WO2004031291A2 - Polyethylene compositions for injection molding - Google Patents

Polyethylene compositions for injection molding Download PDF

Info

Publication number
WO2004031291A2
WO2004031291A2 PCT/US2003/029598 US0329598W WO2004031291A2 WO 2004031291 A2 WO2004031291 A2 WO 2004031291A2 US 0329598 W US0329598 W US 0329598W WO 2004031291 A2 WO2004031291 A2 WO 2004031291A2
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
density
composition
molded article
injection molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2003/029598
Other languages
English (en)
French (fr)
Other versions
WO2004031291A3 (en
Inventor
Arnold Lustiger
David J. Lohse
Blair A. Graham
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
ExxonMobil Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32073345&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004031291(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ExxonMobil Chemical Patents Inc filed Critical ExxonMobil Chemical Patents Inc
Priority to JP2004541585A priority Critical patent/JP2006501352A/ja
Priority to DE60331562T priority patent/DE60331562D1/de
Priority to EP20030776187 priority patent/EP1546252B1/en
Priority to AU2003283960A priority patent/AU2003283960A1/en
Priority to CA 2498086 priority patent/CA2498086C/en
Priority to AT03776187T priority patent/ATE459680T1/de
Publication of WO2004031291A2 publication Critical patent/WO2004031291A2/en
Publication of WO2004031291A3 publication Critical patent/WO2004031291A3/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms
    • C08L23/0815Copolymers of ethene with unsaturated hydrocarbons only containing four or more carbon atoms with aliphatic 1-olefins containing one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1386Natural or synthetic rubber or rubber-like compound containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31938Polymer of monoethylenically unsaturated hydrocarbon

Definitions

  • This invention relates to thermoplastic compositions of polyethylene polymers suitable for fabrication into useful products by injection molding.
  • Injection molding is the most important process for producing moldings from thermoplastics. This significance is due to the ability of injection molding to manufacture complex molding geometries in a single stage with high levels of reproducibility. Plastics finishing is largely unnecessary and a high degree of automation is possible. All manner of consumer goods and commodity articles are manufactured using injection molding of polyethylene thermoplastics. [0004] To injection mold a part, polyethylene thermoplastic pellets, granules or powders are melted and injected under pressure into the cavity of a mold where the melted resin is solidified by cooling for subsequent removal. More detailed discussion of injection molding may be found in Ullman's Encyclopedia of Industrial Chemistry, vol. A20, Plastics Processing, pages 688-696 (VCH Publishers, 1992).
  • Blends of polyethylene resins have been proposed to improve physical properties, including impact strength, environmental stress crack resistance (ESCR), and chemical resistance.
  • U.S. Patent No. 4,438,238 describes blends for extrusion processing, injection molding and films, where a combination of two ethylene- ⁇ -olefin copolymers with different densities, intrinsic viscosities and number of short chain branching per 1000 carbon atoms is attributed with such physical properties.
  • U.S. Patent No. 4,461,873 describes ethylene polymer blends of a high molecular weight ethylene polymer, preferably a copolymer, and a low molecular weight ethylene polymer, preferably an ethylene homopolymer, for improved film properties and ESCR, useful in the manufacture of film, in blow molding techniques, or in the production of pipes and wire coating.
  • EP 0 423 962 describes ethylene polymer compositions particularly suitable for gas pipes, said to have improved ESCR, comprising two or more kinds of ethylene polymers different in average molecular weight, at least one of which is a high molecular weight ethylene polymer having an intrinsic viscosity of 4.5 to 10.0 dl/g in decalin at 135 °C and a density of 0.910 to 0.930 g/cm 3 , and another of which is a low molecular weight ethylene polymer having an intrinsic viscosity of 0.5 to 2.0 dl/g, as determined for the first polymer, and a density of 0.938 to 0.970 g/cm 3 .
  • U.S. Patent No. 5,082,902 describes blends of linear polyethylenes for injection and rotational molding said to have reduced crystallization times with improved impact strength and ESCR.
  • the blends comprise: (a) a first polymer having a density of from 0.85 to 0.95 g/cm 3 and a melt index (MI) of 1 to 200 g/lOmin; and (b) a second polymer having a density of 0.015 to 0.15 g/cm 3 greater that the density of the first polymer and an MI differing by no more that 50% from the MI of the first polymer.
  • U.S. Patent No. 5,306,775 describes polyethylene blends said to have a balance of properties for processing by any of the known thermoplastic processes, specifically including improved ESCR. These compositions have: (a) low molecular weight ethylene resins made using a chromium oxide-based catalyst and having a density at least 0.955 g/cm and MI) between 25 and 400 g/lOmin; and (b) high molecular weight ethylene copolymer resins with a density not higher than 0.955 g/cm 3 and a high load melt index (HLMI) between 0.1 and 50 g/lOmin. [0011] U.S. Patent No.
  • 5,382,631 describes linear interpolymer polyethylene blends having molecular weight distribution (M w /M n ) ⁇ 3 and composition distribution (CDBI) ⁇ 50%, where the blends are generally free of fractions having higher molecular weight and lower average comonomer contents than other blend components. Improved properties for films, fibers, coatings, and molded articles are attributed to these blends.
  • a first component is an ethylene-butene copolymer with a density of 0.9042 g/cm 3 , M w /M n of 2.3, and an MI of 4.0 dg/min and a second component is a high density polyethylene (HDPE) with a density of 0.9552 g/cm 3 , M w /M n of 2.8, and an MI of 5.0 dg/min.
  • HDPE high density polyethylene
  • the blend is ascribed with improved tear strength characteristics.
  • polyolefin-based blend compositions suitable for injection molding, injection molded articles, and processes for injection ding articles are provided.
  • the invention provides a polyethylene composition including a first polyethylene having a melt index (I 2 . ⁇ 6 ) of 0.3 to 3.0 g/10 min and a density of from 0.905 to 0.938 g/cm 3 ; and a second polyethylene having a melt index of 10 to 500 g/10 min and a density of 0.945 to 0.975 g/cm 3 , wherein the composition has a density of from 0.920 to 0.973 g/cm 3 and a melt index of 2 to 200 g/10 min, and wherein the density of the second polyethylene is from 0.037 to 0.062 g/cm 3 greater than the density of the first polyethylene.
  • the first polyethylene is a metallocene-catalyzed polyethylene.
  • both the first and the second polyethylenes are metallocene-catalyzed polyethylenes.
  • the invention provides an injection molded article formed from or including a polyethylene composition, the polyethylene composition including a first polyethylene having a melt index of 0.3 to 3.0 g/10 min and a density of from 0.905 to 0.938 g/cm 3 ; and a second polyethylene having a melt index of 10 to 500 g/10 min and a density of 0.945 to 0.975 g/cm 3 , wherein the composition has a density of from 0.920 to 0.973 g/cm 3 and a melt index of 2 to 200 g/10 min, and wherein the density of the second polyethylene is from 0.037 to 0.062 g/cm 3 greater than the density of the first polyethylene.
  • the first polyethylene is a metallocene- catalyzed polyethylene.
  • both the first and the second polyethylenes are metallocene-catalyzed polyethylenes.
  • the invention provides a process for forming an injection molded article, the process carried out by: (a) providing a polyethylene composition, the polyethylene composition including a first polyethylene having a melt index of 0.3 to 3.0 g/10 min and a density of from 0.905 to 0.938 g/cm 3 ; and a second polyethylene having a melt index of 10 to 500 g/10 min and a density of 0.945 to 0.975 g/cm 3 , wherein the composition has a density of from 0.920 to 0.973 g/cm 3 and a melt index of 2 to 200 g/10 min, and wherein the density of the second polyethylene is from 0.037 to 0.062 g/cm 3 greater than the density of the first polyethylene
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the metallocene catalyzed polyethylene has an Mw/Mn ratio of from 1.4 to 4.0.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the metallocene catalyzed polyethylene has an Mw/Mn ratio of from 1.8 to 3.5.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the first polyethylene has a density of from 0.910 to 0.935 g/cm 3 .
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the first polyethylene has a melt index of 0.1 to 2.0 g/10 min.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the first polyethylene has a melt index of 0.1 to 1.0 g/10 min.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the first polyethylene has a melt index of 0.3 to 1.0 g/10 min.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the second polyethylene has a density of from 0.950 to 0.972 g/cm 3 .
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the second polyethylene has a density of from 0.955 to 0.970 g/cm 3 .
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the second polyethylene has a density of from 0.960 to 0.968 g/cm 3 .
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the second polyethylene has a melt index of 10 to 300 g/10 min.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the second polyethylene has a melt index of 30 to 200 g/10 min.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the second polyethylene has a melt index of 50 to 100 g/10 min.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the composition has a density of from 0.930 to 0.970 g/cm 3 .
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the composition has a density of from 0.940 to 0.965 g/cm 3 .
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the composition has a density of from 0.950 to 0.960 g/cm 3 .
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the density of the second polyethylene is from 0.038 to 0.062 g/cm 3 greater than the density of the first polyethylene.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the density of the second polyethylene is from 0.040 to 0.060 g/cm 3 greater than the density of the first polyethylene.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the composition has a melt index I. 2 . ⁇ 6 of from 3 to 100 g/10 min.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the composition has a melt index I. 2. ⁇ 6 of from 3 to 50 g/10 min.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the composition has a melt index I.2.16 of from 4 to 30 g/10 min.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, except that the composition has a melt index I.2.16 of from 4 to 10 g/10 min.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, wherein the blend includes 80% to 20% by weight of the first polyethylene and 20% to 80% by weight of the second polyethylene, based on the total weight of the first and second polyethylenes.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, wherein the blend includes 70% to 30% by weight of the first polyethylene and 30% to 70% by weight of the second polyethylene, based on the total weight of the first and second polyethylenes.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, wherein the blend includes 60% to 40% by weight of the first polyethylene and 40% to 60% by weight of the second polyethylene, based on the total weight of the first and second polyethylenes.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments, wherein at least one of the first and second polyethylenes is a blend of two or more polyethylene resins.
  • the invention provides a polyethylene composition, an injection molded article, or a process of forming an injection molded article, in accordance with any of the preceding embodiments except the immediately preceding embodiment, wherein the composition includes only the first and second polyethylenes, except that minor amounts of conventional additives can also be present.
  • inventive compositions surprisingly and advantageously provide improved ESCR for polyethylene injection molding applications, relative to compositions having the same melt index and density.
  • the first polyethylene of the polymer blends of the invention is a polyethylene copolymer derived from the coordination polymerization of principally ethylene with a minor amount of one or more copolymerizable monomers.
  • Particularly improved end-product properties are obtained using such copolymers having a narrow molecular weight distribution (Mw/Mn, or "MWD"), e.g., Mw/Mn of from a lower limit of 1.4 or 1.6 or 1.8 or 2.0 to an upper limit of 4.0 or 3.8 or 3.5 or 3.0, with ranges from any lower limit to any upper limit being contemplated.
  • Mw/Mn narrow molecular weight distribution
  • Suitable comonomers include C -C 20 alpha-olefins, preferably C 3 - C 8 , C 5 -C o cyclic olefins, preferably C 7 -C ⁇ 2 cyclic olefins, C 7 -C 20 vinyl aromatic monomers, preferably styrene, and C 4 -C 20 geminally disubstituted olefins, preferably isobutylene.
  • the most preferred comonomers include propylene, 1- butene, 1-hexene, 4-methyl-l-pentene and 1-octene.
  • the density of the copolymer is determined largely by comonomer content and typically ranges from 0.905 or 0.910 g/cm 3 to 0.938 or 0.935 g/cm 3 , with ranges from any lower limit to any upper limit being contemplated. Some amount of long-chain branching may be present, but the density limitations are largely due to the presence of comonomer.
  • These ethylene copolymers are of higher molecular weight than the second polyethylene of the blends, as shown by a melt index I 2. ⁇ 6 as measured according to ASTM D1238, condition 190 °C. 2.16 kg (formerly condition "E"), of from 0.1 or 0.3 to 3.0 or 2.0 or 1.0 g/10 min, with ranges from any lower limit to any upper limit being contemplated.
  • the second polyethylene of the polymer blends of the invention has a higher density and a lower molecular weight than the first polyethylene.
  • the second polyethylene can be derived from ethylene and, optionally, minor amounts of any of the comonomers listed above for the first polyethylene.
  • the density can be from a lower limit of 0.945 or 0.950 or 0.955 or 0.960 g/cm 3 to an upper limit of 0.975 or 0.972 or 0.970 or 0.968 g/cm 3 , with ranges from any lower limit to any upper limit being contemplated. It should be appreciated that, the specific choice of densities must be consistent with the density differences described herein.
  • the melt index I 2 . ⁇ 6 of the second polyethylene can be from a lower limit of 10 or 30 or 50 to an upper limit of 500 or 300 or 200 or 100 g/10 min, with ranges from any lower limit to any upper limit being contemplated.
  • the second polyethylene can be any conventional polyethylene having the properties described herein, and can have a broad or narrow molecular weight distribution.
  • the second polyethylene has a value of Mw/Mn of from a lower limit of 1.4 or 1.6 or 1.8 or 2.0 to an upper limit of 4.0 or 3.8 or 3.5 or 3.0, with ranges from any lower limit to any upper limit being contemplated.
  • Metallocene catalysts are representative "single site catalysts" and are preferred in this invention in embodiments having narrow molecular weight distribution polyolefins.
  • the processes are conducted at temperatures of from about -100 °C to 150 °C, more typically from about 40 °C to 120 °C, at pressures up to about 7000 kPa, typically from about 690 kPa to 2415 kPa. Continuous processes using fluidized beds and recycle streams as the fluidizing medium are preferred.
  • Slurry polymerization processes are suitable for both components and particularly suited for the high density components of the invention.
  • the polymerization medium can be either a liquid monomer, like propylene, or a hydrocarbon solvent or diluent, advantageously aliphatic paraffin such as propane, isobutane, hexane, heptane, cyclohexane, etc. or an aromatic one such as toluene.
  • Slurry solids typically include the forming polymer and inert carrier-supported catalysts. Catalysts are typically Ziegler-Natta, and/ or one or more single site catalysts, such as metallocenes.
  • the polymerization temperatures may be those considered low, e.g., less than 50 °C, typically 0 °C-30 °C, or may be in a higher range, such as up to about 150 °C, typically from 50 °C up to about 80 °C, or at any ranges between the end points indicated. Pressures can vary from about 100 to about 700 psia (0.76-4.8 MPa). Additional description is given in U.S. Patent Nos. 4,182,810, 5,274,056, 6,319,997, 6,380,325, 6,420,497, WO 94/21962 and WO 99/32531.
  • the polyethylene blend compositions in accordance with the present invention can include the first polyethylene in an amount of from a lower limit of 20 or 30 or 40 wt% to an upper limit of 80 or 70 or 60 wt%, based on the total weight of the first and second polyethylenes, with ranges from any lower limit to any upper limit being contemplated.
  • the polyethylene blend compositions in accordance with the present invention can include the second polyethylene in an amount of from a lower limit of 20 or 30 or 40 wt% to an upper limit of 80 or 70 or 60 wt%, based on the total weight of the first and second polyethylenes, with ranges from any lower limit to any upper limit being contemplated.
  • first polyethylene and the second polyethylene can be a sub-blend of two or more polyethylenes so long as the sub- blend has the properties described herein.
  • the polyethylene blend composition can further include additional polymeric components, including additional polyethylenes, provided that the overall blend composition has the recited properties.
  • additional polymeric components including additional polyethylenes, provided that the overall blend composition has the recited properties.
  • the weight percentages recited herein for the first and second polyethylene components are based on the total weight (100%) of the first and second polyethylene components.
  • the blend can have a density of from a lower limit of 0.920 or 0.930 or 0.940 or 0.950 g/cm 3 to an upper limit of 0.973 or 0.970 or 0.965 or 0.960 g/cm 3 , with ranges from any lower limit to any upper limit being contemplated.
  • the blend can have a difference in the density of the first and second polyethylenes, with the density of the second polyethylene being greater, of from a lower limit of 0.037 or 0.038 or 0.040 g/cm 3 to an upper limit of 0.062 or 0.060 g/cm 3 , with ranges from any lower limit to any upper limit being contemplated.
  • ⁇ 6 of the blend can be from a lower limit of 2 or 3 or 4 g/10 min to an upper limit of 200 or 100 or 50 or 30 or 10 /10 min.
  • the first and second polyethylenes have weight average molecular weights Mwi and Mw 2 , respectively, conforming to the relationship
  • ESCR is inversely proportional to density, and inversely proportional to melt index. It has been surprisingly found that polyethylene blend compositions of the invention show ESCR values greater than those of conventional compositions having the same density and melt index, but not having the inventive combination of properties described herein, such as melt indexes, densities, and density differences.
  • Additives may be used as needed.
  • Typical additives include one or more of antioxidants, anti-static agents, UV stabilizers, foaming agents, processing aids, nucleating agents, nanocomposites, fiber reinforcements and pigments.
  • Illustrative pigments or colorants include titanium dioxide, carbon black, cobalt aluminum oxides such as cobalt blue, and chromium oxides such as chromium oxide green. Pigments such as ultramarine blue, which is a silicate. Phthalocyanine blue and iron oxide red will also be suitable. Such are typically used an amounts from 0 wt% to not more than about 15 wt%, based on the total weight of the first and second polyethylene components. 6.
  • Mz, Mw and Mn can be measured using gel permeation chromatography (GPC), also known as size exclusion chromatography (SEC).
  • GPC gel permeation chromatography
  • SEC size exclusion chromatography
  • This technique utilizes an instrument containing columns packed with porous beads, an elution solvent, and detector in order to separate polymer molecules of different sizes.
  • the GPC instrument used is a Waters chromatograph equipped with ultrastyro gel columns operated at 145 °C.
  • the elution solvent used is trichlorobenzene.
  • the columns are calibrated using sixteen polystyrene standards of precisely known molecular weights. A correlation of polystyrene retention volume obtained from the standards, to the retention volume of the polymer tested yields the polymer molecular weight.
  • Average molecular weights M can be computed from the expression:
  • M is the number of molecules having a molecular weight M,.
  • M is the number average molecular weight Mn.
  • M is the weight average molecular weight Mw.
  • M is the Z-average molecular weight Mz.
  • the desired MWD function (e.g., Mw/Mn or Mz/Mw) is the ratio of the corresponding M values. Measurement of M and MWD is well known in the art and is discussed in more detail in, for example, Slade, P. E.
  • Environmental Stress Crack Resistance (bent strip) is determined in accordance with ASTM D 1693, condition B, 10% IGEPALTM.
  • IGEPALTM is a nonylphenoxy poly(ethylenoxy)ethanol surfactant available from Rhone Polenc, Cranbury, NJ. All ESCR values cited herein are ASTM D 1693 condition B, 10% IGEPALTM F50 values, and are given in units of hours.
  • Polymer density (g/cm 3 ) is determined using a compression molded sample, cooled at 15 °C per hour and conditioned for 40 hours at room temperature according to ASTM D1505-68 and ASTM D1928, procedure C.
  • Polymer melt flow rates can be determined at 190 °C according to ASTM D-1238.
  • I 2 ⁇ . 6 is the "flow index” or melt flow rate of the polymer measured according to ASTM D-1238, condition 190 °C, 21.6 kg, and I 2.
  • ⁇ 6 is the "melt index” or melt flow rate of the polymer measured according to ASTM D-1238, condition 190 °C, 2.16 kg.
  • the ratio of I 2 ⁇ . 6 to I 2 . ⁇ 6 is the "melt flow ratio" or "MFR”.
  • the melt flow rate I 2 ⁇ . 6 is also sometimes termed the "high load melt index” or HLMI. Melt flow rates are reported in units of grams per 10 minutes (g/10 min) or equivalently decigrams per minute (dg/min).
  • Table 1 illustrates the invention in examples la-b through 8a-3b, with comparative examples Comp 1 and Comp 2a-c. Each "a" row illustrates a first polyethylene component and each "b" row illustrates a second polyethylene component. In Comp 2, the "c" row indicates a third polyethylene component.
  • the column " ⁇ density” provides the difference in density of the two components for each illustrated blend. In Comp 2, the difference in density is the difference between components 2a and 2c.
  • Comp 1 illustrates a comparative single polyethylene component within the density and melt index range typical for injection molding compositions.
  • Comp 2 illustrates a comparative blend where the density difference is less than 0.037 g/cm but the blend melt index and density are the same as Example 1.
  • the polyethylene resins in Table 1 were prepared generally in accordance with the examples in U.S. Patent No. 5,382,631, except where noted.
  • ESCR values in Table 1 given as ranges indicate that the sample failure occurred at an undetermined time between the times shown.
  • the ESCR value for blend 6a/6b indicates that the sample was intact when testing was stopped at 605 hours.
  • Comparative Examples 1 and 2 have the same density as Example 1 , and the same or comparable melt index, but show poor ESCR performance (4.5 hours versus 78.5-143 hours).
  • HDPE for injection molding (HD6706, ExxonMobil Chemical)
  • TM symbol indicating that the names may be protected by certain trademark rights. Some such names may also be registered trademarks in various jurisdictions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Taps Or Cocks (AREA)
PCT/US2003/029598 2002-10-01 2003-09-18 Polyethylene compositions for injection molding Ceased WO2004031291A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004541585A JP2006501352A (ja) 2002-10-01 2003-09-18 射出成形用ポリエチレン組成物
DE60331562T DE60331562D1 (enExample) 2002-10-01 2003-09-18
EP20030776187 EP1546252B1 (en) 2002-10-01 2003-09-18 Polyethylene compositions for injection molding
AU2003283960A AU2003283960A1 (en) 2002-10-01 2003-09-18 Polyethylene compositions for injection molding
CA 2498086 CA2498086C (en) 2002-10-01 2003-09-18 Polyethylene compositions for injection molding
AT03776187T ATE459680T1 (de) 2002-10-01 2003-09-18 Polyethylenmischungen zum spritzgiessen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US41495202P 2002-10-01 2002-10-01
US60/414,952 2002-10-01
US42453502P 2002-11-07 2002-11-07
US60/424,535 2002-11-07

Publications (2)

Publication Number Publication Date
WO2004031291A2 true WO2004031291A2 (en) 2004-04-15
WO2004031291A3 WO2004031291A3 (en) 2004-07-01

Family

ID=32073345

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2003/029598 Ceased WO2004031291A2 (en) 2002-10-01 2003-09-18 Polyethylene compositions for injection molding
PCT/US2003/029383 Ceased WO2004031293A1 (en) 2002-10-01 2003-09-18 Polyethylene compositions for rotational molding

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2003/029383 Ceased WO2004031293A1 (en) 2002-10-01 2003-09-18 Polyethylene compositions for rotational molding

Country Status (9)

Country Link
US (3) US7022770B2 (enExample)
EP (2) EP1546253B1 (enExample)
JP (2) JP2006501351A (enExample)
AT (2) ATE344295T1 (enExample)
AU (2) AU2003270758A1 (enExample)
BR (1) BR0314857A (enExample)
CA (2) CA2498086C (enExample)
DE (2) DE60309489T2 (enExample)
WO (2) WO2004031291A2 (enExample)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018720A1 (en) * 2005-07-21 2007-02-15 Exxonmobil Chemical Patents Inc. Polyethylene compositions for injection molding
EP1961777A1 (en) * 2007-02-26 2008-08-27 Borealis Technology Oy Polyolefin homo- or copolymer with decreased shrinkage sensivity and improved crystallization behavior
US8080294B2 (en) 2008-05-16 2011-12-20 Exxonmobil Oil Corporation Biaxially oriented LLDPE blends
US8709560B2 (en) 2004-12-16 2014-04-29 Exxonmobil Chemical Patents Inc. Polymeric compositions including their uses and methods of production
WO2016089311A1 (en) * 2014-12-04 2016-06-09 The Polyolefin Company (Singapore) Pte Ltd A polyethylene blend used on its own as a carrier for microfiber fabrication process
US10113017B2 (en) 2014-11-18 2018-10-30 Basell Polyolefine Gmbh Polyethylene composition having high stress cracking resistance
CN109438799A (zh) * 2018-08-22 2019-03-08 上海帆顺包装集团有限公司 适合200l以上中空吹塑桶用共混聚乙烯树脂及其制备方法与应用
WO2022136121A1 (en) 2020-12-22 2022-06-30 Ineos Europe Ag Polymer composition for caps and closures

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943700B2 (en) * 2002-10-01 2011-05-17 Exxonmobil Chemical Patents Inc. Enhanced ESCR of HDPE resins
US7396881B2 (en) * 2002-10-01 2008-07-08 Exxonmobil Chemical Patents Inc. Polyethylene compositions for rotational molding
GB0227666D0 (en) * 2002-11-27 2003-01-08 Borealis Tech Oy Use
GB0315685D0 (en) * 2003-07-04 2003-08-13 Solvay Polyolefins Europ Sa Polyethylene pipe resins
EP1709117B1 (en) * 2004-01-26 2009-10-28 The Procter and Gamble Company Fibers and nonwovens comprising polyethylene blends and mixtures
US7790826B2 (en) * 2004-05-06 2010-09-07 DowGlobal Technologies Inc. Polymer molding compositions
EP1600476A1 (en) * 2004-05-28 2005-11-30 Total Petrochemicals Research Feluy Use of polyetheresters for rotomolding
EP1600477A1 (en) * 2004-05-28 2005-11-30 Total Petrochemicals Research Feluy Use of thermoplastic composition comprising polyethylene glycol as additive
EP1600474A1 (en) * 2004-05-28 2005-11-30 Total Petrochemicals Research Feluy Use of fluoropolymers for rotomolding
EP1600475A1 (en) * 2004-05-28 2005-11-30 Total Petrochemicals Research Feluy Use of Thermoplastic Composition Comprising Polyether-Block Copolyamides as Additive
EP1600478A1 (en) * 2004-05-28 2005-11-30 Total Petrochemicals Research Feluy Use of thermoplastic composition comprising thermoplastic polyurethanes as additive
GB0427829D0 (en) * 2004-12-20 2005-01-19 Solvay Polyethylene composition for artificial turf
EP1721931A1 (en) * 2005-05-09 2006-11-15 Total Petrochemicals Research Feluy mono-layer rotomoulded articles prepared from blends comprising polyethylene
ATE492575T1 (de) * 2005-05-10 2011-01-15 Ineos Europe Ltd Neue copolymere
DE602006009540D1 (de) * 2005-08-24 2009-11-12 Dow Global Technologies Inc L und herstellungsverfahren dafür
WO2007094383A1 (ja) * 2006-02-15 2007-08-23 Mitsui Chemicals, Inc. 耐環境応力破壊改良剤及びこれを含んで成る耐環境応力破壊性改良樹脂組成物
US7592395B2 (en) * 2006-08-01 2009-09-22 Exxonmobil Chemical Patents Inc. Multimodal polyethylene for use in single piece beverage bottle caps and closures
US8198373B2 (en) * 2006-10-02 2012-06-12 Exxonmobil Chemical Patents Inc. Plastic toughened plastics
CA2569935A1 (en) * 2006-11-30 2008-05-30 Nova Chemicals Corporation Foamed rotomolded polyethylene
AU2007360724B2 (en) * 2007-10-30 2012-06-07 GuangZhou ACT Corporation An artificial turf and a method of manufacturing the same
US8436114B2 (en) 2010-10-21 2013-05-07 Exxonmobil Chemical Patents Inc. Polyethylene and process for production thereof
US8507103B2 (en) 2007-12-18 2013-08-13 Exxonmobil Chemical Patents Inc. Polyethylene and process for production thereof
US8431661B2 (en) 2010-10-21 2013-04-30 Exxonmobil Chemical Patents Inc. Polyethylene and process for production thereof
CA2629576C (en) * 2008-04-21 2016-01-05 Nova Chemicals Corporation Closures for bottles
US9187627B2 (en) * 2008-10-23 2015-11-17 Equistar Chemicals, Lp Polyethylene having faster crystallization rate and improved environmental stress cracking resistance
US8486323B2 (en) 2009-08-28 2013-07-16 Dow Global Technologies Llc Rotational molded articles, and method of making the same
EP3786216A1 (en) 2010-12-13 2021-03-03 Cytec Technology Corp. Processing additives and uses of same in rotational molding
US11267951B2 (en) 2010-12-13 2022-03-08 Cytec Technology Corp. Stabilizer compositions containing substituted chroman compounds and methods of use
US8173748B1 (en) 2010-12-17 2012-05-08 Exxonmobil Research And Engineering Company Heat-seal resin and package formed therefrom
US8492498B2 (en) 2011-02-21 2013-07-23 Chevron Phillips Chemical Company Lp Polymer compositions for rotational molding applications
US9371442B2 (en) 2011-09-19 2016-06-21 Nova Chemicals (International) S.A. Polyethylene compositions and closures made from them
CA2752407C (en) 2011-09-19 2018-12-04 Nova Chemicals Corporation Polyethylene compositions and closures for bottles
MX2014003884A (es) 2011-09-30 2014-09-22 Total Res & Technology Feluy Polietileno de alta densidad para tapas y tapones.
US8580893B2 (en) * 2011-12-22 2013-11-12 Fina Technology, Inc. Methods for improving multimodal polyethylene and films produced therefrom
CA2777386C (en) 2012-05-17 2020-06-30 Nova Chemicals Corporation Rotomolding resin
US9475927B2 (en) 2012-12-14 2016-10-25 Nova Chemicals (International) S.A. Polyethylene compositions having high dimensional stability and excellent processability for caps and closures
CA2798854C (en) 2012-12-14 2020-02-18 Nova Chemicals Corporation Polyethylene compositions having high dimensional stability and excellent processability for caps and closures
US9783663B2 (en) 2012-12-14 2017-10-10 Nova Chemicals (International) S.A. Polyethylene compositions having high dimensional stability and excellent processability for caps and closures
KR20160030084A (ko) * 2013-05-01 2016-03-16 다우 글로벌 테크놀로지스 엘엘씨 우수한 용융 강도 및 고밀도를 갖는 저밀도 에틸렌계 폴리머 조성물
CA2834068C (en) 2013-11-18 2020-07-28 Nova Chemicals Corporation Enhanced escr bimodal rotomolding resin
WO2016053483A1 (en) * 2014-10-03 2016-04-07 Exxonmobil Chemical Patents Inc. Polyethylene polymers, films made therefrom, and methods of making the same
BR112017005472B1 (pt) 2014-10-09 2021-07-27 Versalis S.P.A. Composição reticulável compreendendo polietileno, seu uso e produtos finais
CA2868640C (en) 2014-10-21 2021-10-26 Nova Chemicals Corporation Solution polymerization process
WO2016063205A2 (en) 2014-10-21 2016-04-28 Nova Chemicals (International) S.A. Dilution index
WO2016075163A1 (en) 2014-11-13 2016-05-19 Total Research & Technology Feluy Metallocene catalyzed polyethylene resin
EP3158000A1 (en) * 2014-11-13 2017-04-26 Total Research & Technology Feluy Rotomolded articles comprising at least one layer comprising a metallocene-catalyzed polyethylene resin
CN107108993A (zh) * 2014-11-13 2017-08-29 道达尔研究技术弗吕公司 包括经茂金属催化的聚乙烯树脂的滚塑制品
BR112017010265B1 (pt) * 2014-11-18 2021-11-23 Basell Polyolefine Gmbh Composição de polietileno que tem alta resistência à fissura sob tensão
US9758653B2 (en) 2015-08-19 2017-09-12 Nova Chemicals (International) S.A. Polyethylene compositions, process and closures
ITUB20153248A1 (it) * 2015-08-26 2017-02-26 Versalis Spa Polvere di polietilene, procedimento per la sua preparazione e suo utilizzo per stampaggio rotazionale
US9783664B1 (en) 2016-06-01 2017-10-10 Nova Chemicals (International) S.A. Hinged component comprising polyethylene composition
CA2942493C (en) * 2016-09-20 2023-08-01 Nova Chemicals Corporation Nucleated polyethylene blends and their use in molded articles
EP3555204B1 (en) 2016-12-19 2023-03-22 Dow Global Technologies LLC Conductor jacket and process for producing same
US10329412B2 (en) 2017-02-16 2019-06-25 Nova Chemicals (International) S.A. Caps and closures
US10442921B2 (en) 2017-04-19 2019-10-15 Nova Chemicals (International) S.A. Means for increasing the molecular weight and decreasing the density employing mixed homogeneous catalyst formulations
US10442920B2 (en) 2017-04-19 2019-10-15 Nova Chemicals (International) S.A. Means for increasing the molecular weight and decreasing the density of ethylene interpolymers employing homogeneous and heterogeneous catalyst formulations
US10683376B2 (en) 2017-11-07 2020-06-16 Nova Chemicals (International) S.A. Manufacturing ethylene interpolymer products at higher production rate
US10995166B2 (en) 2017-11-07 2021-05-04 Nova Chemicals (International) S.A. Ethylene interpolymer products and films
EP3710528B1 (en) * 2017-11-17 2022-04-20 TotalEnergies One Tech Belgium Polyethylene resin and caps or closures made therefrom
WO2019126845A1 (pt) 2017-12-26 2019-07-04 Braskem S.A. Composição para aplicação em processos de rotomoldagem, e, uso da composição
WO2019206965A1 (en) 2018-04-25 2019-10-31 Sabic Global Technologies B.V. Polyethylene compositions with improved environmental stress cracking resistance and methods of use
KR102571139B1 (ko) * 2018-06-08 2023-08-28 사빅 에스케이 넥슬렌 컴퍼니 피티이 엘티디 에틸렌 중합체 혼합물과 이의 제조방법 및 이를 이용한 성형품
WO2019240899A1 (en) 2018-06-13 2019-12-19 Exxonmobil Chemical Patents Inc. Polyolefin blend compositions
WO2019240913A1 (en) 2018-06-15 2019-12-19 Dow Global Technologies Llc Polymeric compounds for cable coatings and processes for producing same
CA3028148A1 (en) 2018-12-20 2020-06-20 Nova Chemicals Corporation Polyethylene copolymer compositions and articles with barrier properties
US10882987B2 (en) 2019-01-09 2021-01-05 Nova Chemicals (International) S.A. Ethylene interpolymer products having intermediate branching
CA3032082A1 (en) 2019-01-31 2020-07-31 Nova Chemicals Corporation Polyethylene compositions and articles with good barrier properties
ES2956270T3 (es) * 2019-05-31 2023-12-18 Nova Chem Int Sa Resina de rotomoldeo bimodal con mejor ductilidad y ESCR
CA3138893A1 (en) 2019-07-25 2021-01-28 Celine Bellehumeur Rotomolded parts prepared from bimodal polyethylene
US11046843B2 (en) 2019-07-29 2021-06-29 Nova Chemicals (International) S.A. Ethylene copolymers and films with excellent sealing properties
BE1027573B1 (fr) 2019-09-12 2021-04-13 Gd Consulting And Polymers S P R L Composition de polyethylene ayant un escr, une resistance aux chocs et une resistance a l'usure ameliores ainsi qu'un procede pour les preparer
MX2022004862A (es) 2019-11-01 2022-05-19 Nova Chem Int Sa Polietileno de alta densidad lineal con alta tenacidad y alta resistencia al agrietamiento por tension ambiental (escr).
US12378393B2 (en) 2020-04-20 2025-08-05 Nova Chemicals (International) S.A. Rotomolding compositions with low relative elasticity
JP2023532894A (ja) * 2020-06-30 2023-08-01 ダウ グローバル テクノロジーズ エルエルシー ポリエチレン組成物
CN113637250B (zh) * 2021-08-20 2023-08-18 赤途实业(上海)有限公司 一种容器盖用的聚合物组合物及容器盖
CN121002078A (zh) 2023-04-24 2025-11-21 诺瓦化学品(国际)股份有限公司 适用于中型散装容器应用的线性高密度聚乙烯组合物
WO2024224250A1 (en) 2023-04-24 2024-10-31 Nova Chemicals (International) S.A. Linear high-density polyethylene composition and rotomolded article
WO2025114949A1 (en) * 2023-12-01 2025-06-05 Nova Chemicals (International) S.A. Polyethylene rotomolding composition having improved adhesion properties to polyurethane

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE574560A (enExample) * 1958-01-08
JPS5910724B2 (ja) 1979-08-24 1984-03-10 旭化成株式会社 エチレンの連続重合法
JPS5692937A (en) * 1979-12-26 1981-07-28 Nippon Oil Co Ltd Resin composition for molding polyethylene film
JPS56120741A (en) * 1980-02-29 1981-09-22 Nippon Oil Co Ltd Polyethylene resin composition
JPS5734145A (en) * 1980-08-07 1982-02-24 Mitsui Petrochem Ind Ltd Ethylene-alpha-olefin copolymer composition
FR2493854B1 (fr) 1980-11-13 1985-10-11 Naphtachimie Sa Compositions de polyethylene ameliorees pour extrusion notamment pour extrusion-soufflage
US4438238A (en) * 1981-01-30 1984-03-20 Sumitomo Chemical Company, Limited Low density copolymer composition of two ethylene-α-olefin copolymers
JPS57126809A (en) * 1981-01-30 1982-08-06 Sumitomo Chem Co Ltd Ethylene/alpha-olefin copolymer
US4461873A (en) 1982-06-22 1984-07-24 Phillips Petroleum Company Ethylene polymer blends
US4547551A (en) * 1982-06-22 1985-10-15 Phillips Petroleum Company Ethylene polymer blends and process for forming film
CA1218181A (en) * 1983-04-21 1987-02-17 Asahi Kasei Kogyo Kabushiki Kaisha Polyethylene composition
US4577768A (en) 1983-11-03 1986-03-25 Owens-Illinois, Inc. Ethylene polymer blend and containers prepared therefrom
DE3681140D1 (de) 1985-06-27 1991-10-02 Mitsui Petrochemical Ind Polyaethylenzusammensetzung.
US4705829A (en) 1986-04-11 1987-11-10 Mobil Oil Corporation Low density polyethylene resin compositions and thermoplastic films thereof
JPS63154753A (ja) 1986-12-18 1988-06-28 Nippon Oil Co Ltd ポリエチレン系組成物
NL8700808A (nl) * 1987-04-07 1988-11-01 Philips Nv Werkwijze voor het bereiden van een luminescerend met eu2 geactiveerd strontium-aluminaat, op dergelijke wijze verkregen aluminaat en lagedrukkwikdampontladingslamp voorzien van een dergelijk aluminaat.
US4770912A (en) 1987-07-23 1988-09-13 Union Camp Corporation Polyethylene resin blend
US5015511A (en) 1988-05-12 1991-05-14 The Dow Chemical Company Linear low density ethylene interpolymers for injection molding
US5082902A (en) * 1988-07-22 1992-01-21 Mobil Oil Corporation Method for reducing cycle time and improving molded part impact energy and ESCR of linear high density polyethylene using a blend of two linear polyethylenes of different densities
ATE154060T1 (de) * 1988-09-30 1997-06-15 Exxon Chemical Patents Inc Lineare ethylen-copolymermischungen von copolymeren mit engen molekulargewichts- und kompositionsverteilungen
US5382631A (en) * 1988-09-30 1995-01-17 Exxon Chemical Patents Inc. Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distributions
US5382630A (en) 1988-09-30 1995-01-17 Exxon Chemical Patents Inc. Linear ethylene interpolymer blends of interpolymers having narrow molecular weight and composition distribution
JPH03115445A (ja) 1989-09-29 1991-05-16 Nippon Petrochem Co Ltd エチレン系重合体組成物
TW206240B (enExample) * 1990-02-13 1993-05-21 Mitsui Petroleum Chemicals Ind
US5519091A (en) * 1990-02-13 1996-05-21 Mitsui Petrochemical Industries, Ltd. Method for the preparation of ethylene polymer compositions
JP3045548B2 (ja) * 1990-12-28 2000-05-29 日本石油化学株式会社 ポリエチレン組成物
JPH0565373A (ja) 1991-09-06 1993-03-19 Nippon Petrochem Co Ltd ポリエチレン組成物
KR930006089A (ko) 1991-09-18 1993-04-20 제이 이이 휘립프스 폴리에틸렌 블렌드
CA2078366A1 (en) 1991-09-18 1993-03-19 Joel L. Martin Polyethylene blends
KR930006091A (ko) * 1991-09-18 1993-04-20 제이 이이 휘립프스 폴리에틸렌 블렌드 및 그로부터 제조된 필름, 병 또는 파이프
US5847053A (en) * 1991-10-15 1998-12-08 The Dow Chemical Company Ethylene polymer film made from ethylene polymer blends
JP3683525B2 (ja) * 1992-06-17 2005-08-17 三井化学株式会社 フィルム製造用エチレン系共重合体組成物およびそれから得られるフィルム
US5346732A (en) * 1992-08-04 1994-09-13 The Dow Chemical Company Performance super high flow ethylene polymer compositions
JP2002220500A (ja) * 1992-09-08 2002-08-09 Mitsui Chemicals Inc エチレン系共重合体組成物
BE1006439A3 (fr) 1992-12-21 1994-08-30 Solvay Societe Annonyme Procede de preparation d'une composition de polymeres d'ethylene, composition de polymeres d'ethylene et son utilisation.
US5428093A (en) * 1993-11-05 1995-06-27 Sealed Air Corporation Polyethylene blend compositions and methods for making same
US5405901A (en) 1994-07-06 1995-04-11 Union Carbide Chemicals & Plastics Technology Corporation Process of producing ethylene polymer blends in gas phase
US5858491A (en) * 1994-11-02 1999-01-12 Dow Belgium Hollow molded articles and process for manufacturing them
US5530055A (en) * 1994-12-09 1996-06-25 Needham; Donald G. Nucleated polyolefin-based composition for rotational molding
NO315857B1 (no) 1995-03-28 2003-11-03 Japan Polyolefines Co Ltd Etylen-<alfa>-olefin-kopolymer, blanding, film, laminert material, elektrisk isolerende material og strömkabel inneholdende denne
SE504455C2 (sv) * 1995-07-10 1997-02-17 Borealis Polymers Oy Kabelmantlingskomposition, dess användning samt sätt för dess framställning
JPH09194537A (ja) * 1996-01-23 1997-07-29 Mitsui Petrochem Ind Ltd 回転成形用樹脂
JP3017943B2 (ja) * 1996-08-27 2000-03-13 旭化成工業株式会社 樹脂被覆紙用ポリエチレン組成物
JP3803155B2 (ja) * 1997-01-08 2006-08-02 三井化学株式会社 ポリエチレン製成形体
JPH10195261A (ja) * 1997-01-14 1998-07-28 Ube Ind Ltd ブロー成形用ポリエチレン組成物
JP4024312B2 (ja) * 1997-06-20 2007-12-19 ザ ダウ ケミカル カンパニー エチレンポリマー組成物およびそれから加工された品
BE1011333A3 (fr) * 1997-08-20 1999-07-06 Solvay Procede de fabrication d'une composition de polymeres d'ethylene.
JP3776223B2 (ja) * 1997-12-11 2006-05-17 日本ポリオレフィン株式会社 気室シート及びその樹脂材料
AU2128099A (en) * 1998-03-18 1999-09-30 J.R. Courtenay (Nz) Limited A moulding material
US6509106B1 (en) 1998-08-18 2003-01-21 Eastman Chemical Company Blends containing linear low density polyethylene, high density polyethylene, and low density polyethylene particularly suitable for extrusion coating and films
GB9911934D0 (en) 1999-05-21 1999-07-21 Borealis As Polymer
JP2001089615A (ja) * 1999-07-16 2001-04-03 Mitsui Chemicals Inc 回転成形用ポリエチレン樹脂組成物およびその組成物を用いた回転成形体
US6362270B1 (en) 1999-08-12 2002-03-26 The Dow Chemical Company Thermoplastic compositions for durable goods applications
JP2002080531A (ja) * 1999-09-01 2002-03-19 Mitsui Chemicals Inc ポリエチレン中空成形体用樹脂およびその樹脂からなるポリエチレン中空成形体
JP2001226496A (ja) * 2000-02-15 2001-08-21 Japan Polyolefins Co Ltd ポリエチレン樹脂シートおよびその製造方法
US6809125B1 (en) * 2000-06-02 2004-10-26 Sealed Air Corporation (Us) Foam comprising polyolefin blend and method for producing same
GB0014547D0 (en) 2000-06-14 2000-08-09 Borealis Tech Oy Improvements in or relating to polymers
EP1201711A1 (en) 2000-10-27 2002-05-02 ATOFINA Research Polyethylene pipe resins and production thereof
EP1236770B1 (en) 2001-03-01 2006-06-07 Borealis Technology Oy Polyethylene compositions for rotomolding
JP2002348326A (ja) * 2001-05-25 2002-12-04 Japan Polychem Corp 容器用ポリエチレン樹脂組成物
JP2003128852A (ja) * 2001-10-30 2003-05-08 Sumitomo Chem Co Ltd 射出成形用ポリエチレン系樹脂組成物およびその射出成形体
CN100575405C (zh) * 2002-06-04 2009-12-30 联合碳化化学及塑料技术有限责任公司 聚合物组合物和由其制作管子的方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396878B2 (en) 2002-10-01 2008-07-08 Exxonmobil Chemical Patents Inc. Polyethylene compositions for injection molding
US8709560B2 (en) 2004-12-16 2014-04-29 Exxonmobil Chemical Patents Inc. Polymeric compositions including their uses and methods of production
WO2007018720A1 (en) * 2005-07-21 2007-02-15 Exxonmobil Chemical Patents Inc. Polyethylene compositions for injection molding
EP1961777A1 (en) * 2007-02-26 2008-08-27 Borealis Technology Oy Polyolefin homo- or copolymer with decreased shrinkage sensivity and improved crystallization behavior
US8080294B2 (en) 2008-05-16 2011-12-20 Exxonmobil Oil Corporation Biaxially oriented LLDPE blends
US10113017B2 (en) 2014-11-18 2018-10-30 Basell Polyolefine Gmbh Polyethylene composition having high stress cracking resistance
WO2016089311A1 (en) * 2014-12-04 2016-06-09 The Polyolefin Company (Singapore) Pte Ltd A polyethylene blend used on its own as a carrier for microfiber fabrication process
CN107001732A (zh) * 2014-12-04 2017-08-01 新加坡聚烯烃私营有限公司 本身作为用于微纤维制造过程的载体使用的聚乙烯共混物
CN109438799A (zh) * 2018-08-22 2019-03-08 上海帆顺包装集团有限公司 适合200l以上中空吹塑桶用共混聚乙烯树脂及其制备方法与应用
CN109438799B (zh) * 2018-08-22 2021-05-07 上海帆顺包装集团有限公司 适合200l以上中空吹塑桶用共混聚乙烯树脂及其制备方法与应用
WO2022136121A1 (en) 2020-12-22 2022-06-30 Ineos Europe Ag Polymer composition for caps and closures

Also Published As

Publication number Publication date
JP2006501351A (ja) 2006-01-12
WO2004031293A1 (en) 2004-04-15
EP1546252B1 (en) 2010-03-03
DE60331562D1 (enExample) 2010-04-15
US6969741B2 (en) 2005-11-29
ATE459680T1 (de) 2010-03-15
WO2004031291A3 (en) 2004-07-01
AU2003270758A1 (en) 2004-04-23
WO2004031293A8 (en) 2005-07-07
EP1546253B1 (en) 2006-11-02
US20040062942A1 (en) 2004-04-01
DE60309489T2 (de) 2007-08-16
DE60309489D1 (de) 2006-12-14
EP1546252A2 (en) 2005-06-29
US7022770B2 (en) 2006-04-04
CA2498087A1 (en) 2004-04-15
JP2006501352A (ja) 2006-01-12
US20040063861A1 (en) 2004-04-01
CA2498086C (en) 2012-02-07
BR0314857A (pt) 2005-08-02
CA2498086A1 (en) 2004-04-15
ATE344295T1 (de) 2006-11-15
AU2003283960A1 (en) 2004-04-23
US7307126B2 (en) 2007-12-11
EP1546253A1 (en) 2005-06-29
US20050215719A1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
CA2498086C (en) Polyethylene compositions for injection molding
US7396878B2 (en) Polyethylene compositions for injection molding
US7396881B2 (en) Polyethylene compositions for rotational molding
US9441062B2 (en) Multimodal polyethylene polymers and methods of making and using the same
AU2005300740B2 (en) Multimodal polyethylene composition with improved homogeneity
EP2668231B1 (en) Polyethylene composition
WO2017093390A1 (en) Hdpe
WO2016107869A1 (en) Hdpe
EP2130860A1 (en) Polymer
EP1819770B1 (en) Multimodal polyethylene composition obtainable with high activity catalyst
CN105899598A (zh) 聚合物共混物:hdpe与乙烯-降冰片烯或丙烯-降冰片烯共聚物
CN100420711C (zh) 用于注塑的聚乙烯组合物
JP7319357B2 (ja) 高い耐応力亀裂性及び優れた加工性のためのポリオレフィン樹脂ブレンド

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2498086

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004541585

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038234742

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003776187

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003776187

Country of ref document: EP