WO2004035512A1 - ビスフェノールaの製造方法 - Google Patents

ビスフェノールaの製造方法 Download PDF

Info

Publication number
WO2004035512A1
WO2004035512A1 PCT/JP2003/013184 JP0313184W WO2004035512A1 WO 2004035512 A1 WO2004035512 A1 WO 2004035512A1 JP 0313184 W JP0313184 W JP 0313184W WO 2004035512 A1 WO2004035512 A1 WO 2004035512A1
Authority
WO
WIPO (PCT)
Prior art keywords
phenol
bisphenol
adduct
filter
layer
Prior art date
Application number
PCT/JP2003/013184
Other languages
English (en)
French (fr)
Inventor
Masahiro Kodama
Kazuyuki Hirano
Keizou Takegami
Hideki Suda
Original Assignee
Idemitsu Kosan Co., Ltd.
Tsukishima Kikai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd., Tsukishima Kikai Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO2004035512A1 publication Critical patent/WO2004035512A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/70Purification; separation; Use of additives, e.g. for stabilisation by physical treatment
    • C07C37/84Purification; separation; Use of additives, e.g. for stabilisation by physical treatment by crystallisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/11Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
    • C07C37/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/15Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with all hydroxy groups on non-condensed rings, e.g. phenylphenol
    • C07C39/16Bis-(hydroxyphenyl) alkanes; Tris-(hydroxyphenyl)alkanes

Definitions

  • the present invention relates to a method for producing bisphenol A [2,2-bis (4-hydroxyphenol) pulp bread], and more particularly to a method for separating an adduct of bisphenol A and phenol in the production method. It is. Background art
  • Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, or epoxy resin, and its demand has been increasing in recent years. is there.
  • This bisphenol A is produced by condensing excess phenol and acetone in the presence of an acidic catalyst and optionally a cocatalyst such as a sulfur compound.
  • Bisphenol A can be extracted from the reaction mixture by directly separating it from the reaction mixture in the form of crude crystals, or by concentrating and cooling the liquid mixture after removing acetone, water, etc. from the reaction mixture.
  • a method is known in which an adduct of A and phenol is precipitated and separated.
  • the mainstream method is to separate and separate the latter adduct of bisphenol A and phenol.
  • the adduct of bisphenol A and phenol is crystallized, and the crystals are separated from the mother liquor by a known solid-liquid separation method using filtration or a centrifuge (for example, see 5 7-7 7 6 3 7 Publication, Japanese Unexamined Patent Publication No. Hei 5-3131088, Japanese Unexamined Patent Publication No. Sho 63-2757539, Japanese Unexamined Patent Publication No. Hei 6-3600 No. 2).
  • the suction type belt filter is used for the separation by the filtration method.
  • a tray filter, a drum filter, etc. can be used (for example, see Japanese Patent Application Laid-Open No. Hei 7-25798, page 3 [0011]). It is necessary to make large crystals and reduce the surface area in order to prevent or purify them (for example, see Japanese Patent Application Laid-Open No. 5-31088).
  • the method using a centrifuge is preferable in order to reduce the liquid content between crystals and obtain a more dried adduct.However, since the centrifugal load is applied, the crystals are crushed and the efficiency of replacement of the mother liquor and washing solution is reduced. It is worse than the filtration method. Therefore, processing a large amount of products
  • the present inventors have conducted intensive studies on a method for producing bisphenol A having the above-mentioned problems. By introducing a heated inert gas stream and operating the belt filter under specific conditions, the adduct of bisphenol A and phenol can be continuously and efficiently stabilized. And found that it can be recovered with high purity, and reached the present invention.
  • the present invention provides the following method for producing bisphenol A.
  • a phenol slurry solution of bisphenol A containing an adduct of bisphenol A and phenol in a crystalline state is introduced under reduced pressure into a heated inert gas stream over a horizontal endless belt filter.
  • an adduct layer of crystalline bisphenol A and phenol is formed on the filter,
  • the liquid content of the adduct layer is 30% by weight. / 0 or less
  • a process for producing bisfunol A comprising:
  • a horizontal endless belt filter is used in the solid-liquid separation in the steps (D) and (D '), and the belt filter is operated under specific conditions.
  • a horizontal endless belt filter is used in the solid-liquid separation in the steps (D) and (D ′), and a slurry solution containing an adduct of bisphenol A and phenol in a crystalline state is added under reduced pressure.
  • a heated inert gas in a low-oxygen atmosphere is introduced, and oxygen contained in the adduct is effectively removed, so that a higher-quality bisphenol is obtained.
  • an acidic catalyst an acid type ion exchange resin can be used.
  • the acid-type ion exchange resin is not particularly limited, and those conventionally used as a catalyst for bisphenol A can be used. Fats are preferred.
  • the sulfonic acid type cation exchange resin is not particularly limited as long as it is a strongly acidic cation exchange resin having a sulfonic acid group.
  • sulfonated styrene-dibutylbenzene copolymer sulfonated crosslinked styrene polymer, phenol honolaldehyde sulfonic acid Acid resin, benzene formaldehyde monosulfonic acid resin and the like. These may be used alone or in combination of two or more.
  • Lukabutanes are used in combination.
  • This mercaptan refers to a compound having a SH group in a free form in a molecule, and has such a compound as an alkyl mercaptan or one or more substituents such as a carboxyl group, an amino group, and a hydroxy group.
  • Alkyl mercaptans for example, mercaptocarboxylic acid, aminoalkanethiol, mercaptoalcol, and the like can be used.
  • mercaptans examples include thiocarboxylic acids such as methyl mercaptan, ethyl mercaptan, n-butylglycolic acid,] 3-mercaptopropionic acid, aminoalkanethiols such as .2-aminoaminothiol, Examples thereof include mercapto alcohols such as mercaptoethanol, and among them, alkyl mercaptans are particularly preferable in view of the effect as a cocatalyst. These mercapdans may be used alone or in combination of two or more. These mercaptans can be immobilized on the acid-type ion exchange resin to function as a catalyst. -The amount of the mercaptans used is generally from 0.1 to
  • 2 0 mole 0/0 preferably, is selected in the range of 1 to 0 mole 0/0.
  • reaction solvent is generally not required, except that the reaction solution has a too high viscosity or reacts at a low temperature at which solidification makes the operation difficult.
  • the condensation reaction between phenol and acetone may be either a batch type or a continuous type.
  • a reaction tower filled with an acid-type ion-exchange resin phenol, acetone and mercaptans (mercaptans are acid-type ion exchange resins)
  • mercaptans are acid-type ion exchange resins
  • the number of reaction towers may be one, or two or more may be arranged in series.
  • industrially it is particularly advantageous to employ a fixed-bed multistage continuous reaction system in which two or more reaction towers filled with an acid-type ion exchange resin are connected in series.
  • the acetone / phenol molar ratio is usually selected in the range of 1/3 0 to 1/3, preferably 1/15 to 1/5. If the molar ratio is less than 1/30, the reaction rate may be too slow. If the molar ratio is more than 1/3, the generation of impurities tends to increase, and the selectivity of bisphenol A tends to decrease.
  • the molar ratio of the mercaptans to Zaceton is usually selected from the range of 0.1Z100 to 20/100, preferably 1Z100 to 10/1/1.
  • the molar ratio is less than 0.1 / 100, the effect of improving the reaction rate and the selectivity of bisphenol A may not be sufficiently exhibited. If the molar ratio is larger than 20Z100, the effect is not much improved in proportion to the amount. I can't.
  • the reaction temperature is selected in the range of usually 40 to 150 ° C, preferably 60 to 11'0 ° C. If the temperature is lower than 40 ° C, the reaction rate is low and the viscosity of the reaction solution is extremely high, and in some cases, there is a risk of solidification. If the temperature exceeds 150 ° C, reaction control becomes difficult, and The selectivity of phenol A (integrated with ⁇ and ⁇ ') decreases, and the acid type ion exchange resin of the catalyst may decompose or deteriorate. Further, the LHSV (liquid hourly space velocity) of the raw material mixture is usually 2 to 30 hr, preferably 0.1 hr.
  • the reaction mixture containing bisphenol A obtained in the reaction step (A) is substantially free of an acid-type ion-exchange resin, that is, in the case of a batch reaction method.
  • the catalyst is removed by filtration or the like, and in the case of a fixed bed continuous reaction system, a low-boiling substance removal treatment is performed as it is.
  • This vacuum distillation is generally carried out at a pressure of 6.5 to 80 kPa and a temperature of 70 to 180 ° C. Will be implemented. At this time, unreacted phenol azeotropes, and a part of the azeotrope is removed from the distillation column to the outside of the system together with the low-boiling substances.
  • the temperature of the heating source used is preferably set to 190 ° C. or less in order to prevent the thermal decomposition of bisphenol A.
  • SUS304, SUS316 and SUS316L are generally used as materials for the equipment.
  • the bottom liquid from which the low-boiling components have been removed from the reaction mixture contains bisphenol A and phenol.
  • the phenol is distilled off under reduced pressure to concentrate bisphenol A. There are no particular restrictions on the concentration conditions.
  • the concentration of bisphenol A in the concentrate is preferably 20 to 50% by weight. / 0 , good. 20 ⁇ 40 weight. It is in the range of / 0 . If this concentration is less than 20% by weight, the recovery of bisphenol A is low,
  • a 1: 1 adduct of bisphenol A and phenol (hereinafter sometimes referred to as phenol adduct) is obtained from the concentrated liquid obtained in the concentration step of step (C). This is the process of crystallization and separation.
  • the concentrated liquid is cooled to about 40 to 70 ° C., and phenol adduct is crystallized to form a slurry.
  • the cooling at this time may be carried out using an external heat exchanger, or may be carried out by adding water to the concentrated liquid and cooling by utilizing the latent heat of evaporation of water under reduced pressure. Good.
  • this vacuum cooling crystallization method about 3 to 20% by weight of water is added to the concentrated solution, and crystallization treatment is performed under the conditions of a normal temperature of 40 to 70 ° C and a pressure of 4 to 16 kPa. Is performed.
  • the amount of water is less than 3% by weight, the heat removal ability is not sufficient, and if it exceeds 20% by weight, the dissolution loss of bisphenol A increases, which is not preferable.
  • the crystallization temperature is lower than 40 ° C, the viscosity of the crystallization liquid may increase and solidification may occur. If the crystallization temperature exceeds 70 ° C, the dissolution loss of bisphenol A increases.
  • the slurry containing the crystallized phenolic adduct is introduced into a horizontal endless belt filter (also simply referred to as a belt filter) in a heated inert gas stream under reduced pressure.
  • a horizontal endless belt filter also simply referred to as a belt filter
  • An adduct layer of bisphenol A and phenol in a crystalline state is formed on the filter.
  • the horizontal endless belt filter is a filter that supports a filter cloth with a porous endless conveyor and runs over a vacuum box, supplies slurry to one end, and performs filtration and cake washing. Separated. .
  • Horizontal endless belt filter A porous sheet made of polypropylene, polyester, nylon, polytetrafluoroethylene, cotton cloth, linen cloth, etc. is used for one filter cloth.
  • the use of a horizontal endless belt filter is advantageous because the filtration can be continuously performed and the filtration can be performed without applying a large gravity.
  • the average particle size of the adduct of bisphenol A and phenol in a crystalline state is 0.05 to 1 mm. If the average particle size is less than 0.05 mm, it becomes difficult to separate the phenol adduct crystals from the mother liquor, and clogging of the filter medium occurs, resulting in a reduction in treatment efficiency. If it is larger than 1 mm, there is a risk that mother liquor may enter the crystal.
  • Nitrogen gas is usually used as the inert gas, and the oxygen concentration in the nitrogen gas is 5 OO O pp or less, preferably 300 ppm or less.
  • the liquid content of the adduct layer was 30% by weight. / 0 or less, preferably 2.5% or less.
  • the liquid content of the adduct layer needs to be 30% by weight or less, and the adduct layer contains adducts deposited on the filter. The lower the liquid fraction, the less the load on subsequent processes.
  • the mother liquor can be separated from the phenol adduct crystals by filtration under reduced pressure, and the liquid content of the adduct layer can be reduced.
  • the preferred degree of pressure reduction is 60 to 95 kPa.
  • the liquid content of the adduct layer is adjusted by adjusting the degree of pressure reduction and the belt speed of the horizontal endless belt filter. It can be 30% by weight or less.
  • the thickness of the adduct layer is not limited as long as the deposited phenol product having a liquid content of 30% by weight or less is formed on the belt filter, but if it is too thick, the weight per unit area increases, and It is not preferable because the load is increased.
  • phenol, water, a mixed solution of water and phenol, or a solution in which bisphenol A is dissolved is used.
  • the thickness of the adduct layer and the time of suction under reduced pressure can be adjusted by the belt speed.
  • the temperature must be 80 ° C or lower to maintain the slurry containing the phenol adduct crystallized during filtration, and the temperature of the atmosphere containing the filter may be reduced because solidification of the mother liquor and washing solution may occur. It is important to keep the temperature at 30 to 80 ° (preferably 35 to 5.0 ° C).
  • the separated mother liquor can be directly or partially recycled to the reactor, or partially or wholly isomerized and recycled to the crystallization raw material.
  • the phenol adduct that has been crystallized in the CD) process is dissolved using a phenol-containing solution.
  • the phenol-containing solution used in this step is not particularly limited.
  • the above-mentioned phenol-containing solution is added to the phenol adduct crystals obtained in the step (D), and the mixture is heated to about 80 to 110 ° C, and the phenol adduct is heated and dissolved to perform a crystallization operation.
  • a bisphenol A-containing solution having a preferred bisphenol A concentration is prepared.
  • the bisphenol A-containing solution thus prepared has a low viscosity even at relatively low temperatures and is relatively easy to handle, and is suitable for filtration through a filter.
  • the phenol adduct is crystallized from the bisphenol A-containing solution, solid-liquid separated, the phenol adduct is dissolved using the phenol-containing solution, and then the crystallization and solid-liquid separation in step (D) are performed. Repeat at least once.
  • the heating and melting step is a step of heating and melting the phenol duct separated and crystallized in the above step (D) or (D '). In this step, phenol adak is heated and melted at about 100 to 160 ° C. to form a liquid mixture.
  • the dephenol removal step is a step in which phenol is distilled off from the phenol duct heated and melted in the step (E) by vacuum distillation to recover the bisphenol A in a molten state.
  • the vacuum distillation is generally carried out under the conditions of a pressure of 1.3 to 13.3 kPa and a temperature of 150 to 190 ° C. Residual phenol can be further removed by steam stripping.
  • the bisphenol A in a dissolved state obtained in the above step (G) is formed into droplets by a granulation device such as a spray dryer, and then cooled and solidified to obtain a product.
  • the droplets are formed by spraying, spraying, etc., and cooled by nitrogen, air, or the like.
  • the feature of the method for producing bisphenol A of the present invention is that the solid-liquid separation in the steps (D) and (D ') is carried out using a suction belt filter and heating After introducing the active gas stream and separating the mother liquor through the filter, the phenol duct is separated by its own weight, whereby the adduct of bisphenol A and phenol is stably and continuously added. It can be recovered efficiently and with high purity.
  • the adduct crystals separated from the mother liquor formed a layer 82 mm thick.
  • the liquid content of the wet adduct was determined to be 24.5% by weight.
  • the substitution rate of the mother liquor was 98.7% as determined from the isomer content by liquid chromatography.
  • the resulting adduct was melted, and the Hazen color number was measured at 175 ° C for 20 minutes. The result was APHA5.
  • the CCS of the air permeability is an abbreviation of ccZcm / sec, and indicates the amount of air ( CC ) that passes through the filter cloth per unit area (lcm) per unit time (1 second).
  • step (A) a reactor filled with 600 g of a cation exchange resin was heated at a rate of 75 g at a rate of 4600 g / hr of phenol, 280 g / hr of acetone, and 16 g / hr of ethyl methyl carbbutane. It was supplied continuously while maintaining at ° C.
  • the reaction mixture is sent to the low-boiling substance removal step (B) to remove low-boiling substances mainly including unreacted acetone, and to obtain a reaction product mainly including bisphenol A and unreacted phenol at 4640 g / hr. Was done.
  • step (C) phenol was partially removed from the reaction product at 165 ° C and 53.3 kPa (400 Torr) to reduce the concentration of bisphenol A. It concentrated adjusted to be 30 wt 0/0. Water was added to the bisphenol A concentrate, and the mixture was cooled and crystallized under stirring at 45 ° C. to crystallize an adduct of bisphenol A and phenol.
  • the mixture was poured into a Nutsche lined with propylene filter cloth (Daiwa Spinning Co., Ltd., air permeability 70 CCS), and separated into mother liquor and crystals of an adduct of bisphenol A and phenol. After washing phenol (about 0.75 times the wet cake) was poured into the adduct crystals separated from the mother liquor, suction was continued for about 15 seconds.
  • the adduct was formed into a cake having a thickness of 64 mm, and the cake of the adduct was taken out by cutting the cake and applying a slight impact.
  • the liquid content of the obtained adduct was measured and found to be 25.2%. Further, the substitution rate of the mother liquor was determined by liquid chromatography from the content of the isomer, and as a result, was 99.1%.
  • the resulting adduct was melted, and the Hazen color number was measured at 175 ° C for 20 minutes. As a result, it was APHA5. As described above, it can be seen that Example 1 can be reproduced using Nutsche.
  • Example 2 The procedure was performed in the same manner as in Example 1 except that a nutsche having an inner diameter of 1/2 was used instead of the nutsche used in Reference Example 1.
  • the thickness of the obtained cake was 15 mm, the liquid content of the cake was 38% by weight, and the substitution rate was 95.5%.
  • the present invention contributes to the stable operation of the bisphenol A production apparatus, and can efficiently produce high-purity bisphenol A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

フェノールとアセトンの反応混合物からビスフェノールAとフェノールとの付加物を晶析させ、生成したスラリーの固液分離後、固体成分からフェノールを除去するビスフェノールAの製造方法であって、ビスフェノールAとフェノールとの付加物を結晶状態で含有するビスフェノールAのフェノールスラリー溶液を、減圧下、加温した不活性ガス気流中で水平無端ベルトフィルター上に導入することにより、該フィルター上に結晶状態のビスフェノールAとフェノールとの付加物層を形成させ、フィルターを介して該付加物層に含まれる母液を分離することにより、付加物層の含液率を30重量%以下とした後、付加物層をフィルター上から自重により分離することを特徴とする。 本発明の製造方法によれば、ビスフェノールAとフェノールとの付加物の結晶を母液から安定して連続的に分離することができ、高純度の結晶を効率良く回収することができる。

Description

明 細 書 ビスフヱノール Aの製造方法
技術.分野
本発明は、 ビスフエノール A 〔2 , 2—ビス (4—ヒ ドロキシフエ-ル) プ 口パン〕 の製造方法に関し、 詳しくは該製造方法におけるビスフエノール Aと フエノールとの付加物の分離方法に関するものである。 背景技術
ビスフエノール Aはポリカーボネート樹脂やポリアリレート樹脂などのェン ジニァリングプラスチック、 あるいはエポキシ樹脂などの原料として重要な化 合物であることが知られており、 近年その需要はますます増大する傾向にあ る。
このビスフエノール Aは、 酸性触媒及び場合により用いられる硫黄化合物な どの助触媒の存在下に、 過剰のフエノールとァセトンとを縮合させることによ り製造される。
反応混合物からビスフエノール Aを取出す方法としては、 反応混合物から直 接に粗結晶状で分離する方法や、 反応混合物からアセトン、 水等を除去した後 の液状混合物を濃縮■冷却することでビスフエノール Aとフエノールとの付加 · 物を析出させ分離する方法が知られている。
' 前者の反応混合物から直接に粗結晶状で分離する方法ではビスフ ノール A が微結晶質で何回も洗浄する必要があり、 ロスが多い等の欠点がある。
このため現状では、 後者のビスフエノール Aとフエノールとの付加物を析出 させ分離する方法が主流である。 この場合、 ビスフエノール Aとフエノールと の付加物を晶析させ、 濾過や遠心分離機を用いる公知の固液分離法により、 母 液からの結晶の分離が行なわれている (例えば、 特開昭 5 7 - 7 7 6 3 7号公 報、 特開平 5— 3 3 1 0 8 8号公報、 特開昭 6 3— 2 7 5 5 3 9号公報、 特開 平 6— 3 0 6 0 0 2号公報参照) 。
上記の固液分離法において、 濾過法による分離では吸引式ベルトフィルタ 一、 トレイフィルター、 ドラムフィルターなどが使用出来るが (例えば、 特開 平 7— 2 5 7 9 8号公報、 第 3頁 [ 0 0 1 1 ] 参照) 、 その際に濾材の目開き によるロスを防いだり高純度化のために、 大きな結晶とし、 表面積を小さくす る必要がある (例えば、 特開平 5— 3 3 1 0 8 8号公報参照) 。
このような濾過法による分離では含液率が高く、 結晶間に含まれる母液等が 充分除かれ難く、 更に、 大きな結晶内に母液を嚙み込む危険性もあり、 それを 防ぐために結晶を小さくすると、 結晶層中を母液が通り難くなつたり、 濾材の 目詰まりが起こり、 処理効率の著しい低下を来たす。
遠心分離機を使用する方法は結晶間にある含液量を下げ、 より乾燥した付加 体を得る上では好ましいが、 遠心負荷がかかるため、 結晶の破砕などが起こり 母液や洗浄液等の置換効率が濾過法に比べて悪くなる。 従って大量の製品を処
¾する際に、 純度を上げるために一般的には複数個の機器を用いて洗浄を繰返 すことが必須で、 機器数の増加や運転時間の延長をもたらし、 経済的に好まし くない。
なお、 色相に優れ、 且つ高純度である高品位ビスフエノール Aを得るため に、 ビスフ ノール Aとフ ノールとの付加物を晶析分離後、 低酸素雰囲気下 で溶融し、 脱フエノールする方法が知られている (例えば、 特開平 5— 3 2 5 7 7号公報, 第 1頁、 特開平 5— 3 9 2 3 8号公報、 特開平 6— 2 5 0 4 4号 公報、 特開平 6— 2 5 0 4 5号公報参照) 。 発明の開示
本発明は、 以上の如き状況から、 ビスフエノール Aの製造方法において、 反 応混合物からビスフエノール Aを取出す際に、 ビスフエノール Aとフヱノール との付加物を高純度で効率良く反応母液から回収することにある。
発明者らは、 上記課題を有するビスフ ノール Aの製造方法について鋭意検 討した結果、 ビスフエノール Aとフエノールとの付加物を析出させ分離する方 法において、 固液分離に吸引式水平無端ベルトフィルターを用い、 加温した不 活性ガス気流を導入して、 該ベルトフィルターを特定の条件下で運転すること により、 ビスフヱノール Aとフ ノールとの付加物を連続的に安定して効率良 く、 高純度で回収できることを見出し、 本発明に到達した。
即ち本発明は、 以下のビスフエノール Aの製造方法を提供するものである。
1 . 酸触媒の存在下にフエノールとァセトンを反応させて得られるビスフ.エノ ール Aのフェノール溶液からビスフエノニル Aとフエノールとの付加物を晶析 させ、 生成したスラリーの固液分離後、 固体成分からフエノールを除去するビ スフエノール Aの製造方法において、
( 1 ) ビスフユノール Aとフ ノールとの付加物を結晶状態で含有するビスフ ェノール Aのフエノ一ルスラリ一溶液を減圧下、 加温した不活性ガス気流中で 水平無端ベルトフィルタ一上に導入することにより、 該フィルター上に結晶状 態のビスフエノール Aとフエノールとの付加物層を形成させ、
( 2 ) 該フィルターを介して該付加物層に含まれる母液を分離することによ り、 該付加物層の含液率を 3 0重量。 /0以下とし、
( 3 ) 該付加物層を該フィルター上から自重により分離する
ことを特徴とするビスフユノール Aの製造方法。
2 . 加温した不活性ガスが 8 0 °C以下の窒素ガスであり、 該窒素ガス中の酸素 濃度が 5 0 0 0 p p ra以下である上記 1のビスフエノール Aの製造方法。
3 . 水平無端ベルトフィルターの減圧度とベルト速度を調節することにより、 付加物層の含液率を 3 0重量%以下とする上記 1のビスフユノール Aの製造方 法。
4 . 付加物層を水平無端ベルトフィルター上から自重により分離する前に洗浄 液により付加物層を洗浄する上記ュのビスフヱノール Aの製造方法。 発明を実施するための最良の形態
本発明のビスフエノール Aの製造方法においては、 (A) フエノールとァセ トンの反応工程、 (B ) 副生水および未反応原料の低沸点物質除去工程、 ( C ) ビスフ ノール Aの濃縮工程、 (D ) 晶析 '固液分離工程、 (D ' ) フ ノールァダクトの溶解、 晶析 .固液分離工程、 (E ) 加熱溶融工程、 (F ) ビスフエノール Aの脱フエノール工程および (G ) 造粒工程を経てビスフエノ' ール Aが製造される。 本発明においては上記の (D ) および (D ' ) 工程の固液分離において水平 無端ベルトフィルターを用い、 該ベルトフィルターを特定の条件下で運転する ものである。
前述の如く、 色相に優れ、 且つ高純度である高品位ビスフエノール Aを得る ために、 ビスフ ノール Aとフエノールとの付加物を晶析分離後、 低酸素雰囲 気下で溶融し、 脱フエノールする方法が知られている。
しかしながら、 このようにビスフエノール Aとフエノールとの付加物を晶析 分離後、 低酸素雰囲気下で溶融し、 脱フエノールしても、 ビスフエノール Aと フエノールとの付加物中に含まれる酸素の影響を排除することができない。 本発明では上記の (D ) および (D ' ) 工程の固液分離において水平無端べ ルトフィルターを用い、 ビスフエノール Aとフエノールとの付加物が結晶状態 で含有するスラリー溶液に、 .減圧下、 加温した低酸素雰囲気の不活性ガスを導 入するものであり、 該付加物中に含まれる酸素が有効に除去されることになる ので、 更に高品位のビスフエノ一ルが得られる。
次に、 ビスフエノール Aの製造方法における各工程について説明する。
(A) 反応工程'
この反応工程においては、 酸性触媒の存在下、 過剰のフエノールとアセトン を縮合させて、 ビスフエノール Aを生成させる。 上記酸性触媒としては、 酸型 イオン交換樹脂を用いることができる。 この酸型イオン交換樹脂としては、 特 に制限はなく、 従来ビスフエノール Aの触媒として慣用されているものを用い ることができるが、 特に触媒活性などの点から、 スルホン酸型陽イオン交換樹 脂が好適である。
該スルホン酸型陽イオン交換樹脂については、 スルホン酸基を有する強酸性 陽イオン交換樹脂であればよく特に制限されず、 例えばスルホン化スチレン一 ジビュルベンゼンコポリマ 、 スルホン化架橋スチレンポリマー、 フエノール ホノレムアルデヒ ドースルホン酸樹脂、 ベンゼンホルムアルデヒド一スルホン酸 樹脂などが挙げられる。 これらはそれぞれ単独で用いてもよく、 二種以上を組 み合わせて用いてもよい。
本工程においては、 上記酸型イオン交換樹脂と共に、 通常助触媒として、 メ ルカブタン類が併用される。 このメルカプタン類は、 分子内に S H基を遊離の 形で有する化合物を指し、 このようなものとしては、 アルキルメルカプタン や、 カルボキシル基、 アミノ基、 ヒ ドロキシル基などの置換基一種以上を有す るアルキルメルカプタン類、 例えばメルカプトカルボン酸、 アミノアルカンチ オール、 メルカプトアル.コールなどを用いることができる。 このようなメルカ プタン類の例としては、 メチルメルカプタン、 ェチルメルカプタン、 n—プチ ォグリコール酸、 ]3—メルカプトプロピオン酸などのチォカルボン酸、. .2—ァ ミノエタンチオールなどのアミノアルカンチオール、 メルカプトエタノールな どのメルカプトアルコールなどが挙げられるが、 これらの中で、 アルキルメル カプタンが助触媒としての効果の点で、 特に好ましい。 また、 これらのメルカ プダン類は、 単独で用いてもよく、 二種以上を組み合わせて用いてもよい。 これらのメルカブタン類は、 前記酸型イオン交換樹脂上に固定化させ、 助触 媒として機能させることもできる。 - 前記メルカプタン類の使用量は、 一般に原料のアセトンに対して、 0 . 1〜
2 0モル0 /0、 好ましくは、 1 ~ 1 0モル0 /0の範囲で選定される。
また、 フエノールとアセトンとの使用割合については特に制限はないが、 生 成するビスフ ノール Aの精製の容易さや経済性などの点から、 未反応のァセ トンの量はできるだけ少ないことが望ましく、 したがって、 フエ.ノールを化学 '量論的量よりも過剰に用いるのが有利である。 -通常、 ァセトン 1モル当たり、
3〜3 0モル、 好ましくは 5〜 1 5モルのフエノールが用いられる。 また、 こ のビスフヱノール Aの製造においては、 反応溶媒は、 反応液の粘度が高すぎた り、 凝固して運転が困難になるような低温で反応させる以外は、 一般に必要で はない。
フエノールとァセトンとの縮合反応は、 回分式及び連続式のいずれであって もよいが、 酸型イオン交換樹脂を充填した反応塔に、 フエノールとアセトンと メルカブタン類 (メルカブタン類が酸型ィォン交換樹脂に固定化されない場 合) を連続的に供給して反応させる固定床連続反応方式を用いるのが有利であ る。 この際、 反応塔は 1基でもよく、 また 2基以上を直列に配置してもよい が、 工業的には、 酸型イオン交換樹脂を充填した反応塔を 2基以上直列に連結 し、 固定床多段連続反応方式を採用するのが、 特に有利である。
この固定床連続反応方式における反応条件について説明する。
まず、 アセトン/フエノールモル比は、 通常 1/3 0〜 1/3、 好ましくは 1/1 5~ 1/5の範囲で選ばれる。 このモル比が 1ノ 3 0より小さい場合、 反応速度が遅くなりすぎるおそれがあり、 1/3より大きいと不純物の生成が 多くなり、 ビスフエノール Aの選択率が低下する傾向がある。 一方、 メルカプ タン類が酸型イオン交換樹脂に固定化されない場合、 メルカブタン類 Zァセト ンモル比は、 通常 0. 1Z100〜 20/100、 好ましくは 1Z100〜1 0/ 1◦ 0の範囲で選ばれる。 このモル比が 0. 1/100より小さい場合、 反応速度やビスフエノール Aの選択率の向上効果が十分に発揮されないおそれ があり、 20Z100より大きいとその量の割りには効果の向上はあまり認め られない。
また、 反応温度は、 通常40〜1 5 0°〇、 好ましくは 6 0〜 1 1' 0°Cの範囲 .で選ばれる。.該温度が 4 0°C未満では反応速度が遅い上、 反応液の粘度が極め て高く、 場合により、 固化するおそれがあり、 1 5 0°Cを超えると反応制御が 困難となり、 かつビスフエノール A (ρ , ρ' 一体) の選択率が低下する上、 触媒の酸型イオン交換樹脂が分解又は劣化することがある。 さらに、 原料混合 物の LHSV (液空間速度) は、 通常 2〜 30.h r 、 好ましくは 0..
5〜: L 0 h r の範囲で選ばれる。
(B) 低沸点物質除去工程
低沸点物質除去工程においては、 前記の (A) 工程の反応工程で得られたビ スフエノール Aを含む反応混合液を、 実質上酸型イオン交換樹脂が含まれない 状態、 すなわち回分反応方式の場合は該触媒を濾過などにより除去し、 固定床 連続反応方式の場合は、 そのままの状態で低沸点物質除去処理が施される。
この工程においては、 通常、 まず、 蒸留塔を用いた減圧蒸留により、 未反応 ァセトン、 副生水及びアルキルメルカブタンなどの低沸点物質を除去すること が行われる。
この減圧蒸留は、 一般に圧力 6. 5〜8 0 k P a、 温度 7 0〜 1 8 0°Cの条 件で実施される。 この際、 未反応フ ノールが共沸し、 その一部が上記低沸点 物質と共に、 蒸留塔の塔頂より系外へ除かれる。 この蒸留においては、 ビスフ ェノール Aの熱分解を防止するために、 使用する加熱源の温度は 1 9 0 °C以下 とすることが望ましい。 また、 機器の材料としては、 一般に S U S 3 0 4、 S U S 3 1 6及び S U S 3 1 6 Lが用いられる。
( C ) 濃縮工程
反応混合物から低沸点成分を除いた塔底液には、 ビスフ ノール A及びフ エノールなどが含まれており、 減圧蒸留によりフエノールを留去させ、 ビスフ ェノール Aを濃'縮する。 この濃縮条件については特に制限はないが、 ¾常温度
1 0 0〜1 7 0 °C程度及び圧力 5〜7 0 k P aの条件で行なわれる。 この温度 が 1 0 0 °Cより低いと高真空が必要となり、 1 7 0 °Cより高いと次の晶析工程 で余分の除熱が必要となるので好ましくない。 濃縮液中のビスフエノール Aの 濃度は、 好ましくは 2 0〜5 0重量。 /0、 よ.り好ましぐは 2 0〜4 0重量。 /0の範 囲である。 この濃度が 2 0重量%未満ではビスフエノール Aの回収率が低く、
5 0重量%を超えると晶析後のスラリー移送が困難となるおそれがある。
(D ) 晶析■固液分離工程
晶析■固液分離工程は、 上記 (C ) 工程の濃縮工程で得られた濃縮液からビ スフエノール Aとフエノーノレとの 1 : 1付加物 (以下、 フエノールァダクトと 称することがある。 ) を晶析 ·分離する工程である。
この工程においては、 まず、 上記濃縮液を 4 0〜7 0 °C程度に冷却し、 フエ ノールァダクトを晶析させ、 スラリーとする。 この際の冷却は、 外部熱交換器 を用いて行ってもよく、 また、 濃縮液に水を加え、 減圧下での水の蒸発潜熱を 利用して冷却する真空冷却晶析法によって行ってもよい。 この真空冷却晶析法 においては、 該濃縮液に、 水を 3〜2 0重量%程度添加し、 通常温度 4 0〜7 0 °C、 圧力 4〜 1 6 k P aの条件で晶析処理が行われる。 上記水の添加量が 3 重量%未満では除熱能力が十分ではなく、 2 0重量%を超えるとビスフ ノー ル Aの溶解ロスが大きくなり、 好ましくない。 このような晶析操作において、 晶析温度が 4 0 °C未満では晶析液の粘度の増大や固化をもたらす恐れがあり、 7 0 °Cを超えるとビスフエノール Aの溶解ロスが大きくなるので好ましくな い。
本発明では次に、 晶析されたフエノールァダクトを含むスラリーを、 減庄 下、 加温した不活性ガス気流中で水平無端ベルトフィルター (単に、 ベルトフ ィルターとも称す) 上に導入することにより、 該フィルター上に結晶状態のビ スフエノール Aとフエノールとの付加物層を形成させる。
水平無端ベルトフィルタ一は、 多孔性のェンドレスコンべィヤーで濾布を支 持して真空箱の上を走行させ、 一端にスラリーを供給して濾過、 ケーク洗浄を 行なうものであり、 ケークは自重により分離される。.水平無端ベルトフィルタ 一の濾布にはポリプロピレン、 ポリエステル、 ナイロン、 ポリテトラフルォロ エチレン、 綿布、 麻布製などの多孔性シートが用いられる。
水平無端ベルトフィルターを用いることにより濾過が連続的に行なわれ、 ま た大きな重力を掛けずに濾過を行なうことができるので有利である。
この際に、 結晶状態のビスフヱノール Aとフヱノールとの付加物の平均粒径 を 0 . 0 5〜 l mmとすることが好ましい。 平均粒径が 0 . 0 5 mm未満であ るとフエノールァダク ト結晶と母液との分離が困難となり、 濾材の目詰まりが 起こり、 処理効率の低下を来たす。 1 mmより大.きいと結晶内に母液を嚙み込 む危険がある。
不活性ガスとしては通常、 窒素ガスが用いられ、 窒素ガス中の酸素濃度が 5 O O O p p 以下、 好ましくは 3 0 0 0 p p m以下である。
ベルトフィルターを介して該付加物層に含まれる母液を分離することによ り、 該付加物層の含液率を 3 0重量。 /0以下、 好ましくは 2. 5 %以下とする。 ベ ルトフィルターから分離する際にケーキ状で自重で自然落下するためには、 該 付加物層の含液率を 3 0重量%以下とする必要があり、 フィルター上に堆積し た付加物の含液率は、 低い方が後工程への負荷が小さくなる。
減圧下で濾過することで母液をフエノールァダクト結晶と分離することがで き、 該付加物層の含液率を下げることができる。 しかし、 余り強ぐ減圧にし過 ぎると、 場合によっては、 結晶の破砕による微小化等も起こり、 濾布の目詰ま り等の原因となり トラブルを促進することがあるので好ましくない。 好ましい 減圧度は 6 0 ~ 9 5 k P aである。 - また、 該付加物層の含液率はベルトフィルターの進行速度 (ベルト速度) に 影響されるので、 水平無端ベルトフィルターの減圧度とベルト速度を調節する ことにより、 付加物層の含液率を 3 0重量%以下とすることができる。
ベルトフィルター上に含液率が 3 0重量%以下の堆積したフエノールァダク トが生成するのであれば、 該付加物層の厚さは制限されないが、 余り厚くする と単位面積当たりの重量が増し、 装置に負担がかかるので好ましくない。 なお、 ビスフエノール Aとフエノールとの付加物層を水平無端ベルトフィル ター上から自重により分離する前に、 該付加物層に含まれている不純物や微量 の酸触媒を可能な限り除去するために該付加物層に洗浄液をふりかけて洗浄す ることが好ましい。 洗浄液としては、 フエノール、 水、 水一フエノール混合 液、 またはこれらにビスフエノール Aが溶解した液が使用される。
該付加物層の厚さと減圧吸引している時間はベルト速度で調節できる。 ベル ト速度を遅くする程堆積したフエノールァダクトはより厚くなるが、 反面、 よ り長時間減圧下に曝すことができる。
濾過の際に晶析されたフエノールァダク トを含むスラリーを保っために 8 0 °C以下とする必要があり、 また、 母液や洗浄液の凝固が起こる可能性がある ので、 フィルターを含む雰囲気の温度を 3 0〜 8 0 ° (:、 好ましくは 3 5 ~ 5 . 0 °Cに保つことが重要である。
分離された母液は、 直接又は一部反応器へリサイクルしたり、 一部又は全部 を異性化して晶析原料にリサイクルすることもできる。
この (D ) 晶析■固液分離工程は、 高純度の製品を得るために、 複数回繰り 返すことが有効である。 すなわち、 晶析後、 固液分離によって得られたフエノ ールァダク トに対して、 次の (D ' ) フエノールァダク トの溶解、 晶析■固液 分離工程とを 1回以上繰り返した後、 (E ) 加熱溶融工程へと移る。
(D, ) フユノールァダクトの溶解、 晶析 ·固液分離工程
CD ) 工程で晶析 '分離されたフエノールァダク トを、 フ ノール含有溶液 を用いて溶解する。 この工程において用いられるフエノール含有溶液としては 特に制限はなく、 例えば前記 (C ) 工程の濃縮工程で得られた回収フエノー ル、 (D ) 工程の晶析 '固液分離工程で生成するフ ノールァダクトの洗浄 裤、 本 (D, ) 工程以降の工程で生成する、 晶析したフエノールァダク トの固 液分離における母液ゃ該フエノールァダク トの洗浄液などを挙げることができ る。 ' この工程においては、 (D) 工程で得られたフエノールァダクト結晶に上記 フエノール含有溶液を加え、 80〜 1 1 0°C程度に加熱し、 該フエノールァダ クトを加熱溶解させ、 晶析操作に好ましいビスフエノール A濃度を有するビス フエノール A含有溶液を調製する。 こう して調製されたビスフ ノール A含有 溶液は、 比較的低い温度でも粘度が低くて取扱いが比較的容易であり、 フィル ターで濾過するのに適している。
このようにビスフエノール A含有溶液から、 フエノールァダクトを晶析 '固 液分離し、 さらに当該フエノールァダク トをフヱノール含有溶液を用いて溶解 したのち、 ( D ) 工程の晶析 ·固液分離する操作を 1回以上繰り返す。
(E) 加熱溶融工程
加熱溶融工程は、 上記 (D) 又は (D' ) 工程で晶析 '分離されたフエノー ルァダクトを加熱溶融する工程である。 この工程では、 フエノールァダクドを' 100〜 1 60 °C程度に加熱■溶融して液状混合物となる。
(F) 脱フエノール工程
脱フエノール工程は減圧蒸留によって (E) 工程で加熱溶融されたフエノー ルァダクトからフエノーノレを留去し、 溶融状態のビスフエノール Aを回収する 工程である。 上記減圧蒸留は、 一般に圧力 1. 3〜1 3. 3 k P a、 温度 1 5 0~ 1 90°Cの範囲の条件で実施される。 残存フエノールは、 さらにスチーム ストリッビングにより除去することができる。
(G) 造粒工程
造粒工程においては、 上記 (G) 工程で得られた溶解状態のビスフエノール Aを、 スプレードライヤーなどの造粒装置により、 液滴にし、 冷却固化して製 品とする工程である。 該液滴は嘖霧、 散布などにより形成され、 窒素や空気な どによって冷却される。 - 本発明のビスフエノール Aの製造方法における特徴は、 前記 (D) および (D' ) 工程の固液分離において吸引式ベルトフィルターを用い、 加温した不 活性ガス気流を導入して、 該フィルターを介して母液を分離した後、 フエノー ルァダクトを自重により分離することであり、 これにより、 ビスフエノール A とフ ノールとの付加物を安定して連続的に効率良く、 高純度で回収すること ができる。
次に、 本発明を実施例によりさらに詳細に説明するが、 本発明は、 これらの 例によってなんら限定されるものではない。
実施例 1
イオン交換樹脂が充填された反応器に、 フヱノールを 49. 7 t/h r、 ァセトンを 3. 7 t/ r及びェチルメルカプタンを 0. 25 t/h rの速度 で温度を 7 5°Cに維持しながら、 連続的に供給した。 反応混合物は、 低沸点物 質除去工程に送り、 未反応アセトンを主とした低沸点物質を除去した。 次に濃 縮工程においてビスフェノール A及び未反応フエノールの一部を留去し、 ビス フエノール Aの濃度が 30重量%となるように濃縮調整した。 このビスフエノ ール A濃縮液に水を加え、 攪拌下 45 °Cの条件で冷却晶析し、 ビスフ ノ.ール Aとフエノールとの付加物 (ァダクト) を晶析した。 液温 45°Cに保たれた該 付加物のスラリー溶液を、 酸素 1 200 p pmを含む 60°Cの窒素気流下でケ 一シング内に収められ、 進行速度が 2mZin i nで動いているプロピレン製濾 布 (大和紡績 (株) 製、 通気度 70 CC S) の無端水平ベルトフィルター上に 注ぎ、 5 5 k P aの減圧下で 1 5秒かけビスフエノール Aとフエノールとの付 加物結晶と母液との分離した。 母液から分離された該付加物結晶は厚さ 8 2m mの層を形成した。 付着母液を脱液した後、 フエノールで約 10秒間の洗浄を 2回 (洗浄比 0. 75) 実施して脱液■乾燥し、 無端水平ベルトフィルターの 折り返し端から自重で落し湿潤付加物を得た。 該湿潤付加物の含液率を測定し たところ、 24. 5重量%であった。 母液の置換率は液体クロマトグラフィー で異性体含量から求めた結果、 98. 7%であった。 得られた付加物を溶融し てハーゼン色数を 1 75°C、 20分の条件で測定した結果、 APHA5であつ た。
なお、 通気度の CCSは c cZcm ノ s e cの略号であり、 単位時間 ( 1 秒) に単位面積 (l cm ) 当たりの濾布を通過する空気量 (C C) を示す。 製造例 1
前述の (A) 〜 (C) 工程によりビスフエノール A濃縮液を連続的に製造し た後、 ビスフエノール Aとフエノールとの付加物 (ァダクト) を得た。
先ず (A) 工程において、 陽イオン交換樹脂が 600 g充填された反応器 に、 フエノールを 4600 g/h r、 アセトンを 280 g/h r及ぴェチルメ ルカブタンを 1 6 g/h rの速度で温度を 75°Cに維持しながら、 連続的に供 給した。 反応混合物は、 低沸点物質除去工程 (B) に送り、 未反応アセトンを 主とした低沸点物質を除去し、 ビスフエノール A及び未反応フエノールを主と した反応生成物が 4640 g/h rで得られた。.次に (C) 工程において、 反 応生成物より、 1 65 °C、 53. 3 k P a (400 T o r r ) の条件でフエノ ールを一部除去して、 ビスフエノール Aの濃度が 30重量0 /0となるように濃縮 調整した。 このビスフ ノール A濃縮液に水を加え、 攪拌下 45°Cの条件で冷 却晶析し、 ビスフ ノール Aとフ ノールとの付加物 (ァダク ト) を晶析し た。
参考例 1
製造例 1で得られたビスフエノール Aとフエノールとの付加物のスラリ一液. を酸素 1 200 p pmを含む 45 °Cの窒素雰囲気下、 液温 45°Cで 5 5 k P a の減圧下、 プロピレン製濾布 (大和紡績 (株) 製、 通気度 70 CC S) を敷い たヌッチェに注ぎ、 ビスフエノール Aとフエノールとの付加物の結晶と母液と に分離した。 母液から分離された該付加物結晶に洗浄フ ノール (湿潤ケーキ の約 0. 75倍量) を注いだ後、 約 1 5秒間吸引を続けた。 該付加物は厚さ 6 4 mmのケーキ状になって、 ケーキに切り込みを入れ、 軽く衝撃を加えること で、 該付加物のケーキを取り出した。 得られた付加物の含液率を測定したとこ ろ、 25. 2%であった。 また、 母液の置換率を液体クロマトグラフィーで異 性体含量から求めた結果、 9 9. 1%であった。 得られた付加物を溶融してハ 一ゼン色数を 1 75°C、 20分の条件で測定した結果、 APHA5であった。 以上のようにヌツチェを用いて実施例 1を再現できることが分かる。
参考例 2
参考例 1で減圧にしたところを常圧で濾過を試みたが、 フィルタ一上に母液 が残ったままで二層に分かれ、 付加物と母液の分離ができなかった。
参考例 3
参考例 1で使用したヌッチェの代わりに、 内径が 1 / 2のヌツチェを使用し た他は実施例 1と同様の方法で行なった。 得られたケーキの厚さは 1 5 mm、 ケーキの含液率は 3 8重量%で、 置換率は 9 5 . 5 %であった。
参考例 4
参考例 1と同様の装置を用いてスラリーを減圧下で処理した後、 ケ^"キを圧 縮して含まれている母液を搾り出した。 一部試料を取り出し含液率を調べたと ころ 1 5重量。 /0であった。 その後、 洗浄フエノールを注いだ後、 約 1 5秒間吸 引を続けた。 ケーキの厚さは 5 5 mm、 ケーキの含液率は 2 1重量%で、 置換 率は 8 4 %であった。
このことから、 ケーキが余り硬ぐなると短時間では洗浄液がァダクト結晶に 浸透せず、 付着母液が十分に除去されないことが分かる。 産業上の利用の可能性
本発明のビスフエノール Aの製造方法によれば、 (D ) および (D ' ) 工程 の固液分離において、 ビスフエノール Aとフエノールとの付加物の結晶を母液 から安定して連続的に分離することができ、 高純度の結晶を効率良く回収する ことができる。 . '
従って本発明はビスフエノール Aの製造装置の安定運転に寄与し、 高純度の ビスフエノール Aを効率良く製造することができる。

Claims

請 求 の 範 囲
1 . 酸触媒の存在下にフエノールとァセトンを反応させて得られるビスフエ ノール Aのフェノール溶液からビスフエノール Aとフエノールとの付加物を晶 析させ、 生成したスラリーの固液分離後、 固体成分からフエノールを除去する ビスフエノール Aの製造方法において、
( 1 ) ビスフ ノール Aとフヱノールとの付加物を結晶状態で含有するビスフ ェノール Aのフエノールスラリー溶液を減圧下、 加温した不活性ガス気流中で 水平無端ベルトフィルタ一上に導入することにより、 該フィルター上に結晶状 態のビスフエノール Aとフエノールとの付加物層を形成させ、 .
( 2 ) 該フィルターを介して該付加物層に含まれる母液を分離することによ り、 該付加物層の含液率を 3 0重量%以下とし、
( 3 ) 該付加物層を該フィルター上から自重により分離する
ことを特徴とするビスフ ノール Aの製造方法。
2 . 加温した不活性ガスが 8 0 °C以下の窒素ガスであり、 該窒素ガス中の酸 素濃度が 5 0 0 0 p p m以下である請求項 1に記載のビスフエノール Aの製造 方法。
3 . 水平無端ベルトフィルターの減圧度とベルト速度を調節することによ ' り、 付加物層の含液率を 3 0重量%以下とする請求項 1に記載のビスフエノー ル Aの製造方法。
4 . 付加物層を水平無端ベルトフィルター上から自重により分離する前に洗 浄液により付加物層を洗浄する請求項 1に記載のビスフユノール Aの製造方 法。
PCT/JP2003/013184 2002-10-17 2003-10-15 ビスフェノールaの製造方法 WO2004035512A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002303001A JP2004137197A (ja) 2002-10-17 2002-10-17 ビスフェノールaの製造方法
JP2002-303001 2002-10-17

Publications (1)

Publication Number Publication Date
WO2004035512A1 true WO2004035512A1 (ja) 2004-04-29

Family

ID=32105065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013184 WO2004035512A1 (ja) 2002-10-17 2003-10-15 ビスフェノールaの製造方法

Country Status (5)

Country Link
JP (1) JP2004137197A (ja)
KR (1) KR101011878B1 (ja)
CN (1) CN100406421C (ja)
TW (1) TWI318971B (ja)
WO (1) WO2004035512A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541542A1 (en) * 2002-08-28 2005-06-15 Idemitsu Kosan Co., Ltd. Process for producing bisphenol a
EP1982971A4 (en) * 2006-02-02 2011-01-12 Idemitsu Kosan Co METHOD AND EQUIPMENT FOR RECOVERING BISPHENOL A

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5184751B2 (ja) 2006-03-16 2013-04-17 出光興産株式会社 ビスフェノールaの製造方法
WO2018225014A1 (en) * 2017-06-07 2018-12-13 Sabic Global Technologies B.V. Rotary vacuum filter, method, and use
WO2020075762A1 (ja) * 2018-10-09 2020-04-16 三菱ケミカル株式会社 (メタ)アクリル酸の精製方法
JP2020132612A (ja) * 2019-02-26 2020-08-31 三菱ケミカル株式会社 固液分離方法、並びに、それを用いた(メタ)アクリル酸の精製方法及び精製(メタ)アクリル酸の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725798A (ja) * 1993-07-08 1995-01-27 Idemitsu Petrochem Co Ltd 高純度ビスフェノールaの製造方法
EP0926118A1 (en) * 1997-12-24 1999-06-30 General Electric Company Process for the purification of bisphenols and preparation of polycarbonates therefrom
WO2000015589A1 (en) * 1998-09-16 2000-03-23 General Electric Company Liquid vacuum pump seal to reduce contamination in bisphenol-a

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0725798A (ja) * 1993-07-08 1995-01-27 Idemitsu Petrochem Co Ltd 高純度ビスフェノールaの製造方法
EP0926118A1 (en) * 1997-12-24 1999-06-30 General Electric Company Process for the purification of bisphenols and preparation of polycarbonates therefrom
WO2000015589A1 (en) * 1998-09-16 2000-03-23 General Electric Company Liquid vacuum pump seal to reduce contamination in bisphenol-a

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1541542A1 (en) * 2002-08-28 2005-06-15 Idemitsu Kosan Co., Ltd. Process for producing bisphenol a
EP1541542A4 (en) * 2002-08-28 2006-08-09 Idemitsu Kosan Co PROCESS FOR PREPARING BISPHENOL A
EP1982971A4 (en) * 2006-02-02 2011-01-12 Idemitsu Kosan Co METHOD AND EQUIPMENT FOR RECOVERING BISPHENOL A

Also Published As

Publication number Publication date
TW200407291A (en) 2004-05-16
TWI318971B (en) 2010-01-01
CN100406421C (zh) 2008-07-30
JP2004137197A (ja) 2004-05-13
KR101011878B1 (ko) 2011-02-01
KR20050053772A (ko) 2005-06-08
CN1705627A (zh) 2005-12-07

Similar Documents

Publication Publication Date Title
JP4969007B2 (ja) ビスフェノール/フェノール付加物
KR20060130167A (ko) 황 함량이 감소된 비스페놀 a의 제조 방법
WO2001053238A1 (fr) Procede de preparation de bisphenol a
WO2007132575A1 (ja) 高純度ビスフェノールaの製造方法及び製造設備
JP4152655B2 (ja) ビスフェノールaの製造方法
KR101361957B1 (ko) 비스페놀 a의 제조 방법
WO2004035512A1 (ja) ビスフェノールaの製造方法
JP4388893B2 (ja) ビスフェノールaの製造方法
WO2004108643A1 (ja) ビスフェノールaの製造方法
JP4918264B2 (ja) ビスフェノールaの回収方法および回収設備
JPH0558611B2 (ja)
JP4615831B2 (ja) ビスフェノールaの製造におけるフェノールの回収方法
JP2003160524A (ja) ビスフェノールaの製造方法及びその装置
WO2007046434A1 (ja) 色相の良好なビスフェノールaの製造方法
JP2003160523A (ja) ビスフェノールaの製造方法及びその装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN ID IN KR SG US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020057006584

Country of ref document: KR

Ref document number: 20038A15381

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057006584

Country of ref document: KR

122 Ep: pct application non-entry in european phase