WO2004031689A1 - 作業機械の位置計測システム - Google Patents

作業機械の位置計測システム Download PDF

Info

Publication number
WO2004031689A1
WO2004031689A1 PCT/JP2003/012391 JP0312391W WO2004031689A1 WO 2004031689 A1 WO2004031689 A1 WO 2004031689A1 JP 0312391 W JP0312391 W JP 0312391W WO 2004031689 A1 WO2004031689 A1 WO 2004031689A1
Authority
WO
WIPO (PCT)
Prior art keywords
gps
coordinate system
angle
measuring
work machine
Prior art date
Application number
PCT/JP2003/012391
Other languages
English (en)
French (fr)
Inventor
Hideto Ishibashi
Kazuo Fujishima
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to EP03753965A priority Critical patent/EP1548402B1/en
Priority to US10/503,096 priority patent/US7831362B2/en
Publication of WO2004031689A1 publication Critical patent/WO2004031689A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/47Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being an inertial measurement, e.g. tightly coupled inertial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/53Determining attitude
    • G01S19/54Determining attitude using carrier phase measurements; using long or short baseline interferometry

Definitions

  • the present invention relates to a position measuring system for a working machine such as a hydraulic excavator, and more particularly to a position measuring system for a working machine suitable for measuring an absolute position of a monitor bottle in a three-dimensional space.
  • a typical example of the monitoring point is the position of a working device of a construction machine, for example, a tip of a packet of an excavator. If this baguette tip position can be measured, the work progress during construction can be grasped by comparing the measured data with preset topographic data and target shape data, and management during construction can be performed. In addition, even after construction, construction management can be performed by generating completed data (for example, excavated terrain data) from measurement data.
  • a conventional technology of such a position measuring system for example, Japanese Patent Application Laid-Open No. 2001-98
  • the work plane is calculated by measuring the three-dimensional position of the excavator (baguette), and the intersection of the three-dimensional target terrain is obtained. It is also known to display the relative position of the baguette, and measure the tip of the baguette using a boom, arm and bucket angle sensor and GPS installed in front and rear of the vehicle. Disclosure of the invention
  • In-vehicle GPSs for measuring the position of excavators, such as hulls and buckets generally use RTK (Real Time Kinematic) -GPS.
  • a GPS hereinafter referred to as a GPS base station
  • the correction data transmitted from this GPS base station is By receiving the signal and processing it together with the signal from the GPS satellite, the position of the in-vehicle GPS antenna can be measured with an accuracy of approximately ⁇ 1 to 2 cm (FIX state).
  • this RTK-GPS has a measurement condition that depends on the signal from the GPS satellite and the reception status of the correction data transmitted from the GPS reference station, and the number of satellites that can be received decreases, If the correction data cannot be received, the measurement accuracy may change to a FLOAT state of about ⁇ 20 to 30 cm, a DGPS (differential GPS) state of about lm, and a single measurement state of about ⁇ 10 m. .
  • DGPS differential GPS
  • An object of the present invention is to provide a work machine position measuring system that can accurately measure the position of a monitor point even when a change in measurement accuracy occurs and has high working efficiency.
  • absolute position in three-dimensional space refers to a position expressed by a coordinate system set outside the construction machine.
  • GPS when GPS is used as a three-dimensional position measuring device, A position expressed by a coordinate system fixed to a reference ellipsoid used as a reference for latitude, longitude, and height in GPS.
  • the coordinate system set for the reference ellipsoid is called a global coordinate system.
  • the present invention provides a position measuring system for a working machine having a machine main body and a working machine, wherein the position measuring system is provided in the machine main body and measures a position in a three-dimensional space.
  • a monitor is performed based on the yaw angle measured by the angle measuring means.
  • the position calculating means is one of the at least two three-dimensional position measuring means.
  • the position of the monitor point is determined based on the yaw angle measured by the yaw angle measuring means and the tilt amount measured by the tilt amount measuring means. The calculation is corrected.
  • the position calculating means notifies the operator immediately of the correction.
  • the position calculation means informs an operator of the prohibition of running of the vehicle body when the measurement accuracy of all of the at least two three-dimensional position measurement means decreases. I do.
  • the position calculating means determines that the vehicle can travel. To let them know.
  • first display means for displaying a position of the monitor point based on a calculation result by the position calculation means, and a notification to the operator is displayed on the first display means.
  • a data output means for outputting position data of a monitor point of a calculation result by the position calculation means, and a data output means installed at a position different from the construction machine, Data input means for inputting the output position data, and second display means for displaying the position of the monitor point based on the position data input by the data input means, wherein the second display means is provided to the operator. Display notifications.
  • the working machine comprises a plurality of rotatable parts.
  • the monitor point is set on the working machine, the work machine includes angle measuring means for detecting an angle between a plurality of members of the working machine, and the position calculating means includes the at least two three-dimensional The position of the monitor point in a three-dimensional space is calculated based on the values measured by the position measuring means and the angle measuring means.
  • FIG. 1 is a block diagram showing a configuration of a work position measurement system using a construction machine excavation work teaching device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an external appearance of a hydraulic shovel equipped with a work position measuring system according to one embodiment of the present invention.
  • Figure 3 is a block diagram showing the configuration of the office-side system that has a role as a GPS reference station.
  • FIG. 4 is a diagram showing a coordinate system used to calculate the absolute position of the tip of the bucket in a three-dimensional space.
  • FIG. 5 is a diagram illustrating an overview of the global coordinate system.
  • FIG. 6 is a flowchart showing the overall operation processing procedure.
  • FIG. 7 is a flowchart showing the contents of the normal operation processing.
  • FIG. 8 is a flowchart showing the contents of the GPS-A correction calculation process.
  • FIG. 9 is a flowchart showing the contents of the GPS-B correction calculation process.
  • FIG. 10 is a flowchart showing the contents of the shovel coordinate system reference calculation process.
  • FIG. 11 is a flowchart showing the contents of the GPS-NG flag process.
  • FIG. 12 is a flowchart showing the contents of the normal operation processing in another embodiment.
  • FIG. 13 is a flowchart showing the content of the GPS-A correction calculation process in another embodiment.
  • FIG. 14 is a flowchart showing the details of the GPS-B correction calculation processing in another embodiment.
  • the present invention is applied to a crawler-type hydraulic excavator as a construction machine, which is one of working machines, and a monitor point is set at a tip of a bucket of the hydraulic excavator.
  • FIG. 1 is a block diagram showing a configuration of a work machine position measuring system according to an embodiment of the present invention.
  • the position measurement system distributes the correction data (described later) from the reference station via an antenna 33 to a radio 41, a distribution unit 42 for distributing the correction data received by the radio 41, and a distribution unit 42.
  • GPS receivers 43 and 44 which measure the three-dimensional positions of the GPS antennas 31, 32 in real time based on the correction data and the signals from the GPS satellites received by the GPS antennas 31, 32, and the GPS receivers Based on the position data from the transmitters 43 and 44 and the angle data from various sensors such as the angle sensors 21, 22 and 23, the inclination sensor 24 and the gyro 25, the tip (monitor point) of the packet 7 of the hydraulic shovel 1
  • a panel computer 45 which calculates the position and further stores data indicating a three-dimensional target terrain, which will be described later, in a predetermined memory; and a position computer and a three-dimensional target which are calculated by the panel computer 45.
  • a display device 46 for displaying the shape with illustrations, etc .; a radio 47 for transmitting the position data calculated by the panel computer 45 and the calculation status data via the antenna 35; and a computer 45.
  • a speaker 48 is provided for notifying the operator of the calculation status at the terminal by voice.
  • the GPS antenna 31 and the GPS receiver 43, and the GPS antenna 32 and the GPS receiver 44 each constitute one set of GPS (Global Positioning System).
  • FIG. 2 is a diagram showing an external appearance of a hydraulic shovel using the excavating work teaching device for construction equipment according to the embodiment of the present invention.
  • the hydraulic excavator 1 is provided on a lower traveling body 2, an upper revolving body 3 that is rotatably provided on the lower traveling body 2 and forms a main body together with the lower traveling body 2, and a front working machine provided on the upper revolving body 3. Consists of four.
  • the front work machine 4 is provided with a boom 5 rotatably provided in the upper revolving unit 3 in the vertical direction, and a boom 5 provided at the tip of the boom 5 so as to be rotatable in the vertical direction.
  • Arm 6 and a bucket 7 provided at the end of the arm 6 so as to be rotatable in the vertical direction.
  • the arm 6 is driven by extending and contracting a boom cylinder 8, a arm cylinder 9, and a bucket cylinder 10 respectively.
  • An operator cab 11 is provided in the upper revolving superstructure 3.
  • the hydraulic excavator 1 has an angle sensor 21 for detecting a rotation angle (boom angle) between the upper swing body 3 and the boom 5 and a rotation angle (arm angle) for the boom 5 and the arm 6.
  • Angle sensor 22, angle sensor 23 that detects the rotation angle (baguet angle) between arm 6 and packet 7, tilt angle (pitch angle) of upper revolving unit 3 in the front-rear direction, and tilt angle in the left-right direction (roll)
  • a gyro 25 for detecting the yaw angle of the hydraulic shovel 1.
  • the excavator 1 has two GPS antennas 31 and 32 for receiving signals from GPS satellites, a radio antenna 33 for receiving correction data (described later) from a reference station, and a positioner.
  • a wireless antenna 35 for transmitting data is provided.
  • the two GPS antennas 31 and 32 are installed on the left and right of the rear part of the revolving superstructure, which deviates from the revolving center of the upper revolving superstructure 3.
  • Figure 3 is a block diagram showing the configuration of the office-side system that has a role as a GPS reference station.
  • the office 51 which manages the position and work of the excavator 1 and the bucket 7, etc., has a GPS antenna 52 that receives signals from GPS satellites, a wireless antenna 53 that transmits correction data to the excavator 1, and A radio antenna 54 that receives the position data of the above-described excavator 1 and the bucket 7 and the calculation state data of the excavator 1 and the bucket 7 from the excavator 1 and a GPS satellite that is received by the pre-measured three-dimensional position data and the GPS antenna 52 Based on this signal, the above-mentioned GPS receivers 43, 44 of the excavator 1 generate correction data for shakucho 1 ⁇ (real-time kinematic) measurement.
  • the GPS receiver as a GPS reference station 5 5 , A radio 56 for transmitting the correction data generated by the GPS receiver 55 via the antenna 53, a radio 57 for receiving the position data via the antenna 54, and a radio 57 Received by Position de Isseki and Konbyu that performs an operation for displaying data indicating display • administrative or 3-dimensional target terrain location of the hydraulic excavator 1 and Baketsuto 7 based on the calculated state data
  • a display 58 is provided for displaying the position data calculated by the computer 58, the calculation state data, the management data, and the three-dimensional target terrain with illustrations and the like.
  • the GPS antenna 52 and the GPS receiver 55 constitute one set of GPS.
  • RTS measurement is performed by the GPS receivers 43 and 44 shown in Fig. 1, respectively.
  • a GPS reference station 55 that generates the correction data shown in FIG. 3 is required.
  • the reference station 55 generates a correction data for RTK measurement based on the position data of the antenna 52 measured three-dimensionally in advance as described above and the signal from the GPS satellite received by the antenna 52.
  • the generated correction data is transmitted by the wireless device 56 via the antenna 53 at a constant period.
  • the on-board GPS receivers 43 and 44 shown in Fig. 1 use the correction data received by the radios 41 and 42 via the antenna 33 and the signals from the GPS satellite received by the antennas 31 and 32.
  • the three-dimensional positions of the antennas 31 and 32 are measured by RTK based on the RTK.
  • RTK the three-dimensional positions of the antennas 31 and 32 are measured with an accuracy of about ⁇ 1 to 2 cm. Then, the measured three-dimensional position data is input to the panel computer 45.
  • the pitch sensor and the roll angle of the excavator 1 are measured by the inclination sensor 24, the angles of the boom 5, the arm 6, and the bucket 7 by the angle sensors 21 to 23, and the yaw angle of the excavator 1 by the gyro 25, respectively. Input to panel computer 45.
  • the panel computer 25 performs general vector calculation and coordinate conversion based on the position data from the GPS receivers 43 and 44 and the angle data from the various sensors 21 to 24, Calculate 3D position.
  • FIG. 4 is a diagram showing a coordinate system used to calculate the absolute position of the tip of the baguette 7 in a three-dimensional space.
  • ⁇ 0 is a global coordinate system with the origin O0 at the center of the GPS-compliant ellipsoid, ⁇ la, ⁇ 2a, ⁇ 2b, ⁇ 2a ', and ⁇ 2b' are the GPS antennas 31 and S5 and ⁇ 5 'are fixed to the upper revolving unit 3 of the excavator 1 and the excavator coordinate system has the origin at the intersection of the revolving base frame and the revolving center.
  • ⁇ 9 is a bucket tip coordinate system that is fixed to the bucket 7 and has an origin at the tip of the bucket 7.
  • Gpr is a vector perpendicular to the vehicle body of the excavator 1 obtained based on the pitch angle 0p and the swivel angle 0r of the excavator 1 measured by the inclination sensor 24. If the three-dimensional positions of the GPS antennas 31 and 32 in the global coordinate system ⁇ 0 are known, the GPS coordinate system ⁇ la can be obtained from the positional relationship, and the pitch angle of the excavator 1 and the GPS coordinate system ⁇ 2a and ⁇ 2b can be determined.
  • the excavator coordinate system ⁇ 5 can be obtained.
  • the positional relationship a6 and d6 between the origin ⁇ 5 of the shovel coordinate system ⁇ 5 and the base end of the boom 5, and the dimensions a7, a8 and a9 of the boom 5, the arm 6 and the bucket 7 are known. Therefore, if the boom angle ⁇ 6, the arm angle ⁇ 7, and the packet angle ⁇ 8 are known, the bucket tip coordinate system ⁇ 9 can be obtained.
  • the 3D positions of the GPS antennas 31 and 32 measured by the receivers 43 and 44 are obtained as values in the global coordinate system ⁇ 0, and the inclination sensor 24 measures the pitch angle of the excavator 1 to obtain the angle.
  • the tip position of the bucket 7 can be obtained by the value in the global coordinate system ⁇ 0. .
  • FIG. 5 is a diagram illustrating the concept of a global coordinate system.
  • G is a reference ellipsoid used in GPS, and the origin 00 of the global coordinate system ⁇ 0 is set at the center of the reference ellipsoid.
  • the X0 axis direction of the global coordinate system 00 is located on a line passing the intersection C of the equator ⁇ and the meridian ⁇ and the center of the reference ellipsoid G, and the z0 axis direction is north-south from the center of the reference ellipsoid G.
  • the yO-axis direction is located on a line orthogonal to the ⁇ axis and the ⁇ axis.
  • the position on the earth is latitude And mild and the height relative to the reference ellipsoid G.
  • the position information of GPS can be easily converted to values in the global coordinate system ⁇ 0 be able to.
  • the measurement accuracy of on-board GPS is not always the best condition (FIX). Therefore, if the measurement accuracy of the onboard GPS is other than FIX, some correction must be made.
  • the GPS coordinate system ⁇ 2b may be used as a reference.
  • the measurement accuracy of both GPS-A and GPS-B is in the FIX state, that is, the GPS coordinate system ⁇ 2b one cycle before the measurement accuracy of GPS_A is other than FIX is ⁇ 2b_prv, and the yaw angle of hydraulic excavator 1 Is set to 0y—prvl.
  • the coordinate system ⁇ 2b_prv is translated to the current position (02b ′) of the GPS antenna 32.
  • the coordinate system ⁇ 2b-prv that has been translated so that the y-axis of the translated coordinate system ⁇ 2b_prv matches the gravity axis of the current position (02b ') of the GPS antenna 32 is subjected to equivalent rotation transformation.
  • the coordinate system ⁇ 2b-prv which has been subjected to the equivalent rotation transformation, about the y axis of the equivalent rotation-transformed coordinate system ⁇ 2b—prv is rotated by (0y—0y_prvl).
  • the coordinate system ⁇ 2b_prv which has been rotated so that the y-axis of the rotated coordinate system ⁇ 2b—prv matches the unit vector Gpr perpendicular to the body of the excavator 1, is equivalently transformed and the coordinate system ⁇ 2b 'is converted.
  • the dimensions a7, a8 and a9, and the shovel coordinate system ⁇ 5 and the bucket tip coordinate system ⁇ 9 obtained from the boom angle ⁇ 6, the arm angle ⁇ 7, and the bucket angle ⁇ 8, Of the bucket 7 can be determined. Therefore, even if the measurement accuracy of GPS- ⁇ becomes other than FIX, The end position can be determined with high accuracy, and there is no restriction on the operation of the hydraulic excavator 1 such as traveling and front work including turning.
  • the GPS coordinate system ⁇ 2a may be considered as a reference.
  • GPS coordinate system ⁇ 2a one cycle before ⁇ 2a ⁇ 2a-one prv, hydraulic excavator 1 Set the yaw angle to 0y_prvl. Then, the coordinate system ⁇ 2a—prv is translated to the current position (02a ′) of the GPS antenna 31. Next, the coordinate system ⁇ 2a-prv translated so that the y-axis of the translated coordinate system ⁇ 2a_prv coincides with the gravitational axis of the current position ( ⁇ 2a ′) of the GPS antenna 31 is equivalently transformed.
  • the coordinate system ⁇ 2a — prv that has been subjected to the equivalent rotation transformation about the y axis of the equivalent rotation transformed coordinate system ⁇ 2a — prv is rotated by (0y_0y_prvl).
  • the coordinate system ⁇ 2a_prv which has been rotated so that the y-axis of the rotated coordinate system ⁇ 2a_prv matches the unit vector Gpr perpendicular to the body of the excavator 1, is equivalently transformed to obtain the coordinate system ⁇ 2a '.
  • the coordinate system ⁇ 2a obtained in this way, the known data xa, ya, za and d5, the positional relationship a6 and a6 with the base end of the boom 5, and the dimensions of the boom 5, arm 6 and bucket 7 a 7, a 8 and a 9, and the shovel coordinate system ⁇ 5 and the bucket tip coordinate system ⁇ 9 obtained from the boom angle ⁇ 6, the arm angle 7 7, and the bucket angle 8 8,
  • the tip position of the bucket 7 can be obtained. Therefore, even if the measurement accuracy of the GPS- ⁇ is other than FIX, the tip position of the packet 7 can be determined with high accuracy, and the operation of the hydraulic excavator 1 such as traveling and front work including turning can be performed. There are no restrictions.
  • the shovel coordinate system ⁇ 5 may be used as a reference.
  • the measurement accuracy of GP S—A and GP S—B is other than FIX.
  • the excavator coordinate system ⁇ 5 with respect to the front-end coordinate system ⁇ 0 is ⁇ 5—prv
  • the yaw angle of the excavator 1 is 0y—prv2.
  • the coordinate system ⁇ 5—prv is rotated around the y-axis of the coordinate system ⁇ 5—prv by (0y_0y—prv2) to obtain the coordinate system ⁇ 5b '.
  • the tip position of the bucket 7 in the global coordinate system # 0 can be obtained from the bucket tip coordinate system ⁇ 9 obtained by the boom angle ⁇ 6, the arm angle ⁇ 7, and the bucket angle ⁇ 8.
  • the tip position of packet 7 can be obtained with high accuracy.
  • the hydraulic excavator 1 runs, an error occurs, so that the operation is limited to only the front work including turning.
  • FIG. 6 is a flowchart showing the entire operation processing procedure.
  • step S100 the calculation start flag and the correction calculation flag are turned off.
  • step S110 the measurement data of GPS-A and GPS-B, which are the three-dimensional positions (latitude, longitude, and height) of the GPS antennas 31, 32, and the measurement data of sensors 21, 22, 23, 24, and gyro 25 Is read (step S110).
  • step S120 it is determined whether the measurement accuracy of both GPS-A and GPS-B is FIX (step S120). If both are FIX, the process proceeds to step S200 to execute the normal arithmetic processing. If any of them is not FIX, the process proceeds to step S130.
  • the normal calculation process is to calculate the bucket tip position using both GPS-A and GPS-B. This will be described later with reference to FIG. '
  • step S130 determines whether the operation start flag is ON (step S130), and if it is ON, go to step S140 and not ON In this case, return to step S110 to repeat until the measurement accuracy of GPS-A and GPS-B both becomes FIX.
  • step S130 If it is ON in the judgment of step S130, the correction operation flag is turned ON and the display device It is instructed by the speaker 46 or the speaker 47 that the correction calculation is to be performed (step S140).
  • step S150 it is determined whether the measurement accuracy of GPS-B is FIX and the measurement accuracy of GPS-A is other than FIX (step S150). If the measurement accuracy of GPS-B is FIX and the measurement accuracy of GPS-A is other than FIX, go to step S300 to execute the GPS-A correction calculation process, otherwise go to step S160. .
  • the GPS-A correction calculation process is a process of obtaining the packet tip position using the measurement data of the GPS-B because the measurement accuracy of the GPS-A is not FIX. The details will be described later with reference to FIG.
  • step S150 it is determined whether the measurement accuracy of GPS-A is other than FIX and the measurement accuracy of GPS-B is other than FIX (step S160).
  • the GPS-B correction calculation process is a process to determine the bucket tip position using the measurement data of GPS-A because the measurement accuracy of GPSB is not FIX. For details, see Fig. 9. It will be described later. In the excavator coordinate system reference calculation process, if both GPS-A and GPS-B measurement accuracy are not FIX, GPS-A and GPS-B cannot be used. The details are described later with reference to FIG.
  • Step S200 When the normal calculation processing (Step S200), GPS-A correction calculation processing (Step S300), GPS-B correction calculation processing (Step S400), and shovel coordinate system reference calculation processing (Step S500) are completed,
  • the tip position Pbk of the bucket 7 in the global coordinate system ⁇ 0 obtained in each process is converted into latitude, longitude, and height (step S170).
  • the calculation formula for this is generally well-known, and is omitted here.
  • the tip position of the packet 7 is displayed on the display device 46 (step S180).
  • the tip position of the packet displayed on the display device 46 is displayed as an illustration together with the excavator body on the three-dimensional terrain data, for example.
  • packet tip position data The data on the calculation state (correction state) of the evening and packet tip positions is transmitted to the office side by the wireless device 47 (step S190). Then, the process returns to step S110 to repeatedly execute the calculation.
  • step S210 If the measurement accuracy of both GPS-A and GPS-B is FIX, first turn ON if the calculation start flag is OFF, and then turn OFF if the correction calculation flag is ON (step S210).
  • GPS—NG flag processing is executed (step S600). Details of the GPS—NG flag processing are shown in FIG.
  • the GPS—NG flag is a flag that indicates whether the measurement accuracy of both GPS—A and GP S—B is not FIX. If the measurement accuracy of both GP S—A and GP S—B is not FIX, In the shovel coordinate system reference calculation process of No. 10, this NG flag is ON, otherwise it is OFF. In FIG. 11, it is determined whether or not the GPS-NG flag is OFF (step S610). If the flag is OFF, the process is terminated as it is, and if the flag is ON, the process proceeds to step S620.
  • step S620 When the GP S—NG flag is ON, a command is issued to allow the vehicle to run (step S620), and the GP S—NG flag is turned OFF (step S630). That is, since the measurement accuracy of GP S-A and GP S-B both become F IX in the judgment of step S130, the NG flag is turned off from ON. In addition, as described later in step S500, when the NG flag is ON, traveling by the lower traveling body is prohibited, so that the traveling is commanded by releasing the lower traveling body. '
  • step S220 the process returns to FIG. 7, and displays that the measurement accuracy is FIX for both GPS-A and GPS-B on the display 46 (step S220).
  • step S230 the yaw angle 0y of the hydraulic shovel 1 measured by the gyro 25 is stored as 0y-prvl and 0y_prv2 (step S230).
  • step S240 the GPS-A and GPS-B measurement data are converted into three-dimensional positions Pa and Pb in the global coordinate system ⁇ 0, respectively. The calculation for this is generally well-known and will not be described here.
  • Step S250 This operation is coordinate transformation, and can be performed by a general mathematical method.
  • the GPS coordinate systems ⁇ 2a and ⁇ 2b are stored as ⁇ 2a-prv and ⁇ 2b-prv, respectively (step S260).
  • the shovel coordinate system ⁇ 5 for the global coordinate system ⁇ 0 is obtained from the GPS coordinate system ⁇ 2a and the shovel coordinate system ⁇ 5a viewed from GPS-A, which is obtained in advance from the known dimension data, and ⁇ 5—prv Memorize
  • Step S270 This operation is also a coordinate transformation, and can be performed by a general mathematical method.
  • the bucket tip coordinate system ⁇ 9 with respect to the shovel coordinate system a5a is obtained from the known dimensional data, the boom angle ⁇ 6, the arm angle ⁇ 7, and the bucket angle 8 detected by the angle sensors 21 to 23 (Step S). 280).
  • This operation is also coordinate transformation, and can be performed by a general mathematical method.
  • the tip position Pbk of the baguette 7 in the global coordinate system # 0 is obtained from the GPS coordinate system ⁇ 2a, the shovel coordinate system ⁇ 5, and the bucket tip coordinate system ⁇ 9 (step S290).
  • This operation is also a coordinate transformation and can be performed by a general mathematical method.
  • step S 200 When the normal arithmetic processing (step S 200) is completed 7 *, the obtained tip position Pbk of the baguette 7 in the global coordinate system ⁇ 0 is converted into latitude, longitude, and height in step S 170 of FIG. Returning to step S110, the operation is repeatedly executed.
  • step S310 After executing the GP S-NG flag processing in step S600, a message is displayed on the display device 46 indicating that GP S-A is FIX and a correction operation is being performed (step S310).
  • step S310 the yaw angle 0y of the hydraulic shovel 1 measured by the gyro 25 is stored as 0y_prv2 (step S320).
  • step S320 the GPS-B measurement data is converted to a three-dimensional position Pb in the global coordinate system ⁇ 0, and the origin of ⁇ 2b-prv is translated to Pb (step S330).
  • the translated coordinate system ⁇ 2b—prv is subjected to equivalent rotation transformation so that the y axis of the translated coordinate system ⁇ 2b—prv coincides with the gravity axis (step S340).
  • the coordinate system ⁇ 2b-prv which has been subjected to the equivalent rotation transformation, is rotated by (6yy-0y_prvl) around the y-axis of the coordinate system ⁇ 2b-prv that has undergone the equivalent rotation transformation (step S350).
  • the y-axis of the rotated coordinate system ⁇ 2 b_prv is The rotated coordinate system ⁇ 2a_prv is subjected to equivalent rotation transformation to obtain ⁇ 2b ′ so as to be included in Gpr (step S360).
  • the shovel coordinate system ⁇ 5 with respect to the global coordinate system ⁇ 0 is calculated from the GPS coordinate system ⁇ 2b 'and the shovel coordinate system ⁇ 5b viewed from the GP S-B, which is obtained in advance from the known dimension data.
  • ⁇ 5—The prv is stored (step S370).
  • a bucket tip coordinate system ⁇ 9 with respect to the shovel coordinate system is obtained from the known dimension data and the boom angle ⁇ 6, the arm angle ⁇ 7, and the bucket angle ⁇ 8 detected by the angle sensors 21 to 23 (step S380). .
  • the tip position Pbk of the bucket 7 in the global coordinate system # 0 is obtained from the coordinate system # 2, the Shovel coordinate system # 5, and the bucket tip coordinate system # 9 (step S390). Then, the process proceeds to step S180 to repeat the calculation.
  • the present embodiment is characterized in that, when the measurement accuracy of GPS-A is other than FIX, as in the process of step S350, GPS-B is corrected at a yaw angle of 0y.
  • the processing in steps S340 and S360 is a correction for the inclination angle (pitch angle and roll angle) of the upper revolving superstructure, and is not necessary when the upper revolving superstructure is in a horizontal state.
  • step S410 After executing the GP S-NG flag processing in step S600, the fact that GP S-B is FIX and the correction operation is being performed is displayed on the display device 46 (step S410).
  • step S410 the yaw angle 0y of the hydraulic shovel 1 measured by the gyro 25 is stored as 0y—prv2 (step S420).
  • step S420 the GPS-A measurement data is converted into a three-dimensional position Pa in the global coordinate system ⁇ 0, and the origin of ⁇ 2a-prv is translated in parallel to Pa (step S430).
  • the translated coordinate system ⁇ 2a-prv is subjected to equivalent rotation transformation so that the y axis of the translated coordinate system ⁇ 2a_prv matches the gravity axis (step S440).
  • the coordinate system ⁇ 2a_prv which has been subjected to the equivalent rotation transformation, is rotated by (0y_0y_prvl) around the y axis of the coordinate system ⁇ 2a—prv subjected to the equivalent rotation (step S450).
  • Step S460 the rotated coordinate system ⁇ 2a_prv is subjected to equivalent rotation transformation to obtain ⁇ 2a 'so that the rotated coordinate system ⁇ 2a—the y axis of prv matches the vector Gpr perpendicular to the body of the excavator 1.
  • Step S460 the global coordinates are obtained from the 0 3 coordinate system ⁇ 'and the excavator coordinate system ⁇ 5a viewed from the GP S-A, which has been previously obtained from the known dimensions.
  • the shovel coordinate system ⁇ 5 for the system ⁇ 0 is obtained, and ⁇ 5—prv is stored (step S470).
  • the bucket tip coordinate system ⁇ 9 with respect to the shovel coordinate system is obtained from the known dimension data and the boom angle ⁇ 6, the arm angle ⁇ 7, and the bucket angle ⁇ 8 detected by the angle sensors 21 to 23 (step S480). Then, the tip position Pbk of the bucket 7 in the global coordinate system # 0 is obtained from the coordinate system ⁇ 2a ′, the shovel coordinate system ⁇ 5, and the bucket tip coordinate system ⁇ 9 (step S490). Then, the process proceeds to step S170 to repeat the calculation.
  • the present embodiment is characterized in that when the measurement accuracy of GPS-B is other than F IX as in the process of step S450, GP S-A is corrected at a yaw angle of 0y.
  • the processing in steps S440 and S460 is a correction for the inclination angle (pitch angle and roll angle) of the upper revolving superstructure, and is not necessary when the upper revolving superstructure is in a horizontal state.
  • a bucket tip coordinate system ⁇ 9 is obtained from the known dimensional data and the boom angle 06, the arm angle ⁇ 7, and the bucket angle ⁇ 8 detected by the angle sensors 21 to 23 (step S530). Then, the tip position Pbk of the baguette 7 in the global coordinate system # 0 is obtained from the coordinate system # 5 'and the bucket tip coordinate system # 9 (step S540). Next, the GPS—NG flag is turned on (step S560). Then, the process goes to step S170 to repeat the calculation.
  • the absolute position of the front end position of the bucket 7 in the three-dimensional space can be obtained. Even when the measurement accuracy of the GPS-A and the GPS-B changes, the bucket 7 can be obtained with high accuracy.
  • the absolute position of the front end position of in the three-dimensional space can be obtained.
  • the inclination angle sensor measures the pitch angle and roll angle of the hydraulic shovel and the gyro to measure the yaw angle, and performs correction even when the GPS measurement accuracy changes.
  • the position of the monitor point can be measured with high accuracy, and the reliability of the position measurement system can be improved. Therefore, work efficiency and construction management efficiency can be improved.
  • the present invention is applied to a crawler type excavator as a construction machine, which is one of the working machines, and a monitor point is set at the tip of a bucket of the excavator. is there.
  • the yaw angle is corrected by the gyro, but the tilt angle (pitch angle and roll angle) of the upper swing body is not corrected by the tilt angle sensor. This is particularly effective when the upper revolving superstructure is in a horizontal state.
  • the configuration of the work machine position measuring system according to the present embodiment is the same as that shown in FIG.
  • the external appearance of a hydraulic shovel using the excavating work teaching device of the construction machine according to the present embodiment is the same as that shown in FIG. However, since the correction for the tilt angle is not performed, the tilt sensor 24 is unnecessary.
  • the configuration of the office-side system serving as the GPS reference station is the same as that shown in Fig. 3.
  • the coordinate system used to calculate the absolute position of the tip of the bucket 7 in a three-dimensional space is the same as that shown in FIG.
  • the concept of the global coordinate system is the same as that shown in Fig. 5.
  • step S110 measurement data of the inclination angle sensor is not read as measurement data of the sensor.
  • step S250A the three-dimensional positions P a and P b of the GPS antennas 31 and 32 in the global coordinate system ⁇ 0 Then, the GPS coordinate systems ⁇ 2a and ⁇ 2b with respect to the global coordinate system are obtained. That is, the pitch angle 0 p measured by the inclination sensor 24 is not used.
  • step S340 and step S360 the processing of step S340 and step S360 are omitted, and the processing of step S350 is omitted.
  • the result is the GPS coordinate system ⁇ 2b 'directly.
  • step S440 and step S4360 are the same as those shown in FIG. 9, but the processing of step S440 and step S4360 is omitted, and the processing of step S450 is omitted.
  • the processing result is directly to the GPS coordinate system ⁇ 2a '.
  • the shovel coordinate system reference calculation process is the same as that shown in FIG.
  • the absolute position of the front end position of the packet 7 in the three-dimensional space can be obtained. Even if the measurement accuracy of the GPS-A and GPS-B changes, the bucket 7 can be obtained with high accuracy. The absolute position of the front end position of in the three-dimensional space can be obtained.
  • the position of the monitoring point can be measured with high accuracy even when the measurement accuracy of GPS changes, by measuring the yaw angle using a gyro and performing correction. And the reliability of the position measurement system can be improved. Therefore, work efficiency and construction management efficiency can be improved. .
  • the present invention is applied to a construction machine such as a hydraulic excavator using a GPS.
  • a one-station system using a laser instead of a GPS may be used.
  • the present invention is applicable.
  • In the total station system when the signal from the laser is interrupted, a decrease in position accuracy can be prevented by performing a correction operation process.
  • construction machinery it consists of a lower traveling structure and an upper revolving superstructure above it, but this is also applicable to working machines that have only a lower traveling structure, such as mine detection machines and mine destruction machines.
  • the invention is applicable. Industrial applicability
  • the position of a monitor point can be measured accurately even when the measurement precision of the in-vehicle GPS changes, and the working efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Operation Control Of Excavators (AREA)
  • Navigation (AREA)

Abstract

本発明の目的は、車載GPSの計測精度変化が生じた場合でもモニタポイントの位置を正確に計測でき、作業効率の高い建設機械の位置計測システムを提供することにある。パネルコンピュータ(45)は、GPS受信機(43,44)及び角度センサ(21,22,23)によって計測された値に基づいて、作業機に設定されたモニタポイントの3次元空間における位置を演算する。パネルコンピュータ(45)は、少なくとも2個のGPS受信機の少なくとも一つのGPS受信機による計測精度が低下すると、車体のヨウ角を計測するジャイロ(25)によって計測されたヨウ角に基づいてモニタポイントの位置演算を補正する。

Description

明 細 書 作業機械の位置計測システム 技術分野
本発明は、 油圧ショベル等の作業機械の位置計測システムに係り、 特に、 モニ タボイントの 3次元空間における絶対位置を計測するに好適な作業機械の位置計 測システムに関する。 背景技術
近年、 建設施工現場において GP S等の 3次元位置計測装置を用いて建設機械 のモニタポイントの位置を計測し、 作業管理を行うことがなされている。 モニタ ポイントの代表例としては、 建設機械の作業装置の位置, 例えば油圧ショベルの パケット先端位置がある。 このバゲット先端位置を計測できれば、 その計測デ一 夕を予め設定した地形デ一夕や目標形状データと比較することにより施工中の作 業進行状況を把握でき、 施工中の管理が行える。 また、 施工後も、 計測データか ら出来形データ (例えば掘削地形データ) を生成することで、 施工管理が行える。 このような位置計測システムの従来技術として、 例えば、 特開 2001— 98
585号公報に記載のように、 掘削用作業機 (バゲット) の 3次元位置を計測し て作業平面を演算し、 3次元目標地形との交線を求めて、 交線と掘削用作業機と の相対位置を表示し、 ブーム、 アームおよびバケツト角度センサと、 車体前後に 設置した G P Sとによりバゲット先端位置を計測するものも知られている。 発明の開示
しかしながら、 特開 2001— 98585号公報に記載されているものでは、 GPSの計測精度変化が問題となる。 車体やバケツト等の掘削作業機の位置を計 測するための車載 GP Sは、 RTK (リアルタイムキネマティック) —GPSを 使用するのが一般的である。 これは、 基準局として車体とは別に GPS (以下、 GPS基準局とする) を設置し、 この GPS基準局より送信される補正データを 受信して G P S衛星からの信号と併せて処理することで、 車載 G P Sァンテナの 位置が約 ±1〜2 cmの精度 (F I X状態) で計測できるものである。
しかし、 この RTK— GPSは、 GP S衛星からの信号と GP S基準局より送 信される補正データの受信状態とにより、 計測状態が左右され、 受信できる衛星 の数が減少したり、 GPS基準局からの補正データを受信できない場合、' 計測精 度が約 ± 20〜30 cmの FLOAT状態や、 約土 lmの DGPS (デフアレン シャル GPS) 状態および約 ± 10mの単独計測状態へと変化することがある。 このように、 車載 GPSの計測精度が変化すると、 管理を行う上で満足な計測 結果が得られないため、 作業を中断しなければならず、 作業効率が低下してしま うという問題がある。 特に、 特開 2001— 98585号公報に記載のものにお いては、 GPSの計測結果から間接的にバケツト位置を計測しているため影響が 大きいものである。
本発明の目的は、 計測精度変化が生じた場合でもモニタボイントの位置を正確 に計測でき、 作業効率の高い作業機械の位置計測システムを提供することにある。 なお、 本明細書中において 「3次元空間の絶対位置」 とは、 建設機械の外部に 設定された座標系により表現した位置のことであり、 例えば 3次元位置計測装置 として GPSを用いる場合は、 GPSで緯度、 経度および高さの基準として用い る準拠楕円体に固定した座標系により表現した位置のことである。
また、 本明細書では、 この準拠楕円体に設定した座標系をグローバル座標系と 呼ぶ。
(1) 上記目的を達成するために、 本発明は、 機械本体と作業機とを有する作 業機械の位置計測システムにおいて、 前記機械本体に設けられ、 3次元空間にお ける位置を計測する少なくとも 2個の 3次元位置計測手段と、 前記少なくとも 2 個の位置計測手段によって計測された値に基づいて、 モニタボイントの 3次元空 間における位置を演算する位置演算手段と、 前記作業機械のヨウ角を計測するョ ゥ角計測手段とを備え、 前記位置演算手段は、 前記少なくとも 2個の 3次元位置 計測手段の内の少なくとも一つの 3次元位置計測手段による計測精度が低下する と、 前記ヨウ角計測手段によって計測されたヨウ角に基づいて前記モニタポイン トの位置演算を補正するようにしている。 このように少なくとも 2個の 3次元位置計測手段の内の少なくとも一つの 3次 元位置計測手段による計測精度が低下した場合には、 ョゥ角計測手段によって計 測されたヨウ角に基づいてモニタポイントの位置演算を補正することにより、 計 測精度変化が生じた場合でもモニタボイントの位置を正確に計測でき、 作業効率 を向上することができる。
( 2 ) 上記 (1 ) において、 好ましくは、 さらに、 前記作業機械の傾斜量を計 測する傾斜量計測手段を備え、 前記位置演算手段は、 上記少なくとも 2個の 3次 元位置計測手段の内の少なくとも一つの 3次元位置計測手段による計測精度が低 下すると、 前記ヨウ角計測手段によつて計測されたヨウ角及び傾斜量計測手段に よって計測された傾斜量に基づいて前記モニタボイントの位置演算を補正するよ うにしている。
( 3 ) 上記 (1 ) において、 好ましくは、 前記位置演算手段は、 補正が行われ る場合にはその旨をォペレ一夕に知らせるようにする。
( 4 ) 上記 (1 ) において、 好ましくは、 前記位置演算手段は、 上記少なくと も 2個の 3次元位置計測手段のすべての計測精度が低下すると、 前記車体の走行 禁止をオペレータに知らせるようにする。
( 5 ) 上記 (4 ) において、 好ましくは、 前記位置演算手段は、 上記少なくと も 2個の 3次元位置計測手段の内の少なくとも一つの計測精度が復帰すると、 前 記車体の走行可能をオペレータに知らせるようにする。
( 6 ) 上記 (3 ) において、 好ましくは、 前記位置演算手段による演算結果に 基づき前記モニタボイントの位置を表示する第 1表示手段を備え、 この第 1表示 手段にォペレ一夕に対する通知を表示するようにする。
( 7 ) 上記 (3 ) において、 好ましくは、 前記位置演算手段による演算結果の モニタポイントの位置データを出力するデータ出力手段と、 前記建設機械とは異 なる位置に設置され、 前記データ出力手段により出力された位置データを入力す るデータ入力手段と、 このデータ入力手段により入力した位置データに基づき前 記モニタボイントの位置を表示する第 2表示手段とを備え、 この第 2表示手段に オペレータに対する通知を表示するようにする。
( 8 ) 上記 (1 ) において、 好ましくは、 前記作業機は、 回転可能な複数の部 材で構成され、 前記モニタポイントは前記作業機に設定され、 前記作業機の複数 の部材間の角度を検出する角度計測手段を備え、 前記位置演算手段は、 前記少な くとも 2個の 3次元位置計測手段及び前記角度計測手段によって計測された値に 基づいて、 前記モニタポイントの 3次元空間における位置を演算するようにした ものである。 図面の簡単な説明
図 1は、 本発明の一実施の形態による建設機械の掘削作業教示装置を用いた作 業位置計測システムの構成を示すブロック図である。
図 2は、 本発明の一実施の形態に係わる作業位置計測システムを搭載した油圧 ショベルの外観を示す図である。
図 3は、 G P S基準局としての役割を持つ事務所側システムの構成を示すプロ ック図である。
図 4は、 バケツトの先端の 3次元空間での絶対位置を演算するために使用する 座標系を示す図である。
図 5は、 グローバル座標系の概要を説明する図である。
図 6は、 全体の演算処理手順を示すフローチャートである。
図 7は、 通常演算処理の内容を示すフローチャートである。
図 8は、 G P S— A補正演算処理の内容を示すフローチャートである。
図 9は、 G P S—B補正演算処理の内容を示すフロ一チャートである。
図 1 0は、 ショベル座標系基準演算処理の内容を示すフローチャートである。 図 1 1は、 G P S—N Gフラグ処理の内容を示すフローチャートである。 図 1 2は、 他の実施の形態における通常演算処理の内容を示すフローチャート である。
図 1 3は、 他の実施の形態における G P S— A補正演算処理の内容を示すフロ 一チヤ一トである。
図 1 4は、 他の実施の形態における G P S—B補正演算処理の内容を示すフロ 一チヤ一卜でめる。 発明を実施するための最良の形態
以下、 図 1〜図 11を用いて、 本発明の実施の形態による作業機械の位置計測 システムについて説明する。 本実施の形態は、 作業機械の一つである建設機械と してクローラ式の油圧ショベルに本発明を適用し、 油圧ショベルのバケツト先端 にモニタポイントを設定したものである。
図 1は、 本発明の一実施の形態による作業機械の位置計測システムの構成を示 すブロック図である。
位置計測システムは、 基準局からの補正データ (後述) をアンテナ 33を介し て受信する無線機 41と、 この無線機 41で受信した補正データを分配する分配 機 42と、 この分配機 42で分配した補正データと GP Sアンテナ 31, 32に より受信される GP S衛星からの信号とに基づいて GP Sアンテナ 31, 32の 3次元位置をリアルタイムに計測する GPS受信機 43, 44と、 この GPS受 信機 43 , 44からの位置データと角度センサ 21 , 22, 23や傾斜センサ 2 4やジャイロ 25などの各種センサからの角度データとに基づき、 油圧ショベル 1のパケット 7の先端 (モニタポイント) の位置を演算し、 さらに後述する 3次 元目標地形を示すデータが所定のメモリに記憶されているパネルコンピュータ 4 5と、 このパネルコンピュータ 45により演算された位置デ一夕や 3次元目標地 形をイラスト等を交えて表示する表示装置 46と、 パネルコンピュータ 45によ り演算された位置デ一夕及びその演算状態データをアンテナ 35を介して送信す るための無線機 47と、 コンピュータ 45での演算状態を音声によりオペレータ に知らせるためのスピーカ 48とを備えている。 なお、 GPSアンテナ 31と G PS受信機 43, GPSアンテナ 32と GP S受信機 44はそれぞれ 1セットの GPS (Grobal Positioning System) を構成している。
図 2は、 本発明の実施の形態による建設機械の掘削作業教示装置を用いた油圧 ショベルの外観を示す図である。
油圧ショベル 1は下部走行体 2と、 下部走行体 2上に旋回可能に設けられ、 下 部走行体 2と共に本体を構成する上部旋回体 3と、 上部旋回体 3に設けられたフ ロント作業機 4とからなる。 フロント作業機 4は上部旋回体 3に上下方向に回転 可能に設けられたブーム 5と、 ブーム 5の先端に上下方向に回転可能に設けられ たアーム 6と、 アーム 6の先端に上下方向に回転可能に設けられたバケツト 7と で構成され、 それぞれ、 ブームシリンダ 8、 ァ一ムシリンダ 9、 バケツトシリン ダ 1 0を伸縮することにより駆動される。 上部旋回体 3には運転室 1 1が設けら れている。
また、 油圧ショベル 1には、 上部旋回体 3とブーム 5との回転角 (ブーム角 度) を検出する角度センサ 2 1と、 ブーム 5とアーム 6との回転角 (アーム角 度) を検出する角度センサ 2 2と、 アーム 6とパケット 7との回転角 (バゲット 角度) を検出する角度センサ 2 3と、 上部旋回体 3の前後方向の傾斜角 (ピッチ 角度) 及び左右方向の傾斜角 (ロール角度) を検出する傾斜センサ 2 4、 油圧シ ョベル 1のヨウ角度を検出するジャイロ 2 5とが設けられている。
更に、 油圧ショベル 1には、 G P S衛星からの信号を受信する 2個の G P Sァ ンテナ 3 1 , 3 2と、 基準局からの補正データ (後述) を受信するための無線ァ ンテナ 3 3と、 位置データを送信する無線アンテナ 3 5が設けられている。 2個 の G P Sアンテナ 3 1, 3 2は上部旋回体 3の旋回中心から外れた旋回体後部の 左右に設置されている。
図 3は、 G P S基準局としての役割を持つ事務所側システムの構成を示すプロ ック図である。
油圧ショベル 1やバケツト 7等の位置や作業管理を行う事務所 5 1には、 G P S衛星からの信号を受信する G P Sアンテナ 5 2と、 補正データを油圧ショベル 1に送信する無線アンテナ 5 3と、 油圧ショベル 1から上述した油圧ショベル 1 やバケツト 7等の位置データ及びその演算状態データを受信する無線アンテナ 5 4と、 予め計測された 3次元位置データと G P Sァンテナ 5 2により受信される G P S衛星からの信号とに基づき、 上述した油圧ショベル 1の G P S受信機 4 3, 4 4で尺丁1^ (リアルタイムキネマティック) 計測を行うための補正データを生 成する G P S基準局としての G P S受信機 5 5, G P S受信機 5 5で生成された 補正データをアンテナ 5 3を介して送信するための無線機 5 6と、 アンテナ 5 4 を介して位置データを受信する無線機 5 7と、 無線機 5 7により受信した位置デ 一夕及びその演算状態データに基づき油圧ショベル 1やバケツト 7の位置を表示 •管理したり 3次元目標地形を示すデータを表示するための演算を行うコンビュ 一夕 58と、 このコンピュータ 58により演算した位置データ, 演算状態データ と管理デ一夕、 3次元目標地形をイラスト等を交えて表示する表示装置 59が設 置されている。 GPSアンテナ 52と GPS受信機 55は 1セットの GPSを構 成する。
次に、 本実施の形態に係わる位置計測システムの動作の概要を説明する。 本実 施の形態では高精度での位置計測を行うため、 図 1に示した GP S受信機 43, 44でそれぞれ RTK計測を行う。 このためには先ず、 図 3に示した補正データ を生成する GP S基準局 55が必要となる。 0 基準局55は、 上記のように 予め 3次元計測されたアンテナ 52の位置デ一夕とアンテナ 52により受信され る GPS衛星からの信号とに基づいて、 RTK計測のための補正デ一夕を生成し、 生成された補正データは、 無線機 56によりアンテナ 53を介して一定周期で送 信される。
一方、 図 1に示した車載側の GPS受信機 43, 44は、 アンテナ 33を介し て無線機 41, 42により受信される補正データと、 アンテナ 31, 32により 受信される GP S衛星からの信号に基づき、 アンテナ 31, 32の 3次元位置を RTK計測する、 この RTK計測によって、 アンテナ 31, 32の 3次元位置が 約 ± 1〜 2 cmの精度で計測される。 そして、 計測された 3次元位置データはパ ネルコンピュータ 45に入力される。
また、 傾斜センサ 24によって油圧ショベル 1のピッチ角度及びロール角度、 角度センサ 21〜23によってそれぞれブーム 5、 アーム 6及びバケツト 7の各 角度、 ジャイロ 25によって油圧ショベル 1のヨウ角度が計測され、 同様にパネ ルコンピュータ 45に入力される。
パネルコンピュータ 25は GP S受信機 43, 44からの位置デ一夕と、 各種 センサ 21〜24からの各角度データに基づき、 一般的なベクトル演算と座標変 換を行って、 バケツト 7の先端の 3次元位置を演算する。
次に、 図 4〜図 1 1を用いてパネルコンピュータ 45における 3次元位置演算 処理について説明する。
図 4は、 バゲット 7の先端の 3次元空問での絶対位置を演算するために使用す る座標系を示す図である。 図 4において、 ∑ 0は G P Sの準拠楕円体の中心に原点 O 0を持つグローバル座 標系、 ∑la, ∑2a, ∑2b, ∑2a'および∑2b'はそれぞれ GP Sアンテナ 3 1およ び 32の計測位置を原点に持つ GP S座標系、 ∑ 5および∑ 5'は油圧ショベル 1の 上部旋回体 3に固定され、 旋回ベースフレームと旋回中心との交点に原点を持つ ショベル座標系、 ∑9はバケツト 7に固定され、 バケツト 7の先端に原点を持つバ ケット先端座標系である。
なお、 Gprは傾斜センサ 24で計測される油圧ショベル 1のピッチ角度 0 pと口 ール角度 0 rに基づいて求めらる油圧ショベル 1の車体に垂直なべクトルを示す。 グローバル座標系∑0での GPSアンテナ 31, 32の 3次元位置が分かれば、 その位置関係から GP S座標系∑laを求めることができ、 さらに、 油圧ショベル 1のピッチ角度 とから GP S座標系∑ 2aおよび∑ 2bを求めることができる。 そして、 GPSアンテナ 31, 32の油圧ショベル 1上における位置関係 xga, xgb, yga, ygb, z ga, z gbおよび d 5は既知であるので、 ショベル座標系∑5 を求めことができる。
また、 ショベル座標系∑5の原点〇5と、 ブーム 5の基端との位置関係 a 6および d6と、 ブーム 5、 アーム 6およびバケツト 7の寸法 a 7, a 8および a 9は既知で あるので、 ブーム角度 Φ6、 アーム角度 Φ7およびパケット角度 φ8が分かれば、 バ ケット先端座標系∑9を求めることができる。
従って、 0 3受信機43, 44で計測した GP Sアンテナ 31, 32の 3次 元位置をグローバル座標系∑0での値として求め、 傾斜センサ 24で油圧ショベル 1のピッチ角度 と計測し、 角度センサ 2 1〜23でブーム角度 Φ6、 アーム角 度 およびバケツ卜角度 Φ8を計測して座標変換演算を行うことにより、 バケツ ト 7の先端位置をグローバル座標系∑0での値で求めることができる。
図 5は、 グローバル座標系の概念を説明する図である。
図 5において、 Gは GP Sで用いる準拠楕円体であり、 グローバル座標系∑0の 原点 00は準拠楕円体の中心に設定されている。 また、 グロ一バル座標系∑0の X 0軸方向は赤道 Αと子午線 Βの交点 Cと準拠楕円体 Gの中心を通る線上に位置し、 z 0軸方向は準拠楕円体 Gの中心から南北に延ばした線上に位置し、 yO軸方向は χθ軸と ζθ軸に直交する線上に位置している。 GPSでは、 地球上の位置を緯度 および軽度と、 準拠楕円体 Gに対する高さで表現するので、 このようにグローバ ル座標系∑0を設定することで、 GP Sの位置情報をグローバル座標系∑0での値 に容易に変換することができる。
次に、 図 4を用いて車載 GPSの計測精度変化が生じた場合の演算処理につい て説明する。
前述したように、 車載 GPSの計測精度は常に最良の状態 (F I X) とは限ら ない。 従って、 車載 GPSの計測精度が F I X以外の場合は何らかの補正を行わ なければならない。
先ず、 第 1のケースとして、 GP Sアンテナ 31と GP S受信機 43で構成さ れる GP S— Aの計測精度が F I X以外となった場合について説明する。
この場合は、 GPSアンテナ 32と GPS受信機 44で構成される&?3—8 の計測精度が F I X状態を保っているので、 GPS座標系∑2bを基準として考え ればよい。
ここで、 GPS— Aと GPS— Bの計測精度が共に F I X状態、 すなわち、 G PS_Aの計測精度が F I X以外となる 1サイクル前の GPS座標系∑2bを∑2b _prv、 油圧ショベル 1のヨウ角度を 0y— prvlとおく。 そして、 座標系∑2b_prvを GPSアンテナ 32の現在位置 (02b') に平行移動する。 次に、 平行移動した座 標系∑2b_prvの y軸を GP Sアンテナ 32の現在位置 (02b') の重力軸に合致す るように平行移動した座標系∑2b一 prvを等価回転変換する。 次に、 等価回転変換 した座標系∑ 2b— prvの y軸周りに等価回転変換した座標系∑ 2b— prvを ( 0 y— 0 y _prvl) の回転を行う。 次に、 回転した座標系∑ 2b— prvの y軸を油圧ショベル 1の 車体に垂直な単位べクトル Gprに合致するように回転した座標系∑2b_prvを等価 回転変換して座標系∑2b'を求める。
このようにして求めた座標系∑2b'と、 既知データである Xb, yb, Zbおよび d5と、 ブーム 5の基端との位置関係 a 6および d 6と、 ブーム 5、 アーム 6および バケツト 7の寸法 a 7, a 8および a 9、 さらに、 ブーム角度 φ 6、 アーム角度 φ 7お よびバケツト角度 Φ8から求められるショベル座標系∑5とバケツト先端座標系∑ 9により、 グローバル座標系∑0でのバケツト 7の先端位置を求めることができる。 従って、 GPS— Αの計測精度が F I X以外となった場合でもバゲット 7の先 端位置を高精度で求めることができ、 さらに、 油圧ショベル 1の走行、 旋回を含 むフロント作業といった動作にいっさいの制限は生じない。
次に、 第 2のケースとして、 GPSアンテナ 32と GPS受信機 44で構成さ れる GP S— Bの計測精度が F I X以外となった場合について説明する。
この場合は、 GP Sアンテナ 31と GP S受信機 43で構成される GP S— A の計測精度が F I X状態を保っているので、 GPS座標系∑2aを基準として考え ればよい。
ここで、 GPS— Aと GPS— Bの計測精度が共に F I X状態、 すなわち、 G PS— Bの計測精度が F I X以外となる 1サイクル前の GPS座標系∑2aを∑2a 一 prv、 油圧ショベル 1のヨウ角度を 0y_prvlとおく。 そして、 座標系∑2a— prvを GPSアンテナ 31の現在位置 (02a') に平行移動する。 次に、 平行移動した座 標系∑2a_prvの y軸を GPSアンテナ 31の現在位置 (〇2a') の重力軸に合致す るように平行移動した座標系∑2a—prvを等価回転変換する。 次に、 等価回転変換 した座標系∑ 2a— prvの y軸周りに等価回転変換した座標系∑ 2a— prvを ( 0 y_ 0 y _prvl) の回転を行う。 次に、 回転した座標系∑2a_prvの y軸を油圧ショベル 1の 車体に垂直な単位べクトル Gprに合致するように回転した座標系∑2a_prvを等価 回転変換して座標系∑2a'を求める。
このようにして求めた座標系∑2a'と、 既知データである xa, ya, zaおよび d5と、 ブーム 5の基端との位置関係 a6および a6と、 ブーム 5、 アーム 6および バケツト 7の寸法 a 7, a 8および a 9、 さらに、 ブーム角度 Φ 6、 アーム角度 φ 7お よびバケツト角度 φ 8から求められるショベル座標系∑ 5とバケツト先端座標系∑ 9により、 グローバル座標系∑0でのバケツト 7の先端位置を求めることができる。 従って、 GPS— Βの計測精度が F I X以外となった場合でもパケット 7の先 端位置を高精度で求めることができ、 さらに、 油圧ショベル 1の走行、 旋回を含 むフロント作業といった動作にいっさいの制限は生じない。
次に、 第 3のケースとして、 GP S_Aと GP S— Βの計測精度が共に F I X 以外となった場合について説明する。
この場合は、 ショベル座標系∑ 5を基準として考えればよい。
ここで、 GP S— Aと GP S— Bの計測精度が共に F I X以外となる 1サイク ル前のグ口一バル座標系∑ 0に対するショベル座標系∑ 5を∑ 5— prv、 油圧ショベル 1のヨウ角度を 0y— prv2とおく。 そして、 座標系∑5一 prvの y軸周りに座標系∑5 —prvを (0y_0y— prv2) の回転を行って座標系∑5b'を求める。
このようにして求めた座標系∑ 5b'と、 ブーム 5の基端との位置関係 a 6および d6と、 ブ一ム 5、 アームおよびバケツト 7の寸法 a 7, a 8および a 9、 さらに、 ブーム角度 Φ6、 アーム角度 Φ7およびバケツト角度 Φ8により求められるバケツト 先端座標系∑ 9とにより、 グローバル座標系∑0でのバケツ卜 7の先端位置を求め ることができる。
従って、 GPS— Αと GPS— Βの計測精度が共に F I X以外となった場合で もパケット 7の先端位置を高精度で求めることがでる。 ただし、 この場合は油圧 ショベル 1を走行させてしまうと誤差が生じるため、 旋回を含むフロント作業の みの動作にの制限される。
図 6は全体の演算処理手順を示すフロ一チヤ一トである。
図 6において、 最初に、 演算スタートフラグおよび補正演算フラグを OFFす る (ステップ S 100) 。
次に、 GPSアンテナ 31, 32の 3次元位置 (緯度、 経度、 高さ) である G PS— Aおよび GPS— Bの計測データ及び、 センサ 21, 22, 23, 24及 びジャイロ 25の計測データを読み込む (ステップ S 110) 。 次に、 GPS— Aおよび GPS— Bの計測精度が共に F I Xかどうかを判定する (ステップ S 1 20) 。 共に F I Xの場合にはステップ S 200に進み通常演算処理を実行し、 いずれかが F I Xでない場合にはステップ S 130に進む。 通常演算処理は、 G P S— Aおよび GP S— Bの計測精度が共に F I Xの場合、 GP S— Aおよび G P S— Bの両方を用いてバケツト先端位置を求める処理であり、 その詳細につい ては、 図 7を用いて後述する。 '
GP S— Aおよび GP S— Bのいずれかの計測精度が F I Xでない場合には、 演算スタートフラグが ONかどうかを判定し (ステップ S 130) 、 ONの場合 はステップ S 140に進み、 ONでない場合はステップ S 1 10に戻り GPS— Aおよび GPS— Bの計測精度が共に F I Xとなるまで繰り返す。
ステップ S 130の判定で ONの場合は、 補正演算フラグを ONし、 表示装置 46もしくはスピーカ 47により、 補正演算が行われる旨をォペレ一夕に指示す る (ステップ S 140) 。
次に、 GP S— Bの計測精度が F I Xで GP S— Aの計測精度が F I X以外か どうかを判定する (ステップ S 150) 。 GPS— Bの計測精度が F I Xで GP S— Aの計測精度が F I X以外の場合にはステップ S 300に進み GP S— A補 正演算処理を実行し、 そうでない場合にはステップ S 160に進む。 GPS— A 補正演算処理は、 GPS— Aの計測精度が F I Xでないので、 GPS— Bの計測 データを用いてパケット先端位置を求める処理であり、 その詳細については、 図 8を用いて後述する。
ステップ S 150の判定結果が偽の場合は、 GP S— Aの計測精度が F I Xで GPS— Bの計測精度が F I X以外かどうかを判定する (ステップ S 160) 。
GP S— Aの計測精度が F I Xで GP S— Bの計測精度が F I X以外の場合には ステップ S 400に進み GPS— B補正演算処理を実行し、 そうでない場合には ステップ S 500に進みショベル座標系基準演算処理を実行する。 GPS— B補 正演算処理は、 GP S— Bの計測精度が F I Xでないので、 GPS— Aの計測デ —夕を用いてバケツト先端位置を求める処理であり、 その詳細については、 図 9 を用いて後述する。 ショベル座標系基準演算処理は、 GPS— Aおよび GPS— Bの計測精度が共に F I Xでない場合、 GP S— Aおよび GP S— Bを用いるこ とができないため、 ショベル座標系を用いてバケツト先端位置を求める処理であ り、 その詳細については、 図 10を用いて後述する。
通常演算処理 (ステップ S 200) , GPS— A補正演算処理 (ステップ S 3 00) , GPS— B補正演算処理 (ステップ S 400) , ショベル座標系基準演 算処理 (ステップ S 500) がそれぞれ終了すると、 それぞれの処理で求められ たグローバル座標系∑0でのバケツト 7の先端位置 Pbkを緯度、 経度、 高さに変換 する (ステップ S 170) 。 このための演算式は一般的によく知られているもの なので、 ここでは省略する。
次に、 表示装置 46にパケット 7の先端位置を表示する (ステップ S 180) 。 表示装置 46に表示されるパケット先端位置は、 例えば、 3次元地形データ上に、 油圧ショベル本体と共にイラストにより表示する。 次に、 パケット先端位置デー 夕及びパケット先端位置の演算状態 (補正状態) に関するデータを無線機 47に より事務所側に送信する (ステップ S 190) 。 そして、 ステップ S 1 10に戻 り繰り返し演算を実行する。
次に、 図 7を用いて通常演算処理の内容について説明する。
GPS— Aおよび GPS— Bの計測精度が共に F I Xの場合、 最初に、 演算ス 夕一トフラグが OFFならば ONし、 さらに、 補正演算フラグが ONならば OF Fする (ステップ S 210) 。
次に、 GP S— NGフラグ処理を実行する (ステップ S 600) 、 GPS— N Gフラグ処理の詳細は、 図 11に示されている。 GPS— NGフラグは、 GPS — Aおよび GP S— Bの計測精度が共に F I Xでないかどうかを示すフラグであ り、 GP S— Aおよび GP S— Bの計測精度が共に F I Xでない場合に、 図 10 のショベル座標系基準演算処理において、 この NGフラグが ONされており、 そ うでないとき OFFとなっている。 図 1 1において、 GPS— NGフラグが OF Fか否かを判定し (ステップ S 610) 、 OFFのときはそのまま処理を終了し、 ONのときはステップ S 620に進む。 GP S— NGフラグが ONのときは、 走 行可能を指令し (ステップ S 620) 、 GP S— NGフラグを OFFにする (ス テツプ S 630) 。 すなわち、 ステップ S 130の判定で GP S— Aおよび GP S— Bの計測精度が共に F I Xとなったので、 NGフラグを ONから OFFにす る。 なお、 ステップ S 500の処理について後述するように、' NGフラグが ON の場合には下部走行体による走行を禁止しているので、 それを解除して走行可能 を指令する。 '
次に、 GP S— NGフラグ処理が終了すると、 図 7に戻り、 GPS— A及び G P S— B共に計測精度が F I Xである旨を表示 g置 46に表示する (ステップ S 220) 。 次に、 ジャイロ 25により計測される油圧ショベル 1のヨウ角度 0yを 0y— prvl及び 0y_prv2として記憶する (ステップ S 230) 。 次に、 GPS— A および G P S—Bの計測データをそれぞれグローバル座標系∑ 0での 3次元位置 P a, Pbに変換する (ステップ S 240) 。 このための演算は一般的によく知られ ているものなので、 ここでは省略する。 次に、 GPSアンテナ 31, 32のグロ 一バル座標系∑0での 3次元位置 Pa, Pbと、 傾斜センサ 24で計測したピッチ角 度 とにより、 グロ一バル座標系に対する GPS座標系∑ 2aおよび∑2bを求める
(ステップ S 250) 。 この演算は座標変換であり、 一般的な数学的手法により 行うことができる。 次に、 GP S座標系∑ 2aおよび∑ 2bをそれぞれ、 ∑2a一 prvお よび∑2b— prvとして記憶する (ステップ S 260) 。 次に、 GPS座標系∑2aと、 既知の寸法データから予め求めておいた G P S— Aから見たショベル座標系∑ 5a からグローバル座標系∑ 0に対するショベル座標系∑ 5を求め、 ∑ 5— prvを記憶する
(ステップ S 270) 。 この演算も座標変換であり、 一般的な数学的手法により 行うことができる。 次に、 既知の寸法データと、 角度センサ 21〜23で検出し たブーム角度 Φ 6、 アーム角度 Φ 7およびバケツト角度 8からショベル座標系∑ 5 aに対するバケツト先端座標系∑9を求める (ステップ S 280) 。 この演算も座 標変換であり、 一般的な数学的手法により行うことができる。
そして、 GP S座標系∑ 2aとショベル座標系∑5およびバケツト先端座標系∑ 9 から、 グロ一バル座標系∑0でのバゲット 7の先端位置 Pbkを求める (ステップ S 290) 。 この演算も座標変換であり、 一般的な数学的手法により行うことがで きる。
通常演算処理 (ステップ S 200) が終 7*すると、 図 6のステップ S 1 70で、 求められたグローバル座標系∑0でのバゲット 7の先端位置 Pbkを緯度、 経度、 高 さに変換し、 ステップ S 1 10に戻り繰り返し演算を実行する。
次に、 図 8を用いて GP S— A補正演算処理の内容について説明する。
ステップ S 600において GP S— NGフラグ処理を実行した後、 GP S— A が F I Xであり補正演算中である旨を表示装置 46に表示する (ステップ S 31 0) 。 次に、 ジャイロ 25により計測される油圧ショベル 1のヨウ角度 0yを 0y _prv2として記憶する (ステップ S 320) 。 次に、 G P S— Bの計測データをグ ローバル座標系∑ 0での 3次元位置 Pbに変換し、 ∑ 2b— prvの原点を Pbへ平行移 動する (ステップ S 330) 。 次に、 平行移動した座標系∑ 2b— prvの y軸を重力 軸に合致するように、 平行移動した座標系∑ 2b— prvを等価回転変換する (ステツ プ S 340) 。 次に、 等価回転変換した座標系∑2b一 prvの y軸周りに等価回転変 換した座標系∑ 2b— prvを (6»y— 0y_prvl) の回転を行う (ステップ S 350) 。 次に、 回転した座標系∑ 2 b_prvの y軸を油圧ショベル 1の車体に垂直なべクトル Gprに含致するように、 回転した座標系∑2a_prvを等価回転変換して∑ 2b'を求 める (ステップ S 360) 。 次に、 GPS座標系∑2b' と、 既知の寸法データか ら予め求めておいた GP S— Bから見たショベル座標系∑5bとから、 グローバル 座標系∑0に対するショベル座標系∑ 5を求め、 ∑5— prvを記憶する (ステップ S 3 70) 。 次に、 既知の寸法データと、 角度センサ 21〜23で検出したブーム角 度 Φ6、 アーム角度 φ 7およびバケツト角度 Φ 8からショベル座標系に対するバケツ ト先端座標系∑9を求める (ステップ S 380) 。 そして、 座標系∑2 とショべ ル座標系∑5およびバケツト先端座標系∑9から、 グロ一バル座標系∑0でのバケツ ト 7の先端位置 Pbkを求める (ステップ S 390) 。 そして、 ステップ S 180 へと移行して演算を繰り返す。
本実施形態では、 ステップ S 350の処理のように、 GPS— Aの計測精度が F I X以外の場合、 GPS— Bについてヨウ角 0yで補正する点に特徴がある。 ス テツプ S 340, S 360の処理は上部旋回体の傾斜角 (ピッチ角度及びロール 角度) に対する補正であり、 上部旋回体が水平状態にある場合にはこの処理は必 要ないものである。
次に、 図 9を用いて GP S—B補正演算処理の内容について説明する。
ステップ S 600において GP S— NGフラグ処理を実行した後、 GP S— B が F I Xであり補正演算中である旨を表示装置 46に表示する (ステップ S 41 0) 。 次に、 ジャイロ 25により計測される油圧ショベル 1のヨウ角度 0yを 0y — prv2として記憶する (ステップ S 420) 。 次に、 G P S— Aの計測データをグ ローバル座標系∑0での 3次元位置 Paに変換し、 ∑2a— prvの原点を P aへ平行移 動する (ステップ S 430) 。 次に、 平行移動した座標系∑2a_prvの y軸を重力 軸に合致するように、 平行移動した座標系∑2a— prvを等価回転変換する (ステツ プ S 440) 。 次に、 等価回転変換した座標系∑2a— prvの y軸周りに等価回転変 換した座標系∑2a_prvを (0y_0y_prvl) の回転を行う (ステップ S 450) 。 次に、 回転した座標系∑2a— prvの y軸を油圧ショベル 1の車体に垂直なべクト ル Gprに合致するように、 回転した座標系∑2a_prvを等価回転変換して∑2a'を求 める (ステップ S 460) 。 次に、 0 3座標系∑ 'と、 既知の寸法からデータ 予め求めておいた GP S—Aから見たショベル座標系∑ 5aとからグローバル座標 系∑0に対するショベル座標系∑5を求め、 ∑5— prvを記憶する (ステップ S 47 0) 。
次に、 既知の寸法データと、 角度センサ 21〜23で検出したブーム角度 Φ6、 アーム角度 Φ7およびバケツ卜角度 Φ8からショベル座標系に対するバケツト先端 座標系∑9を求める (ステップ S 480) 。 そして、 座標系∑ 2a'とショベル座標 系∑5およびバケツト先端座標系∑9から、 グローバル座標系∑0でのバケツト 7の 先端位置 Pbkを求める (ステップ S 490) 。 そして、 ステップ S 170へと移 行して演算を繰り返す。
本実施形態では、 ステップ S 450の処理のように、 GPS— Bの計測精度が F I X以外の場合、 GP S— Aについてヨウ角 0yで補正する点に特徴がある。 ス テツプ S 440, S 460の処理は上部旋回体の傾斜角 (ピッチ角度及びロール 角度) に対する補正であり、 上部旋回体が水平状態にある場合にはこの処理は必 要ないものである。
次に、 図 10を用いてショベル座標系基準演算処理の内容について説明する。 GP S— Aおよび GP S— Bが共に F I X以外であり補正演算中である旨を表 示装置 46に表示する (ステップ S 510) 。 次に、 表示装置 46もしくはスピ 一力 47により、 油圧ショベル 1の走行動作を禁止する旨をオペレータに指示す る (ステップ S 520) 。 次に、 座標系∑ 5— prvの y軸周りに座標系∑ 5— prvを (0y- 0y_prv2) の回転を行って、 座標系∑5'を求める (ステップ S 530) 。 次に、 既知の寸法データと、 角度センサ 21〜23で検出したブーム角度 06、 ァ ーム角度 Φ7およびバケツト角度 Ψ8からバケツト先端座標系∑9を求める (ステツ プ S 530) 。 そして、 座標系∑5'とバケツト先端座標系∑9から、 グロ一バル座 標系∑0でのバゲット 7の先端位置 Pbkを求める (ステップ S 540) 。 次に、 G P S— NGフラグを ONする (ステップ S 560) 。 そして、 ステップ S 170 へと移行して演算を繰り返す。
以上のような演算を行うことによって、 バケツト 7の前端位置の 3次元空間で の絶対位置を求めることができ、 G P S— Aおよび G P S— Bの計測精度が変化 した場合でも、 高い精度でバケツト 7の前端位置の 3次元空間での絶対位置を求 めることができる。 以上説明したように、 本実施の形態によれば、 傾斜センサで油圧ショベルのピ ツチ角度およびロール角度、 ジャイロによりヨウ角度を計測して補正を行うこと により、 G P Sの計測精度が変化した場合でも高い精度でモニタボイン卜の位置 を計測することができ、 位置計測システムの信頼性を向上することができる。 し たがって、 作業効率および施工管理効率を高めることができる。
次に、 図 1 2〜図 1 4を用いて、 本発明の他の実施の形態による作業機械の位 置計測システムについて説明する。 本実施の形態は、 前述の実施の形態と同様に、 作業機械の一つである建設機械としてクローラ式の油圧ショベルに本発明を適用 し、 油圧ショベルのバケツト先端にモニタポイントを設定したものである。
本実施形態では、 ジャイロによるヨウ角度の補正が行うが、 傾斜角センサによ る上部旋回体の傾斜角 (ピッチ角度及びロール角度) に対する補正は行わないも のである。 特に、 上部旋回体が水平状態にある場合に有効なものである。
本実施の形態による作業機械の位置計測システムの構成は、 図 1に示したもの と同様である。 本の実施の形態による建設機械の掘削作業教示装置を用いた油圧 ショベルの外観は、 図 2に示したものと同様である。 但し、 傾斜角に対する補正 は行わないため、 傾斜センサ 2 4は不要である。
G P S基準局としての役割を持つ事務所側システムの構成は、 図 3に示したも のと同様である。 バケツト 7の先端の 3次元空問での絶対位置を演算するために 使用する座標系は、 図 4に示したものと同様である。 グローバル座標系の概念は、 図 5に示したものと同様である。
全体の演算処理手順は、 図 6に示したものと同様である。 但し、 ステップ S 1 1 0においては、 センサの計測データとして傾斜角センサの計測データの読み込 みは行わない。
次に、 図 1 2を用いて通常演算処理の内容について説明する。
通常演算処理の内容は、 図 7に示したものと同様であるが、 ステップ S 2 5 0 Aにおいて、 G P Sアンテナ 3 1 , 3 2のグローバル座標系∑0での 3次元位置 P a, P bとにより、 グローバル座標系に対する G P S座標系∑2aおよび∑2bを求め る。 すなわち、 傾斜センサ 2 4で計測したピッチ角度 0 pは用いないものである。 次に、 図 1 3を用いて G P S— A補正演算処理の内容について説明する。 G P S— A補正演算処理の内容は、 図 8に示したものと同様であるが、 ステツ プ S 3 4 0と、 ステップ S 3 6 0の処理が省略されており、 ステップ S 3 5 0の 処理結果が直接 G P S座標系∑ 2b' となる。
次に、 図 1 4を用いて G P S—B補正演算処理の内容について説明する。 G P S— B補正演算処理の内容は、 図 9に示したものと同様であるが、 ステツ プ S 4 4 0と、 ステップ S 4 3 6 0の処理が省略されており、 ステップ S 4 5 0 の処理結果が直接 G P S座標系∑ 2a' となる。
ショベル座標系基準演算処理は、 図 1 0に示したものと同様である。
以上のような演算を行うことによって、 パケット 7の前端位置の 3次元空間で の絶対位置を求めることができ、 G P S一 Aおよび G P S— Bの計測精度が変化 した場合でも、 高い精度でバケツト 7の前端位置の 3次元空間での絶対位置を求 めることができる。
以上説明したように、 本実施の形態によれば、 ジャイロによりヨウ角度を計測 して補正を行うことにより、 G P Sの計測精度が変化した場合でも高い精度でモ 二夕ポイントの位置を計測することができ、 位置計測システムの信頼性を向上す ることができる。 したがって、 作業効率および施工管理効率を高めることができ る。 .
なお、 以上の説明では、 G P Sを利用した油圧ショベルのような建設機械に本 発明を適当した実施の形態について説明したが、 G P Sの代わりに、 レーザを利 用した 1 タルステーションシステムに対しても、 本発明は適用できるものであ る。 トータルステーションシステムでは、 レーザからの信号が途切れた場合、 補 正演算処理を行うことにより位置精度の低下を防止することができる。 また、 建 設機械の場合には、 下部走行体とその上部の上部旋回体から構成されるが、 地雷 探知機械や地雷破壊機械のように下部走行体のみを有する作業機械に対しても、 本発明は適用できるものである。 産業上の利用可能性
本発明によれば、 車載 G P Sの計測精度変化が生じた場合でもモニタポイント の位置を正確に計測でき、 作業効率を向上することができる。

Claims

請求の範囲
1 . 機械本体と作業機とを有する作業機械の位置計測システムにおいて、
前記機械本体に設けられ、 3次元空間における位置を計測する少なくとも 2個 の 3次元位置計測手段 (43, 44)と、
前記少なくとも 2個の位置計測手段によって計測された値に基づいて、 モニタ ポイントの 3次元空間における位置を演算する位置演算手段 (45)と、
前記作業機械のヨウ角を計測するヨウ角計測手段 (25)とを備え、
前記位置演算手段 (45)は、 前記少なくとも 2個の 3次元位置計測手段 (43, 44)の 内の少なくとも一つの 3次元位置計測手段による計測精度が低下すると、 前記ョ ゥ角計測手段 (25)によって計測されたヨウ角に基づいて前記モニタポイントの位置 演算を補正することを特徴とする作業機械の位置計測システム。
2 . 請求項 1記載の作業機械の位置計測システムにおいて、 さらに、
前記作業機械の傾斜量を計測する傾斜量計測手段 (24)を備え、
前記位置演算手段 (45)は、 上記少なくとも 2個の 3次元位置計測手段の内の少 なくとも一つの 3次元位置計測手段による計測精度が低下すると、 前記ヨウ角計 測手段によつて計測されたヨウ角(25)及び傾斜量計測手段 (24)によつて計測され た傾斜量に基づいて前記モニタボイントの位置演算を補正することを特徴とする 作業機械の位置計測システム。
3 . 請求項 1記載の作業機械の位置計測システムにおいて、
前記位置演算手段 (45)は、 補正が行われる場合にはその旨をオペレータに知ら せることを特徴とする作業機械の位置計測システム。
4 . 請求項 1記載の作業機械の位置計測システムにおいて、
前記位置演算手段 (45)は、 上記少なくとも 2個の 3次元位置計測手段 (43, 44)の すべての計測精度が低下すると、 前記作業機械の走行禁止をオペレータに知らせ ることを特徴とする作業機械の位置計測システム。
5 . 請求項 4記載の作業機械の位置計測システムにおいて、
前記位置演算手段 (45)は、 上記少なくとも 2個の 3次元位置計測手段 (43, 44)の 内の少なくとも一つの計測精度が復帰すると、 前記作業機械の走行可能をォペレ —夕に知らせる ζとを特徴とする作業機械の位置計測システム。
6 . 請求項 3記載の作業機械の位置計測システムにおいて、
前記位置演算手段 (45)による演算結果に基づき前記モニタボイントの位置を表 示する第 1表示手段 (46)を備え、
この第 1表示手段にォペレ一夕に対する通知を表示することを特徴とする作業 機械の位置計測システム。
7 . 請求項 3記載の作業機械の位置計測システムにおいて、
前記位置演算手段 (45)による演算結果のモニタポイントの位置データを出力す るデータ出力手段 (47)と、
前記作業機械とは異なる位置に設置され、 前記データ出力手段により出力され た位置データを入力するデータ入力手段(56)と、
このデ一夕入力手段により入力した位置データに基づき前記モニタポイントの 位置を表示する第 2表示手段 (59)とを備え、
この第 2表示手段にオペレータに対する通知を表示することを特徴とする作業 機械の位置計測システム。
8 . 請求項 1記載の作業機械の位置計測システムにおいて、
前記作業機 (4)は、 回転可能な複数の部材 (5, 6, 7)で構成され、
前記モニタボイン卜は前記作業機に設定され、
前記作業機の複数の部材間の角度を検出する角度計測手段 (21 , 2, 23)を備え、 前記位置演算手段 (46)は、 前記少なくとも 2個の 3次元位置計測手段 (43, 44)及 び前記角度計測手段(21, 22, 23)によって計測された値に基づいて、 前記モニタポ イン卜の 3次元空間における位置を演算することを特徴とする作業機械の位置計 測システム。
PCT/JP2003/012391 2002-10-02 2003-09-29 作業機械の位置計測システム WO2004031689A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03753965A EP1548402B1 (en) 2002-10-02 2003-09-29 Position measuring system of working machine
US10/503,096 US7831362B2 (en) 2002-10-02 2003-09-29 Position measuring system for working machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/289476 2002-10-02
JP2002289476A JP2004125580A (ja) 2002-10-02 2002-10-02 作業機械の位置計測システム

Publications (1)

Publication Number Publication Date
WO2004031689A1 true WO2004031689A1 (ja) 2004-04-15

Family

ID=32063745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012391 WO2004031689A1 (ja) 2002-10-02 2003-09-29 作業機械の位置計測システム

Country Status (4)

Country Link
US (1) US7831362B2 (ja)
EP (1) EP1548402B1 (ja)
JP (1) JP2004125580A (ja)
WO (1) WO2004031689A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339759A (zh) * 2015-06-29 2016-02-17 株式会社小松制作所 作业机械的控制系统以及作业机械的控制方法

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8478492B2 (en) * 1998-11-27 2013-07-02 Caterpillar Trimble Control Technologies, Inc. Method and system for performing non-contact based determination of the position of an implement
US7031031B1 (en) * 2000-12-06 2006-04-18 Dr. Johannes Heidenhain Gmbh Position measuring system
US7948769B2 (en) 2007-09-27 2011-05-24 Hemisphere Gps Llc Tightly-coupled PCB GNSS circuit and manufacturing method
US7885745B2 (en) * 2002-12-11 2011-02-08 Hemisphere Gps Llc GNSS control system and method
US8686900B2 (en) 2003-03-20 2014-04-01 Hemisphere GNSS, Inc. Multi-antenna GNSS positioning method and system
US8265826B2 (en) * 2003-03-20 2012-09-11 Hemisphere GPS, LLC Combined GNSS gyroscope control system and method
US8594879B2 (en) 2003-03-20 2013-11-26 Agjunction Llc GNSS guidance and machine control
US8140223B2 (en) 2003-03-20 2012-03-20 Hemisphere Gps Llc Multiple-antenna GNSS control system and method
US8190337B2 (en) 2003-03-20 2012-05-29 Hemisphere GPS, LLC Satellite based vehicle guidance control in straight and contour modes
US8634993B2 (en) 2003-03-20 2014-01-21 Agjunction Llc GNSS based control for dispensing material from vehicle
US9002565B2 (en) 2003-03-20 2015-04-07 Agjunction Llc GNSS and optical guidance and machine control
US8271194B2 (en) * 2004-03-19 2012-09-18 Hemisphere Gps Llc Method and system using GNSS phase measurements for relative positioning
US8138970B2 (en) 2003-03-20 2012-03-20 Hemisphere Gps Llc GNSS-based tracking of fixed or slow-moving structures
US8583315B2 (en) 2004-03-19 2013-11-12 Agjunction Llc Multi-antenna GNSS control system and method
US10458099B2 (en) 2004-08-26 2019-10-29 Caterpillar Trimble Control Technologies Llc Auto recognition of at least one standoff target to determine position information for a mobile machine
US7640683B2 (en) * 2005-04-15 2010-01-05 Topcon Positioning Systems, Inc. Method and apparatus for satellite positioning of earth-moving equipment
US8311738B2 (en) * 2006-04-27 2012-11-13 Caterpillar Inc. Boom-mounted machine locating system
US9746329B2 (en) * 2006-11-08 2017-08-29 Caterpillar Trimble Control Technologies Llc Systems and methods for augmenting an inertial navigation system
US7835832B2 (en) 2007-01-05 2010-11-16 Hemisphere Gps Llc Vehicle control system
USRE48527E1 (en) 2007-01-05 2021-04-20 Agjunction Llc Optical tracking vehicle control system and method
US8311696B2 (en) * 2009-07-17 2012-11-13 Hemisphere Gps Llc Optical tracking vehicle control system and method
US8000381B2 (en) 2007-02-27 2011-08-16 Hemisphere Gps Llc Unbiased code phase discriminator
US7808428B2 (en) 2007-10-08 2010-10-05 Hemisphere Gps Llc GNSS receiver and external storage device system and GNSS data processing method
CL2009000010A1 (es) * 2008-01-08 2010-05-07 Ezymine Pty Ltd Metodo para determinar la posicion global de una pala minera electrica.
US9002566B2 (en) * 2008-02-10 2015-04-07 AgJunction, LLC Visual, GNSS and gyro autosteering control
US8018376B2 (en) 2008-04-08 2011-09-13 Hemisphere Gps Llc GNSS-based mobile communication system and method
FR2934364B1 (fr) * 2008-07-22 2011-07-01 Airbus France Procede d'initialisation d'un systeme de navigation par satellite embarque dans un aeronef, et systeme associe
US8217833B2 (en) * 2008-12-11 2012-07-10 Hemisphere Gps Llc GNSS superband ASIC with simultaneous multi-frequency down conversion
US8386129B2 (en) 2009-01-17 2013-02-26 Hemipshere GPS, LLC Raster-based contour swathing for guidance and variable-rate chemical application
US8085196B2 (en) * 2009-03-11 2011-12-27 Hemisphere Gps Llc Removing biases in dual frequency GNSS receivers using SBAS
US8401704B2 (en) 2009-07-22 2013-03-19 Hemisphere GPS, LLC GNSS control system and method for irrigation and related applications
US8174437B2 (en) * 2009-07-29 2012-05-08 Hemisphere Gps Llc System and method for augmenting DGNSS with internally-generated differential correction
US8334804B2 (en) 2009-09-04 2012-12-18 Hemisphere Gps Llc Multi-frequency GNSS receiver baseband DSP
US8649930B2 (en) 2009-09-17 2014-02-11 Agjunction Llc GNSS integrated multi-sensor control system and method
KR101585291B1 (ko) 2009-10-06 2016-01-13 루이지애나 테크 유니버시티 리서치 파운데이션 매설된 대상물을 검출하기 위한 방법 및 장치
US8548649B2 (en) 2009-10-19 2013-10-01 Agjunction Llc GNSS optimized aircraft control system and method
US20110188618A1 (en) * 2010-02-02 2011-08-04 Feller Walter J Rf/digital signal-separating gnss receiver and manufacturing method
US8583326B2 (en) 2010-02-09 2013-11-12 Agjunction Llc GNSS contour guidance path selection
US20120059554A1 (en) * 2010-09-02 2012-03-08 Topcon Positioning Systems, Inc. Automatic Blade Control System during a Period of a Global Navigation Satellite System ...
CL2012000933A1 (es) * 2011-04-14 2014-07-25 Harnischfeger Tech Inc Un metodo y una pala de cable para la generacion de un trayecto ideal, comprende: un motor de oscilacion, un motor de izaje, un motor de avance, un cucharon para excavar y vaciar materiales y, posicionar la pala por medio de la operacion del motor de izaje, el motor de avance y el motor de oscilacion y; un controlador que incluye un modulo generador de un trayecto ideal.
US9238570B2 (en) 2011-07-05 2016-01-19 Trimble Navigation Limited Crane maneuvering assistance
US8942863B2 (en) 2012-11-15 2015-01-27 Caterpillar Inc. Worksite position control system having integrity checking
JP6332915B2 (ja) * 2013-06-14 2018-05-30 キヤノン株式会社 情報処理装置、情報処理方法及びプログラム
JP5555367B1 (ja) * 2013-11-18 2014-07-23 株式会社シーティーエス 締固め及び敷均し管理システム
JP5826397B1 (ja) * 2014-05-15 2015-12-02 株式会社小松製作所 掘削機械の表示システム、掘削機械及び掘削機械の表示方法
EP3252503B1 (en) * 2015-01-29 2023-06-07 Mitsubishi Electric Corporation Positioning device and positioning method
US10145088B2 (en) 2015-05-29 2018-12-04 Komatsu Ltd. Control system of work machine and work machine
AU2016283735A1 (en) 2015-06-23 2017-12-21 Komatsu Ltd. Construction management system and construction management method
JP6289534B2 (ja) * 2016-05-09 2018-03-07 株式会社小松製作所 作業機械の制御システム及び作業機械
FI20165452A (fi) * 2016-05-31 2017-12-01 Novatron Oy Käyttöliittymä ja maanrakennuskone
US10407879B2 (en) * 2017-02-08 2019-09-10 Deere & Company System and method for remote work implement angular position display
JPWO2018173573A1 (ja) * 2017-03-23 2019-06-27 三菱電機株式会社 モービルマッピングシステム及び測位端末装置
US10101152B1 (en) 2017-03-30 2018-10-16 Caterpillar Inc. Object detection sensor alignment monitoring system
WO2019014767A1 (en) 2017-07-18 2019-01-24 Perimeter Medical Imaging, Inc. SAMPLE CONTAINER FOR STABILIZING AND ALIGNING EXCISED ORGANIC TISSUE SAMPLES FOR EX VIVO ANALYSIS
GB2573304A (en) * 2018-05-01 2019-11-06 Caterpillar Inc A method of operating a machine comprising am implement
JP7178854B2 (ja) * 2018-09-28 2022-11-28 株式会社小松製作所 作業機械のためのシステム及び方法
JP7245119B2 (ja) 2019-06-06 2023-03-23 日立建機株式会社 建設機械
WO2021060533A1 (ja) * 2019-09-26 2021-04-01 日立建機株式会社 作業機械
US11525926B2 (en) * 2019-09-26 2022-12-13 Aptiv Technologies Limited System and method for position fix estimation using two or more antennas
JP6968923B2 (ja) * 2020-02-28 2021-11-17 五洋建設株式会社 盛土構築物の形状を高精度で特定するシステム及び盛土構築物を高精度で構築する方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311022A (ja) * 1997-05-09 1998-11-24 Kajima Corp Gps利用の締固め管理システム
US5935183A (en) * 1996-05-20 1999-08-10 Caterpillar Inc. Method and system for determining the relationship between a laser plane and an external coordinate system
US5987371A (en) 1996-12-04 1999-11-16 Caterpillar Inc. Apparatus and method for determining the position of a point on a work implement attached to and movable relative to a mobile machine
JP2001098585A (ja) 1999-10-01 2001-04-10 Komatsu Ltd 建設機械の掘削作業ガイダンス装置および掘削制御装置
JP2002004261A (ja) * 2000-04-20 2002-01-09 Shimizu Corp 盛土締固め管理システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714948A (en) * 1993-05-14 1998-02-03 Worldwide Notifications Systems, Inc. Satellite based aircraft traffic control system
US6768944B2 (en) * 2002-04-09 2004-07-27 Intelligent Technologies International, Inc. Method and system for controlling a vehicle
US5742915A (en) * 1995-12-13 1998-04-21 Caterpillar Inc. Position referenced data for monitoring and controlling
US5948044A (en) * 1996-05-20 1999-09-07 Harris Corporation Hybrid GPS/inertially aided platform stabilization system
US5951613A (en) * 1996-10-23 1999-09-14 Caterpillar Inc. Apparatus and method for determining the position of a work implement
US6099236A (en) * 1997-12-05 2000-08-08 Caterpillar Inc. Apparatus for controlling movement of an implement relative to a frame of a work machine
DE19830858A1 (de) * 1998-07-10 2000-01-13 Claas Selbstfahr Erntemasch Vorrichtung und Verfahren zur Bestimmung einer virtuellen Position
US6205381B1 (en) * 1999-03-26 2001-03-20 Caterpillar Inc. Method and apparatus for providing autoguidance for multiple agricultural machines
US6062317A (en) * 1999-09-03 2000-05-16 Caterpillar Inc. Method and apparatus for controlling the direction of travel of an earthworking machine
US6204772B1 (en) * 1999-12-16 2001-03-20 Caterpillar Inc. Method and apparatus for monitoring the position of a machine
US6804587B1 (en) * 2000-11-15 2004-10-12 Integrinautics Corporation Adjustment of vehicle-implement trajectories to compensate for lateral implement offset
US6643576B1 (en) * 2000-11-15 2003-11-04 Integrinautics Corporation Rapid adjustment of trajectories for land vehicles
US6418364B1 (en) * 2000-12-13 2002-07-09 Caterpillar Inc. Method for determining a position and heading of a work machine
US7002465B2 (en) * 2001-04-25 2006-02-21 Hitachi Construction Machinery Security system of construction machine
US6711838B2 (en) * 2002-07-29 2004-03-30 Caterpillar Inc Method and apparatus for determining machine location

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935183A (en) * 1996-05-20 1999-08-10 Caterpillar Inc. Method and system for determining the relationship between a laser plane and an external coordinate system
US5987371A (en) 1996-12-04 1999-11-16 Caterpillar Inc. Apparatus and method for determining the position of a point on a work implement attached to and movable relative to a mobile machine
JPH10311022A (ja) * 1997-05-09 1998-11-24 Kajima Corp Gps利用の締固め管理システム
JP2001098585A (ja) 1999-10-01 2001-04-10 Komatsu Ltd 建設機械の掘削作業ガイダンス装置および掘削制御装置
JP2002004261A (ja) * 2000-04-20 2002-01-09 Shimizu Corp 盛土締固め管理システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1548402A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105339759A (zh) * 2015-06-29 2016-02-17 株式会社小松制作所 作业机械的控制系统以及作业机械的控制方法
CN105339759B (zh) * 2015-06-29 2018-04-20 株式会社小松制作所 作业机械的控制系统以及作业机械的控制方法

Also Published As

Publication number Publication date
EP1548402A1 (en) 2005-06-29
JP2004125580A (ja) 2004-04-22
EP1548402B1 (en) 2012-11-14
EP1548402A4 (en) 2008-11-26
US7831362B2 (en) 2010-11-09
US20050080559A1 (en) 2005-04-14

Similar Documents

Publication Publication Date Title
WO2004031689A1 (ja) 作業機械の位置計測システム
CN105339759B (zh) 作业机械的控制系统以及作业机械的控制方法
KR101833603B1 (ko) 작업 기계의 제어 시스템 및 작업 기계
JP4205676B2 (ja) 建設機械の出来形情報処理装置
JP7245119B2 (ja) 建設機械
JP2007147588A (ja) 作業機械の位置計測システム
JP2866289B2 (ja) 建設機械の位置及び姿勢表示方法
JP4012448B2 (ja) 建設機械の掘削作業教示装置
WO2004027164A1 (ja) 建設機械の掘削作業教示装置
KR102500969B1 (ko) 작업 기계
JP7007313B2 (ja) 作業機械
JP2001159518A (ja) 建設機械のツール位置計測装置、ヨー角検出装置、作業機自動制御装置及び校正装置
EP4036324A1 (en) Work machine
JP2002310652A (ja) 走行式建設機械の位置計測システム
JP3987777B2 (ja) 建設機械の掘削作業教示装置
JP2003064725A (ja) 無人化機械土工システム
JP7419119B2 (ja) 作業機械
JP6910995B2 (ja) 作業機械
EP4317617A1 (en) Work machine
JP2024028438A (ja) 作業機械の画像表示システム及び作業機械の画像表示方法
JP4202209B2 (ja) 作業機械の位置計測表示システム
JP2002340556A (ja) 走行式建設機械の位置計測システム、位置計測コンピュータ及び位置計測プログラム
US20230144985A1 (en) Positioning system for work machine, work machine, and positioning method for work machine
WO2023188319A1 (ja) 油圧ショベルの表示システム
JP7065002B2 (ja) 作業機械

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10503096

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003753965

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003753965

Country of ref document: EP