WO2004027098A1 - Procede de refroidissement rapide de pieces par transfert convectif et radiatif - Google Patents

Procede de refroidissement rapide de pieces par transfert convectif et radiatif Download PDF

Info

Publication number
WO2004027098A1
WO2004027098A1 PCT/FR2003/000053 FR0300053W WO2004027098A1 WO 2004027098 A1 WO2004027098 A1 WO 2004027098A1 FR 0300053 W FR0300053 W FR 0300053W WO 2004027098 A1 WO2004027098 A1 WO 2004027098A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
gas
cooling gas
cooling method
convective
Prior art date
Application number
PCT/FR2003/000053
Other languages
English (en)
Other versions
WO2004027098A8 (fr
Inventor
Linda Lefevre
Didier Domergue
Florent Chaffotte
Aymeric Goldsteinas
Laurent Pelissier
Original Assignee
L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Etudes Et Constructions Mecaniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=31970862&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2004027098(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude, Etudes Et Constructions Mecaniques filed Critical L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to BRPI0314597-2A priority Critical patent/BRPI0314597B1/pt
Priority to US10/511,785 priority patent/US20060048868A1/en
Priority to EP03712227A priority patent/EP1543170B8/fr
Priority to AU2003216799A priority patent/AU2003216799A1/en
Priority to JP2004537189A priority patent/JP4490270B2/ja
Priority to CA2498929A priority patent/CA2498929C/fr
Priority to MXPA05002716A priority patent/MXPA05002716A/es
Priority to DE60317912T priority patent/DE60317912T2/de
Publication of WO2004027098A1 publication Critical patent/WO2004027098A1/fr
Publication of WO2004027098A8 publication Critical patent/WO2004027098A8/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/767Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material with forced gas circulation; Reheating thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2241/00Treatments in a special environment
    • C21D2241/01Treatments in a special environment under pressure

Definitions

  • the present invention relates generally to the heat treatment of metals and more particularly to the gaseous quenching operation of steel parts which have previously undergone a heat treatment (such as heating before quenching, annealing, tempering) or thermochemical (such as carburizing, carbonitriding) .
  • a heat treatment such as heating before quenching, annealing, tempering
  • thermochemical such as carburizing, carbonitriding
  • gas quenching is generally carried out by circulating a pressurized gas in a closed circuit between a load and a cooling circuit.
  • gas quenching systems generally operate at pressures between four and twenty times atmospheric pressure (4 to 20 bars or 4,000 to 20,000 hectopascals). To designate the pressure, the bar will be used in this description as a unit, it being understood that a bar is equal to 1000 hPa.
  • FIG. 1 very schematically shows an example of a gas quenching installation.
  • This installation 1 contains a charge 2 to be cooled arranged in a sealed enclosure 3.
  • the charge is typically surrounded by deflection plates 4 to guide the circulation of gas.
  • a gas inlet 5 makes it possible to introduce a desired gas mixture under pressure, it being understood that the cooling gases can for example be introduced in the form of a pre-formed mixture or that several separate gas inlets can be provided to introduce various cooling gases separately.
  • a turbine 6 actuated by a motor 7 makes it possible to ensure the circulation of the gases, for example by passing from a cooling circuit 9 towards the load to be cooled 2.
  • the cooling circuit 9 commonly consists of pipes in which a fluid circulates cooling.
  • FIG. 1 The installation of FIG. 1 has only been shown as an example of one of many possible and existing structures for ensuring the circulation of a gas of cooling in an enclosure.
  • the pressure is of the order of 4 to 20 bars during the cooling phase.
  • Many variations are possible, as to the arrangement of the load, the direction of circulation of the gases and the mode of circulation of these gases.
  • the most commonly used gas for cooling is nitrogen since it is an inert and inexpensive gas.
  • its density is well suited to simple blower or turbine installations and its heat transfer coefficient is sufficiently satisfactory.
  • the temperature drop must be as rapid as possible so that the transformation of the steel takes place satisfactorily from the austenitic phase to the martensitic phase without going through pearlitic and / or bainitic phases.
  • one of the objects of the present invention is to provide a quenching installation using a thermally more efficient cooling gas than nitrogen but which is inexpensive and simple to use, making it possible to cool the most expensive materials. demanding.
  • Another object of the present invention is to provide a cooling process using a gas compatible with existing installations currently operating with nitrogen (and therefore requiring no significant modification of installation).
  • the present invention provides, in a process for rapidly cooling metal parts using a cooling gas under pressure, the use of a cooling gas which comprises one or more gases absorbing the radiation. infrared, chosen so as to improve the heat transfer to the part by combining the phenomena of radiative and convective transfers, and so as to improve the convective transfer coefficient compared to traditional nitrogen cooling conditions.
  • the cooling gas also comprises an additive gas chosen from helium, hydrogen or their mixtures.
  • the cooling gas also comprises an additional gas.
  • the composition of the cooling gas is also adjusted so as to obtain an average density of the cooling gas thus formed which is of the same order of magnitude as that of nitrogen.
  • the composition of the cooling gas is also adjusted so as to optimize the convective transfer coefficient with respect to the convective transfer coefficients of each of the constituents of the cooling gas taken individually.
  • the cooling operation is carried out within an enclosure where the parts to be treated are arranged, provided with a gas stirring system, and the composition of the cooling gas is also adjusted so as to obtain an average density cooling gas thus formed which is adapted to said agitation system of the enclosure, without it being necessary to make significant modifications to it.
  • the composition of the cooling gas is also adjusted so that, during the cooling phase of the parts, endothermic chemical reactions between one or more of the absorbent gases and another of the constituents of the cooling gas.
  • said gas absorbing infrared radiation is C0 2 .
  • Said gas absorbing infrared radiation is chosen from the group formed by saturated or unsaturated hydrocarbons, CO, H 2 0, NH 3 , NO, N 2 0, N0 and their mixtures.
  • the content of absorbing gas in the cooling gas is between 5 and 100%, preferably between 20 and 80%.
  • the cooling gas is a binary mixture C0 2 - He, whose C0 2 content is between 30 and 80%.
  • the cooling gas is a binary mixture C0 2 - H 2 , whose C0 content is between 30 and 60%.
  • a cooling gas recycling operation is carried out after use, capable of re-compressing the gas before subsequent use, and if necessary also separating and / or purifying so as to recover all or part of the constituents of the cooling gas.
  • the invention also relates to the use in a rapid cooling installation of metal parts using a pressurized cooling gas, installation optimized for operation under nitrogen, of a cooling gas comprising from 20 to 80% of a gas absorbing infrared radiation and 80 to 20% of hydrogen or helium or their mixtures, the composition of the cooling gas being adjusted so that it is not necessary to make significant modifications at installation.
  • a cooling gas comprising from 20 to 80% of a gas absorbing infrared radiation and 80 to 20% of hydrogen or helium or their mixtures, the composition of the cooling gas being adjusted so that it is not necessary to make significant modifications at installation.
  • FIGS. 2A and 2B show the convective heat transfer coefficient of different mixtures of gases at various pressures, in the case of a fluid flowing parallel between cylinders;
  • quenching gas a gas absorbing infrared radiation or a mixture based on such gases absorbing infrared radiation (hereinafter referred to as absorbing gas), such as carbon dioxide. (CO2) and added, if necessary, one or more gases having a good ability to transfer convective heat (hereinafter referred to as additive gas), such as helium or hydrogen.
  • absorbing gas such as carbon dioxide. (CO2)
  • additive gas one or more gases having a good ability to transfer convective heat
  • Such a mixture has the advantage, compared with traditional quenching gases or mixtures of gases using transparent gases with infrared radiation, such as nitrogen, hydrogen, and helium, of absorbing heat at both by convective and radiative phenomena, thereby increasing the overall heat flow extracted from a charge to be cooled.
  • complementary gas such as nitrogen
  • nitrogen envisaged both as a simple carrier gas and in a more active role allowing, as will be seen below, to optimize the properties of the gas mixture such as density, thermal conductivity, viscosity, etc.
  • Optimization should therefore be understood here to mean being at the maximum of the curve considered, or much lower (for example for economic reasons) but in any event so as to have a convective transfer coefficient which is better than each of the convective transfer coefficients of each of the constituents of the cooling gas taken individually.
  • a mixture of absorbent gas (and if necessary additive gas), possibly with the addition of complementary gases, under optimized density conditions such as 1 can be carried out in quenching facilities usually provided and optimized to operate in the presence of nitrogen.
  • nitrogen for example, carbon dioxide is mixed with helium, taken as an additive gas, so as to combine an optimization of the coefficient of heat transfer by convection and an average density of the mixture which is of the same order of magnitude as that of nitrogen.
  • Existing installations can then be used with comparable ventilation speeds and powers, and existing ventilation and gas deflection structures, without having to make significant modifications to the installation.
  • FIG. 2A represents, for pressures of 5, 10 and 20 bars, the convective heat transfer coefficient jj of a mixture of ⁇ 2 and helium, for various proportions of ⁇ 2 in the mixture.
  • the abscissa gives the relationship between the concentration of CO2, c (C02), and the total concentration of CO2 and He, c (C02 + He).
  • the convective heat transfer coefficient has a maximum for CO2 concentration values of between approximately 40 and 70%, in this case approximately 650 W / m ⁇ / K at 20 bars for a concentration of around 60%.
  • the mixture not only has the advantage of having a density close to that of nitrogen but in addition of having a higher convective heat transfer coefficient than that of pure CO2.
  • Figure 2B shows similar curves for mixtures of carbon dioxide (CO2) and hydrogen (H2).
  • CO2 carbon dioxide
  • H2 hydrogen
  • the convective heat transfer coefficient k jj is better for a mixture of carbon dioxide and hydrogen than for a mixture of C0 2 and helium.
  • FIG. 3 illustrates the result of calculations simulating the cooling by convective transfer of a steel cylinder with various cooling gases in the case of the flow of the mixture parallel to the length of the cylinders (cylinders simulating the case of elongated parts).
  • Curves have been shown for pure nitrogen (N2) / for a mixture with 60% of CO2 and 40% of helium, for pure hydrogen, and for a mixture with 40% of CO2 and 60% of hydrogen. It is found that it is this latter mixture which gives the best results, that is to say the greatest cooling rate between 850 and 500 ° C.
  • the improvement in the quenching rate is of the order of 20% relative to hydrogen alone and of the order of 100% relative to nitrogen alone.
  • the present invention is susceptible of various variants and modifications which will appear to those skilled in the art, in particular as regards the choice of gases, the optimization of the proportions of each gas, it being understood that the 'we can if desired use ternary mixtures such C ⁇ 2-H e -U2 and that we can possibly add other gases, called above complementary gases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Gas Separation By Absorption (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Furnace Details (AREA)
  • Radiation Pyrometers (AREA)

Abstract

Un procédé de refroidissement rapide de pièces métalliques à l'aide d'un gaz de refroidissement sous pression, se caractérisant en ce que le gaz de refroidissement comprend un (ou plusieurs) gaz principal absorbant le rayonnement infra-rouge, choisi de façon à améliorer le transfert thermique à la pièce en conjuguant les phénomènes de transferts radiatif et convectif, et de façon à optimiser le coefficient de transfert convectif.

Description

PROCEDE DE REFROIDISSEMENT RAPIDE DE PIECES PAR TRANSFERT CONVECTIF ET RADIATIF
La présente invention vise de façon générale le traitement thermique des métaux et plus particulièrement 1 ' opération de trempe gazeuse de pièces en acier ayant subi au préalable un traitement thermique (tel chauffage avant trempe, recuit, revenu) ou thermochimique (tel cémentation, carbonitruration) . De telles trempes gazeuses sont généralement réalisées en faisant circuler un gaz sous pression en circuit fermé entre une charge et un circuit de refroidissement. Pour des raisons pratiques, les installations de trempe au gaz fonctionnent généralement sous des pressions comprises entre quatre et vingt fois la pression atmosphérique (4 à 20 bars ou 4000 à 20000 hectopascals) . Pour désigner la pression, on utilisera dans la présente description comme unité le bar, étant entendu qu'un bar est égal à 1000 hPa.
La figure 1 représente de façon très schématique un exemple d'installation de trempe gazeuse. Cette installation 1 contient une charge 2 à refroidir disposée dans une enceinte étanche 3. La charge est typiquement entourée de plaques de déflection 4 pour guider la circulation de gaz . Une entrée de gaz 5 permet d'introduire sous pression un mélange gazeux souhaité étant entendu que 1 ' on peut par exemple introduire les gaz de refroidissement sous forme d'un mélange pré-formé ou que l'on peut prévoir plusieurs entrées de gaz distinctes pour introduire séparément divers gaz de refroidissement. Il est couramment prévu un accès de mise sous vide de 1 ' enceinte (non représenté) . Une turbine 6 actionnée par un moteur 7 permet d'assurer la circulation des gaz, par exemple en passant d'un circuit de refroidissement 9 vers la charge à refroidir 2. Le circuit de refroidissement 9 est couramment constitué de tuyaux dans lesquels circule un fluide de refroidissement.
L'installation de la figure 1 n'a été représentée qu'à titre d'exemple de l'une de nombreuses structures possibles et existantes pour assurer la circulation d'un gaz de refroidissement dans une enceinte. De façon classique, la pression est de l'ordre de 4 à 20 bars pendant la phase de refroidissement. De nombreuses variantes sont possibles, quant à la disposition de la charge, au sens de circulation des gaz et au mode de mise en circulation de ces gaz.
Pour des raisons pratiques, le gaz le plus couramment utilisé pour assurer le refroidissement est 1 ' azote étant donné qu'il s'agit d'un gaz inerte et peu coûteux. En outre, sa densité est bien adaptée à des installations simples à soufflantes ou turbines et son coefficient de transfert thermique est suffisamment satisfaisant. En effet, il est connu, dans les systèmes de trempe gazeuse, que la descente en température doit être la plus rapide possible pour que la transformation de l'acier se fasse de façon satisfaisante de la phase austénitique à la phase martensitique sans passer par des phases perlitique et/ou bainitique.
Toutefois, on s'aperçoit que dans certains cas critiques, les installations de trempe à 1 ' azote ne permettent pas d'obtenir une vitesse de décroissance en température suffisante. On a donc essayé des trempes à l'hydrogène ou à l'hélium. Un inconvénient de l'utilisation de ces gaz est que les installations existantes, dimensionnées pour la trempe sous azote, en particulier en ce qui concerne la puissance de ventilation, ne sont pas optimisées pour l'utilisation de gaz de densité sensiblement différente. En outre, l'hélium est un gaz sensiblement plus coûteux que l'azote, tandis que l'hydrogène présente des risques d'inflammabilité et son utilisation nécessite de prendre des précautions particulières.
Il faut d'ailleurs souligner que toutes ces approches antérieures (telles celles recommandant l'utilisation d'hydrogène ou d'hélium) étaient basées sur une recherche d'amélioration du seul transfert convectif au sein de la chambre de traitement.
Pour illustrer l'art antérieur, on peut également citer l'approche particulière du document EP-1 050 592, qui prévoit la présence de gaz tels C02 ou NH3 dans le gaz de trempe, mais en ne notant pas d'amélioration supplémentaire dans l'efficacité de trempe par rapport aux mélanges inertes déjà pratiqués, l'utilité de leur présence étant surtout liée d'après le document à deux aspects, d'une part l'obtention simultanée d'effets thermochimiques (oxydation, nitruration etc..) ce que l'on conçoit et d'autre part l'intégration physique facilité dans un procédé global de traitement thermique (ex : dans un procédé de cémentation) puisque la trempe en aval peut alors utiliser les même gaz que le traitement proprement dit situé en amont.
Toujours dans le domaine du C02, on pourra également se reporter aux deux documents suivants où lorsque C02 est évoqué dans des opérations de trempe c'est dans une toute autre application (par exemple en plasturgie comme dans le document WO 00/07790) ou encore sous forme liquide comme dans le document WO 97/15420.
Dans ce contexte , un des objets de la présente invention est de prévoir une installation de trempe utilisant un gaz de refroidissement thermiquement plus efficace que l'azote mais qui soit peu coûteux et simple à utiliser, permettant d'assurer le refroidissement des matériaux les plus exigeants.
Un autre objet de la présente invention est de prévoir un procédé de refroidissement utilisant un gaz compatible avec les installations existantes fonctionnant actuellement à l'azote (et donc ne nécessitant aucune modification significative d'installation) .
Pour atteindre ces objets, la présente invention prévoit, dans un procédé de refroidissement rapide de pièces métalliques à l'aide d'un gaz de refroidissement sous pression, l'utilisation d'un gaz de refroidissement qui comprend un ou plusieurs gaz absorbant le rayonnement infra-rouge, choisi (s) de façon à améliorer le transfert thermique à la pièce en conjuguant les phénomènes de transferts radiatif et convectif, et de façon à améliorer le coefficient de transfert convectif par rapport aux conditions traditionnelles de refroidissement sous azote.
On conçoit que la notion d' « amélioration par rapport aux conditions traditionnelles de refroidissement sous azote » doit s'entendre selon l'invention comme comparant des conditions identiques de pression, température ou encore installation de trempe.
Le procédé selon l'invention pourra par ailleurs adopter l'une ou plusieurs des caractéristiques techniques suivantes :
- le gaz de refroidissement comprend également un gaz additif choisi parmi l'hélium, l'hydrogène ou leurs mélanges .
- le gaz de refroidissement comprend en outre un gaz complémentaire. la composition du gaz de refroidissement est ajustée également de façon à obtenir une densité moyenne du gaz de refroidissement ainsi constitué qui soit du même ordre de grandeur que celle de l'azote. - la composition du gaz de refroidissement est ajustée également de façon à optimiser le coefficient de transfert convectif par rapport aux coefficients de transfert convectif de chacun des constituants du gaz de refroidissement pris individuellement. - l'opération de refroidissement est menée au sein d'une enceinte où sont disposées les pièces à traiter, munie d'un système d'agitation de gaz, et la composition du gaz de refroidissement est ajustée également de façon à obtenir une densité moyenne du gaz de refroidissement ainsi constitué qui soit adaptée audit système d'agitation de l'enceinte , sans qu'il soit nécessaire d'y apporter des modifications significatives . la composition du gaz de refroidissement est ajustée également de façon à ce qu'il puisse se produire, durant la phase de refroidissement des pièces, des réactions chimiques endothermiques entre le ou un des gaz absorbant et un autre des constituants du gaz de refroidissement .
- ledit gaz absorbant le rayonnement infra-rouge est le C02.
- ledit gaz absorbant le rayonnement infra-rouge est choisi dans le groupe formé des hydrocarbures saturés ou insaturés, de CO, H20, NH3, NO, N20, N0 et leurs mélanges. la teneur en gaz absorbant dans le gaz de refroidissement est comprise entre 5 et 100% , de préférence entre 20 et 80%.
- le gaz de refroidissement est un mélange binaire C02- He, dont la teneur en C02 est comprise entre 30 et 80 %.
- le gaz de refroidissement est un mélange binaire C02- H2, dont la teneur en C0 est comprise entre 30 et 60 %.
- on effectue une opération de recyclage du gaz de refroidissement après usage, apte à re-comprimer le gaz avant une utilisation ultérieure, et le cas échéant également à séparer et/ou épurer pour ainsi récupérer tout ou partie des constituants du gaz de refroidissement.
L'invention concerne également l'utilisation dans une installation de refroidissement rapide de pièces métalliques à l'aide d'un gaz de refroidissement sous pression, installation optimisée pour un fonctionnement sous azote, d'un gaz de refroidissement comprenant de 20 à 80% d'un gaz absorbant le rayonnement infra-rouge et de 80 à 20% d'hydrogène ou d'hélium ou de leurs mélanges, la composition du gaz de refroidissement étant ajustée pour qu'il ne soit pas nécessaire d' apporter de modifications significatives à l'installation. Comme on l'aura compris les notions selon l'invention de « choix » du ou des gaz absorbant, ou encore d' « ajustement » pour atteindre des propriétés souhaitées de coefficient de transfert, ou de densité ou encore de caractère endothermique, doit s'entendre comme concernant la nature des constituants du mélange et/ou leur teneur dans ce mélange. C'est donc le mérite de la présente invention de s'être démarquée de l'approche traditionnelle de l'art antérieur d'amélioration simple des conditions de transfert convectif, pour se rendre compte que la part du transfert radiatif dans le transfert thermique global est située entre environ 7 et 10% (dans la gamme allant de 400 à 1050 °C) , donc très significative, et qu'il était donc tout à fait avantageux de s'intéresser à cet aspect du transfert pour le prendre en compte et l'exploiter. ^ Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : - la figure 1, décrite précédemment, représente un exemple d'installation de trempe au gaz ;
- les figures 2A et 2B représentent le coefficient de transfert thermique convectif de différents mélanges de gaz à diverses pressions, dans le cas d'un fluide en écoulement parallèle entre des cylindres; et
- la figure 3 représente des courbes de variation de température en fonction du temps pour divers gaz de trempe utilisés dans les mêmes conditions.
Selon la présente invention, on propose d'utiliser comme gaz de trempe un gaz absorbant le rayonnement infra-rouge ou un mélange à base de tels gaz absorbant le rayonnement infrarouge (ci-après désigné par gaz absorbant) , tel que le dioxyde de carbone (CO2) et additionné le cas échéant d'un ou de plusieurs gaz présentant une bonne aptitude au transfert de chaleur convectif (ci-après désigné par gaz additif) , tel que l'hélium ou l'hydrogène.
Un tel mélange présente l'avantage, par rapport aux gaz ou mélanges de gaz de trempe traditionnels utilisant des gaz transparents aux rayonnements infra-rouges, comme l'azote, l'hydrogène, et l'hélium, d'absorber de la chaleur à la fois par phénomènes convectif et radiatif, augmentant ainsi le flux de chaleur global extrait d'une charge à refroidir.
On peut éventuellement ajouter à ce mélange, d'autres gaz, ci-après désignés par gaz complémentaire, tel que l'azote, envisagé aussi bien comme simple gaz porteur que dans un rôle plus actif permettant comme on le verra plus loin d'optimiser les propriétés du mélange de gaz comme la densité, la conductivité thermique, la viscosité etc..
Selon un des modes de réalisation de la présente invention, tel qu'illustré en figures 2A et 2B, on propose d'utiliser certains mélanges de gaz tels que définis ci-dessus, qui présentent en outre de meilleurs coefficients de transfert thermique convectif (kjj) en Watt par mètre carré et par Kelvin que chacun des gaz pris séparément.Comme on l'a vu précédemment en effet, selon un des modes avantageux de mise en œuvre de l'invention, on va ajuster la composition du gaz de refroidissement de façon à « optimiser » le coefficient de transfert convectif par rapport aux coefficients de transfert convectif de chacun des constituants du gaz de refroidissement pris individuellement. On doit entendre alors par « optimisation » ici le fait de se situer au maximum de la courbe considérée, ou bien plus bas (par exemple pour des raisons économique) mais en tout état de cause de façon à disposer d'un coefficient de transfert convectif qui soit meilleur que chacun des coefficients de transfert convectif de chacun des constituants du gaz de refroidissement pris individuellement .
Selon un autre mode avantageux de mise en oeuvre de la présente invention, il est proposé d'utiliser un mélange de gaz absorbant (et le cas échéant de gaz additif), avec éventuellement l'ajout de gaz complémentaires, dans des conditions optimisées de densité telles que 1 ' on peut effectuer une trempe dans des installations de trempe habituellement prévues et optimisées pour fonctionner en présence d'azote. Pour cela, on mélange par exemple au dioxyde de carbone de l'hélium, pris comme gaz additif, de telle sorte à combiner une optimisation du coefficient de transfert de chaleur par convection et une densité moyenne du mélange qui soit du même ordre de grandeur que celle de l'azote. On peut alors utiliser les installations existantes avec des vitesses et puissances de ventilation comparables et les structures de ventilation et de déflection de gaz existantes, sans avoir à apporter de modifications significatives à l'installation.
Ceci présente l'avantage que, dans une installation donnée, optimisée pour une trempe à l'azote, l'utilisateur pourra, en temps normal, quand cela convient aux matériaux envisagés, utiliser l'azote comme gaz de trempe et, seulement dans des cas particuliers des matériaux plus exigeants, i . e quand les conditions spécifiques des pièces ou des aciers à traiter nécessitent des traitements particuliers, utiliser par exemple le mélange de dioxyde de carbone et d'hélium donné en exemple ou encore le mélange de dioxyde de carbone et d'hydrogène également exemplifié ici.
Bien entendu comme il apparaîtra clairement à l'homme du métier, si l'invention a tout particulièrement été illustrée dans ce qui précède à l'aide du C02, d'autres gaz absorbant le rayonnement IR sont également envisageables ici sans sortir à aucun moment du cadre de la présente invention tels les hydrocarbures saturés ou insaturés, CO, H0, NH3, NO, N20, N02 et leurs mélanges.
De même si l'on a tout particulièrement insisté dans ce qui précède sur un mode avantageux de mise en œuvre de l'invention où l'on va ajuster les concentrations des différents gaz pour obtenir à la fois de bonnes performances de transfert thermique et des conditions de densité proches de l'azote afin de ne pas avoir à modifier de façon significative l'installation, on peut sans sortir du cadre de la présente invention choisir de privilégier les conditions optimum de transfert thermique, quitte à utiliser des mélanges de densité plus éloignée de celle de l'azote, et devoir alors apporter des modifications à l'installation, notamment au moteur d'agitation (adoption d'un moteur de puissance nominale différente, ou encore d'un système de variateur de vitesse) . Ceci pourrait être par exemple le cas pour un mélange gazeux comportant 90% de C0 et 10% d'hydrogène dont la densité est environ 40% plus élevée que celle de l'azote.
La figure 2A représente, pour des pressions de 5, 10 et 20 bars, le coefficient de transfert thermique convectif jj d'un mélange de ∞2 et d'hélium, pour diverses proportions de ∞2 dans le mélange. Ainsi, les abscisses donnent le rapport entre la concentration de CO2, c(C02), et la concentration totale de CO2 et He, c(C02+He). On s'aperçoit que le coefficient de transfert thermique convectif présente un maximum pour des valeurs de concentration de CO2 comprises entre environ 40 et 70%, en l'occurrence d'environ 650 W/m^/K à 20 bars pour une concentration de l'ordre de 60%. Ainsi, le mélange présente non seulement l'avantage d'avoir une densité voisine de celle de l'azote mais en plus de présenter un coefficient de transfert thermique convectif plus élevé que celui de CO2 pur. La figure 2B représente des courbes similaires pour des mélanges de dioxyde de carbone (CO2) et d'hydrogène (H2) . On s'aperçoit que l'on a un maximum du coefficient de transfert thermique convectif kjj pour des valeurs de concentration de CO2 comprises entre environ 30 à 50%, en l'occurrence d'environ 850 W/ir /K à 20 bars pour une concentration de l'ordre de 40%. En outre, on note que le coefficient de transfert thermique convectif kjj est meilleur pour un mélange de dioxyde de carbone et d'hydrogène que pour un mélange de C02 et d'hélium.
Un autre avantage de l'utilisation d'un tel mélange de dioxyde de carbone et d'hydrogène est que, dans les conditions usuelles de trempe de pièces en acier, il se produit des réactions chimiques endothermiques entre le C02 et l'hydrogène, ce qui contribue encore à la rapidité du refroidissement. Par ailleurs, on constate que, en présence de CO2 le risque d'explosion lié à l'hydrogène est sensiblement réduit, même s'il se produit une introduction malencontreuse d'oxygène.
La figure 3 illustre le résultat de calculs simulant le refroidissement par transfert convectif d'un cylindre en acier avec divers gaz de refroidissement dans le cas de l'écoulement du mélange parallèlement à la longueur des cylindres (cylindres simulant le cas de pièces allongées) . On a représenté des courbes pour l'azote pur (N2) / pour un mélange à 60% de CO2 et 40% d'hélium, pour de l'hydrogène pur, et pour un mélange à 40% de CO2 et 60% d'hydrogène. On constate que c'est ce dernier mélange qui donne les meilleurs résultats, c'est-à-dire la plus grande vitesse de refroidissement entre 850 et 500°C. Pour ce dernier mélange, l'amélioration de la vitesse de trempe est de l'ordre de 20% par rapport à l'hydrogène seul et de l'ordre de 100% par rapport à l'azote seul.
Bien entendu, comme déjà souligné précédemment, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme du métier, notamment en ce qui concerne le choix des gaz, l'optimisation des proportions de chaque gaz, étant entendu que l'on pourra si on le souhaite utiliser des mélanges ternaires tels Cθ2-He-U2 et que l'on pourra éventuellement rajouter d'autres gaz, appelés plus haut gaz complémentaires.

Claims

REVENDICATIONS
1. Procédé de refroidissement rapide de pièces métalliques à l'aide d'un gaz de refroidissement sous pression, caractérisé en ce que le gaz de refroidissement comprend un ou plusieurs gaz absorbant le rayonnement infra-rouge, choisi (s) de façon à améliorer le transfert thermique à la pièce en conjuguant les phénomènes de transferts radiatif et convectif, et de façon à améliorer le coefficient de transfert convectif par rapport aux conditions traditionnelles de refroidissement sous azote.
2. Procédé de refroidissement selon la revendication 1 caractérisé en ce que le gaz de refroidissement comprend également un gaz additif choisi parmi l'hélium, l'hydrogène ou leurs mélanges.
3. Procédé de refroidissement selon la revendication 1 ou 2 caractérisé en ce que le gaz de refroidissement comprend en outre un gaz complémentaire.
4. Procédé de refroidissement selon l'une des revendications 2 ou 3 , caractérisé en ce que la composition du gaz de refroidissement est ajustée également de façon à obtenir une densité moyenne du gaz de refroidissement ainsi constitué qui soit du même ordre de grandeur que celle de 1 ' azote.
5. Procédé de refroidissement selon l'une des revendications 2 à 4, caractérisé en ce que la composition du gaz de refroidissement est ajustée également de façon à optimiser le coefficient de transfert convectif par rapport aux coefficients de transfert convectif de chacun des constituants du gaz de refroidissement pris individuellement.
6. Procédé de refroidissement selon l'une des revendications 2 ou 3, caractérisé en ce que l'opération de refroidissement est menée au sein d'une enceinte où sont disposées les pièces à traiter, munie d'un système d'agitation de gaz, et en ce que la composition du gaz de refroidissement est ajustée également de façon à obtenir une densité moyenne du gaz de refroidissement ainsi constitué qui soit adaptée audit système d'agitation de l'enceinte , sans qu'il soit nécessaire d'y apporter des modifications significatives.
7. Procédé de refroidissement selon l'une des revendications 2 à 6, caractérisé en ce que la composition du gaz de refroidissement est ajustée également de façon à ce qu'il puisse se produire, durant la phase de refroidissement des pièces, des réactions chimiques endothermiques entre le ou un des gaz absorbant et un autre des constituants du gaz de refroidissement.
8. Procédé de refroidissement selon l'une des revendications précédentes, caractérisé en ce que ledit gaz absorbant le rayonnement infra-rouge est le C02.
9. Procédé de refroidissement selon l'une des revendications 1 à 7, caractérisé en ce que ledit gaz absorbant le rayonnement infra-rouge est choisi dans le groupe formé des hydrocarbures saturés ou insaturés, de CO, H20, NH3, NO, N20, N02 , et leurs mélanges.
10. Procédé de refroidissement selon l'une des revendications précédentes, caractérisé en ce que la teneur en gaz absorbant dans le gaz de refroidissement est comprise entre 5 et 100% , de préférence entre 20 et 80%.
11. Procédé de refroidissement selon l'une des revendications précédentes, caractérisé en ce que le gaz de refroidissement est un mélange binaire C02-He, dont la teneur en C02 est comprise entre 30 et 80 %.
12. Procédé de refroidissement selon l'une des revendications 1 à 9, caractérisé en ce que le gaz de refroidissement est un mélange binaire C02-H/ dont la teneur en C02 est comprise entre 30 et 60 %.
13. Procédé de refroidissement selon l'une des revendications précédentes, caractérisé en ce que l'on effectue une opération de recyclage du gaz de refroidissement après usage, apte à re-comprimer le gaz avant une utilisation ultérieure, et le cas échéant également à séparer et/ou épurer pour ainsi récupérer tout ou partie des constituants du gaz de refroidissement.
14. Utilisation dans une installation de refroidissement rapide de pièces métalliques à l'aide d'un gaz de refroidissement sous pression, installation optimisée pour un fonctionnement sous azote, d'un gaz de refroidissement comprenant de 20 à 80% d'un gaz absorbant le rayonnement infra- rouge et de 80 à 20% d'hydrogène ou d'hélium ou de leurs mélanges, la composition du gaz de refroidissement étant ajustée pour qu'il ne soit pas nécessaire d' apporter de modifications significatives à l'installation.
PCT/FR2003/000053 2002-09-20 2003-01-09 Procede de refroidissement rapide de pieces par transfert convectif et radiatif WO2004027098A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BRPI0314597-2A BRPI0314597B1 (pt) 2002-09-20 2003-01-09 Processo de resfriamento rápido de peças metálicas com o auxílio de um gás de resfriamento sob pressão
US10/511,785 US20060048868A1 (en) 2002-09-20 2003-01-09 Rapid cooling method for parts by convective and radiative transfer
EP03712227A EP1543170B8 (fr) 2002-09-20 2003-01-09 Procede de refroidissement rapide de pieces par transfert convectif et radiatif
AU2003216799A AU2003216799A1 (en) 2002-09-20 2003-01-09 Rapid cooling method for parts by convective and radiative transfer
JP2004537189A JP4490270B2 (ja) 2002-09-20 2003-01-09 対流および放射伝達による部材のための急速冷却方法
CA2498929A CA2498929C (fr) 2002-09-20 2003-01-09 Procede de refroidissement rapide de pieces par transfert convectif et radiatif
MXPA05002716A MXPA05002716A (es) 2002-09-20 2003-01-09 Metodo de enfriamiento rapido para piezas, por medio de la transferencia por conveccion y radiacion.
DE60317912T DE60317912T2 (de) 2002-09-20 2003-01-09 Verfahren zum schnellen abkühlen von werkstücken durch konvektiver und strahlungs-übertragung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0211680A FR2844809B1 (fr) 2002-09-20 2002-09-20 Procede de refroidissement rapide de pieces par transfert convectif et radiatif
FR02/11680 2002-09-20

Publications (2)

Publication Number Publication Date
WO2004027098A1 true WO2004027098A1 (fr) 2004-04-01
WO2004027098A8 WO2004027098A8 (fr) 2005-09-29

Family

ID=31970862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000053 WO2004027098A1 (fr) 2002-09-20 2003-01-09 Procede de refroidissement rapide de pieces par transfert convectif et radiatif

Country Status (14)

Country Link
US (1) US20060048868A1 (fr)
EP (1) EP1543170B8 (fr)
JP (1) JP4490270B2 (fr)
KR (1) KR100953818B1 (fr)
CN (1) CN100567516C (fr)
AT (1) ATE380256T1 (fr)
AU (1) AU2003216799A1 (fr)
BR (1) BRPI0314597B1 (fr)
CA (1) CA2498929C (fr)
DE (1) DE60317912T2 (fr)
ES (1) ES2297138T3 (fr)
FR (1) FR2844809B1 (fr)
MX (1) MXPA05002716A (fr)
WO (1) WO2004027098A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050814A2 (fr) * 2004-11-11 2006-05-18 Linde Aktiengesellschaft Dispositif servant a refroidir des objets oblongs
WO2007031667A1 (fr) * 2005-09-16 2007-03-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Methode pour se premunir de la formation de monoxyde de carbone lors d'une operation de trempe gazeuse
EP1837410A1 (fr) * 2006-03-21 2007-09-26 Linde Aktiengesellschaft Procédé et dispositif de réfrigération rapide de pièces d' ouvrage
US11802715B2 (en) 2017-07-07 2023-10-31 Synhelion Sa Method for transferring the heat contained in a gas, and heat exchanger for this purpose
US12078389B2 (en) 2017-05-10 2024-09-03 Synhelion Sa Method for operating a receiver and receiver for carrying out the method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275251B (zh) * 2016-04-08 2020-10-16 上海新昇半导体科技有限公司 降低预抽腔体中芯片温度的方法及芯片降温装置
KR102080934B1 (ko) 2018-04-18 2020-02-24 (주)알룩스메뉴펙처링 알루미늄 합금 실린더블록 및 실린더헤드의 급속 에어냉각장치
CH715527A2 (de) * 2018-11-08 2020-05-15 Eni Spa Verfahren zum Betrieb eines Receivers und Receiver zur Ausführung des Verfahrens.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562250A1 (fr) * 1992-03-17 1993-09-29 Joachim Dr.-Ing. Wünning Procédé et dispositif de trempe de pièces métalliques
EP0869189A1 (fr) * 1997-03-11 1998-10-07 Linde Aktiengesellschaft Procédé de trempe en milieu gazeux de pièces métalliques
EP1050592A1 (fr) * 1999-05-03 2000-11-08 Linde Technische Gase GmbH Procédé de traitement thermique de pièces métalliques
EP1211329A2 (fr) * 2000-12-04 2002-06-05 Praxair Technology, Inc. Procédé et dispositif pour la trempe à gaz sous pression élevée dans un four à atmosphère
WO2002044430A1 (fr) * 2000-11-30 2002-06-06 The Boc Group Plc Procede et appareil de trempe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173124A (en) * 1990-06-18 1992-12-22 Air Products And Chemicals, Inc. Rapid gas quenching process
SE504320C2 (sv) * 1995-06-22 1997-01-13 Aga Ab Förfarande och anläggning för behandling av komponenter med en gasblandning
FR2746112B1 (fr) * 1996-03-13 1998-06-05 Procede de traitement thermique en continu de bandes metalliques dans des atmospheres de nature differente
ATE225862T1 (de) * 1999-09-24 2002-10-15 Ipsen Int Gmbh Verfahren zur wärmebehandlung metallischer werkstücke

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0562250A1 (fr) * 1992-03-17 1993-09-29 Joachim Dr.-Ing. Wünning Procédé et dispositif de trempe de pièces métalliques
EP0869189A1 (fr) * 1997-03-11 1998-10-07 Linde Aktiengesellschaft Procédé de trempe en milieu gazeux de pièces métalliques
EP1050592A1 (fr) * 1999-05-03 2000-11-08 Linde Technische Gase GmbH Procédé de traitement thermique de pièces métalliques
WO2002044430A1 (fr) * 2000-11-30 2002-06-06 The Boc Group Plc Procede et appareil de trempe
EP1211329A2 (fr) * 2000-12-04 2002-06-05 Praxair Technology, Inc. Procédé et dispositif pour la trempe à gaz sous pression élevée dans un four à atmosphère

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOFFMANN R ET AL: "MOEGLICHKEITEN UND GRENZEN DER GASABKUEHLUNG", HAERTEREI TECHNISCHE MITTEILUNGEN, CARL HANSER VERLAG. MUNCHEN, DE, vol. 47, no. 2, 1 March 1992 (1992-03-01), pages 112 - 122, XP000267300, ISSN: 0341-101X *
PREISSER F ET AL: "HOCHDRUCK-GASABSCHRECKEN VON EINSATZ- UND VERGUETUNGSSTAEHLEN IN KALTEN KAMMERN", HAERTEREI TECHNISCHE MITTEILUNGEN, CARL HANSER VERLAG. MUNCHEN, DE, vol. 52, no. 5, 1 September 1997 (1997-09-01), pages 264 - 270, XP000702332, ISSN: 0341-101X *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006050814A2 (fr) * 2004-11-11 2006-05-18 Linde Aktiengesellschaft Dispositif servant a refroidir des objets oblongs
WO2006050814A3 (fr) * 2004-11-11 2007-12-13 Linde Ag Dispositif servant a refroidir des objets oblongs
WO2007031667A1 (fr) * 2005-09-16 2007-03-22 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Methode pour se premunir de la formation de monoxyde de carbone lors d'une operation de trempe gazeuse
FR2890979A1 (fr) * 2005-09-16 2007-03-23 Air Liquide Methode pour se premunir de la formation de monoxyde de carbone lors d'une operation de trempe gazeuse
EP1837410A1 (fr) * 2006-03-21 2007-09-26 Linde Aktiengesellschaft Procédé et dispositif de réfrigération rapide de pièces d' ouvrage
US12078389B2 (en) 2017-05-10 2024-09-03 Synhelion Sa Method for operating a receiver and receiver for carrying out the method
US11802715B2 (en) 2017-07-07 2023-10-31 Synhelion Sa Method for transferring the heat contained in a gas, and heat exchanger for this purpose

Also Published As

Publication number Publication date
AU2003216799A1 (en) 2004-04-08
EP1543170B8 (fr) 2008-04-23
FR2844809A1 (fr) 2004-03-26
DE60317912T2 (de) 2008-06-12
WO2004027098A8 (fr) 2005-09-29
BRPI0314597B1 (pt) 2015-06-09
EP1543170A1 (fr) 2005-06-22
ATE380256T1 (de) 2007-12-15
MXPA05002716A (es) 2005-11-17
JP2005539142A (ja) 2005-12-22
CA2498929C (fr) 2011-04-19
DE60317912D1 (de) 2008-01-17
BR0314597A (pt) 2005-08-09
JP4490270B2 (ja) 2010-06-23
KR20050084565A (ko) 2005-08-26
CN100567516C (zh) 2009-12-09
AU2003216799A8 (en) 2004-04-08
FR2844809B1 (fr) 2007-06-29
CN1681947A (zh) 2005-10-12
EP1543170B1 (fr) 2007-12-05
CA2498929A1 (fr) 2004-04-01
KR100953818B1 (ko) 2010-04-21
ES2297138T3 (es) 2008-05-01
US20060048868A1 (en) 2006-03-09

Similar Documents

Publication Publication Date Title
EP1543170B1 (fr) Procede de refroidissement rapide de pieces par transfert convectif et radiatif
EP2038210B1 (fr) Un reacteur avec gradient thermique controle pour la production d'hydrogene pur
EP0451050B1 (fr) Procédé et installation de traitement thermique d'objets avec trempe en milieu gazeux
WO2011117478A1 (fr) Zone de regeneration du catalyseur divisee en secteurs pour unites catalytiques regeneratives
FR3028530A1 (fr) Procede et installation de carbonitruration de piece(s) en acier sous basse pression et haute temperature
FR2746112A1 (fr) Procede de traitement thermique en continu de bandes metalliques dans des atmospheres de nature differente
FR2731693A1 (fr) Procede et installation de generation d'azote pour le traitement thermique
FR2810340A1 (fr) Cellule de trempe au gaz
BE1015109A3 (fr) Procede de traitemant thermique de bande metallique.
BE1017683A3 (fr) Procede, dispositif et systeme de traitement thermique d'une bande metallique en defilement.
CA2766788A1 (fr) Traitement cryogenique d'un acier martensitique a durcissement mixte
EP1844169B1 (fr) Cellule de trempe au gaz pour pieces en acier
WO2005108629A1 (fr) Procede de trempe sous gaz
EP1080243A1 (fr) Procede de carbonitruration a basse pression de pieces en alliage metallique
CA2165914A1 (fr) Procede et installation de traitement d'un melange gazeux comprenant de l'ozone
FR2722212A1 (fr) Procede et installation de traitement de cementation et de carbonitruration des aciers
BE1006163A4 (fr) Procede de traitement thermique d'objets metalliques sous atmosphere de protection.
EP2800723B1 (fr) Procédé de génération d'un mélange de gaz contenant du monoxyde de carbone et de l'hydrogène en proportions sensiblement égales
BE1015309A3 (fr) Procede de recuit de tole metallique.
WO2007031667A1 (fr) Methode pour se premunir de la formation de monoxyde de carbone lors d'une operation de trempe gazeuse
FR2939448A1 (fr) Procede de production d'une atmosphere gazeuse pour le traitement des metaux.
FR3119552A1 (fr) Purification de flux gazeux par adsorption avec pré-régénération en boucle fermée
Hoogewys et al. High-temperature oxidation of iron, Fe-0.5 wt.% Al and Fe-1 wt% Al alloys in CO 2 at atmospheric pressure
BE461261A (fr)
FR2524797A1 (fr) Dispositif pour la production d'air a basse temperature pour un traitement medical cryogenique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/002716

Country of ref document: MX

Ref document number: 2003712227

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2498929

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2004537189

Country of ref document: JP

Ref document number: 1020057004677

Country of ref document: KR

Ref document number: 20038222221

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003712227

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006048868

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10511785

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057004677

Country of ref document: KR

CFP Corrected version of a pamphlet front page
CR1 Correction of entry in section i

Free format text: IN PCT GAZETTE 14/2004 UNDER (71) DELETE "LEFEVRE, LINDA"; UNDER (72,75) ADD "LEFEVRE, LINDA [FR/FR]; 12-14, RUE SAINTE-FAMILLE, F-78000 VERSAILLES (FR) "

WWP Wipo information: published in national office

Ref document number: 10511785

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003712227

Country of ref document: EP