WO2004038229A1 - Verfahen zum betreiben eines verdichters im bereich der verdichter-pumpgrenze und verdichter - Google Patents

Verfahen zum betreiben eines verdichters im bereich der verdichter-pumpgrenze und verdichter Download PDF

Info

Publication number
WO2004038229A1
WO2004038229A1 PCT/EP2003/011300 EP0311300W WO2004038229A1 WO 2004038229 A1 WO2004038229 A1 WO 2004038229A1 EP 0311300 W EP0311300 W EP 0311300W WO 2004038229 A1 WO2004038229 A1 WO 2004038229A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
flow
flow velocity
variable
actuating device
Prior art date
Application number
PCT/EP2003/011300
Other languages
English (en)
French (fr)
Inventor
Peter Fledersbacher
Gernot Hertweck
Steffen Schiedt
Guido Vent
Jürgen Willand
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to EP03775179A priority Critical patent/EP1556615A1/de
Publication of WO2004038229A1 publication Critical patent/WO2004038229A1/de
Priority to US11/110,965 priority patent/US7428815B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/06Arrangement of sensing elements responsive to speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/042Air intakes for gas-turbine plants or jet-propulsion plants having variable geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/057Control or regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/04Units comprising pumps and their driving means the pump being fluid-driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/10Purpose of the control system to cope with, or avoid, compressor flow instabilities
    • F05D2270/101Compressor surge or stall
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for operating a compressor in the region of the compressor surge line and to a compressor according to the preamble of claim 1 or 8.
  • DE 43 16 202 A1 provides a control device in which pressures and volume flows are measured by the compressor, compared with corresponding setpoint values in a control and control unit, and at an impermissible level Deviation of the actual values is a pre-purifier or a downstream Nachleitapparat upstream of the compressor is adjusted in such a way that a desired distance to the surge line is maintained.
  • the problem here is but that the determination of the setpoint values, which are used for comparison with the measured actual values, must be determined in advance by means of a reference compressor, which allows the possibility of a dynamic adaptation to changing conditions during operation, for example caused by pollution, wear or heat influences, clearly limits or even excludes.
  • the invention is based on the problem of exploiting the working range of a compressor in the compressor map in the best possible way while avoiding exceeding the surge limit.
  • the flow velocity of the mass flow through the compressor in the boundary layer in a flow passage through the compressor defining wall in the compressor is determined to detect the pumping limit.
  • the boundary layer velocity in the flow channel, in which the compressor wheel is arranged provides reliable information as to whether there is a sufficiently large distance to the pumping limit or currently approaching the compressor operation at the surge line.
  • the velocity profile across the flow cross-section changes to the effect that a flow reversal occurs even before the actual pumping process starts in the boundary layer, which is measured or determined. can be used as a benchmark for the fact that the compressor is currently operated in the immediate vicinity of the surge line. If such flow reversal is detected in the boundary layer, the actuator is actuated to regulate the current operating point of the compressor to achieve stabilization of the compressor operation and to avoid exceeding the surge line into the unstable region.
  • This type of control has the advantage that the surge limit can be reliably detected even under changing boundary conditions such as increasing contamination of an upstream air filter, operation at higher altitudes, pumping limit changing over the operating time, production-related variations in the design and the like can.
  • the determination and deposit of reference quantities can be dispensed with. This allows a dynamic operation of the compressor even under changing conditions with optimal utilization of the available work area.
  • speed threshold values can be defined, at which point a control intervention via the setting device is carried out. These thresholds are used to set the distance to the surge line while the compressor is running. Furthermore, different measures for regulating the compressor operation can be controlled via the height of the threshold values. Thus, it is possible, for example, to apply an adjustable compressor geometry over a first threshold or limit value, which can be used as an adjustable compressor wheel, for example. switched Vorleitgitter or as the compressor downstream, variably adjustable vario diffuser can be formed.
  • a variable turbine geometry can be controlled, as far as the compressor is part of a turbocharger and is driven by a turbine.
  • the compressor is advantageously used in an exhaust gas turbocharger for an internal combustion engine.
  • a third limit value for the flow velocity whose absolute value is higher than that of the second limit value, the quantity of fuel injected into the cylinders of the internal combustion engine can be regulated.
  • the boundary layer flow velocity is advantageously determined in the compressor wheel inlet region, in particular on the outer contour of the compressor wheel, and / or in the compressor wheel outlet region, in particular in the downstream diffuser. In these areas, the risk of a stall when reaching the surge line is greatest, so that the detection of the flow reversal in the boundary layer in these areas offers the opportunity to detect the risk of pumping early and to take stabilizing measures.
  • the compressor according to the invention which is advantageous is suitable for performing the method, has an adjusting device for adjusting the current compressor operating point, a measuring device for measuring at least one variable compressor characteristic and a control and control unit in which compares the compressor characteristic with a desired size and controlled by the adjusting device becomes.
  • the flow velocity of the mass flow in the boundary layer to determine the compressor wheel bounding wall in the compressor to determine. If the vector of the boundary layer flow velocity is reversed, an actuating signal is generated to act on the actuator, whereby the operation of the compressor in the region near the surge limit can be stabilized and undesired exceeding of the surge line into the unstable region is avoided.
  • the measuring device u expediently includes a sensor which is arranged adjacent to the wall, in particular at a small distance from the wall.
  • the sensor may, for example, be designed as a so-called hot-film knife whose measuring method is based on the fact that heat is extracted from a heated body by the medium flowing around it.
  • FIG. 1 is a schematic representation of an internal combustion engine with exhaust gas turbocharger whose Abgasturbi- ne with variable turbine geometry and the compressor is equipped with variable compressor geometry, wherein in the compressor for a Operation near the surge line is provided a measuring device for detecting the flow velocity in a boundary layer near the wall of the flow channel for the mass flow passing through the compressor,
  • FIG. 2 shows an enlarged detail of a part of the compressor wheel in the outflow region to the diffuser with a representation of different velocity profiles of the flow in the diffuser
  • FIG 3 shows an enlarged representation of a velocity profile in the inlet cross section or in the outlet cross section of the compressor during operation of the compressor near the surge line.
  • the internal combustion engine 1 shown in FIG. 1 is associated with an exhaust gas turbocharger 2, which comprises an exhaust gas turbine 3 in the exhaust gas line 4 and a compressor 5 in the intake tract 6 of the internal combustion engine.
  • the compressor 5 is driven via a shaft 7 of the exhaust gas turbine 3 and compressed aspirated combustion air to an elevated pressure, below which the combustion air downstream of the compressor 5 is first supplied to a charge air cooler 8 and passed in the further course with boost pressure in the cylinder of the internal combustion engine.
  • the exhaust gas turbine 3 is driven by the exhaust gases of the internal combustion engine which are under elevated pressure, which after passing through the exhaust gas turbine undergo exhaust gas purification and are finally discharged into the environment.
  • the exhaust gas turbine 3 is equipped with a variable turbine geometry 9, via which the effective turbine inlet cross section between a minimum stowed position and a maximum opening position is to be adjusted.
  • the variable turbine geometry 9 is designed, for example, as a guide grid which can be inserted axially into the turbine flow inlet cross-section or as a guide grid with adjustable guide vanes which is fixed in the flow inlet cross-section.
  • the compressor 5 has a designated with reference numeral 10 variable compressor geometry (VVG), via which the effective compressor cross-section is set variable in particular in the compressor impeller inlet region and in the compressor outlet region.
  • VVG variable compressor geometry
  • the variable compressor geometry 10 may include an adjustable Vorleitgitter which is upstream of the compressor.
  • a Variodiffusor be arranged with adjustable cross-section.
  • All adjustable components of the internal combustion engine or of the internal combustion engine associated units are set via a control and control unit 11.
  • the control and regulating unit 11 in particular receives control signals of an accelerator pedal 12, which is to be operated by the driver, and controls and regulates the force injection shown in the cylinders of the internal combustion engine 1 and the current position of the variable turbine geometry 9 and the variable compressor geometry 10.
  • the regulation and control of all components or units of the internal combustion engine takes place as a function of state and operating variables of the internal combustion engine and of the units which are fed to the control and regulation unit as information signals. the.
  • the control and control unit produced from this information control signals that are supplied to the relevant components or aggregates.
  • the compressor 5 is equipped with a measuring device comprising sensors 14 and 15, via which the flow rate of the mass flow through the compressor can be determined.
  • the flow velocity in the boundary layer of the mass flow to a wall of the flow channel defining the compressor wheel in the compressor is to be determined via the sensors 14 and 15.
  • the first sensor 14 is arranged in the compressor wheel inlet region, the second sensor 15 in the compressor wheel outlet region; Accordingly, via the sensor 14, the boundary layer flow velocity in the compressor wheel inlet region and via the sensor 15 to detect the boundary layer flow velocity in Verêtrrad- outlet region.
  • the sensor signals of the sensors 14 and 15 are supplied as input or information signals of the control and control unit 11, in which according to a stored calculation rule from the sensor signals control signals for the adjustment of the variable turbine geometry 9, the variable compressor geometry 10 and / or the fuel injection 13th to be generated.
  • Variable turbine geometry, variable compressor geometry as well as fuel injection are to be influenced via assigned control devices such as slide valves, rotary valves or fuel injectors.
  • FIG. 2 is in the compressor wheel outlet region - downstream of the compressor 17 - in a Variodiffusor 16, via which the compressed air is derived from the compressor and has a variably adjustable cross-sectional geometry, the sensor 15 in the near-wall region for measuring the boundary layer flow rate arranged. Shown are four different flow profiles, which are set at different operating points of the compressor in the compressor wheel outlet region.
  • a first flow profile 18a is characterized by high flow vectors in the outflow direction, which extend over the entire cross section in the compressor wheel outlet region. This working point of the dichters corresponds to a compressor operation with high, passed through the compressor mass flows and a high pressure ratio of compressor impeller outlet pressure to compressor impeller inlet pressure.
  • the airfoil 18c corresponds to a compressor operation in the immediate vicinity of the surge line in the just-yet-permissible, stable range.
  • the velocity vectors of the flow reverse, there is a flow reversal in the boundary layer, which can be used as a measure of an impending risk of pumping.
  • This flow reversal in the boundary layer can be determined via the sensor 15 in the near-wall region and transmitted to the control and control unit for further processing, after which stabilizing measures can be taken, in particular interventions in the position of the variable turbine geometry, in the position of the variable compressor geometry and in the fuel injection to avoid further shifting the operating point of the compressor into the unstable region.
  • the flow profile 18d shows a compressor operation in the unstable, impermissible range after exceeding the surge limit. All flow vectors of the compressor wheel outlet cross-section have reversed, the compressor operates in pumping mode. This operation can be avoided by regulating and stabilizing measures when detecting the boundary layer near flow reversal.
  • FIG. 3 shows, in an enlarged representation, the Vario diffuser 16 in the compressor wheel outlet region with a flow profile 18c during a compressor operation in the region near the pumping boundary, in which the flow vectors in the boundary layer region 19 are reversed.
  • the sensor 15 is at a distance ⁇ x to the wall of the Variodiffusors 16 and determines the velocity vector v s .
  • the distance .DELTA.x of the sensor 15 to the adjacent wall is small, which offers the advantage that a flow reversal in the boundary layer region can already be detected at an early point in time since the flow reversal forms first in the immediate vicinity of the wall.
  • the velocity vectors v s , ⁇ , v s , 2 and v s , 3 designate speed limit values which are stored in the control and control unit and which are used as set values for the comparison with the measured actual value of the flow velocity v s close to the boundary layer.
  • the velocity vectors v s , ⁇ , v s , 2 and v s , 3 have a different high level and can be used to trigger different consequences. Thus, it is possible, for example, to first trigger a control intervention in the variable compressor geometry if the measured velocity vector v s reaches the first, lowest velocity limit value v s , ⁇ .

Abstract

Bei einem Verfahren zum Betreiben eines Verdichters im Bereich der Verdichterpumpgrenze wird mindestens eine veränderliche Verdichterkenngrösse gemessen, mit einer Sollgrösse verglichen und bei einer unzulässigen Abweichung eine Steileinrichtung zur Einstellung des aktuellen Betriebspunktes des Verdichters betätigt. Als Verdichterkenngrösse wird die Strömungsgeschwindigkeit des Massenstromes durch den Verdichter in der Grenzschicht einer einen Strömungskanal durch den Verdichter begrenzenden Wandung ermittelt. Die Steileinrichtung wird für den Fall betätigt, dass sich der Vektor der Strömungsgeschwindigkeit in der Grenzschicht umkehrt.

Description

Verfahren zum Betreiben eines Verdichters im Bereich der Verdichter-Pumpgrenze und Verdichter
Die Erfindung bezieht sich auf ein Verfahren zum Betreiben eines Verdichters im Bereich der Verdichter-Pumpgrenze und auf einen Verdichter nach dem Oberbegriff des Anspruches 1 bzw. 8.
In der Druckschrift DE 43 16 202 AI wird ein Verfahren zur Überwachung der Pumpgrenze eines Turboverdichters beschrieben. Der Arbeitsbereich von Verdichtern ist für hohe Massendurchsätze durch die Stopfgrenze und für Teilmassenströme bei zugleich hoher Last durch die Pumpgrenze limitiert, wodurch die real nutzbare Verdichter-Kennfeldbreite eingeschränkt ist. Insbesondere zur Pumpgrenze muss ein Mindestabstand eingehalten werden, um unzulässig hohe Belastungen des Verdichterrades zu vermeiden.
Um eine Überschreitung der Pumpgrenze in den unzulässigen Bereich hinein zu verhindern, ist gemäß der DE 43 16 202 AI eine Regelungseinrichtung vorgesehen, bei der Drücke und Volumenströme durch den Verdichter gemessen, in einer Regel- und Steuereinheit mit korrespondierenden Sollwerten verglichen werden und bei einer unzulässigen Abweichung der Istwerte ein dem Verdichterrad vorgeschalteter Vor- leitapparat bzw. ein nachgeschalteter Nachleitapparat in der Weise verstellt wird, dass ein gewünschter Abstand zur Pumpgrenze eingehalten wird. Problematisch hierbei ist je- doch, dass die Bestimmung der Sollwerte, die zum Vergleich mit den gemessenen Istwerten herangezogen werden, an Hand eines Referenzverdichters vorab bestimmt werden müssen, was die Möglichkeit einer dynamischen Anpassung an sich ändernde Bedingungen im laufenden Betrieb, beispielsweise hervorgerufen durch Verschmutzung, Abnutzung oder Wärmeeinflüsse, deutlich einschränkt oder sogar ausschließt.
Der Erfindung liegt das Problem zugrunde, den Arbeitsbereich eines Verdichters im Verdichterkennfeld in bestmöglicher Weise unter Vermeidung einer Überschreitung der Pumpgrenze auszunutzen.
Dieses Problem wird erfindungsgemäß bei einem Verfahren zum Betreiben eines Verdichters mit den Merkmalen des Anspruches 1 und bei einem Verdichter mit den Merkmalen des Anspruches 8 gelöst. Die Unteransprüche geben zweckmäßige Weiterbildungen an.
Bei dem Verfahren zum Betreiben des Verdichters im Bereich der Verdichter-Pumpgrenze wird zur Erkennung der Pumpgrenze die Strömungsgeschwindigkeit des Massenstromes durch den Verdichter in der Grenzschicht in einer einen Strömungskanal durch den Verdichter begrenzenden Wandung im Verdichter ermittelt. Die Grenzschichtgeschwindigkeit im Strömungskanal, in welchem das Verdichterrad angeordnet ist, gibt einen zuverlässigen Aufschluss darüber, ob ein hinreichend großer Abstand zur Pumpgrenze bzw. aktuell ein Annähern des Verdichterbetriebes an die Pumpgrenze vorliegt. Im Falle eines Annäherns an die Pumpgrenze ändert sich das Geschwindigkeitsprofil über den Strömungsquerschnitt dahingehend, dass es noch vor dem Einsetzen des eigentlichen Pumpvorganges in der Grenzschicht bereits zu einer Strömungsumkehr kommt, welche gemessen bzw. ermit- telt werden kann und als Maßstab dafür gilt, dass der Verdichter aktuell in unmittelbarer Nähe der Pumpgrenze betrieben wird. Falls eine derartige Strömungsumkehr in der Grenzschicht festgestellt wird, wird die Stelleinrichtung zur Regulierung des aktuellen Betriebspunktes des Verdichters betätigt, um eine Stabilisierung des Verdichterbetriebes zu erreichen und um zu vermeiden, dass die Pumpgrenze in den instabilen Bereich hinein überschritten wird.
Diese Art der Regelung weist den Vorteil auf, dass die Pumpgrenze auch bei sich ändernden Randbedingungen wie zum Beispiel zunehmende Verschmutzung eines vorgeschalteten Luftfilters, Betrieb in größeren Höhen, sich über die Betriebszeit ändernde Pumpgrenze, fertigungsbedingte Streuungen in der Konstruktion und Ähnliches zuverlässig detek- tiert werden kann. Auf die Ermittlung und Hinterlegung von Referenzgrößen kann dagegen verzichtet werden. Dies erlaubt eine dynamische Betriebsweise des Verdichters auch unter wechselnden Bedingungen bei optimaler Ausnutzung des zur Verfügung stehenden Arbeitsbereiches.
Als Sollwerte, die zum Vergleich mit den gemessenen Geschwindigkeitswerten herangezogen werden, können Geschwindigkeitsschwellenwerte definiert werden, bei deren Erreichen ein Regeleingriff über die Stelleinrichtung durchgeführt wird. Über diese Schwellenwerte wird der Abstand im laufenden Verdichterbetrieb zur Pumpgrenze festgelegt. Des Weiteren können über die Höhe der Schwellenwerte unterschiedliche Maßnahmen zur Regulierung des Verdichterbetriebes angesteuert werden. So ist es beispielsweise möglich, über einen ersten Schwellen- bzw. Grenzwert eine verstellbare Verdichtergeometrie zu beaufschlagen, die beispielsweise als verstellbares, dem Verdichterrad vorge- schaltetes Vorleitgitter oder als dem Verdichterrad nachgeschalteter, veränderlich einstellbarer Variodiffusor ausgebildet sein kann. Über einen zweiten Grenzwert, dessen Absolutwert insbesondere höher ist als derjenige des ersten Grenzwertes, kann eine variable Turbinengeometrie angesteuert werden, soweit der Verdichter Bestandteil eines Turboladers ist und von einer Turbine angetrieben wird. In dieser Ausführung wird der Verdichter vorteilhaft in einem Abgasturbolader für eine Brennkraftmaschine eingesetzt. Über einen dritten Grenzwert für die Strömungsgeschwindigkeit, dessen Absolutwert insbesondere höher ist als derjenige des zweiten Grenzwertes, kann schließlich die in die Zylinder der Brennkraftmaschine eingespritzte Kraftstoffmenge reguliert werden.
Grundsätzlich reicht es jedoch aus, zumindest eine die Pumpgrenze stabilisierende Maßnahme über die Stelleinrichtung anzusteuern, sobald sich das Vorzeichen der Strömungsgeschwindigkeit in der Grenzschicht umkehrt, unabhängig vom sich absolut einstellenden Wert der Strömungsgeschwindigkeit .
Die Grenzschicht-Strömungsgeschwindigkeit wird vorteilhaft im Verdichterrad-Eintrittsbereich, insbesondere an der Außenkontur des Verdichterrades, und/oder im Verdichterrad- Austrittsbereich, insbesondere im nachgeschalteten Diffu- sor ermittelt. In diesen Bereichen ist die Gefahr eines Strömungsabrisses bei Erreichen der Pumpgrenze am größten, so dass die Detektierung der Strömungsumkehr in der Grenzschicht in diesen Bereichen die Möglichkeit bietet, die Pumpgefahr frühzeitig zu erkennen und stabilisierende Maßnahmen zu ergreifen.
Der erfindungsgemäße Verdichter, welcher sich vorteilhaft zur Durchführung des Verfahrens eignet, besitzt eine Stelleinrichtung zur Einstellung des aktuellen Verdichter- Betriebspunktes, eine Messeinrichtung zur Messung mindestens einer veränderlichen Verdichter-Kenngröße und eine Regel- und Steuereinheit, in welcher die Verdichter- Kenngröße mit einer Sollgröße verglichen und über die die Stelleinrichtung angesteuert wird. Über die Messeinrichtung ist die Strömungsgeschwindigkeit des Massenstromes in der Grenzschicht zu der das Verdichterrad begrenzenden Wandung im Verdichter zu ermitteln. Falls sich der Vektor der Grenzschicht-Strömungsgeschwindigkeit umkehrt, wird ein Stellsignal zur Beaufschlagung der Stelleinrichtung erzeugt, wodurch der Betrieb des Verdichters im Bereich nahe der Pumpgrenze stabilisiert werden kann und ein unerwünschtes Überschreiten der Pumpgrenze in den instabilen Bereich hinein vermieden wird.
Die Messeinrichtung u fasst zweckmäßig einen Sensor, der benachbart der Wandung angeordnet wird, insbesondere in einem geringen Abstand zur Wandung sich befindet. Der Sensor kann beispielsweise als so genannter Heißfilmmesser ausgeführt sein, dessen Messverfahren darauf beruht, dass einem beheizten Körper durch das ihn umströmende Medium Wärme entzogen wird.
Weitere Vorteile und zweckmäßige Ausführungen sind den weiteren Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Es zeigen:
Fig. 1 eine schematische Darstellung einer Brennkraftmaschine mit Abgasturbolader, dessen Abgasturbi- ne mit variabler Turbinengeometrie und dessen Verdichter mit variabler Verdichtergeometrie ausgestattet ist, wobei im Verdichter für einen Betrieb nahe der Pumpgrenze eine Messeinrichtung zur Detektierung der Strömungsgeschwindigkeit in einer Grenzschicht nahe der Wandung des Strömungskanals für den den Verdichter passierenden Massenstrom vorgesehen ist,
Fig. 2 eine Ausschnittvergrößerung eines Teil des Verdichterrades im Abströmbereich zum Diffusor mit einer Darstellung unterschiedlicher Geschwindigkeitsprofile der Strömung im Diffusor,
Fig. 3 eine vergrößerte Darstellung eines Geschwindigkeitsprofiles im Eintrittsquerschnitt bzw. im Austrittsquerschnitt des Verdichters bei einem Betrieb des Verdichters nahe der Pumpgrenze.
Der in Fig. 1 dargestellten Brennkraftmaschine 1 ist ein Abgasturbolader 2 zugeordnet, der eine Abgasturbine 3 im Abgasstrang 4 sowie einen Verdichter 5 im Ansaugtrakt 6 der Brennkraftmaschine umfasst. Der Verdichter 5 wird über eine Welle 7 von der Abgasturbine 3 angetrieben und verdichtet angesaugte Verbrennungsluft auf einen erhöhten Druck, unter dem die Verbrennungsluft stromab des Verdichters 5 zunächst einem Ladeluftkühler 8 zugeführt und im weiteren Verlauf mit Ladedruck in die Zylinder der Brennkraftmaschine geleitet wird. Die Abgasturbine 3 wird von den unter erhöhtem Druck stehenden Abgasen der Brennkraftmaschine angetrieben, welche nach dem Passieren der Abgasturbine einer Abgasreinigung unterzogen und schließlich in die Umgebung abgeleitet werden.
Die Abgasturbine 3 ist mit einer variablen Turbinengeometrie 9 ausgestattet, über die der wirksame Turbineneintrittsquerschnitt zwischen einer minimalen Stauposition und einer maximalen Öffnungsposition zu verstellen ist. Hierdurch kann der Betrieb der Brennkraftmaschine sowohl in der befeuerten Antriebsbetriebsweise als auch im Motorbremsbetrieb optimiert werden. Die variable Turbinengeometrie 9 ist beispielsweise als axial in den Turbinenströ- mungseintrittsquerschnitt einschiebbares Leitgitter oder als im Strömungseintrittsquerschnitt feststehendes Leitgitter mit verstellbaren Leitschaufeln ausgebildet.
Der Verdichter 5 weist eine mit Bezugszeichen 10 bezeichnete variable Verdichtergeometrie (VVG) auf, über die der wirksame Verdichterquerschnitt insbesondere im Verdichterrad-Eintrittsbereich und im Verdichter-Austrittsbereich veränderlich einzustellen ist. Im Verdichterrad- Eintrittsbereich kann die variable Verdichtergeometrie 10 ein verstellbares Vorleitgitter umfassen, welches dem Verdichterrad vorgeschaltet ist. Im Verdichterrad- Austrittsbereich kann ein Variodiffusor mit verstellbarem Querschnitt angeordnet sein.
Sämtliche einstellbaren Bauteile der Brennkraftmaschine bzw. der der Brennkraftmaschine zugeordneten Aggregate werden über eine Regel- und Steuereinheit 11 eingestellt. Die Regel- und Steuereinheit 11 empfängt insbesondere Stellsignale eines Beschleunigungspedales 12, welches vom Fahrer zu betätigen ist, und steuert und regelt die mit Bezugszeichen 13 dargestellte Krafteinspritzung in die Zylinder der Brennkraftmaschine 1 sowie die aktuelle Position der variablen Turbinengeometrie 9 und der variablen Verdichtergeometrie 10. Die Regelung und Steuerung sämtlicher Bauteile bzw. Aggregate der Brennkraftmaschine erfolgt in Abhängigkeit von Zustands- und Betriebsgrößen der Brennkraftmaschine sowie der Aggregate, welche der Regel- und Steuereinheit als Informationssignale zugeführt wer- den. Die Regel- und Steuereinheit produziert aus diesen Informationen Stellsignale, die den betreffenden Bauteilen bzw. Aggregaten zugeführt werden.
Um feststellen zu können, ob der Verdichter 5 aktuell in einem Betriebspunkt nahe seiner Pumpgrenze betrieben wird, ist der Verdichter 5 mit einer Messeinrichtung ausgestattet, welche Sensoren 14 und 15 umfasst, über die die Strömungsgeschwindigkeit des Massenstromes durch den Verdichter ermittelt werden kann. Über die Sensoren 14 und 15 ist insbesondere die Strömungsgeschwindigkeit in der Grenzschicht des Massenstromes zu einer das Verdichterrad begrenzenden Wandung des Strömungskanals im Verdichter zu ermitteln. Der erste Sensor 14 ist im Verdichterrad- Eintrittsbereich angeordnet, der zweite Sensor 15 im Verdichterrad-Austrittsbereich; dementsprechend ist über den Sensor 14 die Grenzschicht-Strömungsgeschwindigkeit im Verdichterrad-Eintrittsbereich und über den Sensor 15 die Grenzschicht-Strömungsgeschwindigkeit im Verdichterrad- Austrittsbereich zu detektieren. Die Sensorsignale der Sensoren 14 und 15 werden als Eingangs- bzw. Informationssignale der Regel- und Steuereinheit 11 zugeführt, in welcher entsprechend einer hinterlegten Berechnungsvorschrift aus den Sensorsignalen Stellsignale für die Einstellung der variablen Turbinengeometrie 9, der variablen Verdichtergeometrie 10 und/oder der Kraftstoffeinspritzung 13 generiert werden. Variable Turbinengeometrie, variable Verdichtergeometrie sowie Kraftstoffeinspritzung sind über zugeordnete Stelleinrichtungen wie Schieber, Drehschieber oder Kraftstoffinjektoren zu beeinflussen. Über die Einstellung der variablen Turbinengeometrie, der variablen Verdichtergeometrie und/oder der Kraftstoffeinspritzung kann der aktuelle Betriebspunkt des Verdichters beein- flusst werden, insbesondere ein ausreichender Abstand zur Pumpgrenze des Verdichters eingehalten werden.
Über die Sensorsignale der Sensoren 14 und 15 kann festgestellt werden, ob sich der Vektor der Strömungsgeschwindigkeit in der Grenzschicht umgekehrt hat. Diese Umkehrung der Strömungsgeschwindigkeit in der Grenzschicht deutet darauf hin, dass der Verdichter aktuell in unmittelbarer Nähe zur Pumpgrenze, jedoch noch im zulässigen stabilen Arbeitsbereich betrieben wird. Eine weitere Verschiebung des Arbeitspunktes über die Pumpgrenze hinaus in den instabilen Bereich hinein, beispielsweise durch Absenkung des Massenstromes durch den Verdichter, ist jedoch zu vermeiden, was durch Einstellungen der variablen Verdichtergeometrie, der variablen Turbinengeometrie und/oder der Kraftstoffeinspritzung realisiert werden kann. Über diese Einstellungen ist der Arbeitspunkt des Verdichters im pumpgrenznahen Bereich zu stabilisieren.
Dieser Sachverhalt wird an Hand der Fig. 2 näher beschrieben. In Fig. 2 ist im Verdichterrad-Austrittsbereich - stromab des Verdichterrades 17 - in einem Variodiffusor 16, über den die verdichtete Luft aus dem Verdichter abzuleiten ist und der eine variabel einstellbare Querschnittsgeometrie besitzt, der Sensor 15 im wandnahen Bereich zur Messung der Grenzschicht- Strömungsgeschwindigkeit angeordnet. Dargestellt sind vier verschiedenartige Strömungsprofile, welche sich bei unterschiedlichen Betriebspunkten des Verdichters im Verdichterrad-Austrittsbereich einstellen.
Ein erstes Strömungsprofil 18a ist durch hohe Strömungsvektoren in Abströmrichtung gekennzeichnet, welche sich ü- ber den gesamten Querschnitt im Verdichterrad- Austrittsbereich erstrecken. Dieser Arbeitspunkt des Ver- dichters entspricht einem Verdichterbetrieb mit hohen, durch den Verdichter geleiteten Massenströmen und einem hohen Druckverhältnis von Verdichterrad-Austrittsdruck zu Verdichterrad-Eintrittsdruck.
Im Strömungsprofil 18b fallen die Geschwindigkeitsvektoren der Strömung im grenzschichtnahen Bereich ab. Dies entspricht einem Verdichterbetrieb mit gegenüber dem Strömungsprofil 18a reduzierten Massenstrom.
Das Strömungsprofil 18c entspricht einem Verdichterbetrieb in unmittelbarer Nähe der Pumpgrenze im gerade noch zulässigen, stabilen Bereich. Im Grenzschichtbereich 19 kehren sich die Geschwindigkeitsvektoren der Strömung um, es tritt eine Strömungsumkehr in der Grenzschicht ein, welche als Maßstab für eine drohende Pumpgefahr herangezogen werden kann. Diese Strömungsumkehr in der Grenzschicht kann über den Sensor 15 im wandnahen Bereich ermittelt und zur Regel- und Steuereinheit zur weiteren Verarbeitung übertragen werden, woraufhin stabilisierende Maßnahmen ergriffen werden können, insbesondere Eingriffe in die Position der variablen Turbinengeometrie, in die Position der variablen Verdichtergeometrie und in die Kraftstoffeinspritzung, um ein weiteres Verschieben des Betriebspunktes des Verdichters in den instabilen Bereich hinein zu vermeiden.
Das Strömungsprofil 18d zeigt einen Verdichterbetrieb im instabilen, unzulässigen Bereich nach dem Überschreiten der Pumpgrenze. Sämtliche Strömungsvektoren des Verdichterrad-Austrittsquerschnittes haben sich umgekehrt, der Verdichter arbeitet im Pumpbetrieb. Dieser Betrieb kann durch regelnde und stabilisierende Maßnahmen bei Detektie- rung der grenzschichtnahen Strömungsumkehr vermieden werden. Fig. 3 zeigt in einer vergrößerten Darstellung den Vario- diffusor 16 im Verdichterrad-Austrittsbereich mit einem Strömungsprofil 18c bei einem Verdichterbetrieb im pumpgrenznahen Bereich, in welchem sich die Strömungsvektoren im Grenzschichtbereich 19 umkehren. Der Sensor 15 liegt mit Abstand Δx zur Wandung des Variodiffusors 16 und ermittelt den Geschwindigkeitsvektor vs. Der Abstand Δx des Sensors 15 zur benachbarten Wandung ist klein, was den Vorteil bietet, dass bereits zu einem frühen Zeitpunkt eine Strömungsumkehr im Grenzschichtbereich festgestellt werden kann, da sich in unmittelbarer Wandnähe die Strömungsumkehr zuerst ausbildet.
Die Geschwindigkeitsvektoren vs,ι, vs,2 und vs,3 bezeichnen Geschwindigkeits-Grenzwerte, welche in der Regel- und Steuereinheit abgespeichert sind und die als Sollgrößen für den Vergleich mit dem gemessenen Istwert der grenzschichtnahen Strömungsgeschwindigkeit vs herangezogen werden. Die Geschwindigkeitsvektoren vs,ι, vs,2 und vs,3 weisen ein unterschiedlich hohes Niveau auf und können zur Auslösung unterschiedlicher Folgen herangezogen werden. So ist es beispielsweise möglich, zunächst einen Stelleingriff in der variablen Verdichtergeometrie auszulösen, falls der gemessene Geschwindigkeitsvektor vs den ersten, niedrigsten Geschwindigkeits-Grenzwert vs,ι erreicht. Bei Erreichen des nächsthöheren Geschwindigkeitsgrenzwertes vs,2 kann zusätzlich ein Eingriff in die variable Turbinengeometrie erfolgen, bei Erreichen des dritten, größten Grenzwertes vs,3 ein Eingriff in die Kraftstoffeinspritzung. Sämtliche Eingriffe erfolgen derart, dass der Verdichterbetrieb im zulässigen Arbeitsbereich stabilisiert wird.

Claims

Patentansprüche
1. Verfahren zum Betreiben eines Verdichters im Bereich der Verdichter-Pumpgrenze, der eine Stelleinrichtung zur Einstellung des aktuellen Betriebspunktes des Verdichters
(5) aufweist, wobei mindestens eine veränderliche Verdichter-Kenngröße gemessen, mit einer Sollgröße verglichen und bei einer unzulässigen Abweichung die Stelleinrichtung betätigt wird, d a d u r c h g e k e n n z e i c h n e t , dass als Verdichter-Kenngröße zur Erkennung der Pumpgrenze die Strömungsgeschwindigkeit (vs) des Massenstromes durch den Verdichter (5) in der Grenzschicht einer einen Strömungskanal durch den Verdichter begrenzenden Wandung ermittelt und die Stelleinrichtung für den Fall betätigt wird, dass sich der Vektor der Strömungsgeschwindigkeit
(vs) in der Grenzschicht umkehrt.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Strömungsgeschwindigkeit (vs) im Verdichterrad- Eintrittsbereich ermittelt wird.
3. Verfahren nach Anspruch 1 oder 2, f d a d u r c h g e k e n n z e i c h n e t , dass die Strömungsgeschwindigkeit (vs) im Verdichterrad- Austrittsbereich ermittelt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , dass die Maßnahmen zur Einstellung des Betriebspunktes des Verdichters (5) vom Absolutwert der ermittelten Strömungsgeschwindigkeit (vs) abhängen.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , dass bei Erreichen eines ersten Strömungsgeschwindigkeits- Grenzwertes (vs,ι) eine Stelleinrichtung betätigt wird, ü- ber die eine variable Verdichtergeometrie (10) zu verstellen ist.
6. Verfahren nach Anspruch 4 oder 5, d a d u r c h g e k e n n z e i c h n e t , dass bei Erreichen eines zweiten Strömungsgeschwindigkeits-Grenzwertes (vs,2) eine Stelleinrichtung betätigt wird, über die eine variable Turbinengeometrie (9) einer den Verdichter (5) antreibenden Turbine (3) zu verstellen ist .
7. Verfahren nach einem der Ansprüche 4 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass bei Erreichen eines dritten Strömungsgeschwindigkeits-Grenzwertes (vS/3) eine Stelleinrichtung zur Reduzierung der in die Zylinder einer Brennkraftmaschine eingespritzten Kraftstoffmenge betätigt wird.
8. Verdichter, insbesondere zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7, mit einer Stelleinrichtung zur Veränderung des aktuellen Betriebspunktes des Verdichters (5) , mit einer Messeinrichtung (Sensoren 14 und 15) zur Messung mindestens einer veränderlichen Verdichter-Kenngröße und mit einer Regel- und Steuereinheit (11) , in der die Verdichter-Kenngröße mit einer Sollgröße -Un¬
vergleichbar und bei einer unzulässigen Abweichung ein Stellsignal zur Betätigung der Stelleinrichtung erzeugbar ist, d a d u r c h g e k e n n z e i c h n e t , dass in der Messeinrichtung (Sensoren 14 und 15) die Strömungsgeschwindigkeit (vs) des Massenstromes durch den Verdichter (5) in der Grenzschicht einer einen Strömungskanal durch den Verdichter begrenzenden Wandung ermittelbar ist und dass das Stellsignal zur Betätigung der Stelleinrichtung erzeugbar ist, falls sich der Vektor der Strömungsgeschwindigkeit (vs) umkehrt.
9. Verdichter nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , dass die Messeinrichtung als Sensor (14, 15) einen Heißfilmmesser umfasst.
10. Verdichter nach Anspruch 8 oder 9, d a d u r c h g e k e n n z e i c h n e t , dass der Sensor (14) der Messeinrichtung im Verdichterrad- Eintrittsbereich angeordnet ist.
11. Verdichter nach einem der Ansprüche 8 bis 10, d a d u r c h g e k e n n z e i c h n e t , dass der Sensor (15) der Messeinrichtung im Verdichterrad- Austrittsbereich angeordnet ist.
12. Verdichter nach einem der Ansprüche 8 bis 11, d a d u r c h g e k e n n z e i c h n e t , dass der Verdichter (5) mit einer variablen Verdichtergeometrie (10) ausgestattet ist, die von der Stelleinrichtung zu verstellen ist.
13. Verwendung eines Verdichters nach einem der Ansprüche 8 bis 12 in einem Abgasturbolader mit einer Abgasturbine mit variabler Turbinengeometrie, die von der Stelleinrichtung zu verstellen ist.
PCT/EP2003/011300 2002-10-24 2003-10-13 Verfahen zum betreiben eines verdichters im bereich der verdichter-pumpgrenze und verdichter WO2004038229A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03775179A EP1556615A1 (de) 2002-10-24 2003-10-13 Verfahen zum betreiben eines verdichters im bereich der verdichter-pumpgrenze und verdichter
US11/110,965 US7428815B2 (en) 2002-10-24 2005-04-20 Method of operating a compressor near the compressor pumping limit and compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10249471A DE10249471A1 (de) 2002-10-24 2002-10-24 Verfahren zum Betreiben eines Verdichters im Bereich der Verdichter-Pumpgrenze und Verdichter
DE10249471.1 2002-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/110,965 Continuation-In-Part US7428815B2 (en) 2002-10-24 2005-04-20 Method of operating a compressor near the compressor pumping limit and compressor

Publications (1)

Publication Number Publication Date
WO2004038229A1 true WO2004038229A1 (de) 2004-05-06

Family

ID=32087134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/011300 WO2004038229A1 (de) 2002-10-24 2003-10-13 Verfahen zum betreiben eines verdichters im bereich der verdichter-pumpgrenze und verdichter

Country Status (4)

Country Link
US (1) US7428815B2 (de)
EP (1) EP1556615A1 (de)
DE (1) DE10249471A1 (de)
WO (1) WO2004038229A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128827A1 (de) * 2005-05-28 2006-12-07 Siemens Aktiengesellschaft An air intake for a turbocharger for an internal combustion engine
EP1772608A1 (de) * 2005-10-10 2007-04-11 C.R.F. Società Consortile per Azioni Verfahren und Vorrichtung zur Steuerung der Geometrie eines Turboladers mit variabler Geometrie, insbesondere für einen Fahrzeugverbrennungsmotor
WO2007045781A1 (fr) * 2005-10-21 2007-04-26 Renault S.A.S Système et procédé de commande d'un turbocompresseur de suralimentation pour moteur à combustion interne
FR2915237A1 (fr) * 2007-04-20 2008-10-24 Renault Sas Systeme et procede de commande d'un turbocompresseur de suralimentation pour moteur a combustion interne
US7568339B2 (en) * 2006-03-14 2009-08-04 Honeywell International, Inc. Control for variable geometry compressor
US10060428B2 (en) 2012-11-07 2018-08-28 Nuovo Pignone Srl Method for operating a compressor in case of failure of one or more measured signals
US10989211B2 (en) 2013-03-26 2021-04-27 Nuovo Pignone Srl Methods and systems for antisurge control of turbo compressors with side stream

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10233042A1 (de) * 2002-07-20 2004-02-05 Daimlerchrysler Ag Abgasturbolader für eine Brennkraftmaschine
US20110194904A1 (en) * 2009-06-26 2011-08-11 Accessible Technologies, Inc. Controlled Inlet of Compressor for Pneumatic Conveying System
GB2531029B (en) * 2014-10-07 2020-11-18 Cummins Ltd Compressor and turbocharger
DE102015200257B4 (de) * 2015-01-12 2017-06-01 Ford Global Technologies, Llc Dynmische Verdichtersurgedetektion mit Heißdrahtanemometern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2448841A1 (de) * 1973-10-23 1975-04-24 Howell Instruments Verfahren und vorrichtung zur ueberwachung von rueckschlaegen in einem verdichter
US4205941A (en) * 1977-05-16 1980-06-03 Office National D'etudes Et De Recherches Aerospatiales (O.N.E.R.A.) Methods and apparatuses for avoiding surging phenomena in compressors
EP0761981A2 (de) * 1995-09-08 1997-03-12 Ebara Corporation Turbomaschine mit verstellbaren Leitschaufeln
EP0930423A2 (de) * 1998-01-16 1999-07-21 DaimlerChrysler AG Vorrichtung zur Ladedruckregelung und Abgasrückführungsregelung bei einer Brennkraftmaschine, insbesondere einem Dieselmotor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3122333C2 (de) * 1981-06-05 1983-06-30 Daimler-Benz Ag, 7000 Stuttgart Kraftstoffeinspritzanlage für eine aufgeladene Brennkraftmaschine
JPS59160053A (ja) * 1983-03-02 1984-09-10 Mazda Motor Corp タ−ボ過給機付エンジンの安全装置
DE4316202C2 (de) 1993-05-14 1998-04-09 Atlas Copco Energas Verfahren zur Überwachung der Pumpgrenze eines Turboverdichters mit Vorleitapparat und Nachleitapparat
ITTO20010041A1 (it) * 2001-01-19 2002-07-19 Iveco Motorenforschung Ag Sistema di controllo per turbocompressore a geometria variabile.
KR100496643B1 (ko) * 2003-10-25 2005-06-20 한국전자통신연구원 마이크로칼럼 전자빔 장치의 자체정렬 적층 금속 박막전자빔 렌즈 및 그 제작방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2448841A1 (de) * 1973-10-23 1975-04-24 Howell Instruments Verfahren und vorrichtung zur ueberwachung von rueckschlaegen in einem verdichter
US4205941A (en) * 1977-05-16 1980-06-03 Office National D'etudes Et De Recherches Aerospatiales (O.N.E.R.A.) Methods and apparatuses for avoiding surging phenomena in compressors
EP0761981A2 (de) * 1995-09-08 1997-03-12 Ebara Corporation Turbomaschine mit verstellbaren Leitschaufeln
EP0930423A2 (de) * 1998-01-16 1999-07-21 DaimlerChrysler AG Vorrichtung zur Ladedruckregelung und Abgasrückführungsregelung bei einer Brennkraftmaschine, insbesondere einem Dieselmotor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006128827A1 (de) * 2005-05-28 2006-12-07 Siemens Aktiengesellschaft An air intake for a turbocharger for an internal combustion engine
US8226356B2 (en) 2005-05-28 2012-07-24 Napier Turbochargers Limited Air intake for a turbocharger for an internal combustion engine
EP1772608A1 (de) * 2005-10-10 2007-04-11 C.R.F. Società Consortile per Azioni Verfahren und Vorrichtung zur Steuerung der Geometrie eines Turboladers mit variabler Geometrie, insbesondere für einen Fahrzeugverbrennungsmotor
WO2007045781A1 (fr) * 2005-10-21 2007-04-26 Renault S.A.S Système et procédé de commande d'un turbocompresseur de suralimentation pour moteur à combustion interne
FR2892451A1 (fr) 2005-10-21 2007-04-27 Renault Sas Systeme et procede de commande d'un turbocompresseur de suralimentation pour moteur a combustion interne
US7568339B2 (en) * 2006-03-14 2009-08-04 Honeywell International, Inc. Control for variable geometry compressor
FR2915237A1 (fr) * 2007-04-20 2008-10-24 Renault Sas Systeme et procede de commande d'un turbocompresseur de suralimentation pour moteur a combustion interne
US10060428B2 (en) 2012-11-07 2018-08-28 Nuovo Pignone Srl Method for operating a compressor in case of failure of one or more measured signals
US10989211B2 (en) 2013-03-26 2021-04-27 Nuovo Pignone Srl Methods and systems for antisurge control of turbo compressors with side stream

Also Published As

Publication number Publication date
EP1556615A1 (de) 2005-07-27
US20050265822A1 (en) 2005-12-01
US7428815B2 (en) 2008-09-30
DE10249471A1 (de) 2004-05-06

Similar Documents

Publication Publication Date Title
DE10310221B4 (de) Verfahren zur Begrenzung eines Ladedrucks
EP1809876B1 (de) Verfahren und vorrichtung zur steuerung oder regelung des ladedrucks einer brennkraftmaschine mit einem verdichter
DE60203592T2 (de) Regeleinrichtung für Turbolader mit variabler Geometrie
DE19808832C2 (de) Verfahren zur Regelung des Ladeluftmassenstroms einer aufgeladenen Brennkraftmaschine
DE69822375T2 (de) Kraftstoffeinspritzregelsystem für einen Dieselmotor
DE102010010362B4 (de) System und Verfahren zum Steuern des Betriebs einer Brennkraftmaschine mit einer Zwangsansaugkomponente mit variabler Geometrie
DE10353998B4 (de) Sammel-Kraftstoffeinspritzsystem
DE102013014722A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit einem Turbolader
DE69824024T2 (de) Verfahren und vorrichtung zur bestimmung der temperaturwerte in einer brennkraftmaschine
DE102008031941A1 (de) Luftstromausgleich für ein Motorsystem mit Twin-Turboladung
DE10225307A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE112011100755T5 (de) Einlasssteuergerät und Verfahren einer Einlasssteuerung für eine Brennkraftmaschine
DE102010043897B4 (de) Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
DE112008002049T5 (de) System, das die Turbodrehzahl durch Steuern der Brennstofflieferung begrenzt
WO2004038229A1 (de) Verfahen zum betreiben eines verdichters im bereich der verdichter-pumpgrenze und verdichter
DE102009055236B4 (de) Verfahren und Vorrichtung zur Regelung eines Abgasturboladers
DE102004003378B4 (de) Regelungs- und Steuerungsvorrichtung und Regelungs- und Steuerungsverfahren für einen mehrstufigen Turbolader
EP2923073B1 (de) Verfahren zum betrieb einer fremdgezündeten brennkraftmaschine mit einem abgasturbolader
DE102015011180B4 (de) Abgassteuerungsvorrichtung für einen Motor, Verfahren zum Steuern eines Motors und Computerprogrammprodukt
DE102015011393A1 (de) Steuervorrichtung für einen Motor, Verfahren zum Anhalten eines Motors und Computerprogrammprodukt
EP1609970B1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE19936269C2 (de) Verfahren und Vorrichtung zur Regelung einer Stellgröße für die Ansteuerung einer verstellbaren Kraftfahrzeugkomponente
DE10007669B4 (de) Verfahren zur Regelung eines Verdichters, insbesondere eines Verdichters im Ansaugtrakt einer Brennkraftmaschine
DE102005026926A1 (de) Motorsteuersystem
EP1043483B1 (de) Verfahren zum Regeln der Schmierung, vorzugsweise bei Verbrennungsmotoren und Anordnung zum Regeln gemäss dem Verfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003775179

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11110965

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003775179

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003775179

Country of ref document: EP