WO2004031997A1 - 磁場解析方法および装置 - Google Patents

磁場解析方法および装置 Download PDF

Info

Publication number
WO2004031997A1
WO2004031997A1 PCT/JP2003/012558 JP0312558W WO2004031997A1 WO 2004031997 A1 WO2004031997 A1 WO 2004031997A1 JP 0312558 W JP0312558 W JP 0312558W WO 2004031997 A1 WO2004031997 A1 WO 2004031997A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
temperature
magnetic field
data
field analysis
Prior art date
Application number
PCT/JP2003/012558
Other languages
English (en)
French (fr)
Inventor
Mitsutoshi Natsumeda
Hirofumi Takabayashi
Original Assignee
Neomax Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co., Ltd. filed Critical Neomax Co., Ltd.
Priority to EP03799185A priority Critical patent/EP1465087A4/en
Priority to US10/501,781 priority patent/US6967551B2/en
Priority to AU2003266724A priority patent/AU2003266724A1/en
Publication of WO2004031997A1 publication Critical patent/WO2004031997A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Definitions

  • the present invention includes a permanent magnet whose characteristics can be changed by demagnetization.
  • the present invention relates to a magnetic field analysis method and a magnetic field analysis device for a magnetic circuit.
  • the present invention also relates to a method for manufacturing a permanent magnet using such a magnetic field analysis method and apparatus.
  • irreversible demagnetization refers to recovery demagnetization after returning to room temperature after magnetization decreased by heating or cooling.
  • the magnetic field analysis of a magnetic circuit using a permanent magnet requires that the magnetic field analysis taking into account the demagnetization of the permanent magnet is required. It was only determined whether or not demagnetization would occur in the permanent magnet after the matter (temperature external magnetic field). This point will be described with reference to FIGS.
  • ⁇ 1 indicates a plate-shaped permanent magnet. As shown, the magnet is magnetized in its thickness direction.
  • Fig. 2 is a cross-sectional view schematically showing the magnetic flux lines generated by the permanent magnet.
  • the magnetic flux lines extending from near the end of the magnet The magnetic path is relatively shorter than the magnetic path of the magnetic flux lines extending from the center of the magnet.
  • the permanent magnet After the permanent magnet is magnetized, the permanent magnet has an N pole and an S pole, so as shown in Fig. 2, outside the permanent magnet
  • Magnetic flux (magnetic flux lines) from the N pole to the S pole is formed.
  • a magnetic flux is formed inside the permanent magnet from the north pole to the south pole.
  • the magnetic flux formed inside the magnet acts in a direction to demagnetize the permanent magnet.
  • the magnetic field generated by such a magnetic flux is called a demagnetizing field (self-demagnetizing field).
  • the demagnetizing field is
  • Fig. 3 is a graph schematically showing a part of the demagnetization curve of the permanent magnet shown in Fig. 1.
  • the term "demagnetization curve" as used herein means a hysteresis curve obtained by monotonically changing the magnetic field from a state in which a permanent magnet exhibits a saturated magnetic flux density or a saturated magnetic polarization, and means a portion in the second and third quadrants. I do.
  • the vertical axis is a graph of the magnetic flux density B
  • the horizontal axis is a graph of the external magnetic field H, showing only the second quadrant.
  • a demagnetization curve approximated by a straight line is drawn.
  • the hysteresis curve of the magnet is small, and a case where a straight line portion is partially included is often used. ⁇ >J'd: It will be referred to as “B-H curve”.
  • B-H curve In the graph of FIG. 3, points (operating points) on the B-— curve corresponding to the demagnetizing field H d are shown.
  • the value of the magnetic flux density at this operating point is B m, and the ⁇ line connecting the operating point and the origin of the graph is called the “factory operating line”.
  • the absolute value of the slope of the operating line is called the permeance coefficient P c.
  • the magnetic flux density B m is one of numerical values depending on the permeance coefficient P c.
  • the demagnetizing field H d exists irrespective of the presence or absence of an external magnetic field with respect to the permanent magnet.There is no application of the external magnetic field (the density of the magnetic flux generated from the permanent magnet to the outside in the state is the magnetic flux with respect to the operating point. It is said that the operating point of a permanent magnet changes according to the shape of the magnet and surrounding conditions, but strictly depends on the position inside the permanent magnet, that is, the permanent magnet.
  • the permeance coefficient P c is ⁇ inside the permanent magnet, is not uniform, and has different values depending on the position in the permanent magnet.
  • the demagnetizing field H d is smaller as the magnetic path is shorter, whereas the permeance coefficient P c is larger.
  • the demagnetizing field H d is larger as the magnetic path is longer ⁇ Perm y
  • the impedance coefficient P c becomes smaller.
  • the permeance coefficient P c of the permanent magnet having the shape shown in Fig. 1 is lowest at the center of the magnet, and highest at the core of the magnet. In FIG. 1, P c
  • the permeance coefficient P c of the permanent magnet becomes Tatsumi according to the position inside the permanent magnet.
  • demagnetization occurs from the part where the permeance coefficient Pc is minimum. Therefore, in the conventional magnetic field analysis method, the magnetic flux density B m is calculated for each part (many finite elements) in the magnet by computer simulation, and the magnetic flux density B m is the smallest. The permeance coefficient P c (min) of the corresponding part is calculated. Then, by comparing the operating line showing the permeance coefficient P c (m m ⁇ ) with the ⁇ - ⁇ curve at the operating temperature, it was determined whether or not this portion could be demagnetized. Next, such a conventional demagnetization evaluation method will be described with reference to FIG.
  • FIG. 4 is a graph showing a ⁇ - ⁇ curve (solid line) at room temperature (20 ° C.) of a certain permanent magnet and a ⁇ - ⁇ curve (dotted line) at 10 ° C.
  • the B-H curve data at each temperature is stored in the memory of the computer, and after inputting data on the shape of the permanent magnet, etc., the operating line at each part in the magnet is specified by the finite element method. .
  • the operation line C is an operation line in the part where the response coefficient Pc is the lowest inside the magnet C
  • the operation line D is the one where the permission coefficient Pc is the lowest inside the magnet D. Assume that the lower part of the line of motion. Still, for simplicity,
  • magnet D with small permeance coefficient P c (min) does not demagnetize at 20 ° C, but demagnetizes at 10 ° C.
  • the present invention has been made in view of such circumstances, and a main object of the present invention is not only to determine whether or not permanent magnets are demagnetized, but also to calculate a magnetic flux density distribution and the like after demagnetization.
  • a magnetic field analysis method and apparatus are provided.
  • the step of storing the corrected B-H force data in a memo u of a computer is further performed.
  • a magnetic field analyzer comprising: a memo U means for storing B 1 H force data at m 1 ⁇ 1; and a calculating means, wherein the calculating means is stored in the memo U means 1 Based on the B-H carp data of the permanent magnet at the time T 1, a permeance coefficient and ⁇ or a numerical value depending on the permeance coefficient at a plurality of portions in the permanent magnet are calculated. And a step of storing the u- ⁇ carp data and the permeance coefficient of the permanent magnet in the second usb 2 in the second ⁇ 2 different from the first temperature ⁇ 1 and stored in the memory means. Based on the numerical values, the step of calculating the correction data in the permanent magnet after use at the temperature of ⁇ before 2 and the temperature of ⁇ 2 for each of the plurality of parts is executed. I do.
  • the calculating means is the correction
  • B-H curve data is stored in the memory means. .
  • the magnetic field analysis program provides the computer with a computer for calculating the permeance coefficient and / or the coefficient at a plurality of portions in the permanent magnet based on the BH curve data of the permanent magnet at the first temperature T 1.
  • Depends on the response coefficient Calculating the numerical value of the permanent magnet at a second temperature T2 different from the first temperature T1 based on the B-H force data of the permanent magnet and the permeance coefficient or the numerical value. Calculating corrected BH curve data of the permanent magnet after use at the second temperature T2 for each of the plurality of portions.
  • the computer causes the computer to calculate modified B-H force curve data at a temperature different from the second temperature ⁇ 2 as the modified B_H carp data.
  • the computer further executes a step of storing the modified BH curve data in the memory of the ⁇ tool.
  • the program for magnetic field analysis is the first temperature for the computer.
  • the permanent magnet After use at the second temperature T2 ⁇
  • the step of calculating the corrected B-H force data in the magnet for each of the plurality of parts is performed by the 3-phase ZL-data.
  • the computer is configured to calculate, as the corrected B-H curve data, corrected B-H curve data at a temperature different from the second temperature T2.
  • the computer is further made to execute a step of storing the modified BH curve data in a memory of a computer.
  • the method for manufacturing a magnetic circuit according to the present invention includes a magnetic field analysis method for a magnetic circuit including a plurality of permanent magnets after being demagnetized at the second temperature T2 by any one of the magnetic field analysis methods described above. And a step of producing a magnetic circuit including a permanent magnet selected from the plurality of permanent magnets based on the result of the magnetic field analysis.
  • FIG. 1 is a perspective view showing a rectangular parallelepiped permanent magnet magnetized in the thickness direction.
  • FIG. 2 is a cross-sectional view schematically showing magnetic flux lines generated by the permanent magnet in FIG.
  • FIG. 3 is a graph schematically showing a part of the demagnetization curve of the permanent magnet shown in FIG.
  • FIG. 4 is a graph showing a B—H curve (solid line) at room temperature (2 ° C.) and a B—H curve (dotted line) at 100 ° C. for a certain permanent magnet.
  • FIG. 5 is a flowchart showing an outline of the magnetic field analysis method of the present invention.
  • FIG. 6 is a diagram for explaining a method of correcting a BH curve by the magnetic field analysis method of the present invention.
  • FIG. 6 is a diagram showing a verification model used in the embodiment of the present invention.
  • Figure 8 (a) is a graph showing the temperature dependence of the flux amount obtained by calculation and measurement, and (b) is a graph showing the temperature dependence of the demagnetization ratio obtained by calculation and measurement. is there.
  • Fig. 9 ( ⁇ ) is a graph showing the magnetic flux density distribution at 20 ° C in the center of the magnet, and (ii) is a graph showing the magnetic flux density distribution at 10 ° C in the center of the magnet. is there.
  • Fig. 1 (i) is a graph showing the magnetic flux density distribution at 20 ° C near the magnet surface, and (ii) is a graph showing the magnetic flux density distribution at 1 0 ° C near the magnet surface. is there.
  • BEST MODE FOR CARRYING OUT THE INVENTION instead of focusing only on the portion where the permeance coefficient is minimized inside the permanent magnet, it is determined by calculation and the response at each part in the permanent magnet is calculated. Based on the coefficient, the B-H curve at each part in the permanent magnet after demagnetization is calculated.
  • the degree of thermal demagnetization varies depending on the position inside the permanent magnet.
  • a high temperature for example, 1 oo ° C
  • the above operating temperature “10 ° C” is merely an example, and as long as B ⁇ H curve data at a plurality of preset temperatures exists, any temperature selected from that temperature can be used.
  • Estimation of the degree of demagnetization effect at temperature can be estimated in the design of the magnetic circuit of a permanent magnet motor in which demagnetization occurs due to a locking phenomenon or the like. Very useful.
  • the first step perform magnetic field analysis at normal temperature (first temperature T1: for example, 2 ° C) under given conditions such as magnet material and magnet shape.
  • first temperature T1 for example, 2 ° C
  • the magnetic flux density B m at each part of the magnet is extracted, and the permeance coefficient for this is calculated.
  • a known magnetic field analysis method can be used.
  • Magnetic field analysis As an example of a computer software for use, the initial magnetic field analysis, such as S-S), which uses the brand name of Factory J ⁇ AGJ (manufactured by this research institute), is an object of analysis. It is preferably implemented by a finite 3 ⁇ 4 ⁇ ) 3 ⁇ 4 ⁇ - which divides the magnet into many fine elements.
  • the value of the magnetic flux density B m is calculated from this value (B m di).
  • the number of divisions is, for example, 10
  • is also set to 0 order.
  • the initial magnetic field analysis in this swap is used in normal magnetic analysis
  • B- H curve data is used. Such data is included in a database attached to a commercially available software for magnetic field analysis, but a user of the software for magnetic field analysis creates B-H curve data separately and creates a database. Sometimes used as
  • At least one of the magnets is calculated based on the calculated coefficient P c of each part of the magnet (each finite number) and the operating temperature of the magnet (second fiber T2-for example, 100 ° C). Correction to B-H force at each part of the magnet after thermal demagnetization has occurred in the part (S D EP 2)
  • the temperature is different from the second temperature T2 at which thermal demagnetization occurs.
  • the magnetic field analysis at the stage of deer 20 ° C ((-Perform the magnetic field analysis- ⁇ o) is performed by the software of the above-mentioned magnetic lift analysis software.
  • the line has a characteristic.
  • the presence or absence of demagnetization and the degree of demagnetization are determined by the demagnetizing field H d
  • the influence of the demagnetizing field H d is considered when the magnetic flux density in the magnet is obtained during the initial analysis performed at room temperature of 20 ° C.
  • the permanent magnet has The demagnetizing field H d varies depending on the position of the shape, but the demagnetizing field H d
  • the B-H curve data is corrected in the following procedure based on the "permeance coefficient Pc" and "permanent magnet operating temperature T2" for each part (each finite element) obtained by the initial analysis.
  • Pc permeance coefficient
  • T2 permanent magnet operating temperature
  • a magnetic field analysis is performed based on the data representing the B—H carp ( ⁇ ⁇ — ⁇ — D i) at 20 ° C, and the permeance coefficient P c for each finite element is calculated. I do.
  • the BH carp data at 20 ° C is read from the database of the magnetic field analysis software.
  • the permeance coefficient Pc obtained by the calculation is stored in the memory of the computer in association with the corresponding finite element.
  • -Magnetic field analysis is performed by a known method based on the additional data added to the database.
  • the residual magnetic flux density distribution at any temperature T3 after thermal demagnetization can be analyzed using existing magnetic field analysis software.
  • Torje Each procedure in the above magnetic field analysis involves installing a program that causes the computer to execute the above calculations (calculations) on the computer. Such a program generates a modified BH curve 1-data and adds an additional module for adding it to the database, as known in the art. It is easily produced by combining it with an analysis software program.
  • the magnetic field analyzer with such a program installed has a B at different temperatures for the selected permanent magnet.
  • a step of calculating the B-H curve data of the permanent magnet after demagnetization for each of a plurality of parts is executed.
  • instead of calculating the response coefficient itself,
  • a magnetic field analysis is performed for a plurality of permanent magnets, and the permanent magnet is appropriately selected based on the result of the magnetic field analysis.
  • An excellent magnetic circuit can be manufactured at low cost.
  • the flux, demagnetization amount, and magnetic flux density distribution of the magnet sample shown below were calculated by the magnetic field analysis method of the present invention, and were compared with measured values.
  • Magnet dimensions thickness 5 mm x height 25 mm x width 9 mm • Number of magnets: 2 (magnet sample A and magnet sample B) Note that the magnet magnetization direction is parallel to the magnet thickness direction. Magnetized. In this embodiment, since a rare earth magnet is used, demagnetization occurs at a temperature higher than room temperature.
  • Figure 8 (a) shows the calculated and measured The graph shows the temperature dependence of the amount of solvent.
  • the horizontal axis indicates the operating temperature of the permanent magnet, and the vertical axis indicates the amount of flux.
  • Fig. 8 (b) shows the temperature dependence of the demagnetization obtained by calculation and measurement.
  • the horizontal axis indicates the operating temperature of the permanent magnet, and the vertical axis indicates the demagnetization rate.
  • the calculated values are indicated by ⁇
  • the measured values of samples A and B are indicated by ⁇ and the mouth, respectively.
  • the calculated values agree with the measured values with high accuracy.
  • the difference between the calculated value of the demagnetization rate and the actually measured value was about 2 (), and it was confirmed that the demagnetization analysis can be accurately performed by the present invention.
  • Fig. 9 (i) shows the magnetic flux density distribution at 20 ° C in the center of the magnet shown in Fig. 7, and Fig. 9 (ii) shows the distribution of the magnetic flux density in the center of the magnet.
  • the magnetic flux density distribution at 100 ° C. in FIG. Fig. 10 (i) shows the magnetic flux density distribution at 20 ° C near the magnet end, and Fig. 10 (ii) shows the magnetic flux density distribution near the magnet end.
  • the magnetic flux density distribution at 0 ° C is shown.
  • each minute element (permanent / n ⁇ after demagnetization) is redefined (corrected) according to the present invention. It is possible to analyze the magnetic field after demagnetization o In other words, it is not only about whether or not demagnetization occurs for the permanent magnet, but also how to calculate the magnetic flux density distribution etc. after demagnetization It becomes possible. This makes it possible to manufacture a magnetic circuit at low cost by selecting an appropriate permanent magnet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

永久磁石について減磁が生じるか否かだけではなく、減磁後における磁束密度分布などの算出することができる磁場解析方法および装置を提供する。本発明の磁場解析方法は、第1の温度T1における永久磁石のB−Hカーブデータに基づいて、永久磁石内の複数の部位におけるパーミアンス係数および/またはパーミアンス係数に依存する数値を算出する。次に、第1の温度T1とは異なる第2の温度T2における前記永久磁石のB−Hカーブデータと前記パーミアンス係数または前記数値とに基づいて、第2の温度T2で使用した後の永久磁石における修正B−Hカーブデータを、複数の部位の各々について算出する。

Description

明 細 書
磁場解析方法および装置 技術分野
本発明は、 減磁によって特性の変化し得る永^磁石を含
¾磁気回路を対象とする磁場解析方法および磁場解析装置 に関する。 また、 本発明は、 このよラな磁場解析方法およ び装置を用いて行 永久磁石の製造方法にも関している。 背景技術
近年、 磁気回路の設計効率向上や小型化を検討するため、 コンピュータ · シミュレ一シ 3 ン技術を用いた磁場解析が 行われてし、る。 このよ な磁 解析は、 種 の形状を備え 永久磁石を多数の微小要素 (メッ シュ) に分けて評価す る有限要素法などの方法を用し、て行われる。 このような磁 場解析技術の向上に伴い、 磁 回路内での磁束密度分布や フラックス釐を高い精度で計 ヶすることが可能になってき た。 従来の磁場解析方法は 、 例 ば以下の先行技術文献に 記載されている。
文献 : 谷ロ康人、 他 4名 スキューを考慮し 永ス 磁石モータの三次元磁界解析 C online] 、 [平成 1 4 年 1 0月 2曰検索 ] インタ ―ネッ 卜 U RL: http://www.j r i. co.jp/ pro-en g/jmag/analysis/ a ers/skew.pdf > 希土類永久磁石を加熱すると、 その磁化が減少する (減 磁) 。 一方、 フェライ 卜磁石では、 冷却によって減磁が発 生する。 このような減磁には、 常温に戻すと回復する 「可 逆減磁」 と回復し,ない 「不可逆減磁」 がある。 可逆減磁の 量は、 磁石の温度に ¾じて線形的に変化し、 その割合を可 逆温度係数と言う。 一方、 不可逆減磁は、 加熱または冷却 によって減少した磁化の ち、 室温に戻しても回復 減磁のことを言う。
例えば 1 0 0 °Cで永久磁石を使用した場合におい 可逆減磁が発生した後、 磁石温度を常温 ( 2 0 °C ) させても、 磁石の磁化は減少したままであり、 完全 復しない。 このよ oな減磁が生じると、 磁石のヒス スカーブ (履歴曲線) の形状が変化することになる。
永久磁石を用いた磁気回路について磁場解析を行ぅ揚 □ は、 永^磁石の減磁を考慮した磁場解析が必要にな し かしながら、 従来の減磁評価方法では 、 与えられた動作条 件 (温度ゆ外部磁場) のちとで永久磁石に減磁が発生する か否かだけが判定されてし、た。 この点を図 1 から図 3を参 照しつつ説明する。
囡 1 は、 板状の永久磁石を示してし、る。 図示されてし、る 永^磁石は、 その厚さ方向に磁化されてし、る。 図 2は、 し の永久磁石による磁束線を模試的に示す断面図である 図
2からわかるように、 磁石の端部近傍からのびる磁束線の 磁路は、 磁石中央部から伸びる磁束線の磁路に比べて相対 的に短しヽ。
永久磁石が着磁された後 、 その永久磁石には N極と S極 が発生するため, 図 2に すように、 永久磁石の外部では
N極から S極に向かう磁束 (磁束線) が形成される。 この とき 、 永久磁石の内部に し、てち、 N極から S極に向か Ό 磁束が形成されてし、 •δ)。 磁石内部に形成される磁束は、 永 久磁石を減磁させる向きに働 <だめ、 このよろな磁束によ る磁界は反磁界 (自己減磁界) と称されている。 反磁界は、
N極と S極が近づく程、 大きくなる。 図 1 に示す板状の永 久磁石の場合、 板の面積に対する板厚の比が小さくなるほ ど、 反磁界は大きくなる o
図 3は、 図 1 に示す永久磁石の減磁曲線 (Demagnetiz ation curve ) の一部を楱式的に示すクラフである。 し し で 「減磁曲線 」 とは 永久磁石が飽和磁束密度または飽和 磁気分極を示す状態から磁界を単調に変化させて得られる 履歴曲線の ち、 2象限および第 3象限の部分を意味し てし、る。 図 3では、 縦軸が磁束密度 B、 横軸が外部磁界 H のグラフであり 、 第 2象限の部分のみを示している。 なお、 図 3のグラフでは、 直線で近似されだ減磁曲線が描かれて し、るが、 本願明細書では、 磁石の履歴曲線が少なく とち一 部に直線部分を含 ような場合でち、 その 歴曲 ¾>J 'd: 「 B 一 Hカーブ」 と称することとする。 図 3のグラフでは、 反磁界 H d に対 ¾する B— Ηカーブ 上の点 (動作点) が示されている。 この動作点における磁 束密度の値は B mであり、 動作点とグラフの原点とを結 β 直線は 厂動作線」 と呼ばれている。 動作線の傾きの絶対値 は 、 パ ―ミアンス係数 P c と呼ばれている。 磁束密度 B m は 、 パ ―ミアンス係数 P c に依存する数値のひと である。
反磁界 H dは、 永久磁石に対する外部磁界の有 、 に係わ らず存在するだめ 、 外部磁界の印加が無 ( 状態で永久磁石 から外部に発生する磁束の密度は、 動作点に対 する磁束 密度 Β mに等しい 。 一般に、 永^磁石の動作点は 磁石の 形状や周囲の状況によって変化すると言われているが、 厳 密には 永久磁石の内部の位置によってち異なる すなわ ち永久磁石のパ—ミアンス係数 P cは、 永久磁石の内部に αβし、て一様ではなく、 永久磁石内の位置に^じて異なる値 を有してし、
図 2に示すよろに、 磁路が短くなるほど、 反磁界 H dは 小さぐ パ —ミアンス係数 P cが大きくなるのに対して、 . 磁路が長 <なるほど反磁界 H dは大きく、 パーミ yンス係 数 P c は小さくなる。 このため、 図 1 に示す形状の永久磁 石のパ ―ミアンス係数 P cは、 磁石中央部で最も低く、 磁 石のコ ―す —部ノ ίで最ち高くなる。 図 1 において 、 P c
( m i n ) は、 パ一 アンス係数 P cが最小となる部位を 示し、 P c ( m a X ) は、 パ一ミアンス係数 P cが最大と なる部位を示している。
このように永久磁石のパ一ミアンス係数 P cは、 永久磁 石の内部の位置に^じて巽なる。 一方、 減磁はパーミアン ス係数 P cが最小となる部分から発生する。 このため、 .従 来の磁場解析法では、 'コンピュータ · シミュレーショ ンに より、 磁石内の各部位 (多数の有限要素) について磁束密 度 B mを計算し、 磁束密度 B mが最も小さ <なる部位のパ ーミアンス係数 P c ( m i n ) を算出してい 。 そして、 このよ なパーミアンス係数 P c ( m ί η ) を示す動作線 と、 使用温度における Β— Ηカーブと比較することにより、 この部位が減磁し得るか否かを判断していた。 次に、 図 4 を参照しながら、 このような従来の減磁評価方法を説明す る。
図 4は、 ある永久磁石の常温 ( 2 0度) における Β— Η カーブ (実線) と、 1 0 〇 °Cにおける Β— Ηカーブ (点 線) を示すグラフである。 各温度における B— Hカーブの データは、 コンピュータのメモリ内に格納され、 永久磁石 の形伏などに関するデータが入力された後、 有限要素法に よって磁石内の各部位における動作線が特定される。
図 4のグラフには、 2種類の磁石 Cおよび磁石 Dに関す る 2本の動作線が示されている。 動作線 Cは、 磁石 Cの内 部で最もパー アンス係数 P cが低い部位の動作線であり、 動作線 Dは、 磁石 Dの内部で最ちパ一ミアンス係数 P cが 低い部位の動作線であると仮定する。 まだ、 簡単化の め、
B— Hカーブは、 磁石 Cおよび磁石 Dで共通であると仮定 する。
図 4からわかるように、 動作線 Cと 2〇 °Cの B— Hカー ブおよび 1 0 0 °Cの B— Hカーブとの各交点は、 いずれも、 対 ¾する B— Hカーブの変極点 (クニック点) より上側に 位置している。 この ^め、 パーミアンス係数 P c ( m i n ) が大きな磁石 Cは、 1 0 0 °cの使用環境でも減磁しな いと評価される。
一方、 パ一ミアンス係数 P c ( m i n ) が相対的に小さ な磁石 Dの動作線と 2 0 °cの B— H力ーブとの交点は、 そ の B一 Hカーブの変極点 (クニック点 ) より上側に位置し ているが、 1 0 0 °Cの B一 Hカーブとの交点は、 その B—
H力一ブの変極点 (クニック点) より下側に位置している。 このことから、 パーミアンス係数 P c ( m i n ) が小さな 磁石 Dは、 2 0 °Cで減磁しないが 1 0〇 °Cで減磁すると
■ 判定される。
しのよろにして行う従来の磁場解析法によれば、 永久磁 石内で最もパーミアンス係数の低し、部分が減磁するか否か のみを評価してし)たため 例えぱ 、 パ —ミアンス係数の最 ち低い部分が永久磁石全体に占める割合が極めて小さく、 現実には減磁の問題がほとんど生じな Ι ように場合でも、
「減磁が発生する」 と判定されることがあった。 ま 、 減磁が生じた後の磁束密度分布がどのよ になる のかについて、 従来の磁場解析方法は何の回答を与えるこ とちできなかっ 。 すなわち、 従来の磁場解析方法では、 磁石毎に減磁の有無だけを判定していた め、 減磁によつ てフラックス量ゆ磁束密度分布がどのよ に変化するかを 数値解析で求めることができないとい 問題があった。
本発明は、 かかる事情に鑑みてなされ ものであり、 そ の主な目的は、 永久磁石について減磁が生じるか否かだけ ではなく、 減磁後における磁束密度分布などの算出するこ とができる磁場解析方法および装置を提供する。
Figure imgf000009_0001
本発明の磁場解析方法は、 第 1 の温度 T 1 における永久 磁石の B— Hカーブデータに基づいて、 前記永久磁石内の 複数の部位におけるパーミアンス係数および ま i は 記 パ一ミアンス係数に依存する数値を算出するステップ.と 、 前記第 1 の温度 T 1 とは異なる第 2の 曰 ό=
/皿 }又 Τ 2における目 u 記永^磁石の B— Hカープデ一タと前記パ一ミアンス係数 または前記数値とに基づし、て 目 u §し 2の /皿 Γ 2で使用
、 した後の永^磁石における修正 B— Hカーブデータを、 目 U 記複数の部位の各 につし、て算出するステップとを含 ¾ o 好ましい実施形台 において 前記修正 Β一 Η力ープデ ― タとして、 Ιϋ IB ¾ 2の温度 T 2とは異なる 曰 |*
'皿 | 1<一—おける修 正 B― Hカープデ一タを算出す•S) o
好ましい実施形台!3におし、て、 前記修正 B— H力 ブデ一 タを計算機のメモ u内に格納するステップを更に Sんでしヽ ス 本発明の磁場解析装置は 、 選択された永久磁石に関する 複数の ;曰 pfr |
m 1<一—おける B一 H力一ブデータを格納するメモ U 手段と 、 演算手段と 、 を備え 磁場解析装置であ oて、 前 記演算手段は 、 前記メモ U手段に格納されている 1 のノ ί曰 皿 度 T 1 における前記永久磁石の B— Hカープデ一タに基づ し、て前記永久磁石内の複数の部位におけるパーミアンス係 数および Ζまたは前記パーミァンス係数に依存する数値を 算出するステップと、 前記メモリ手段に格納されてし、る前 記第 1 の温度 Τ 1 とは異なる第 2の舰 Τ 2における目 u sB 永久磁石の Β— Ηカープデータと前記パーミアンス係数ま たは前記数値とに基づいて、 前 δし 2の温度 Τ 2で使用し た後の永^磁石における修正 Β一 Η力一ブデータを、 前記 複数の部位の各々にっし、て算出するステップとを実行する。
好ましい実施形態において、 前記演算手段は、 前記修正
B— Hカーブデータを前記メモリ手段に格納する。 .
本発明の磁場解析兩プログラムは、 コンピュータに対し て、 第 1 の温度 T 1 における永ス磁石の B— Hカーブデー タに基づいて、 前記永久磁石内の複数の部位におけるパー ミアンス係数および/ま^は前記パー アンス係数に依存 する数値を算出するステップと、 前記第 1 の温度 T 1 とは 異なる第 2の温度 T 2における前記永久磁石の B ― H力一 ブデ一タと前記パ—ミアンス係数または前記数値とに基づ いて 前記第 2の温度 T 2で使用した後の永久磁石におけ る修正 B - Hカーブデ一タを、 前記複数の部位の各 につ いて算出するステップとを実行させる。
好ましし、実施形態では 、 コンピュータに対して、 前記修 正 B _ Hカープデータとして 前記第 2の温度 Τ 2とは異 なる温度における修正 B一 H力ーブデータを算出させる。
好ましし、実施形態では 、 コンピュータに対して、 前記修 正 B— Hカーブデータを δ 具機のメモリ内に格納するステ ップを更に実行させる o
本発明の磁場解析用追加モジユールプログラムは、 磁場 解析用プログラムが、 コンピュ —タに対して、 第 1 の温度
T 1 における永^磁石の Β一 Ηカープデータに基づいて、 前記永久磁石内の複数の部位におけるパーミアンス係数お よび ま は前記パーミァンス係数に依存する数値を算出 するステップを実行させ 後 前記第 1 の温度 Τ 1 よりち 高い第 2の温度 T 2における前記永久磁石の Β— Ηカーブ データと前記パーミアンス係数または前記数値とに基づし、 て、 前記第 2の温度 T 2で使用した後の永^磁石における 修正 B— H力一プデ一タを、 前記複数の部位の各々につ( て算出するステップを 3ンピ ZL —タに実行させる。 好ましい実施形態では、 コンピュータに対して、 前記修 正 B— Hカーブデータとして、 前記第 2の温度 T 2とは異 なる温度における修正 B— Hカーブデータを算出させる。
好ましい実施形態では、 コンピュータに対して、 前記修 正 B— Hカーブデータを計算機のメモリ内に格納するステ ップを更に実行させる。
本発明の磁気回路の製造方法は、 上記いずれかの磁場解 析方法によって、 前記第 2の温度 T 2で減磁し 後におけ る複数の永久磁石を含 ¾磁気回路につ ( て磁場解析を行 ステップと、 前記磁場解析の結果に基づいて、 前記複数の 永^磁石から選択された永久磁石を含 ¾磁気回路を作製す るステップとを包含する。 図面の簡単な説明
図 1 は、 厚さ方向に磁化された直方体形状の永^磁石を 示す斜視図である。
図 2は、 図 1 の永久磁石による磁束線を模試的に示す断 面図である。
図 3は、 図 1 に示す永久磁石の減磁曲線 (Demagnetiz ation curve) の一部を模式的に示すグラフである。
図 4は、 ある永久磁石の常温 ( 2 〇度) における B— H カーブ (実線) と、 1 0 0 °Cにおける B— Hカーブ (点 線) を示すグラフである。 図 5は、 本発明の磁場解析方法の概略を示すフローチヤ 一卜である。
図 6は、 本発明の磁場解析方法による B— Hカーブの修 正方法を説明する めの図である。
図了は、 本発明の実施例で使用する検証モデルを示す図 である。
図 8 ( a ) は、 計算および測定によって得られたフラッ クス量の温度依存性を示すグラフであり、 ( b ) は、 計算 および測定によって得られた減磁率の温度依存性を示すグ フである。
図 9 ( ί ) は、 磁石中央部における 2 0 °Cでの磁束密度 布を示すグラフであり、 ( i i ) は、 磁石中央部におけ 1 0〇 °Cでの磁束密度分布を示すグラフである。
図 1 〇 ( i ) は、 磁石表面近傍における 2 0 °Cでの磁束 度分布を示すグラフであり、 ( i i ) は、 磁石表面近傍 おける 1 〇 0 °Cでの磁束密度分布を示すグラフである。 発明を実施するための最良の形態 本発明では、 永^磁石の内部においてパーミアンス係数 が最小になる部分のみに着目するのではなく、 計算によつ て求め 永^磁石内の各部位におけるパー アンス係数に 基づいて、 減磁後における永^磁石内の各部位における B 一 Hカーブを算出する。 熱減磁が生じ得るよろな比較的高 い温度 (例えば 1 o o °c ) での環境下で永久磁石を使用し た場合、 永^磁石の内部における位置によって熱減磁の有 無ゆ程度は異なる。 本発明では、 永^磁石内の各部位にお ける B— Hカーブを算出することにより、 算出された多数 の B— Hカーブに基づ ( て適切な磁場解析を行うことが! [ 能になる。 なお、 上記の使用温度である 「 1 0〇 °C」 は、 一例に過ぎず、 予め設定され 複数の温度における B— H カーブデータが存在する限り、 その温度から選択された任 意の温度での減磁効果を見積もることができる。 このよう な減磁効果の程度 (減磁率) の見積もりは、 ロック現象な どによって減磁が発生しゆすい永久磁石モータの磁気回路 を設計する上で非常に有用である。
以下、 図面を参照しながら、 本発明の実施形態を説明す る。
本実施形態では、 有限要素を用いて磁場解析を行 。 まず、 図 5を参照して、 本実施形態における手順の概略 を説明する。
最初のステップ ( S T E P 1 ) と して、 与えられた磁石 材料および磁石形状などの条件のもとで、 常温 (第 1 の温 度 T 1 : 例えば 2 〇 °C ) における磁場解析を行うこ。 この 磁場解析により、 磁石各部位における磁束密度 B mを抽出 し、 これに対 するパーミアンス係数を算出する。 このと き、 公知の磁場解析方法を用いることができる。 磁場解析 用のコンピュータソフ 卜ゥェァとしては 例えば曰本総合 研究所製の商品名 厂 J Μ A G J を用いるしとがで S -S) し のような初期的な磁場解析は 、 解析の対象となる永^磁石 を多数の微細要素に分ける有限 ¾ ^ )¾ ι—よつて好適に実行 される 。 公知の磁場解析方法ま i は磁場解祈装置を用し、て 永久磁石内の各有限要素における磁束密度 B mが算出され ると、 この値 ( B m ジ からパ ―ミスアンス係数 P cが求ま る。 有限要素法によつて磁石を微細な部分に分割する場合 の分割数 (有限要素の数二メッシュの数 ) は、 例えば 1 0
〇 0個のオーダーに δ又定される 。 このスァップにおける初 期の磁場解析には 、 通常の磁 解析で用し、られる常温での
B— Hカーブデ一タが用し、られる。 このようなデータは、 市販の磁場解析用ソフ 卜ゥェ yに付随するデータベースに 含まれているが、 磁場解析用ソフ 卜ゥェァのユーザが、 別 途、 B一 Hカーブデータを作 し、 データベースとして用 し、る場合ちある。
次に、 算出された磁石各部位 (各有限 ) におけるパ 一―ァンス係数 P c と磁石の使用温度 (第 2の纖 T 2 - 例えば 1 0 0 °C ) に基づいて、 少なく とも磁石の一部で熱 減磁が生じた後の磁石各部位における B一 H力ーブへ修正 する ( S 丁 E P 2 ) し の 「修正 」 とは 、 減磁後の
B - H力ーブに関する丁ータを生成することを思味してし、 しの 、 各部位における修正後の B― H力一ブに基づし、 て 、 熱減磁の生じる第 2の温度 T 2とは異なる ¾曰
/皿度 (例 ば常 、、曰
鹿 2 0 °C ((- ける磁場解析を実行す -© o しの段階に おける磁場解析は、 上記の磁揚解析用ソフ 卜ゥェァのデ — タベ一スに 3まれる B一 H力 —ブデ一タではな < 、 修正後 の B一 H力一ブデータに基づ ( て行 点に特徴を有してし、 なお、 減磁発生の有無および減磁の程度は、 反磁界 H d と温度に依存するが、 常温 2 0 °Cで行う初期解析の際に磁 石中の磁束密度を求めた時点で反磁界 H dの影響が考慮さ れている、 言い換えると、 永久磁石には 、 形状ゆ位置によ つて異なる反磁界 H dが及んでいるが 、 しの反磁界 H dに
¾じて異なる磁束密度 B mが既に求まつてし、る。 このため、
S T E P 2の段階で、 磁石内の各有限要素について減磁に よる B— Hカーブの修正を行うときには 温度による熱減 磁だけを考慮すればよし、。
次に、 S T E P 3の段 皆では、 S T E P 2の段階で算出 した B— Hカーブに関するデータ (修正 B一 Hカーブデ ― タ) を磁石の各有限要素について入力する 。 その後、 例 ば 2 0 °C (第 3の温度 T 3 ) における磁 解析を行う。 し の磁場解析が S T E P 1 の磁場解析と異なる点は、 次の点 にある。 すなわち、 S T E P 1 の磁場解析では、 磁石内の 各有限要素に対して共通の B— Hカーブァ —タを用いるが、 S T E P 3の磁場解析では、 磁石内の各有限要素について、 個別に熱減磁の影響を考慮して修正した B— Hカーブデ一 タを用いる。
次に、 図 6を参照しながら、 熱減磁後の B— Hカープデ ータ (修正 B— Hカーブデータ) を生成する方法をより詳 細に説明する。
B— Hカーブデータの修正は、 初期解析によって得られ た各部位 (各有限要素) における 「パーミアンス係数 P c」 および 「永久磁石の使用温度 T 2」 に基づき、 次の手 順で実行する。 なお、 ここでは、 T 2 = 1 00 °Cでの使用 により、 熱減磁が発生し と仮定する。 この場合の温度 T 2は、 第 1 の温度 T 1 よりも高いが、 フェライ トなどの)令 却で減磁が生じる磁石を対象とする場合の温度 T 2は第 1 の温度 T 1 よりち低 <設定される。
(S T E P I ) まず、 前述したように、 20°Cの B— Hカープ (Α ή — Β — D i ) を表すデータに基づい て磁場解析を行い、 各有限要素におけるパ一ミアンス係数 P cを計算する。 20°Cの B— Hカープデータは、 磁場解 析用ソフ 卜ウェアのデータベースから読み取る。 ま 、 計 算によって得たパーミアンス係数 P cは、 対 する有限要 素に関連付けてコンピュータのメモリに格納する。
( S T E P H ) 次に、 1 00°Cの B— Hカーブ (A 2 - B 2 - C 2 - D ) を表すデータを磁場解析用ソフ 卜ゥェ ァのデータベースから読み取る。
( S T E P 1 ) 各有限要素について、 1 00°Cの B _ Hカーブ (A 2— B 2— C 2— D 2) とパ一ミアンス係数 P cに対 ¾する動作線との交点 (B 3) を求める。
( S T E P RO 予めデータベース内に格納されている 透磁率 f e。の値を用いて、 熱減磁が発生した温度 ( 1 〇 0 °C) での等価的な残留磁束密度 B f ( A 3 ) を算出する。 この残留磁束密度 B r ( A 3) ち各有限要素について求め られる。
(S T E P V) 減磁が発生した温度 ( 1 00 °C) での 等価的な B f ( A a ) および温度係数を用し、て計算するこ とにより、 磁石温度を常温 2〇 °C (二 T 3 ) に戻した時の 残留磁束道度 B r ( A 4) を求める。 この残留磁束密度 B r (A4) も、 各有限要素について求められる。
( S Τ Ε Ρ "VI ) 常温 20 °Cに戻した時の B r ( A 4 ) および 磁 r e 3 Cを用いて、 常温 20°Cに戻した後の B 一 H力一ブ ( A A " - B 4- C 1 - D 1 ) を表すデータを生成 す -έ> a しのようにして得られた B— Hカーブデータが 「修 正後の Β一 Η力 ―ブデータ」 であり、 磁石内の有限要素の 各 につし、て 出される。 修正後 B— Hカーブデータはデ
—タべ一スに追加され、 追加データに基づいて公知の手法 で磁場解析を行 ば.、 熱減磁後における任意の温度 T 3で の残留磁束密度分布などを、 既存の磁場解析用ソフ 卜ゥェ ァを用いて容 に算出す•S?しとができるよう ( 上記磁場解析における各手順は、 上記計算 (演算) をコ ンピュ一タに実行させるプログラムをコンビユ ータにィン ス 卜ールし、 そのプログラ厶を動作させることにより実行 される。 このようなプログラムは、 修正 B— Hカーブ 1— タを生成し、 ァ —タベ一スに追加するための追加モジュ一 ルを公知の磁 解析用ソフ 卜ウェアプログラ厶と組み合わ せるしとによつて容易に作製される。
このよ なプログラムがインス 卜一ルされた磁場解析装 は、 選択された永久磁石に関する複数の温度における B
― H力 —ブデータをデータべ一スとして格納しているメモ 手段と、 演算手段とを備えている。 この演算手段は、 メ モリ手段に格納されている第 1 の温度 T 1 における永久磁 石の B一 Hカーブデータに基づいて、 その永久磁石内の複 数の部位におけるパーミアンス係数を算出するステップと、 メモり手段に格納されている第 1 の温度 T 1 とは異なる第
2の温度 T 2における永久磁石の B— Hカーブデータとパ
——ミァンス係数に基づいて、 減磁後の永久磁石における修 正 B一 Hカーブデータを複数の部位の各 について算出す るステップとを実行することになる。 なお、 上言 βのステツ プで、 パ アンス係数そのものを算出する代わりに、 パ
——ミアンス係数に依存する数値 (例えばパーミアンス係数 に比例した数値) を算出しても同様の.計算を行うことが可 能である。 ま 7c、 これらのパラメ―夕の中に逆磁界を含め て計算を行うしとち可能
本発明の磁 i芴解析方法および装置によれば 、 熱減磁の生
ナ曰
じ得る環境で磁気回路を使用する 合の磁場解析を複数の 永久磁 ¾ ァルにつし、て実行し、 その磁場解折の結果に基 づいて永久磁石を適切に選択するしとにより 、 優れた磁気 回路を低コス 卜で作製することが可能となる。
【実施例】
本実施例では、 以下に示す磁石サンプルのフラックス、 減磁量、 および磁束密度分布を本発明の磁場解析方法によ つて算出し、 実測値と比較しだ。
[磁石サンプル]
• 磁石材質 : 住友特殊金属製の希土類永久磁石 (商品 名 : N E〇M A X— 40 Β Η ) ( B f = 1 . 309 T)
• 磁石寸法 : 厚さ 5 mm X縦 25 mmX横了 9 mm • 磁石の数 : 2個 (磁石サンプル Aと磁石サンプル B) なお、 磁石の磁化方向が磁石の厚さ方向に平行となるよ ろに磁化を行っ 。 本実施例では、 希土類磁石を使用し ため、 減磁は常温よりち高い温度で発する。
本発明による磁場解析方法の計算で得た値と、 実測で得 た値とを比較する際、 図了に示す検証モデルを用い.、 図了 に示す位置での磁束密度などを比較の対象とした。
図 8 ( a ) は、 計算および測定によって得られたフラッ クス量の温度依存性を示している。 図 8 ( a ) のグラフで は、 横軸が永^磁石の使用温度、 縦軸がフラックス量を示 している。 一方、 図 8 ( b ) は、 計算および測定によって 得られた減磁率の温度依存性を示している。 図 8 ( b ) の グラフでは、 横軸が永久磁石の使用温度、 縦軸が減磁率を 示している。 グラフ中、 計算値は ·で示され、 サンプル A および Bの実測値については、 それぞれ、 Δおよび口で示 されて ( る。
これらの結果を下記の表 1 にまとめる。
(表 1 )
Figure imgf000021_0001
図 8および表 1 からわかるように、 計算値は実測値と高 い精度で一致し 。 特に、 減磁率の計算値と実測値の差は 約 2 ( ) であり、 本発明によって減磁解析を精度良く行 えることを確認した。
次に、 計算および実測で得られ 磁束密度の分布を説明 する。
図 9 ( i ) は、 図 7に示す磁石中央部における 2 0 °Cで の磁束密度分布を示し、 図 9 ( i i ) は、 磁石中央部にお ける 1 0 0 °Cでの磁束密度分布を示 している。 図 1 〇 ( i ) は、 磁石端部近傍における 2 0 °Cでの磁束密度分布 を示し、 図 1 0 ( i i ) は、 磁石端部近傍における 1 〇
0 °Cでの磁束密度分布を示している。
図 9および図 1 〇から明らかなよ に 、 減磁後の磁束密 度分布について、 実測値と高い精度で一致する計算値が得 られることを ¾ し/し o
なお、 図 9または図 1 0の ( i ) および ( i i ) とを比 較することにより、 磁石の両端では 1 〇 0 °Cでち磁束密度 はほとんど低下していないのに、 中央部では磁束密度が低 下してし、ることがわかる。 すなわち、 |d|一の磁石サンプル 内におし、てち 、 磁石の両端に近い部分のようにパーミァン ス係数が大きい部分では 1 〇 0 °Cでも熱減磁が生じなし、に もかかわらず 、 磁石中央部などのようにパーミアンス係数 が小さし、部分では熱減磁が大きく進んで ( ることを計 J一 実測の両方で確認できた。 産業上の利用可能性
本発明によれば、 永^磁石内の各微小要 (しおける /n\減 磁後の B— Hカープを再定義 (修正) す "© し と によ Ό フ まで行われてし、なかつだ減磁後の磁場解析が可能となる o すなわち、 永久磁石について減磁が生じるか否かだけでは なく、 減磁後における磁束密度分布などの算出するしとが 可能となる。 このだめ、 適切な永久磁石を選択して低コス 卜で磁気回路を作製することが可能となる。

Claims

1 . 第 1 の温度 T 1 における永久磁石の B— Hカープ データに基づいて、 前記永久磁石内の複数の部位における パ —ミアンス係数お- -Dよび Zまたは目 u記パ一ミアンス係数に 依存する数値を算出するステツプと 前記第 1 の温度 T 1 とは異のなる第 2の 、、曰 [¾F Τ 2における
、 記永^磁石の B— Hカーブデ一範タと前記パーミアンス係 数または前記数値とに基づいて、 前 §し 2の温度 Τ 2で使 囲
用した後の永^磁石における修正 B一 H力一ブデータを、 前記複数の部位の各 につし、て算出するステップと、 を含 ¾磁場解析方法。
2 . 前記修正 B— H力一プデータとして 、 前記第 2の
、、S度 T 2とは異なる温度における修正 B —一 Hカーブデータ を算出するステップを含 ¾ 、 請求項 1 に記載の磁場解析方 法 o
3 . 前記修正 B— H力一ブデータを 機のメモリ内 に格納するステップを更に含んでい ■ώ 5目求項 1 ま は 2に 記載の磁場解析方法。
4 . 選択され 永久磁石に関する複数の温度における B— Hカーブデータを格納するメモリ手段と、 演算手段と、 を備え 磁場解析装置であ て 、
前記演算手段は、
前記メモり手段に格納されてし、る 1 の皿 i曰 T 1 におけ る前記永^磁石の B — H力 ―ブァ ―タに基づし、て前記永久 磁石内の複数の部位における / \° ―ミ yンス係数およびノま
τ
たは前記パー アンス係数に依存する 値を 出するステ ップと、
前記メモリ手段に格納されている百 U Ί の温度 T 1 と は異なる第 2の温度 T 2における前記永久磁石の B— H力 一ブデ一タと前記パ一ミアンス係数または前記数値とに基 つし、て、 前記第 2の温度 T 2で使用した後の永久磁石にお ける修正 B— Hカーブデータを、 前記複数の部位の各々に ついて算出するステップと、
を実行する、 磁場解析装置。
5 . 前記演算手段は、 前記修正 B— H力一ブデータを 前記メモリ手段に格納する、 請求項 1 に記載の磁場解析装
6 . コンビュ一タに対して、
第 1 の )皿 J¾ 「 1 における永久磁石の B— Hカーブデータ に基づいて、 前記永久磁石内の複数の部位におけるパーミ yンス係数および Zまたは前記パ一ミアンス係数に依存す る数値を算出させるステップと、
前記第 1 の)皿 "! 1 とは異なる第 2の温度 T 2における 前記永久磁石の B— H力一プデ一タと前記パーミアンス係 数または前記数値とに基づいて、 目 ϋ ed 2の温度 T 2で使 甩し 後の永久磁石における修正 B— Hカーブデ —タを、 前記複数の部位の各々について算出させるステツプと、 を実行させる磁場解析用プログラ厶。
7 • コンピュ一タに対して、 前記修正 Β— Ηカーブデ
——タとして、 前 δし ¾ 2の 度 Τ 2とは異なる温度における 修正 Β一 Η力 ——ブデ ―タを算出させる、 請求項 6に記載の 磁 ί芴解析用プ □グラ厶 ο
8 • コンピユー夕にヌ i [して、 目 υ記修正 B— H力一プデ ータを計算機のメモリ内に格納させるステ、 プを更に実行 させる請求項 6または了に記載の磁 I芴解析用プ □グラム。
9 . 磁場解析用プログラムが、 コンピュータに対して、 第 1 の温度 T 1 における永久磁石の B— Hカーブデータに 基づいて、 前記永^磁石内の複数の部位におけるパーミア ンス係数および または前記パーミアンス係数に依存する 数値を算出するステップを実行させた後、 前記第 1 の温度 T 1 とは異なる第 2の温度 Τ 2における 前記永久磁石の Β— Ηカーブデータと前記パーミアンス係 数または前記数値とに基づいて、 前記第 2の温度 Τ 2で使 用し 後の永久磁石における修正 Β— Ηカーブデータを、 前記複数の部位の各 について算出するステップをコンビ ユータに実行させる磁場解析甩追加モジュールプログラム。
1 0 • コンピュータに対して、 m記修正 B ― Hカーブ つ—タとして 目 U ad ¾ 2の ¾曰 曰
/皿度 T 2とは異なる ¾
/HE度におけ る修正 Β - H力 —ブデータを算出させるステップを実行さ せる 主
5冃求項 9 (t-□!_»載の磁 解析用追加モジュ —ルプログ ラム ο
1 1 □ンピュータに対して、 前記修正 B ― Hカーブ つ—タを計算機のメモ U内に格納するステップを更に実行 させる ÷主
a 求項 9または 1 0に記載の磁場解析用追加モジュ ールプ □グラ厶 o
1 2 . S主
BB求項 1 から 3のし、ずれかに の磁場解析方法 によって 前記第 2のノ皿 λ¾ Τ 2で減磁した後における複数 の永久磁石を含 磁気回路について磁場解析を行うステツ プと、
fu記磁 1¾解析の結果に基づし、""し、 前記複数の永久磁石か ら選択された永^磁石を含 ¾磁気回路を作製するステップ と、
を包含する磁気回路の製造方法。
PCT/JP2003/012558 2002-10-04 2003-09-30 磁場解析方法および装置 WO2004031997A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03799185A EP1465087A4 (en) 2002-10-04 2003-09-30 MAGNETIC FIELD ANALYSIS METHOD AND DEVICE USED THEREIN
US10/501,781 US6967551B2 (en) 2002-10-04 2003-09-30 Magnetic field analyzing method and device therefor
AU2003266724A AU2003266724A1 (en) 2002-10-04 2003-09-30 Nagnetic field analyzing method and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002291990A JP4228649B2 (ja) 2002-10-04 2002-10-04 磁場解析方法および装置
JP2002-291990 2002-10-04

Publications (1)

Publication Number Publication Date
WO2004031997A1 true WO2004031997A1 (ja) 2004-04-15

Family

ID=32063906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012558 WO2004031997A1 (ja) 2002-10-04 2003-09-30 磁場解析方法および装置

Country Status (5)

Country Link
US (1) US6967551B2 (ja)
EP (1) EP1465087A4 (ja)
JP (1) JP4228649B2 (ja)
AU (1) AU2003266724A1 (ja)
WO (1) WO2004031997A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105740590A (zh) * 2016-04-13 2016-07-06 上海信耀电子有限公司 一种获取伺服电机空载工作点的系统及方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222034B2 (en) * 2003-09-19 2007-05-22 Tektronix, Inc. In-circuit measurement of saturation flux density Bsat, coercivity Hc, and permiability of magnetic components using a digital storage oscilloscope
CN100581454C (zh) * 2006-07-14 2010-01-20 Ge医疗系统环球技术有限公司 磁场发生器和mri装置
WO2008053921A1 (fr) * 2006-10-31 2008-05-08 Hitachi Metals, Ltd. Procédé d'analyse d'aimantation, dispositif d'analyse d'aimantation et programme informatique
CN102763180B (zh) * 2010-02-10 2015-04-01 日立金属株式会社 磁力特性计算方法、磁力特性计算装置以及计算机程序
JP2012048347A (ja) 2010-08-25 2012-03-08 Hitachi Ltd 永久磁石の動作点解析方法、解析プログラム、及び記録媒体
DE112012002129B4 (de) * 2011-05-17 2020-02-27 Hitachi Metals, Ltd. Verfahren zum Berechnen von Magnetkraftkennlinien, Vorrichtung zum Berechnen von Magnetkraftkennlinien und Computerprogramm
CN103718180B (zh) * 2011-07-19 2016-11-23 株式会社日立制作所 磁场分析方法
JP6213407B2 (ja) * 2014-07-11 2017-10-18 マツダ株式会社 モータのトルクを推定する方法及び装置
DE102015200666B4 (de) * 2015-01-16 2024-10-10 Vacuumschmelze Gmbh & Co. Kg Magnetkern, Verfahren zur Herstellung eines solchen Magnetkerns und Verfahren zum Herstellen einer elektrischen oder elektronischen Baugruppe mit einem solchen Magnetkern
JP7053999B2 (ja) * 2018-06-12 2022-04-13 富士通株式会社 情報処理装置、閉磁路演算方法、および閉磁路演算システム
CN113126008B (zh) * 2019-12-31 2022-05-31 北京中科三环高技术股份有限公司 确定磁导系数的方法
JP7484684B2 (ja) 2020-12-07 2024-05-16 富士通株式会社 測定装置、測定方法および測定プログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242199A (ja) * 2001-12-10 2003-08-29 Matsushita Electric Ind Co Ltd スピーカ設計支援装置及びスピーカ設計支援方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165305A (ja) * 1986-01-16 1987-07-21 Hitachi Metals Ltd 熱安定性良好な永久磁石およびその製造方法
JP3467961B2 (ja) 1995-05-31 2003-11-17 株式会社明電舎 回転電機の制御装置
JP4683591B2 (ja) 2001-04-27 2011-05-18 キヤノン株式会社 磁化分布算出装置および算出方法
JP2002328957A (ja) 2001-04-27 2002-11-15 Canon Inc 磁化分布算出装置および算出方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003242199A (ja) * 2001-12-10 2003-08-29 Matsushita Electric Ind Co Ltd スピーカ設計支援装置及びスピーカ設計支援方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1465087A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105740590A (zh) * 2016-04-13 2016-07-06 上海信耀电子有限公司 一种获取伺服电机空载工作点的系统及方法

Also Published As

Publication number Publication date
EP1465087A4 (en) 2010-05-05
JP4228649B2 (ja) 2009-02-25
JP2004127056A (ja) 2004-04-22
US20050151609A1 (en) 2005-07-14
EP1465087A1 (en) 2004-10-06
AU2003266724A1 (en) 2004-04-23
US6967551B2 (en) 2005-11-22

Similar Documents

Publication Publication Date Title
WO2004031997A1 (ja) 磁場解析方法および装置
Kwack et al. Optimal stator design of interior permanent magnet motor to reduce torque ripple using the level set method
Bernard et al. Effect of stress on magnetic hysteresis losses in a switched reluctance motor: Application to stator and rotor shrink fitting
Wang et al. Topology optimization of nonlinear magnetostatics
Liu et al. Optimization of voice coil motor to enhance dynamic response based on an improved magnetic equivalent circuit model
Hihat et al. Equivalent permeability of step-lap joints of transformer cores: Computational and experimental considerations
Encica et al. Space mapping optimization of a cylindrical voice coil actuator
Pan et al. Modeling and optimization of air-core monopole linear motor based on multiphysical fields
JP6003887B2 (ja) 磁力特性算出方法、磁力特性算出装置及びコンピュータプログラム
JP5626226B2 (ja) 磁力特性算出方法、磁力特性算出装置及びコンピュータプログラム
Chen et al. A modified vector Jiles-Atherton hysteresis model for the design of hysteresis devices
Li et al. Anomalous loss modeling and validation of magnetic materials in electrical engineering
Yoo et al. Optimal design of an electromagnetic coupler to maximize force to a specific direction
Markovic et al. Analyzing an electromechanical actuator by Schwarz-Christoffel mapping
JP5699948B2 (ja) 保磁力分布磁石の保磁力特定方法
Krebs et al. Overlapping finite elements for arbitrary surfaces in 3-D
Sun et al. A physical model for thin-film magnetic inductors
JP5678831B2 (ja) 保磁力分布磁石の保磁力特定方法
Van de Wiele et al. Fast numerical three-dimensional scheme for the simulation of hysteresis in ferromagnetic grains
Daem Manufacturing effects on electromagnetic properties of ferromagnetic cores in electrical machines
El Youssef et al. Improving global ferromagnetic characteristics of laminations by heterogeneous deformation
Maierhofer et al. Computing Forces by ECSW-Hyperreduction in Nonlinear Magnetodynamic FEM Problems
Petrun et al. Modeling the influence of varying magnetic properties in soft magnetic materials on the hysteresis shape using the flux tube approach
Marks Conventional magnets-I
KR100551300B1 (ko) 2차원 평면구조의 비례전자석 설계를 위한 해석방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10501781

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003799185

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003799185

Country of ref document: EP