発光体 (有機エレクトロルミネセンス発光体) を形成してい る。 ここで、 有機発光層は、種々の有機薄膜の積層体であり、例えばトリフエ二 ルアミン誘導体等からなる正孔注入層と、 アントラセン等の蛍光性の有機固体か らなる発光層との積層体や、 あるいはこのような発光層とペリレン誘導体等から なる電子注入層の積層体や、 またあるいはこれらの正孔注入層、 発光層、 および 電子注入層の積層体等、種々の組み合わせをもつた構成が知られている。
有機 E L表示装置は、透明電極と金属電極とに電圧を印加することによって、 有機発光層に正孔と電子とが注入され、 これら正孔と電子との再結合によって生 じるエネルギーが蛍光物資を励起し、励起された蛍光物質が基底状態に戻るとき に光を放射する、 という原理で発光する。 途中の再結合というメカニズムは、一 般のダイオードと同様であり、 このことからも予想できるように、電流と発光強 度は印加電圧に対して整流性を伴う強い非線形性を示す。
有機 E L表示装置においては、有機発光層での発光を取り出すために、少なく とも一方の電極が透明でなくてはならず、 通常酸ィ匕インジウムスズ (I T O ) な どの透明導電体で形成した透明電極を陽極として用いている。 一方、電子注入を 容易にして発光効率を上げるには、 陰極に仕事関数の小さな物質を用いることが 重要で、 通常 M g— A g、 A 1 - L iなどの金属電極を用いている。
このような構成の有機 E L表示装置において、 有機発光層は、厚さ 1 O nm程 度ときわめて薄い膜で形成されている。 このため、有機発光層も透明電極と同様 、 光をほぼ完全に透過する。 その結果、非発光時に透明基板の表面から入射し、 透明電極と有機発光層とを透過して金属電極で反射した光が、再び透明基板の表 面側へと出るため、 外部から視認したとき、 有機 E L表示装置の表示面が鏡面の ように見える。
電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに 、 有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光 体を含む有機 E L表示装置において、透明電極の表面側に偏光板を設けるととも に、 これら透明電極と偏光板との間に位相差板を設けることができる。
位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光 する作用を有するため、 その偏光作用によつて金属電極の鏡面を外部から視認さ せないという効果がある。 特に、位相差板を 1 ダ4波長板で構成し、 かつ偏光板 と位相差板との偏光方向のなす角を π /4 に調整すれば、金属電極の鏡面を完全 に遮蔽することができる。
すなわち、 この有機 E L表示装置に入射する外部光は、偏光板により直線偏光 成分のみが透過する。 この直線偏光は位相差板により一般に楕円偏光となるが、 とくに位相差板が 1 /4波長板でしかも偏光板と位相差板との偏光方向のなす角 が 7C /4 のときには円偏光となる。
この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して 、再び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光とな る。 そして、 この直線偏光は、 偏光板の偏光方向と直交しているので、偏光板を 透過できない。 その結果、金属電極の鏡面を完全に遮蔽することができる。 実施例
以下に、実施例を記載して、 本発明をより具体的に説明するが、本発明はこれ ら実施例に制限されるものではない。
実施例 1
重合度 2 4 0 0のポリビュルアルコール (厚み 1 mmの透過率は 8 8 %) の 1 0 0重量部およびグリセリン 1 0重量部を、 水に徐々に加熱撹拌しながら溶解し 、 1 0重量%のポリビュルアルコール水溶液を得た。 得られたポリビュルアルコ ール水溶液 1 0重量部に、 銀超微粒子 (平均粒径 2 O n m) の 1重量%分散水溶 液を 4重量部混合し、 十分に撹拌して混合溶液を調製した。 次いで、 この混合溶 液を、乾燥後の厚みが 7 5〃mとなるようにアプリケ一ターを用いて、予め離型 処理を施した平板上へ展開し、 5 0 °Cで 1時間乾燥し、 銀超微粒子を分散したポ リビュルアルコールフィルムを得た。 得られたポリビュルアルコールフィルムを 、 1 0 0 °Cに熱した金属口一ルへ接触させながら延伸倍率 3倍で一軸延伸処理し 、厚さ 3 0 mの偏光子を得た。 延伸後のフィルムの透過率は 8 8 %であった。 延伸フィルムは銀超微粒子の吸収に基づき薄く黄色に色づいており、 二色性を示 した。
得られた偏光子について、金属性微粒子により形成される微小領域について、 平均粒径およびァスぺクト比を測定した。 平均粒径およびァスぺクト比は、 T E Mにより測定した。 平均粒径は 2 5 n m、 アスペクト比は 1 . 3であった。 得ら れた偏光子について吸光特性を測定した結果、 4 0 0 n m付近に吸収の増大を確 認した。 なお、 吸光特性の測定は、 (株) 日立製作所製 U— 4 1 0 0を用いて行 つた。
(偏光子の物性)
偏光子のマトリクス材料である、 ポリビュルアルコールフィルムの複屈折は直 接は測定できなかつたが、 銀微粒子を除き同条件で延伸したフィルムについて、 王子計測機器株式会社製の自動複屈折計 K〇B R A 2 1 A D Hで位相差 (Δ η · d ) と d (Δ η:複屈折、 d:膜厚) を測定したのち、 Δ ηを求めたところ、 0 . 0 3であった。
(偏光子の吸収スぺクトル)
得られた偏光子について、偏光を入射させた場合の吸光スぺクトルを測定した 。 吸光スペクトルを図 1に示す。 吸光スぺクトルの測定は、 (株) 日立製作所製 の分光光度計 U 4 1 00を用いグラントムソン偏光プリズムを設置させて行った 。 図 1に示すように、 入射偏光面が延伸方向に平行な場合 (MD偏光) に、 B及収 ピーク波長は最も長波長 (λ 1 : 43 8 nm) であり、 入射偏光面の方位を回転 させるとともにピーク波長は短波長側にシフトし (たとえば 45° 偏光) 、 延伸 方向に垂直な偏光 (TD偏光) では吸収ピークは最も短波長 (Λ 2 : 4 10 nm ) になった。 偏光子は、結果として偏光が発現していた。 (ス 1 _λ 2) = 2 8 nmであった。
実施例 2
実施例 1において、 銀微粒子を金微粒子に変えたこと以外は実施例 1と同様に して偏光子を得た。 延伸後のフィルムの透過率は 88%であった。 延伸フィルム は金超微粒子の吸収に基づき薄く赤色をしており、二色性を示した。 得られた偏 光子において金属性微粒子により形成される微小領域の平均粒径は 25 nm、 ァ スぺクト比は 1. 2であった。
比較例 1
透過率 88%のポリビニルアルコールフィルムを用いて、 J I S Z 870 1の 2視野 XYZ補正による、透過率 43%、偏光度 9 9. 9 5%の市販のヨウ 素系偏光子を用いた。
比較例 2
透過率 6 8%のポリイミ ドに銀微粒子を実施例 1と同じ割合で分散したフィル ムを、 1. 1倍に延伸して偏光子を得た。 延伸後のフィルムはポリイミ ドの着色 と銀超微粒子の吸収の双方により、濃い黄色となり、 二色性を示した。
実施例 1〜 2および比較例 1〜 2の偏光子について以下の評価を行った。 結果 を第 1表に示す。
(透過性)
ポリマ一マトリタスの透過性は、 (株) 日 作所製 U_ 4 100を用いて波 長 5 50 nmにおける全光線透過率 (%) を測定し 値である。 偏光子を 100°Cの環境下に 24時間放置し、乾燥した後、偏光子を目視観察 し、 以下の基準で評価した。 〇:色抜け、色変ィヒを目視で見られない。
X :色抜け、色変化が目視で観察できる。
第 1表
Figure imgf000031_0001
実施例 3
アタリロイル基を分子内に一つ持つ液晶性モノマー ( 9 0〜 1 9 0 °Cにおいて ネマチック液晶層となる) 1 0 0重量部をトルエン中に溶解し、 さらに光重合開 始剤 (チバスべシャリティケミカルズ社製, ィルガキユア 9 0 7 ) 5重量部およ びレべリング剤 (B Y K— 3 6 1 ) 0 . 5重量部を加え、液晶性モノマ一濃度 2 0重量%の溶液を調製した。 この溶液に、 予め、 銀超微粒子 (平均粒径 1 0 n m ) をトルエンに分散させた 1重量%の分散液を 1重量部混合し、 十分に撹拌して 、銀超微粒子の濃度約 1 %の混合溶液を調製した。
この混合溶液を、 ガラス基板上に形成したポリビニルアルコールの薄層をラビ ング処理した配向膜上に、 スピンコートにて塗工し、 1 1 0 °Cで 3分間乾燥した 。 さらに U V照射により U V重合を施すことにより、厚さ 1 u mの偏光子を得た 得られた偏光子について、金属性微粒子により形成される微小領域についてァ スぺクト比を測定した。 平均粒径およびアスペクト比は、 T E Mにより測定した 。 アスペクト比は 1 . 3であった。 また得られた偏光子について吸光特性を測定 した結果、 4 2 O nmに吸収の増大を確認した。 なお、 吸光特性の測定は、 (株 ) 日立製作所製 U— 4 1 0 0を用いて行った。
実施例 4
シァノビフエ二ル基を有する側鎖型の液晶性ポリマー (7 0〜1 9 0 °Cにおい てネマチック液晶層となる) を、 トルエン中に溶解し、 濃度 2 0重量%の溶液を 調製した。 この溶液に、 予め、 銀超微粒子 (平均粒径 1 O nm) をトルエンに分 散させた 2 0重量%の分散液を 1重量部混合し十分に撹拌して、 銀超微粒子の濃 度約 1 %の混合溶液を調製した。
この混合溶液を、 ガラス 上に形成したポリビニルアルコールの薄層をラビ ング処理した配向膜上に、 スピンコートにて塗工し、 1 1 0 °Cで 3分間乾燥し、 厚さ 2 /mの偏光子を得た。
得られた偏光子について、 金属性微粒子により形成される微小領域についてァ スぺクト比を測定した。 平均粒径およびアスペクト比は、 T E Mにより測定した 。 アスペクト比は 1 . 3であった。得られた偏光子について吸光特性を測定した 結果、 4 2 0 nmと 5 5 0 nm付近に吸収の増大を確認した。
実施例 3〜 4の偏光子について上記同様の耐熱性の評価を行つた。結果を第 2 に
第 2表 耐熱性 実施例 3 〇 実施例 4 〇 産業上の利用可能性
本発明は偏光子として有用であり、 当該偏光子を用いた偏光板や光学フィルム は、 液晶表示装置、 有機 EL表示装置、 CRT、 P DP等の画像表示装置に好適 に適用できる。

Claims

請求の範囲
1 . ポリマ一マトリクス中に、 金属性微粒子が分散されている構造のフィルム からなる偏光子であって、
ポリマーマトリクスを形成するポリマ一は、 厚み 1 mmで測定した時の透過率 が 8 8 %以上の透光性ポリマーであり、 かつフィルムは一軸延伸されていること を特徴とする偏光子。
2 . 金属性微粒子により形成される微小領域が、 平均粒径 1 0 0 nm以下であ り、 かつアスペクト比 (最大長/最小長) が 2以下であることを特徴とする請求 の範囲第 1項に言 3載の偏光子。
3 . 厚み 1 mmで測定した時の透過率が 8 8 %以上の透光性ポリマーを含有す る溶液に、 金属性微粒子を分散含有させた混合溶液を製膜した後、 一軸延伸する ことを特徴とする請求の範囲第 1項または第 2項に記載の偏光子の製造方法。
4 . 液晶性材料により形成されるマトリクス中に、 金属性微粒子が分散されて いることを特徴とする偏光子。
5 . 液晶性材料が、 一軸配向していることを特徴とする請求の範囲第 4項に記 載の偏光子。
6 . 液晶性材料が、 液晶ポリマーであることを特徴とする請求の範囲第 4項ま たは第 5項に記載の偏光子。
7 . 液晶性材料を含む溶液に、 金属性微粒子を分散含有させた混合溶液を、 製 膜することを特徴とする請求の範囲第 4項〜第 6項のいずれかに記載の偏光子の 製造方法。
8 . 偏光を入射させた時に測定した吸光スペクトルが、 ある波長において吸収 ピークを有する偏光子であって、
偏光子に対する、 入射偏光面の方位を変化させると、 当該変化に伴って吸収ピ —ク波長がシフトすることを特徴とする偏光子。
9 . 偏光子に対する、 入射偏光面の方位を変化させた場合に、 測定される吸収 スペクトルの吸収ピーク波長が最も長波長 (この波長をえ 1とする) になるとき の、 入射偏光面の方位を 0 ° とするとき、 当該偏光面の方位を 0° から徐々に増大させると、 吸収ピーク波長もこれに伴 つて短波長へシフトし、
入射偏光面の方位が 90°のときに、 吸収ピーク波長が最も短波長 (この波長 を入 2とする) になることを特徴とする偏光子。
10. (λ1-λ2) =10〜50nm、 を満足することを特徴とする請求の 範囲第 9項に記載の偏光子。
11. フィルム面内に複屈折を有する有機マトリクス中に、 金属性微粒子が分 散されていることを特徴とする請求の範囲第 8項〜第 10項のいずれかに記載の 偏光子。
12. 有機マトリクスが、 ポリマーマトリクスにより形成されており、 ポリマ 一マトリクスを形成するポリマーは、 厚み lmmで測定した時の透過率が 88% 以上の透光性ポリマーであり、 かつフィルムは一軸延伸されていることを特徴と する請求の範囲第 11項に記載の偏光子。
13. 有機マトリクスが、 液晶性材料により形成されていることを特徴とする 請求の範囲第 11項に記載の偏光子。
14. 液晶性材料が、 一軸配向していることを特徴とする請求の範囲第 13項 に記載の偏光子。
15. 液晶性材料が、 液晶ポリマ一であることを特徴とする請求の範囲第 13 項または第 14項に記載の偏光子。
16. 金属性微粒子により形成される微小領域が、 平均粒径 10 Onm以下で あり、 かつアスペクト比 (最大長/最小長) が 2以下であることを特徴とする請 求の範囲第 11項〜第 15項のいずれかに記載の偏光子。
17. 請求の範囲第 1項〜第 2項、 第 4項〜第 6項、 第 8項〜第 16項のいず れかに記載の偏光子の少なくとも片面に、 透明保護層を設けた偏光板。
18. 請求の範囲第 1項〜第 2項、 第 4項〜第 6項、 第 8項〜第 16項のいず れかに記載の偏光子または請求の範囲第 17項に記載の偏光板が、 少なくとも 1 枚積層されていることを特徴とする光学フィルム。
19. 請求の範囲第 1項〜第 2項、 第 4項〜第 6項、 第 8項〜第 16項のいず れかに記載の偏光子、 請求の範囲第 17項に記載の偏光板または請求の範囲第 1 項に記載の光学フィルムが用いられていることを特徴とする画像表示装置。
PCT/JP2003/013349 2002-10-25 2003-10-20 偏光子、その製造方法、光学フィルムおよび画像表示装置 WO2004038463A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/532,059 US7622167B2 (en) 2002-10-25 2003-10-20 Polarizer, method for manufacturing the same, optical film and image display
EP03754177A EP1555550A4 (en) 2002-10-25 2003-10-20 POLARIZER, PROCESS FOR ITS MANUFACTURE, OPTICAL FILM AND PICTURE DISPLAY

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-310686 2002-10-25
JP2002-310697 2002-10-25
JP2002310686 2002-10-25
JP2002310697 2002-10-25
JP2002-367768 2002-12-19
JP2002367768 2002-12-19

Publications (1)

Publication Number Publication Date
WO2004038463A1 true WO2004038463A1 (ja) 2004-05-06

Family

ID=32180301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013349 WO2004038463A1 (ja) 2002-10-25 2003-10-20 偏光子、その製造方法、光学フィルムおよび画像表示装置

Country Status (5)

Country Link
US (1) US7622167B2 (ja)
EP (1) EP1555550A4 (ja)
KR (1) KR20050067166A (ja)
TW (1) TW200409968A (ja)
WO (1) WO2004038463A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297369B2 (en) * 2004-03-31 2007-11-20 Intel Corporation Process for micro-grooving a polymer alignment layer for a liquid crystal display
TWI334943B (en) * 2006-03-02 2010-12-21 Hannstar Display Corp Twisted nematic liquid crystal display
JP2007316366A (ja) * 2006-05-26 2007-12-06 Nippon Shokubai Co Ltd 偏光子保護フィルム、偏光板、および画像表示装置
JP5095993B2 (ja) * 2006-12-28 2012-12-12 株式会社ジャパンディスプレイイースト 液晶表示装置,プラズマ表示装置
DE102007059621A1 (de) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Verfahren zum Erzeugen von linear polarisiertem Licht und strahlungsemittierende Bauelemente
JP2010073494A (ja) * 2008-09-18 2010-04-02 Fujifilm Corp 灯具
US8767282B2 (en) 2009-11-06 2014-07-01 Sharp Laboratories Of America, Inc. Plasmonic in-cell polarizer
JP2016206322A (ja) * 2015-04-20 2016-12-08 三菱電機株式会社 液晶表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184701A (ja) * 1994-12-27 1996-07-16 Nippon Telegr & Teleph Corp <Ntt> 偏光性フィルムとその製造方法及びこれを用いた導波型光デバイス
US20020186449A1 (en) * 2001-06-12 2002-12-12 Robert Anderson Micromirror array having adjustable mirror angles

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2246087A (en) * 1938-09-30 1941-06-17 Du Pont Film
US2454515A (en) * 1938-10-29 1948-11-23 Polaroid Corp Light-polarizing sheet of molecularly oriented transparent linear high polymer dyed with dichroic substance and process of manufacture
US3281344A (en) * 1963-08-27 1966-10-25 Chevron Res Colloidal suspension of ferromagnetic iron particles
US3350982A (en) * 1965-07-21 1967-11-07 Alvin M Marks Light polarizing structures
US3813265A (en) * 1970-02-16 1974-05-28 A Marks Electro-optical dipolar material
US4049338A (en) * 1974-11-19 1977-09-20 Texas Instruments Incorporated Light polarizing material method and apparatus
US4663083A (en) * 1978-05-26 1987-05-05 Marks Alvin M Electro-optical dipole suspension with reflective-absorptive-transmissive characteristics
DE2915847C2 (de) * 1978-09-29 1986-01-16 Nitto Electric Industrial Co., Ltd., Ibaraki, Osaka Elektrooptisch aktivierbare Anzeige
DE3582262D1 (de) * 1984-01-23 1991-05-02 Showa Denko Kk Reflektor fuer zirkular polarisierte wellen.
JPS63103209A (ja) 1986-10-20 1988-05-07 Ricoh Co Ltd 液晶表示を用いた投影装置
US4947085A (en) * 1987-03-27 1990-08-07 Mitsubishi Denki Kabushiki Kaisha Plasma processor
JPS6411711A (en) 1987-07-01 1989-01-17 Mazda Motor Method of manufacturing gear
US5184233A (en) * 1990-08-24 1993-02-02 Hughes Aircraft Company Liquid crystal-based composite material including electrically conducting elongated particles and having enhanced microwave birefringence
US5179993A (en) * 1991-03-26 1993-01-19 Hughes Aircraft Company Method of fabricating anisometric metal needles and birefringent suspension thereof in dielectric fluid
JP3053734B2 (ja) * 1993-07-20 2000-06-19 シャープ株式会社 電子写真感光体及びその製造方法
US5550661A (en) 1993-11-15 1996-08-27 Alliedsignal Inc. Optical phase retardation film
US6088067A (en) 1995-06-26 2000-07-11 3M Innovative Properties Company Liquid crystal display projection system using multilayer optical film polarizers
US5940149A (en) 1997-12-11 1999-08-17 Minnesota Mining And Manufacturing Company Planar polarizer for LCD projectors
EP1146379A1 (en) 1998-11-27 2001-10-17 Matsushita Electric Industrial Co., Ltd. Polarized light illuminator, image display, portable information terminal, head-up display, method for producing diffraction optical device, method for producing polarized light illuminator, and method for producing image display
JP2001296427A (ja) 2000-04-17 2001-10-26 Nitto Denko Corp 偏光板の製造方法及び液晶表示装置
JP3476753B2 (ja) * 2000-07-11 2003-12-10 清蔵 宮田 偏光機能を有する散乱導光シート
EP1174738A3 (en) 2000-07-11 2004-05-26 Optiva, Inc. Technological machinery for production of polarizers
RU2226285C2 (ru) 2000-07-11 2004-03-27 ОПТИВА, Инк. Устройство формирования поляризатора, устройство локального удаления материала пленки поляризатора и технологическая линия формирования поляризаторов
JP2002267842A (ja) * 2001-03-12 2002-09-18 Nippon Sheet Glass Co Ltd 偏光素子及びその製造方法
US6696113B2 (en) * 2001-03-30 2004-02-24 Fuji Photo Film Co., Ltd. Lyotropic liquid crystal composition
US6522446B2 (en) * 2001-04-25 2003-02-18 Research Frontiers Incorporated Anisometrically shaped metal particles, liquid suspensions and films thereof and light valves comprising same
JP2004534146A (ja) * 2001-07-10 2004-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ポリマーネットワークと無機材料との混合物を有する異方性複合材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184701A (ja) * 1994-12-27 1996-07-16 Nippon Telegr & Teleph Corp <Ntt> 偏光性フィルムとその製造方法及びこれを用いた導波型光デバイス
US20020186449A1 (en) * 2001-06-12 2002-12-12 Robert Anderson Micromirror array having adjustable mirror angles

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1555550A4 *

Also Published As

Publication number Publication date
TW200409968A (en) 2004-06-16
TWI298102B (ja) 2008-06-21
US20060050187A1 (en) 2006-03-09
EP1555550A4 (en) 2007-08-22
US7622167B2 (en) 2009-11-24
EP1555550A1 (en) 2005-07-20
KR20050067166A (ko) 2005-06-30

Similar Documents

Publication Publication Date Title
JP3969637B2 (ja) 液晶配向フィルムの製造方法、液晶配向フィルム、光学フィルムおよび画像表示装置
WO2004023173A1 (ja) 偏光子、光学フィルムおよび画像表示装置
JP2005309401A (ja) 偏光板、光学フィルムおよび画像表示装置
JP3724801B2 (ja) 偏光子、光学フィルムおよび画像表示装置
JP2005292225A (ja) 光学フィルムおよび画像表示装置
JP4404624B2 (ja) 楕円偏光板および画像表示装置
JP2005037890A (ja) 偏光子の製造方法、偏光子、光学フィルムおよび画像表示装置
JP3779723B2 (ja) 偏光子、光学フィルムおよび画像表示装置
JP2005292719A (ja) 偏光子、偏光板、光学フィルムおよび画像表示装置
JP2005283839A (ja) 光学フィルムおよび画像表示装置
KR20040032077A (ko) 편광자, 광학 필름, 및 화상 표시장치
WO2004038463A1 (ja) 偏光子、その製造方法、光学フィルムおよび画像表示装置
JP4059683B2 (ja) 複屈折性フィルム、その製造方法、光学フィルムおよび画像表示装置
JP4404606B2 (ja) 偏光子、その製造方法、光学フィルムおよび画像表示装置
WO2005062087A1 (ja) 偏光板、光学フィルムおよび画像表示装置
JP3916076B2 (ja) 画像表示装置用偏光子、その製造方法、光学フィルムおよび画像表示装置
JP2007025089A (ja) 透光性フィルム、その製造方法、偏光子、その製造方法、偏光板、光学フィルムおよび画像表示装置
JP3866099B2 (ja) 液晶配向フィルムの製造方法
JP4335618B2 (ja) 偏光子、光学フィルムおよび画像表示装置
JP3822198B2 (ja) 液晶配向フィルムの製造方法
JP2005202368A (ja) 偏光板、光学フィルムおよび画像表示装置
JP2004094063A (ja) 偏光板、光学フィルムおよび画像表示装置
WO2005062086A1 (ja) 偏光子、光学フィルムおよび画像表示装置
JP2004177550A (ja) 偏光板、光学フィルムおよび画像表示装置
JP4963344B2 (ja) 液晶分散型水溶性高分子溶液の製造方法、液晶分散型水溶性高分子複合フィルムの製造方法、液晶分散型水溶性高分子複合フィルム、偏光子、偏光板、光学フィルムおよび画像表示装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020057005651

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038A09747

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003754177

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006050187

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10532059

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057005651

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003754177

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10532059

Country of ref document: US