WO2004027055A1 - 新規カルボニル還元酵素、その遺伝子、およびその利用法 - Google Patents

新規カルボニル還元酵素、その遺伝子、およびその利用法 Download PDF

Info

Publication number
WO2004027055A1
WO2004027055A1 PCT/JP2003/011957 JP0311957W WO2004027055A1 WO 2004027055 A1 WO2004027055 A1 WO 2004027055A1 JP 0311957 W JP0311957 W JP 0311957W WO 2004027055 A1 WO2004027055 A1 WO 2004027055A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
benzyl
represented
formula
derivative
Prior art date
Application number
PCT/JP2003/011957
Other languages
English (en)
French (fr)
Inventor
Noriyuki Kizaki
Tozo Nishiyama
Yoshihiko Yasohara
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2004537990A priority Critical patent/JP4414337B2/ja
Priority to US10/528,000 priority patent/US7220564B2/en
Priority to AU2003264502A priority patent/AU2003264502A1/en
Priority to EP03797682A priority patent/EP1553170B1/en
Publication of WO2004027055A1 publication Critical patent/WO2004027055A1/ja
Priority to US11/730,549 priority patent/US7531329B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/22Preparation of oxygen-containing organic compounds containing a hydroxy group aromatic

Definitions

  • the present invention provides the following formula (1)
  • a polypeptide having an activity of producing (R) -N-benzyl-1-pyrrolidinol represented by the following: a polynucleotide encoding the polypeptide; an expression vector containing the polynucleotide; and transformation with the expression vector Related to the transformed transformant.
  • the present invention also relates to a method for producing an optically active alcohol, particularly an optically active N-benzyl-3-pyrrolidinol, an optically active 2-tetra-portal derivative, and an optically active 1-phenylethanol derivative using the transformant.
  • an optically active alcohol particularly an optically active N-benzyl-3-pyrrolidinol, an optically active 2-tetra-portal derivative, and an optically active 1-phenylethanol derivative using the transformant.
  • Optically active N-benzyl 3-pyrrolidinol, optically active 2-tetralol derivative, and optically active 1-funyelethanol derivative are useful compounds as raw materials for synthesis of pharmaceuticals, agricultural chemicals and the like. Background art
  • the method for producing optically active N-benzyl-13-pyrrolidinol is as follows: in the presence of an enzyme having an activity to stereoselectively reduce N-benzyl-3-pyrrolidinone, To optically active N-benzyl (I) a method for producing 3-pyrrolidinol (Japanese Patent Application Laid-Open No. 6-141876), a method of reacting N-benzyl-3-pyrrolidinone with microbial cells, cultures or processed products of microorganisms such as genus Depodascus; A method for producing optically active N_benzyl-3-pyrrolidinol (JP-A-10-150997) is known.
  • a baker's yeast is allowed to act on a 2-tetralone derivative having a substituent on a benzene ring to produce a corresponding optically active 2-tetralol derivative ( T etrahedron 51, 1 153 1, (1 995)) is known.
  • 2-halo-11- (substituted phenyl) ethanone is allowed to react with a microbe or a processed product thereof belonging to the genus Asibia or Pogatata, and the like.
  • 1- (Substituted phenol) ethanone with geotricum 'candidam' J. Org. Chem. 63, 8 957 (1998)
  • dried bacterial cells of (Geotrich um candid urn) are allowed to act to obtain optically active 1- (substituted fuunyl) ethanol. ing.
  • the present invention relates to a poly (vinyl alcohol) useful for producing various optically active alcohols including optically active N-benzyl-3-pyrrolidinol, optically active 2-tetralol derivative, optically active 1-phenylethanol derivative. It is an object to provide a peptide, a polynucleotide encoding the polypeptide, an expression vector containing the polynucleotide, and a transformant transformed with the expression vector. In addition, the present invention provides an optically active N-benzyl-3-pyrrolidinol, an optically active 2-tetraol derivative, and an optically active 1-phenyl ether using the transformant. It is an object of the present invention to provide a method for efficiently producing various optically active alcohols including phenol derivatives.
  • the present inventors have determined that a polypeptide having the activity of a polypeptide having the activity of stereoselectively reducing N-benzyl-1-pyrrolidinone and producing (R) -l-N-benzyl-3-pyrrolidinol can be used. Released.
  • useful optically active alcohols including not only optically active N-benzyl-3-pyrrolidinol, but also optically active 2-tetralolol derivative and optically active 1-phenylethanol derivative. was found to be able to be produced efficiently.
  • the present inventors have succeeded in isolating a polynucleotide encoding the polypeptide, and also creating an expression vector and a transformant, thereby completing the present invention.
  • the present invention is a polypeptide capable of stereoselectively reducing N-benzyl-13-pyrrolidinone to produce (R) -N-benzyl-3-pyrrolidinol. Further, the present invention is a polynucleotide encoding the above polypeptide. Further, the present invention is an expression vector containing the polynucleotide. Further, the present invention is a transformant which highly produces the above polypeptide.
  • the present invention relates to a useful compound, such as an optically active N-benzyl-3-pyrrolidinol, an optically active 2-tetralol derivative, and an optically active 1-phenylethanol derivative, using the transformant.
  • a useful compound such as an optically active N-benzyl-3-pyrrolidinol, an optically active 2-tetralol derivative, and an optically active 1-phenylethanol derivative.
  • polypeptide of the present invention examples include polypeptides having the following physicochemical properties (1) to (4).
  • the optimal temperature of action is 50 to 55 ° C
  • the molecular weight is about 55,000 in gel filtration analysis and about 28,000 in SDS polyacrylamide gel electrophoresis.
  • polypeptide of the present invention examples include: (a) a polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing; or (b) an amino acid sequence shown in SEQ ID NO: 1 in the sequence listing.
  • one or several amino acids in the amino acid sequence shown in SEQ ID NO: 1 in the Sequence Listing include a substituted, inserted, deleted or added amino acid sequence, and N-benzyl-3-pyrrolidinone is stereoselectively prepared.
  • a polypeptide comprising an amino acid sequence in which one or several amino acids have been substituted, inserted, deleted or added in the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing is known as Current Protocolsin Molecular Biology (J ohn Wileyand Sons, Inc., 1989), etc., and can be prepared by stereoselectively reducing N-benzyl-3-pyrrolidinone to give (R) —N— As long as it has the activity to produce benzyl 3-pyrrolidinol, it is included in the polypeptide of the present invention.
  • Such a polypeptide can be isolated from a microorganism having the activity.
  • Microorganisms used as a source of the polypeptide of the present invention include, but are not limited to, bacteria of the genus Deposia (DeVos ⁇ a), and particularly preferred are depotia.
  • DeVosia riboflavina I FO 13 584 strains can be mentioned.
  • the microorganism producing the polypeptide of the present invention may be either a wild-type strain or a mutant strain, or may be a microorganism derived by a genetic technique such as cell fusion or genetic manipulation. .
  • a microorganism that has been genetically engineered to produce the polypeptide of the present invention may comprise, for example, a step of isolating and / or purifying these polypeptides to determine a part or all of their amino acid sequence, To determine the nucleotide sequence of the polynucleotide encoding the polypeptide, and to introduce the polynucleotide into another microorganism to obtain a recombinant microorganism. Purification of the polypeptide from a microorganism having the polypeptide of the present invention can be performed by a conventional method. For example, the cells of the microorganism are cultured in an appropriate medium, and the cells are collected from the culture solution by centrifugation.
  • the obtained cells are disrupted by, for example, an ultrasonic disrupter, and the cell residue is removed by centrifugation to obtain a cell-free extract.
  • a cell-free extract for example, salting out (ammonium sulfate precipitation, sodium phosphate precipitation, etc.), solvent precipitation (protein fraction precipitation with acetone or ethanol, etc.), dialysis, gel filtration, ion exchange, reverse phase, etc.
  • the polypeptides can be purified by using techniques such as column chromatography and ultrafiltration alone or in combination.
  • the enzyme activity was determined by adding 5 mM of the substrate N-benzyl-1,3-pyrrolidinone, 25 mM of the capture enzyme NADHO.25, and the enzyme to 100 mM phosphate buffer (pH 6.5). It can be confirmed and calculated by measuring the decrease in absorbance at 340 nm at ° C.
  • any polynucleotide can be used as long as it encodes the above-mentioned polypeptide.
  • Polynucleotide having a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing Polynucleotides that hybridize with the nucleotides under stringent conditions are defined as follows: a polynucleotide having a nucleotide sequence complementary to the nucleotide sequence shown in SEQ ID NO: 2 in the sequence listing is used as a probe, and colony hybridization method, plaque 'Polynucleotides obtained by using the hybridization method or the Southern hybridization method.Specifically, using a filter in which polynucleotides derived from colonies or plaques are immobilized, 0.7-1.
  • Hybridization After hybridization at 65 ° C in the presence of NaC1 of OM, 0.1- to 2-fold concentration of SSC solution (composition of 1-fold concentration of 33 ⁇ solution) Consists of 150 mM sodium chloride and 15 mM sodium citrate), and can be identified by washing the filter at 65 ° C. Reochido can be mentioned. Hybridization can be performed according to the method described in Molecular Cloning, A laboratory manual, second edition (Cold Spring Harbor Laboratory Press, 1989) and the like.
  • the polynucleotide capable of hybridizing has a sequence identity of 60% or more, preferably 80% or more, more preferably 90 ° / 0 or more, and even more preferably 95% or more with the polynucleotide shown in SEQ ID NO: 2. %, Most preferably 99% or more, and the encoded polypeptide is capable of stereoselectively reducing N-benzyl-3-pyrrolidinone to (R) -N-benzyl-3-pyrrolidinol. It is included in the polynucleotide of the present invention as long as it has the activity of producing
  • sequence identity refers to the optimal alignment of two contrasted polynucleotides and the nucleobases (eg, A, T, C, G, U, or I) of both sequences. Divide the number of positions that match by the total number of comparison bases, and multiply this result by 100.
  • Sequence identity can be calculated, for example, using the following tools for sequence analysis: GCG Wi sconsin Package (Progr am Manu al for the Wi sconsin Package, Version 8, September 1994, Ge netics Comp uter Gr ou s 575 S ci ence Drive M adison, Wisconsin, USA 5371 l; R ice, P. (1996) Progr am Manu al for EG CGP ackage, Peter R ice, The Sanger Center N H inxton Hall, C amb ridge, CB 10 I RQ, England), and the Ex PAS y World Wid W eb Molecular Biology Sano (Geneva University Ho spita 1 and Universityof Geneva, geneva, Switzerland) ).
  • the polynucleotide of the present invention can be obtained from a microorganism having an activity of stereoselectively reducing N-benzyl-3-pyrrolidinone to produce (R) -N-benzyl-3-pyrrolidinol.
  • a microorganism for example, bacteria belonging to the genus Deposia (DeVosia) can be mentioned, and particularly preferred is Deposia 'riboflavina (DeVosiasariabiflavina) IFO13584 strain.
  • the following is an example of a method for obtaining the polynucleotide of the present invention from a microorganism having the activity of stereoselectively reducing N-benzyl_3-pyrrolidinone to produce (R) -N-benzyl-3-pyrrolidinol.
  • the present invention is not limited to this.
  • the partial amino acid sequence of the purified polypeptide and a peptide fragment obtained by digesting the polypeptide with an appropriate endopeptidase is determined by the Edman method. Then, nucleotide primers are synthesized based on the amino acid sequence information. Next, a conventional DNA isolation method, such as, for example, the method described in, for example, "Current Protocolsin Molecular Biology (John” Wileyand. Sons, Inc. 1989), etc., to prepare a chromosomal DNA of the microorganism.
  • PCR polymerase chain reaction
  • a portion of the polynucleotide encoding the polypeptide is amplified.
  • the amplified poly The nucleotide sequence of the nucleotide can be determined by the dideoxy sequence method, the dideoxy chain termination method, or the like.
  • the AB IPRI SM Dy eT e rm inator Cycling Sequencing R eady Reaction Kit manufactured by Perkin Elmer
  • ABI 373 A DNA Sequencer manufactured by Perkin Elmer.
  • the entire sequence can be determined by, for example, the i-PCR method (Nucl. Acids Res. 16, 8186 (1988)). Can be determined.
  • the base sequence of a mature polynucleotide containing no intron can be determined by, for example, the following method.
  • a normal nucleotide isolation method for example, from the microorganism which is the source of the polynucleotide, for example, Current Protocolsin Molecu 1 ar Biology (John Wileyand Sons, Inc., 1989) And the like to prepare inRNA of the microorganism.
  • RT-PCR Proc. Nati. Ac.
  • a nucleotide primer having a sequence near the 5 ′ end and the 3 ′ end of the polynucleotide, which had been identified previously. USA, 85, 8998 (1988)) to amplify the mature polynucleotide and determine its nucleotide sequence in the same manner as above.
  • the vector used to introduce the polynucleotide of the present invention into a host microorganism and express it in the host microorganism into which the polynucleotide has been introduced is a vector capable of expressing the gene in the polynucleotide in a suitable host microorganism. If so, any can be used. Examples of such a vector include those selected from a plasmid vector, a phage vector, a cosmid vector, and the like. Further, it may be a shuttle vector capable of gene exchange with another host strain.
  • Such vectors usually contain regulatory elements such as 1 ac UV5 promoter, trp promoter, trc promoter, tac promoter, lpp promoter, tufB promoter, recA promoter, pL promoter, etc. It can be suitably used as an expression vector containing an expression unit operably linked to the polynucleotide of the present invention.
  • promoter refers to a nucleotide sequence having a functional promoter and any associated transcription elements (eg, enhancer, CC AAT box, TATA box, SPI site, etc.).
  • operably linked refers to a polynucleotide which, when expressed in a host cell, contains various regulatory elements, such as promoters, enhancers, etc., that regulate its expression such that the gene in the polynucleotide is expressed. It is connected in a state where it can be operated with. It is well known to those skilled in the art that the type and type of the regulatory element may vary depending on the host cell.
  • Examples of host cells into which the expression vector containing the polynucleotide of the present invention is introduced include bacteria, yeast, filamentous fungi, plant cells, animal cells, and the like, and Escherichia coli is particularly preferred.
  • An expression vector containing the polynucleotide of the present invention can be introduced into a host cell by a conventional method.
  • Escherichia coli is used as a host cell
  • an expression vector containing the polynucleotide of the present invention can be introduced by, for example, the calcium chloride method.
  • coenzymes such as NAD H and NAD PH are used.
  • the capture enzyme usually requires an equimolar amount to the substrate. 1
  • coenzyme regeneration ability an enzyme having the ability to convert the oxidized coenzyme to the reduced form
  • enzymes having coenzyme regeneration ability include hydrogenase, formate dehydrogenase, alcohol dehydrogenase, aldehyde dehydrogenase, glucose 16-phosphate dehydrogenase, and glucose dehydrogenase. .
  • glucose dehydrogenase is used.
  • This reaction can also be carried out, but a transformant transformed with both the polynucleotide of the present invention and a polynucleotide encoding a polypeptide having coenzyme regeneration ability was used as a catalyst. In this case, the reaction can be carried out efficiently without separately preparing an enzyme having a coenzyme regeneration ability and adding it to the reaction system.
  • Such a transformant is obtained by incorporating the polynucleotide of the present invention and a polynucleotide encoding a polypeptide having a coenzyme regenerating ability (eg, glucose dehydrogenase) into the same vector and introducing the same into a host cell.
  • a polypeptide having a coenzyme regenerating ability eg, glucose dehydrogenase
  • these two polynucleotides can be obtained by incorporating these two polynucleotides into two vectors of different incompatibility groups and introducing the two vectors into the same host cell. .
  • the expression vector of the present invention contains the above-mentioned polynucleotide.
  • the expression vector is a plasmid: NTDR.
  • Examples of the expression vector of the present invention include those further containing a polynucleotide encoding a polypeptide having glucose dehydrogenase activity. It is preferable that the polypeptide having the glucosyl dehydrogenase activity is a glucose dehydrogenase derived from Bacillus megaterium (Baci11usmegateraurn). More preferred is an expression vector which is a plasmid: NTDRG1.
  • the transformant of the present invention is obtained by transforming a host cell using the above expression vector. Escherichia coli is preferred as the host cell.
  • E.coli HB101 (pNTDR) is the accession number of FERM BP-08457, effective August 25, 2003,
  • E. coli i HBlOl (pNTDRGl) is the accession number of FERM BP-08458, effective August 25, 2003,
  • the activity of an enzyme capable of regenerating a coenzyme in a transformant can be measured by a conventional method. For example, to measure glucose dehydrogenase activity, 0.1 M substrate glucose, 2 mM coenzyme NADP and enzyme are added to 1 M Tris-HCl buffer (pH 8.0), and the mixture is added at 25 ° C. This can be done by measuring the increase in absorbance at a wavelength of 340 nm.
  • optically active alcohols such as optically active N-benzyl 3-pyrrolidinol, optically active 2-tetralol derivative, and optically active 1-phenylnetanol derivative using the transformant of the present invention is as follows. It can be implemented as follows. That is, an optically active alcohol is produced by reacting a culture of a transformant or a processed product thereof with a compound having a phenolic group.
  • a compound having a carbonyl group serving as a substrate, a coenzyme such as NADH, and a culture of the transformant or a processed product thereof are added to an appropriate solvent, and the mixture is stirred under pH adjustment. Let react.
  • the culture of the transformant can be performed using a liquid nutrient medium containing a usual carbon source, nitrogen source, inorganic salts, organic nutrients, etc., as long as the microorganism grows.
  • the culture temperature is preferably 4 to 50 ° C.
  • the processed product of the transformant means, for example, a crude extract, a cultured cell, a freeze-dried organism, an acetone-dried organism, or a ground product thereof. Furthermore, they can be used by immobilizing the polypeptide itself or the cells as they are by known means.
  • the coenzyme regenerating reaction system may be used.
  • a substrate eg, glucose
  • the compound having a carbonyl group serving as a substrate for example, a compound represented by the formula (1)
  • RR 2 represents a hydrogen atom, a hydroxyl group or an alkoxy group, which may be the same or different, and n represents 1 or 2.
  • n represents 1 or 2.
  • R 3 and R 4 represent a hydrogen atom, a halogen atom, an alkoxy group or a -toro group, which may be the same or different; and R 5 represents a hydrogen atom, a halogen atom, a hydroxyl group or a substituent.
  • an alkyl group which may be present includes an 11-phenylethanone derivative represented by the following formula: More specifically, the compounds represented by the formulas (3) and (5) include, for example, 7-methoxy-2-tetralone, 3-methoxy-1,6,8,9-tetrahydr-5H-benzocyclo Heptene 1-one, 2-chloro 1- (4,1-fluorophene) ethanone, and 2-chloro-1-11 (3,1-chlorophene) ethanone.
  • optically active alcohol obtained by the above method examples include, for example, the formula (2)
  • the compounds represented by the formulas (4) and (6) include, for example, 7-methoxy-2-tetralol, 3-methoxy-6,7,8,9-tetrahydro-1 5H-benzocyclohexene-1 Honole, 2-chloro- 1- (4, -chlorophenol) ethanol, or 2-chloro-1- (3, cyclophenyl) ethanol.
  • the alkoxy group in RR 2 , R 3 and R 4 is an alkoxy group having 1 to 3 carbon atoms, such as a methoxy group, an ethoxy group and a propoxy group. Preferred is a methoxy group.
  • Examples of the halogen atom in R 3 and R ⁇ R 5 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group of the alkyl group which may have a substituent in R 5 is an alkyl group having 1 to 8 carbon atoms, and examples thereof include a methyl group, an ethyl group, a propyl group, a hexyl group, and an octyl group. No. Preferably, it is an alkyl group having 1 to 2 carbon atoms.
  • An aqueous solvent may be used for the reaction, or a mixture of an aqueous solvent and an organic solvent may be used. Is also good.
  • the organic solvent include toluene, hexane, diisopropyl ether, n-butyl acetate, ethyl acetate and the like.
  • the reaction temperature is 10 ° C to 70 ° C, preferably 20 to 40 ° C, and the reaction time is
  • reaction solution 1 to 100 hours, preferably 10 to 50 hours.
  • pH of the reaction solution is maintained at 4 to 10, preferably 5 to 8, using, for example, hydrochloric acid, an aqueous solution of sodium hydroxide, or an aqueous solution of sodium carbonate.
  • the reaction can be performed in a batch mode or a continuous mode.
  • the reactant is added at a charge concentration of 0.1% to 70 ° / 0 (w / v). ⁇
  • optically active alcohol generated by the reaction can be purified by a conventional method.
  • the optically active alcohol produced by the reaction is N-benzyl-1-pyrrolidinol, 7-methoxy
  • FIG. 1 is a diagram showing a polynucleotide sequence and a deduced amino acid sequence of the present invention.
  • FIG. 2 is a diagram showing a method and a structure of a recombinant plasmid pNTDRG1. BEST MODE FOR CARRYING OUT THE INVENTION
  • N-benzyl-3-pyrrolidinone can be stereoselectively reduced from Deposia 'riboflavina (D e ⁇ , ⁇ siaribof 1 avina) IFO 13584 to give (R) — N-benzyl-13-pyrrolidinol
  • the enzyme having the activity of producing was purified solely. Unless otherwise noted, purification operations were performed at 4 ° C.
  • the cells were collected by centrifugation from 28,000 ml of the above culture solution, the cells were washed with physiological saline to obtain 363 g of wet cells of the strain.
  • the wet cells were suspended in 500 ml of 1 O OmM phosphate buffer (pH 7.0), and crushed using a SONIFIER 250 type ultrasonic crusher (manufactured by BRAN SON). Cell debris was removed from the crushed product by centrifugation to obtain 840 ml of a cell-free extract.
  • the beaker containing the cell-free extract was immersed in a constant temperature water bath at 60 ° C, stirred for 25 minutes, and cooled to 4 ° C in an ice bath. After removing the generated precipitate by centrifugation, the pH of the centrifuged supernatant was adjusted to 5.0 with phosphoric acid, and the mixture was stirred in an ice bath for 3 hours. The resulting precipitate was removed again by centrifugation to obtain a crude enzyme solution (83 Oml).
  • the pH of the crude enzyme solution obtained above was adjusted to 7.0 using aqueous ammonia, and then ammonium sulphate was added and dissolved so as to be 35% saturated, and the resulting precipitate was removed by centrifugation ( At this time, the reaction was performed while maintaining the pH of the crude enzyme solution at pH 7.0 with aqueous ammonia.) While maintaining the pH 7.0 as described above, ammonium sulfate was further added to this centrifugal supernatant to be 55% saturated and dissolved, and the resulting precipitate was collected by centrifugation. This precipitate was dissolved in 50 ml of 10 mM phosphate buffer (pH 7.0) and dialyzed against the same buffer overnight to obtain 83 ml of a crude enzyme solution.
  • the pH of the crude enzyme solution obtained by the above-mentioned ammonium sulfate fractionation was adjusted to 8.0 using aqueous ammonia. This was applied to a DEAE-TOYOPEARL 650M (Tosoichi Co., Ltd.) column (25 Oml) pre-equilibrated with 10 mM phosphate buffer (pH 8.0), and the active fraction was eluted with the same buffer. Was. Collect the active fractions and add phosphorus The pH was adjusted to 7.0 by adding an acid.
  • the enzymatic properties of the RDR obtained in Example 1 were examined. Basically, enzyme activity is measured by adding 100 mM phosphate buffer (pH 6.5), 5 mM substrate ⁇ -benzyl-pyrrolidinone, 0.25 mM coenzyme NADH, and enzyme at 30 ° C. The reaction was performed for 1 minute, and the decrease in absorbance at a wavelength of 340 nm was measured.
  • NADH Using NADH as a coenzyme, it acted on N-benzyl-1-pyrrolidinone to produce (R) -N-benzyl-3-pyrrolidinol with an optical purity of 99.9% ee or more.
  • the enzyme activity was measured according to the above method using NADPH as a capture enzyme, the activity was about 0.6% when NADH was used as a coenzyme.
  • the enzyme activity was measured in the same manner as the above-mentioned enzyme activity, except that 10 OmM phosphate buffer and 10 OmM acetate buffer were used as buffers and the pH was adjusted to a range of 4.0 to 8.0. As a result, the optimal pH for N-benzyl-3-pyrrolidinone was 5.5 to 6.0. (3) Optimal operating temperature
  • the enzymatic activity was measured in the same manner as the measurement of the enzymatic activity except that the temperature was changed from 20 ° C to 60 ° C.
  • the optimal temperature at which N-benzyl-3-pyrrolidinone acted was from 50 ° C to 55 ° C.
  • the purified RDR obtained in Example 1 was denatured in the presence of 8 M urea, and then digested with lysyl endopeptidase derived from lactobacilli (Wako Pure Chemical Industries, Ltd.). The sequence was determined using an ABI 492 type protein sequencer (PerkinElmer). Based on this amino acid sequence, two DNA primers (primer 1: SEQ ID NO: 3, primer 2: SEQ ID NO: 4) were synthesized according to a conventional method.
  • This DNA fragment was cloned into plasmid pT7B1ueT—Vector (manufactured by Novagen), and the AB IPRISM DyeT erm inator Cycling Sequencing Ready Reaction Kit (Perkin Elmer) ) And ABI 373A DNA Sequencer (Perkin E 1 mer) to confirm the nucleotide sequence.
  • the chromosomal DNA of Deposia riboflavina (DeVosiarabiflavina) IFO13584 strain was completely digested with the restriction enzyme EcoRI, and the resulting mixture of DNA fragments was subjected to molecular cyclization with T4 ligase. Using this as type I, the chromosomal DNA was obtained by the i-PCR method (Nuc 1. Acids Res. 16, 8186 (1988)) based on the partial nucleotide sequence information of the RDR gene identified in the previous section.
  • the entire nucleotide sequence of the above RDR gene was determined (PCR was performed using TaKaRa Ex Taq (manufactured by Takara Shuzo Co., Ltd.) as DNA polymerase, and the reaction conditions were in accordance with the instruction manual.
  • the nucleotide sequence was determined in the same manner as above.)
  • the nucleotide sequence is shown in FIG.
  • the amino acid sequence encoded by the base sequence is shown below the base sequence.
  • the partial amino acid sequence of the purified RDR was all present in this amino acid sequence. In the amino acid sequence shown in FIG.
  • an N-terminal DNA primer (primer 3: SEQ ID NO: 5) having an NdeI site added to the start codon of the RDR gene, a 3′-terminal of the same gene Immediately thereafter, a C-terminal DNA primer to which an EcoRI site was added (Primer 4: SEQ ID NO: 6) was synthesized.
  • primer 3 SEQ ID NO: 5
  • Primer 4 SEQ ID NO: 6
  • PCR was performed to add an NdeI site to the initiation codon and an EcoRI breakpoint immediately after the 3 'end to expand the RDR gene.
  • GDH glucose dehydrogenase
  • IAM1030 Nonlas megaterium (Baci 11 us me gaterium) IAM1030 (Eur. J. Bioch em. 186, 389 (1989))
  • E. coli Shaine-Da1 garno sequence (9 bases) 5 bases upstream from the start codon of the GDH structural gene, and an EcoRI cleavage point immediately before that.
  • the terminal DNA primer (Primer 5: SEQ ID NO: 7) and the C-terminal DNA primer (Primer 6: SEQ ID NO: 8) with a Sal1 site added immediately after the termination codon of the GDH structural gene were used in the usual manner. Synthesized.
  • a double-stranded DNA was synthesized by PCR using plasmid pGDKl (Eur. J. Biochem. 186, 389 (1989)) as a type II.
  • This DNA fragment was digested with EcoRI and Sa1I, and inserted into the EcoRI-Sa1I site downstream of the lac promoter of plasmid pUCNT (WO94 / 03613) to obtain a plasmid. Replacement plasmid! ) NTG 1 was obtained.
  • the RDR gene obtained by digesting the pNTDR prepared in Example 4 with NdeI and EcoRI was converted into NdeI—EcoR present upstream of the GDH gene on pNTG1.
  • FIG. 1 shows the preparation method and structure of pNTDRG1.
  • FIG. 2 shows the preparation method and structure of pNTDRG1.
  • Example 6 Preparation of recombinant _ E. coli E. coli HB101 (manufactured by Takara Shuzo Co., Ltd.) was transformed using the recombinant plasmid pNTDR or pNTDRG1 obtained in Examples 4 and 5, and the recombinant E. coli HB101 (pNTDR) and HB101 (pNTDRG1) were transformed.
  • pNTDR recombinant E. coli HB101
  • pNTDRG1 recombinant E. coli HB101
  • E. coli HB101 pNTDR
  • E.co1iHB101 pNTDRG1
  • AIST National Institute of Advanced Industrial Science and Technology
  • E. coli HB101 (pNTDR) obtained in Example 6 was cultured in 2 XYT medium containing 120 / ig / ml ampicillin, and the cells were collected by centrifugation.Then, lO OmM phosphate buffer (pH 6.5) And crushed using a UH-50 type ultrasonic homogenizer (manufactured by SMT) to obtain a cell-free extract.
  • the RDR activity of this cell-free extract was measured as follows. The RDR activity was measured by adding 100 mM phosphate buffer (pH 6.5), substrate N-benzyl 3-pyrrolidinone 5 mM, capture enzyme NADH 0.25 mM, and enzyme to the mixture at 30 ° C. Wavelength 34
  • Escherichia coli HB101 showed a clear increase in RDR activity compared to Escherichia coli HB101 (pUCNT), which is a transformant containing only vector plasmid, indicating that Deposia riboflavina I FO 1 The specific activity reached about 17 times compared to the 3584 strain.
  • Strain name RDR specific activity (U / mg)
  • the GDH activity of a cell-free extract obtained by treating the recombinant E. coli HB101 (pNTDRG1) obtained in Example 6 in the same manner as in Example 7 was measured as follows. To measure GDH activity, add 0.1 M substrate glucose, 2 mM coenzyme NADP and enzyme to 1 M Tris-HCl buffer (pH 8.0) and measure the increase in absorbance at 340 nm at 25 ° C. It was done by doing. Under these reaction conditions, the enzyme activity of reducing ⁇ 1 of NADP to NADPH per minute was defined as 1 unit. Also, the RDR activity was measured in the same manner as in Example 7.
  • E. coli HB101 p NTD RG1
  • pUCNT vector-only transformant HB101
  • a culture solution of the recombinant Escherichia coli HB101 (pNTDRG1) obtained in Example 8 was used. Ultrasonic crushing was performed using SON IFI RE 250 (manufactured by BRAN SON). 2 g of glucose and 1 mg of NAD 1 N N -benzyl-3-pyrrolidinone lg were added to 2 Om 1 of the cell lysate. This reaction solution was stirred at 30 for 18 hours under a nitrogen atmosphere while adjusting the pH to 6.5 by adding a 5 M hydrochloric acid and aqueous sodium hydroxide solution. After completion of the reaction, 2 ml of a 5 M aqueous sodium hydroxide solution was added, and the reaction solution was extracted with toluene.
  • N-benzyl-3-pyrrolidinol was obtained in a yield of 96%.
  • the generated N-benzyl-3-pyrrolidinol was an R-isomer having an optical purity of 99.9% ee.
  • the generated 7-methoxy-2-tetralol was an R-isomer having an optical purity of 99.9% ee.
  • ⁇ -NMR (CD C 1 3) ⁇ p pm 1. 62 (s, 1 H), 1. 73 ⁇ :. L. 87 (m, 1 H), 1. 98 ⁇ 2 08 (m, 1 H) , 2.70—2.81 (m, 2H), 2.88 (appdt, 1H), 3.05 (dd, 1H), 3.76 (s, 3H), 4.09 to 4.19 (m, 1H), 6.61 (d, 1H), 6.69 (dd, 1H), 7.00 (d, 1H)
  • the extract was subjected to silica gel column chromatography to give 3-methoxy-1,6,7,8,9-tetrahydro-15H-benzocyclohepten-16-ol. 1.6 g were obtained. As a result of measuring the optical purity, the produced 3-methoxy-1,6,7,8,9-tetrahydro-15H-benzocyclohepten-16-ol The purity was 99.9%.
  • optical purity of 2-chloro-11- (4,1-fluorophenyl) ethanol was measured by high-performance liquid column chromatography (column: Chiralcel OJ (ID 4.6 mmX 250 mm) manufactured by Daicel Chemical Industries, Ltd.). ), Eluent: n-hexane / isopropanonoreni 39/1, flow rate: 1 ml / min, detection: 254 ⁇ m, column temperature: room temperature).
  • Example 8 obtained in the recombinant E. coli HB 1 0 1 (p NTDRG 1 ), NAD 5mg N and 50% of (w / w) 2- Black opening one 11 (3, 1-hole mouth) 10 g of toluene solution of ethanone was added, and the mixture was stirred at 30 for 22 hours while adjusting to r> H 6.5 by dropwise addition of a 5M aqueous sodium hydroxide solution. . The reaction solution was extracted with toluene, the solvent was removed, and the extract was analyzed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 本発明は、(R)−N−ベンジル−3−ピロリジノールを効率よく生成する新規ポリペプチド、それをコードするポリヌクレオチドおよびその利用方法を提供する。本発明は、以下の(1)から(4)の理化学的性質を有するポリペプチドである:(1)作用:NADHまたはNADPHを補酵素として、N−ベンジル−3−ピロリジノンに作用し、(R)−N−ベンジル−3−ピロリジノールを生成する、(2)作用至適pH:5.5から6.0、(3)作用至適温度:50℃から55℃、(4)分子量:ゲル濾過分析において約55000、SDSポリアクリルアミドゲル電気泳動分析において約28000。 本発明は、また、配列表の配列番号1に示すアミノ酸配列からなるポリペプチド、該ポリペプチドをコードするポリヌクレオチド、及び、該ポリペプチドを高生産する形質転換体である。

Description

明細書
新規カルポニル還元酵素、 その遺伝子、 およびその利用法 技術分野
本発明は、 式 (1 )
Figure imgf000002_0001
で表される N—ベンジルー 3—ピロリジノンを立体選択的に還元して、 式 (2 )
Figure imgf000002_0002
で表される (R) —N—ベンジル一 3 _ピロリジノールを生成する活性を有する ポリペプチド、 該ポリペプチドをコードするポリヌクレオチド、 該ポリヌクレオ チドを含む発現ベクター、 およぴ該発現ベクターで形質転換された形質転換体に 関する。
本発明はまた、 該形質転換体を用いた光学活性アルコール、 とりわけ光学活性 N—べンジルー 3—ピロリジノール、 光学活性 2—テトラ口ール誘導体、 及び、 光学活性 1一フエニルエタノール誘導体の製造法に関する。 光学活性 N—べンジ ルー 3—ピロリジノール、 光学活性 2—テトラロール誘導体、 及び、 光学活性 1 —フユニルエタノール誘導体は、 医薬、 農薬等の合成原料として有用な化合物で ある。 背景技術
光学活性 N—ベンジル一 3—ピロリジノールの製造方法としては、 N—べンジ ルー 3—ピロリジノンを立体選択的に還元する活性を有する酵素の存在下、 この N—ベンジル一 3—ピロリジノンを立体選択的に還元して光学活性 N—べンジル 一 3—ピロリジノールを製造する方法 (特開平 6— 141 876号公報) 、 N— ベンジルー 3—ピロリジノンにデポダスカス (De p o d a s c u s) 属等の微 生物の菌体、 培養物又はそれらの処理物を作用させて光学活性 N_ベンジル一 3 一ピロリジノールを製造する方法 (特開平 10— 1 50997号公報) が知られ ている。
また、 光学活性 2—テトラロール誘導体の製造方法としては、 ベンゼン環上に 置換基を有する 2—テトラロン誘導体にパン酵母を作用させて、 対応する光学活 性 2—テトラロール誘導体を製造する方法 (T e t r a h e d r o n 51, 1 1 53 1, ( 1 995) ) が知られている。
また、 光学活性 1—フエニルエタノール誘導体の製造方法としては、 2—ハロ 一 1一 (置換フエニル) エタノンに、 ァシビア属ゃォガタエァ属等に属する微生 物またはその処理物を作用させ、 光学活性 2 _ハロー 1一 (置換フエ-ル) エタ ノールを得る方法 (特開平 4— 218384号公報、 及び、 特開平 1 1— 215 995号公報) 、 1_ (置換フエュル) エタノンにゲォトリカム 'キャンディダ ム (G e o t r i c h um c a n d i d urn) の乾燥菌体を作用させ、 光学活 性 1— (置換フユニル) エタノールを得る方法 (J. O r g. Ch em. 63, 8 957 (1 998) ) が知られている。
しかしながら、 これらの方法はいずれも、 その基質仕込み濃度および基質から 生成物への転換率が実用上十分ではなく、 より効率の良い方法が待ち望まれてい た。 発明の要約
本発明は、 上記現状に鑑み、 光学活性 N—べンジルー 3—ピロリジノール、 光 学活性 2—テトラロール誘導体、 光学活性 1一フエニルエタノール誘導体を始め とする各種光学活性アルコールの製造に有用なポリペプチド、 該ポリペプチドを コードするポリヌクレオチド、 該ポリヌクレオチドを含む発現ベクター、 および 該発現べクタ一で形質転換された形質転換体を提供することを課題とする。 また、 本発明は、 該形質転換体を用いて、 光学活性 N—ベンジル— 3—ピロリ ジノール、 光学活性 2—テトラ口ール誘導体、 及ぴ、 光学活性 1一フエ-ルエタ ノール誘導体を始めとする各種光学活性アルコールを効率よく製造する方法を提 供することを課題とする。
本発明者らは、 N—べンジル一 3—ピロリジノンを立体選択的に還元し、 (R ) 一 N—べンジルー 3—ピロリジノールを生成する活性を有する微生物より、 該 活性を有するポリペプチドを単離した。 そして、 該ポリペプチドを利用すること により光学活性 N—べンジルー 3 _ピロリジノールのみならず、 光学活性 2—テ トラロール誘導体及び光学活性 1 _フエニルエタノール誘導体を始めとする、 有 用な光学活性アルコールを効率良く製造することが可能であることを見出した。 また、 該ポリペプチドをコードするポリヌクレオチドを単離し、 更には、 発現べ クタ一並びに形質転換体を創製することにも成功し、 本発明を完成するに至った。 即ち、 本発明は、 N—ベンジル一 3—ピロリジノンを立体選択的に還元して、 (R) —N—べンジルー 3—ピロリジノールを生成し得るポリペプチドである。 また、 本発明は、 上記ポリペプチドをコードするポリヌクレオチドである。 また、 本発明は、 上記ポリヌクレオチドを含有する発現ベクターである。 また、 本発明は、 上記ポリペプチドを高生産する形質転換体である。
更に、 本 明は、 該形質転換体を用いた、 光学活性 N—べンジル _ 3—ピロリ ジノール、 光学活性 2—テトラロール誘導体、 及び、 光学活性 1一フエニルエタ ノール誘導体を始めとする、 有用な光学活性アルコールの実用的な製造方法であ る。 発明の詳細な開示
以下、 詳細に本発明を説明する。 本発明のポリペプチドとしては、 以下の (1 ) から (4 ) の理化学的性質を有するポリペプチドが挙げられる。
( 1 ) N AD Hまたは N A D P Hを捕酵素として、 下記式 (1 )
Figure imgf000004_0001
で表される N—べンジルー 3—ピロリジノンを立体選択的に還元して、 下記式 ( 2)
Figure imgf000005_0001
で表される (R) — N—ベンジル一 3—ピロリジノールを生成する活性を有し、 (2) 作用至適 pHが 5. 5から 6. 0、
( 3 ) 作用至適温度が 50でから 55 °C、
( 4 ) 分子量が、 ゲル濾過分析において約 55000、 SDSポリアクリルアミ ドゲル電気泳動において約 28000。
また、 本発明のポリペプチドとしては、 例えば、 (a) 配列表の配列番号 1に 示したアミノ酸配列からなるポリペプチド、 または、 (b) 配列表の配列番号 1 に示したァミノ酸配歹 1Jまたは配列表の配列番号 1に示したァミノ酸配列において 1若しくは数個のアミノ酸が置換、 揷入、 欠失または付加されたアミノ酸配列を 含み、 かつ N—べンジルー 3—ピロリジノンを立体選択的に還元して (R) -N 一べンジノレ一 3—ピロリジノールを生成する活性を有するポリぺプチドを挙げる ことができる。
配列表の配列番号 1に示したァミノ酸配列において 1若しくは数個のァミノ酸 が置換、 挿入、 欠失または付加されたアミノ酸配列を含むポリペプチドは、 Cu r r e n t P r o t o c o l s i n Mo l e c u l a r B i o l o g y (J o h n Wi l e y a n d S o n s, I n c. , 1 989) 等に記載の 公知の方法に準じて調製することができ、 N—ベンジルー 3—ピロリジノンを立 体選択的に還元して (R) —N—べンジルー 3—ピロリジノールを生成する活性 を有する限り、 本発明のポリペプチドに包含される。
このようなポリペプチドは、 当該活性を有する微生物から単離することができ る。 本発明のポリペプチドの起源として用いられる微生物は、 特に限定されない 力 例えばデポシァ (D e V o s ί a) 属細菌が挙げられ、 特に好ましいものと してはデポシァ . リボフラビナ (D e V o s i a r i b o f l a v i n a) I FO 1 3 584株を挙げることができる。 本発明のポリべプチドを生産する微生物は、 野生株または変異^ ¾のいずれであ つてもよく、 また、 細胞融合または遺伝子操作などの遺伝学的手法により誘導さ れた微生物であってもよい。
遺伝子操作された、 本発明のポリペプチドを生産する微生物は、 例えば、 これ らのポリペプチドを単離および/または精製してそのアミノ酸配列の一部または 全部を決定する工程、 このアミノ酸配列に基づいてポリペプチドをコードするポ リヌクレオチドの塩基配列を決定する工程、 およびこのポリヌクレオチドを他の 微生物に導入して組換え微生物を得る工程を包含する方法により得られ得る。 本発明のポリぺプチドを有する微生物からの該ポリペプチドの精製は、 常法に より行い得る。 例えば、 該微生物の菌体を適当な培地で培養し、 培養液から遠心 分離により菌体を集める。 得られた菌体を例えば、 超音波破砕機などで破砕し、 遠心分離にて菌体残さを除き、 無細胞抽出液を得る。 この無細胞抽出液から、 例 えば、 塩析 (硫酸アンモニゥム沈殿、 リン酸ナトリウム沈殿など) 、 溶媒沈殿 ( アセトンまたはエタノールなどによる蛋白質分画沈殿法) 、 透析、 ゲル濾過、 ィ オン交換、 逆相等のカラムクロマトグラフィー、 限外濾過等の手法を単独で、 ま たは組み合わせて用いて、 ポリペプチドが精製され得る。
該酵素活性は、 1 0 0 mMリン酸緩衝液 ( p H 6 . 5 ) に、 基質 N—べンジル 一 3—ピロリジノン 5 mM、 捕酵素 NAD H O . 2 5 mMおよび酵素を添加し、 3 0 °Cで波長 3 4 0 n mの吸光度の減少を測定することにより確認および計算す ることができる。
本発明のポリヌクレオチドとしては、 上記ポリペプチドをコードするポリヌク レオチドであればいずれも用いることができるが、 例えば、 (c ) 配列表の配列 番号 2に示した塩基配列からなるポリヌクレオチド、 又は、 (d ) 配列表の配列 番号 2に示した塩基配列と相補的な塩基配列を有するポリヌクレオチドとストリ ンジェントな条件下でハイブリダィズし、 かつ、 前記式 (1 ) で表される N _ベ ンジルー 3—ピロリジノンを立体選択的に還元して、 前記式 (2 ) で表される ( R) 一 N—べンジルー 3—ピロリジノールを生成する活性を有するポリぺプチド をコードするポリヌクレオチドを挙げることができる。
配列表の配列番号 2に示した塩基配列と相補的な塩基配列を有するポリヌタレ ォチドとストリンジヱントな条件下でハイブリダイズするポリヌクレオチドとは、 配列表の配列番号 2に示した塩基配列と相補的な塩基配列を有するポリヌクレオ チドをプローブとして、 コロニー 'ハイブリダィゼーシヨン法、 プラーク 'ハイ プリダイゼーション法、 あるいはサザンハイプリダイゼーシヨン法等を用いるこ とにより得られるポリヌクレオチドを意味し、 具体的には、 コロニーあるいはプ ラーク由来のポリヌクレオチドを固定化したフィルターを用いて、 0. 7〜1. OMのN a C 1存在下、 65 °Cでハイブリダィゼーシヨンを行った後、 0. 1〜 2倍濃度の S SC溶液 (1倍濃度の33〇溶液の組成は、 1 50mM塩化ナトリ ゥム、 1 5 mMクェン酸ナトリウムよりなる) を用い、 65 °Cの条件下でフィル ターを洗浄することにより同定できるポリヌクレオチドをあげることができる。 ハイブリダイゼーシヨンは、 Mo l e c u l a r C l o n i n g, A l a b o r a t o r y ma n u a l , s e c o n d e d i t i o n (C o l d Sp r i n g Ha r b o r L a b o r a t o r y P r e s s, 1 989) 等に記載されている方法に準じて行うことができる。
ハイプリダイズ可能なポリヌクレオチドとして具体的には、 配列番号 2に示さ れるポリヌクレオチドと、 配列同一性が 60 %以上、 好ましくは 80 %以上、 よ り好ましくは 90 °/0以上、 さらに好ましくは 95 %以上、 最も好ましくは 99 % 以上のポリヌクレオチドをあげることができ、 コードされるポリべプチドが N— ベンジルー 3—ピロリジノンを立体選択的に還元して (R) —N—べンジルー 3 —ピロリジノールを生成する活性を有する限り、 本発明のポリヌクレオチドに包 含される。
ここで、 「配列の同一性 (%) 」 とは、 対比される 2つのポリヌクレオチドを 最適に整列させ、 核酸塩基 (例えば、 A、 T、 C、 G、 U、 または I) が両方の 配列で一致した位置の数を比較塩基総数で除し、 そして、 この結果に 100を乗 じた数値で表される。
配列同一性は、 例えば、 以下の配列分析用ツールを用いて算出し得る : GCG Wi s c o n s i n P a c k a g e (P r o g r am Ma nu a l f o r t h e Wi s c o n s i n P a c k a g e、 Ve r s i o n 8、 1 99 4年 9月、 Ge n e t i c s Comp u t e r Gr o u s 575 S c i e n c e D r i v e M a d i s o n、 W i s c o n s i n、 U S A 5371 l ; R i c e、 P. (1996) P r o g r am Ma nu a l f o r EG C G P a c k a g e、 P e t e r R i c e、 Th e S a n g e r C e n t r eN H i n x t o n Ha l l、 C amb r i d g e、 CB 10 I RQ, En g l a n d) , および、 t h e E x P AS y Wo r l d Wi d e W e b分子生物学用サーノ 一 (Ge n e v a Un i v e r s i t y Ho s p i t a 1 a n d Un i v e r s i t y o f Ge n e v a、 ge n e v a、 Sw i t z e r l a n d) 。
本発明のポリヌクレオチドは、 N—ベンジルー 3—ピロリジノンを立体選択的 に還元して (R) — N—ベンジルー 3—ピロリジノールを生成する活性を有する 微生物より取得することができる。 該微生物として、 例えばデポシァ (D e V o s i a ) 属細菌が挙げられ、 特に好ましいものとしてはデポシァ ' リボフラビナ (D e V o s i a r i b o f l a v i n a) I F O 1 3584株を挙げること ができる。
以下に、 N—ベンジル _ 3—ピロリジノンを立体選択的に還元して (R) -N 一ベンジル— 3—ピロリジノールを生成する活性を有する微生物より、 本発明の ポリヌクレオチドを取得する方法の例を記載するが、 本発明はこれに限定されな い。
まず、 精製した前記ポリペプチド、 およぴ該ポリペプチドを適当なエンドぺプ チダーゼで消化することにより得られるぺプチド断片の部分ァミノ酸配列を、 ェ ドマン法により決定する。 そして、 このアミノ酸配列情報をもとにヌクレオチド プライマーを合成する。 次に、 本発明のポリヌクレオチドの起源となる微生物よ り、 通常の DN A単離法、 例えば、 Cu r r e n t P r o t o c o l s i n Mo l e c u l a r B i o l o g y (J o hn "W i l e y a n d .S o n s, I n c. , 1989) 等に記載の方法により、 該微生物の染色体 DN Aを 調製する。
この染色体 DNAを铸型として、 先述のヌクレオチドプライマーを用いて PC R (p o l yme r a s e c h a i n r e a c t i o n) を行い、 該ホリへ プチドをコ一ドするポリヌクレオチドの一部を増幅する。 ここで増幅されたポリ ヌクレオチドの塩基配列は、 ジデォキシ■シークェンス法、 ジデォキシ ·チエイ ン ·ターミネイシヨン法などにより決定することができる。 例えば、 AB I P R I SM Dy e T e rm i n a t o r Cy c l e S e q u e n c i n g R e a d y Re a c t i o n K i t (P e r k i n E lme r社製) お よび AB I 373 A DNA S e q e n c e r (P e r k i n E l me r 社製) を用いて行い得る。
該ポリぺプチドをコ一ドするポリヌクレオチドの一部の塩基配列が明らかにな れば、 例えば、 i一 PCR法 (Nu c l . Ac i d s Re s. 16, 8 186 (1988) ) によりその全体の塩基配列を決定することができる。 また、 染色 体 DNA上の該ポリヌクレオチドがイントロンを含むものであった場合は、 例え ば、 以下の方法によりイントロンを含まない成熟型ポリヌクレオチドの塩基配列 を決定する事ができる。
即ち、 まず、 該ポリヌクレオチドの起源となる微生物より、 通常のヌクレオチ ド単離法、 例えば、 Cu r r e n t P r o t o c o l s i n Mo l e c u 1 a r B i o l o g y (J o hn Wi l e y a n d S o n s, I n c. , 1989) 等に記載の方法により、 該微生物の inRNAを調製する。 次に、 この mRNAを铸型とし、 先に判明している該ポリヌクレオチドの 5' 末端および 3 , 末端付近の配列を有するヌクレオチドプライマーを用いて RT— PCR法 (P r o c. Na t i . Ac a d. S c i . USA 85, 8998 (1 988) ) により成熟型ポリヌクレオチドを増幅し、 その塩基配列を先と同様に決定する。 本発明のポリヌクレオチドを宿主微生物内に導入し、 それをその導入された宿 主微生物内で発現させるために用いられるベクターとしては、 適当な宿主微生物 内で該ポリヌクレオチド中の遺伝子を発現できるものであればいずれもが用いら れ得る。 このようなベクターとしては、 例えば、 プラスミドベクター、 ファージ ベクター、 コスミドベクター等から選ばれたものが挙げられる。 また、 他の宿主 株との間で遺伝子交換が可能なシャトルベクターであってもよい。
このようなベクターは、 通常、 1 a c UV 5プロモーター、 t r pプロモータ 一、 t r cプロモーター、 t a cプロモーター、 l p pプロモーター、 t u f B プロモーター、 r e cAプロモーター、 p Lプロモーター等の制御因子を含み、 本発明のポリヌクレオチドと作動可能に連結された発現単位を含む発現ベクター として好適に用いられ得る。
本願明細書で用いる用語 「制御因子」 は、 機能的プロモーターおよび、 任意の 関連する転写要素 (例えば、 ェンハンサー、 C C AA Tボックス、 T A T Aボッ タス、 S P I部位など) を有する塩基配列をいう。
本願明細書で用いる用語 「作動可能に連結」 は、 該ポリヌクレオチド中の遺伝 子が発現するように、 ポリヌクレオチドが、 その発現を調節するプロモーター、 ェンハンサ一等の種々の調節エレメントと宿主細胞中で作動し得る状態で連結さ れることをいう。 制御因子のタイプおよび種類が、 宿主細胞に応じて変わり得る ことは、 当業者に周知の事項である。
本発明のポリヌクレオチドを含有する発現ベクターを導入する宿主細胞として は、 細菌、 酵母、 糸状菌、 植物細胞、 動物細胞などがあげられるが、 大腸菌が特 に好ましい。
本発明のポリヌクレオチドを含有する発現ベクターは、 常法により宿主細胞に 導入され得る。 宿主細胞として大腸菌を用いる場合、 例えば塩化カルシウム法に より、 本発明のポリヌクレオチドを含有する発現ベクターを導入することができ る。
本発明のポリぺプチドを用いて N—べンジルー 3—ピロリジノンを立体選択的 に還元して (R) —N—べンジルー 3—ピロリジノールを生産する場合、 NAD H、 NAD P H等の補酵素が必要となる。 捕酵素は通常、 基質と等モルを要する 1 酸化された該補酵素を還元型に変換する能力 (以後、 補酵素再生能と呼ぶ) を有する酵素をその基質とともに反応系に添加することにより、 つまり補酵素再 生系を、 本発明のポリペプチドと組み合わせて反応を行うことにより、 高価な補 酵素の使用量を大幅に削減することができる。
補酵素再生能を有する酵素としては、 例えば、 ヒドロゲナーゼ、 ギ酸脱水素酵 素、 アルコール脱水素酵素、 アルデヒド脱水素酵素、 グルコース一 6 _リン酸脱 水素酵素およびグルコース脱水素酵素などを用いることが出来る。 好適には、 グ ルコース脱水素酵素が用いられる。
上記の捕酵素再生能を有する酵素を、 不斉還元反応系に別途添加することによ つても当該反応が行われ得るが、 本発明のポリヌクレオチド、 および補酵素再生 能を有するポリぺプチドをコ一ドするポリヌクレオチドの両者により形質転換せ しめられた形質転換体を触媒として用いた場合、 補酵素再生能を有する酵素を別 に調製し反応系に添加することなしに、 該反応を効率良く実施し得る。
このような形質転換体は、 本発明のポリヌクレオチド、 および補酵素再生能を 有するポリペプチド (例えば、 グルコース脱水素酵素) をコードするポリヌクレ ォチドを、 同一のベクターに組み込み、 これを宿主細胞に導入することにより得 られる他、 これら 2種のポリヌクレオチドを不和合性グループの異なる 2種のベ クタ一にそれぞれ組み込み、 それら 2種のベクターを同一の宿主細胞に導入する ことによつても得られる。
なお、 上述したように、 本発明の発現ベクターは、 上記ポリヌクレオチドを含 むものである。 好ましくは、 プラスミド: NTDRである発現ベクターが挙げら れる。
本発明の発現ベクターとしては、 グルコース脱水素酵素活性を有するポリぺプ チドをコードするポリヌクレオチドをさらに含むものも挙げられる。 上記ダルコ ース脱水素酵素活性を有するポリペプチドは、 バシラス 'メガテリゥム (B a c i 1 1 u s me g a t e r i urn) 由来のグルコース脱水素酵素であることが 好ましい。 より好ましくは、 プラスミド: NTDRG 1である発現ベクターが挙 げられる。
本発明の形質転換体は、 上記発現ベクターを用いて宿主細胞を形質転換して得 られたものである。 上記宿主細胞としては、 大腸菌が好ましい。
また、 本発明の形質転換体として、
E. c o l i HB 101 (pNTDR) は、 FERM BP— 08457の受 託番号で、 平成 1 5年 8月 25日付で、
E. c o l i HB l O l (pNTDRG l) は、 FERM BP— 08458 の受託番号で、 平成 1 5年 8月 25日付で、
それぞれ、 B本国茨城県つくば巿東 1丁目 1番地 1中央第 6にある独立行政法人 産業技術総合研究所特許生物寄託センターに、 ブタぺスト条約に基づいて国際寄 託されている。 形質転換体中の補酵素再生能を有する酵素の活性は常法により測定することが できる。 例えば、 グルコース脱水素酵素活性の測定は、 1 Mトリス塩酸緩衝液 ( p H 8 . 0 ) に、 基質グルコース 0 . 1 M、 補酵素 NAD P 2 mMおよび酵素を 添加し、 2 5 °Cで波長 3 4 0 n mの吸光度の増加を測定することにより行い得る。 本発明の形質転換体を用いた光学活性 N—べンジルー 3—ピロリジノール、 光 学活性 2—テトラロール誘導体、 及ぴ、 光学活性 1ーフヱニルェタノール誘導体 等の光学活性アルコールの生産は以下のように実施され得る。 つまり、 形質転換 体の培養物またはその処理物を、 力ルポ-ル基を有する化合物と反応させること により、 光学活性アルコールを製造する。
まず、 適当な溶媒中に基質となるカルボ二ル基を有する化合物、 NAD H等の 補酵素、 および該形質転換体の培養物またはその処理物等を添加し、 p H調整下、 攪拌して反応させる。
形質転換体の培養は、 その微生物が増殖する限り、 通常の、 炭素源、 窒素源、 無機塩類、 有機栄養素などを含む液体栄養培地を用いて行い得る。 また、 培養温 度は、 好ましくは 4〜5 0 °Cである。
ここで形質転換体の処理物等とは、 例えば、 粗抽出液、 培養菌体、 凍結乾燥生 物体、 アセトン乾燥生物体、 あるいはそれらの磨碎物等を意味する。 さらにそれ らは、 ポリべプチド自体あるいは菌体のまま公知の手段で固定化されて用いられ 得る。
また、 本反応を行う際、 形質転換体として本発明のポリペプチドと補酵素再生 能を有する酵素 (例えば、 グルコース脱水素酵素) の両者を生産するものを用い る場合、 反応系に補酵素再生のための基質 (例えば、 グルコース) を添加するこ とにより、 補酵素の使用量を大幅に減らすことが可能である。
基質となるカルボ二ル基を有する化合物としては、 例えば、 式 (1 )
Figure imgf000012_0001
で表される N—べンジルー 3—ピロリジノン、 一般式 ( 3 ) (3)
(CH2)n
(式中、 R R2は水素原子、 水酸基又はアルコキシ基を示し、 それぞれ同一 でも異なってもよい。 また、 nは 1又は 2を示す。 ) で表される 2—テトラロン 誘導体、 及び、 一般式 (5)
Figure imgf000013_0001
(式中、 R3、 R 4は水素原子、 ハロゲン原子、 アルコキシ基又は-トロ基を示 し、 それぞれ同一でも異なってもよい。 また、 R 5は水素原子、 ハロゲン原子、 水酸基又は置換基を有してもよいアルキル基を示す。 ) で表される 1一フエニル エタノン誘導体を挙げることができる。 式 (3) 、 (5) で表される化合物とし てより詳しくは、 例えば、 7—メトキシー 2—テトラロン、 3ーメ トキシ一 6, 7, 8, 9—テトラヒ ドロー 5 H—べンゾシクロヘプテン一 6—オン、 2—クロ ロー 1— (4, 一フ レオ口フエ-ノレ) エタノン、 及び 2—クロ口一 1一 (3, 一 クロ口フエュル) エタノンを挙げることができる。
また、 上記方法により得られる光学活性アルコールとしては、 例えば式 (2)
Figure imgf000013_0002
で表される (R) —N—べンジルー 3—ピロリジノール、 一般式 (4) (4)
(CH2)n
(式中、 R R2及び nは前記と同じ) で表される 2—テトラロール誘導体、 又は、 一般式 (6)
Figure imgf000014_0001
(式中、 R3、 R4、 及び、 R5は前記と同じ) で表される 1—フエ二.
ル誘導体を挙げることができる。 式 (4) 、 (6) で表される化合物としてより 詳しくは、 例えば、 7—メ トキシー 2—テトラロール、 3—メトキシー6, 7, 8, 9ーテトラヒドロ一 5 H—ベンゾシク口ヘプテン一 6—ォーノレ、 2—クロ口 - 1 - (4, ーフノレオ口フエ-ノレ) エタノーノレ、 又は、 2—クロロー 1— (3, 一クロ口フエニル) エタノールを挙げることができる。
R R2、 R3、 R 4におけるアルコキシ基としては、 炭素数 1〜3のアルコ キシ基であり、 例えば、 メトキシ基、 エトキシ基、 プロポキシ基等が挙げられる。 好ましくはメ トキシ基である。
R3、 R\ R5におけるハロゲン原子としては、 例えば、 フッ素原子、 塩素原 子、 臭素原子、 ヨウ素原子が挙げられる。
R 5における置換基を有してもよいアルキル基のアルキル基としては、 炭素数 1〜8のアルキル基であり、 例えば、 メチル基、 ェチル基、 プロピル基、 へキシ ル基、 ォクチル基等が挙げられる。 好ましくは炭素数 1〜2のアルキル基である。 R 5における置換基を有してもよいアルキル基の置換基としては、 例えば、 フッ 素原子、 塩素原子、 臭素原子、 水酸基、 アミノ基等が挙げられる。
反応には水系溶媒を用いてもよいし、 水系溶媒と有機系溶媒を混合して用いて もよい。 有機系溶媒としては、 例えば、 トルエン、 へキサン、 ジイソプロピルェ 一テル、 酢酸 n—ブチル、 酢酸ェチル等が挙げられる。
反応温度は、 10 °C〜 70 °C、 好ましくは 20〜 40 °Cであり、 反応時間は、
1- 100時間、 好ましくは 10〜 50時間である。 また、 反応中、 反応液の p Hは、 例えば塩酸、 水酸化ナトリゥム水溶液、 炭酸ナトリゥム水溶液等を用いて、 4〜10、 好ましくは 5~8に維持する。
反応はバッチ方式あるいは連続方式で行われ得る。 パッチ方式の場合、 反応基 質は 0. 1%から 70°/0 (w/v) の仕込み濃度で添加される。 ·
反応で生じた光学活性アルコールは常法により精製し得る。 例えば、 反応で生 じた光学活性アルコールが N—ベンジル一 3—ピロリジノール、 7—メ トキシ一
2—テトラロール、 3—メトキシ一 6, 7, 8, 9—テトラヒ ドロ一 5 H—ベン ゾシクロヘプテン一 6—ォーノレ、 2—クロ口一 1— (4, ーフノレオロフェェノレ) エタノーノレ、 又は、 2—クロロ一 1— (3, 一クロ口フエェノレ) エタノーノレであ る場合、 必要に応じ遠心分離、 濾過などの処理を施して反応物から菌体等の懸濁 物を除去した後、 水酸化ナトリゥム水溶液、 炭酸ナトリゥム水溶液、 塩酸等で抽 出に適した pH (3〜1 1) に調整し、 酢酸ェチル、 トルエン等の有機溶媒で抽 出し、 有機溶媒を減圧下で除去する。 さらに、 蒸留、 晶析またはクロマトグラフ ィ一等の処理を行うことにより、 精製され得る。
N—ベンジル一 3—ピロリジノン、 及び、 N—ベンジル一 3—ピロリジノール の定量は、 ガスクロマトグラフィー (カラム: Un i p o r t B 10% PEG - 2 OM (I D 3. OmmX 1. Om、 ジーエルサイエンス社製) 、 カラム温度 : 200°C、 キヤリァガス:窒素、 検出: F I D) で行い得る。
また、 N—ベンジルー 3—ピロリジノールの光学純度の測定は、 高速液体カラ ムクロマトグラフィー (カラム: Ch i r a l c e l OB ( I D 4. 6mmX 25 Omm, ダイセル化学工業株式会社製) 、 溶離液: n—へキサン/イソプロ パノール /ジェチルァミン = 99/1Z0. 1、 流速 : 1m l /m i n、 検出: 254 nm、 カラム温度:室温) で行い得る。
7—メ トキシー 2—テトラロン、 3—メ トキシ一 6, 7, 8, 9—テトラヒ ド 口一 5 H—ベンゾシクロヘプテン _ 6—オン、 7—メトキシー 2—テトラローノレ、 及び、 3—メ トキシー6, 7, 8, 9ーテトラヒドロ _ 5 H—ベンゾシクロヘプ テン一 6—オールの定量は、 高速液体カラムクロマトグラフィー (カラム:ナカ ライテスク株式会社製 CO SMO S I L 5 C 8 -MS ( I D4. 6mmX 25 0 mm) 、 溶離液:水ノァセトニトリル = 1 Z 1、 流速: 1 m 1 /m i n、 検出 : 2 10 nm、 カラム温度:室温) で行い得る。
また、 7—メ トキシー 2—テトラロール、 及び、 3—メ トキシ一 6, 7, 8, 9ーテトラヒドロー 5 H—ベンゾシクロヘプテン一 6—オールの光学純度の測定 は、 高速液体カラムクロマトグラフィー (カラム:ダイセル化学工業株式会社製 Ch i r a l c e l O J ( I D 4. 6 mm X 250 mm) 、 溶離液: n一へキ サン/ィソプロパノール = 9 1、 流速 : 1m l /m i n、 検出: 254 nm、 カラム温度:室温) で行い得る。
2—クロ口一 1— (4' —フノレオロフエニスレ) エタノン、 2—クロ口一 1— ( 3, 一クロ口フエ-ノレ) エタノン、 2—クロロー 1一 (4, 一フノレオロフェニノレ ) エタノーノレ、 及び、 2—クロ口一 1— (3, 一クロ口フエ二ノレ) エタノー/レの 定量は、 高速液体カラムクロマトグラフィー (カラム:株式会社ヮイエムシィ製 YMC— P a c k ODS A- 303 ( I D 4. 6mmX 25 Omm) 、 溶離 液:水 Zァセトニトリル= 1ノ 1、 流速: 1ml /m i n、 検出: 210 n m、 カラム温度:室温) で行い得る。
また、 2—クロ口一 1— (4, 一フルオロフェニノレ) エタノール、 及ぴ、 2 - クロ口 _ 1一 (3, 一クロ口フエュル) エタノールの光学純度の測定は、 高速液 体力ラムクロマトグラフィー (カラム:ダイセル化学工業株式会社製 C h i r a l c e l O J ( I D 4. 6 mmX 250 mm) 、 溶離液: n—へキサン/イソ プロパノール =39/1, 流速: 1 m 1 /m i n、 検出: 254 nm、 カラム温 度:室温) で行い得る。
以上のように、 本宪明に従えば、 本発明のポリぺフチドの効率的生産が可能で あり、 それを利用することにより、 種々の有用な光学活性アルコールの優れた製 造法が提供される。 図面の簡単な説明 図 1は、 本発明のポリヌクレオチド配列及び推定ァミノ酸配列を示す図である。 図 2は、 組換えプラスミド pNTDRG 1の作製方法及び構造を示す図である。 発明を実施するための最良の形態
以下、 実施例で本発明を詳細に説明するが、 本発明はこれらにより限定される ものではない。 なお、 以下の実施例において用いた組換え DN A技術に関する詳 細な操作方法などは、 次の成書に記載されている。
Mo l e c u l a r C l o n i n g 2 n d E d i t i o n (C o l d S p r i n g Ha r b o r L a b o r a t o r y P r e s s, 1989) 、 Cu r r e n t P r o t o c o l s i n Mo l e c u l a r B i o l o g y (Gr e e n e P u b l i s h i n g As s o c i a t e s a n d W i 1 e y— I n t e r s c i e n c e ) 。 実施例 1 酵素の精製
以下の方法に従って、 デポシァ ' リボフラビナ (D e ν,ο s i a r i b o f 1 a v i n a ) I FO 1 3584株より N—べンジルー 3—ピロリジノンを立体 選択的に還元して (R) — N—ベンジル一 3—ピロリジノールを生成する活性を 有する酵素を単一に精製した。 特に断りのない限り、 精製操作は 4°Cで行った。
(デポシァ■ リボフラビナ (D e V o s i a r i b o f l a v i n a) I FO 1 3584株の培養)
2 L容坂ロフラスコ 72本に下記の組成からなる液体培地 400m lを分注し、 1 20°Cで 20分間蒸気殺菌を行った。
培地組成 (。/。は (wZv) で表示) :
ポリぺプトン 0%
ィーストエキス 0 3%
肉エキス 0 3%
モノレトエキス 0%
N a C 1 0 3%
アデ力ノール LG— 109 (日本油脂社製) 0. 003% 水道水
p H 7. 0
この培地に、 予め同培地にて前培養しておいたデボシァ · リボフラビナ (D e V o s i a r i b o f l a v i n a) I F O 13584株の培養液を 5 m 1ずつ 接種し、 30°Cで、 48時間振とう培養した。
(無細胞抽出液の調整)
上記の培養液 28000m l力 ら遠心分離により菌体を集めた後、 生理食塩水 で菌体を洗浄し、 該菌株の湿菌体 363 gを得た。 この湿菌体を 500 m 1の 1 O OmMリン酸緩衝液 (p H 7. 0) に懸濁し、 S O N I F I E R 250型超音 波破砕機 (BRAN SON社製) を用いて破碎した。 破碎物から遠心分離にて菌 体残渣を除き、 無細胞抽出液 840m lを得た。
(無細胞抽出液の熱処理おょぴ酸処理)
上記の無細胞抽出液を入れたビーカーを 60°Cの恒温水槽に浸け、 25分間攪 拌した後、 氷浴中で 4°Cまで冷却した。 生じた沈殿物を遠心分離にて除いた後、 この遠心上清の; pHをリン酸を用いて 5. 0に調整し、 氷浴中で 3時間攪拌した。 生じた沈殿物を再度遠心分離にて除き、 粗酵素液 83 Om lを得た。
(硫酸アンモニゥム分画)
上記で得た粗酵素液の p Hをアンモユア水を用いて 7. 0に調整した後、 35 %飽和となるように硫酸ァンモユウムを添加、 溶解し、 生じた沈殿を遠心分離に より除いた (この際粗酵素液の pHをアンモニア水で pH 7. 0に維持しながら 行った) 。 先と同様 pH7. 0を維持しながら、 この遠心上清に 55%飽和とな るようさらに硫酸アンモニゥムを添加、 溶解し、 生じた沈殿を遠心分離により集 めた。 この沈殿を 50 m 1の 10 mMリン酸緩衝液 (pH7. 0 ) に溶解した後、 同一緩衝液で 1夜透析し、 粗酵素液 83m lを得た。
(DEAE— TOYOPEARLカラムクロマトグラフィー)
上記硫酸ァンモユウム分画で得られた粗酵素液の pHをアンモニア水を用いて 8. 0に調整した。 これを、 10mMリン酸緩衝液 (pH8. 0) で予め平衡化 した DEAE— TOYOPEARL 650M (東ソ一株式会社製) カラム (2 5 Om l) に供し、 同一緩衝液で活性画分を溶出させた。 活性画分を集め、 リン 酸を添加して pH 7. 0に調製した。
(P h e n y l— TOYOPEARLカラムクロマトグラフィー)
上記DEAE— TOYOPEARLカラムクロマトグラフィ一で得られた粗酵 素液に終濃度 1Mとなるよう硫酸アンモニゥムを溶解し (この際、 粗酵素液にァ ンモニァ水を添カ卩して: H 7. 0に維持しながら行った) 、 1Mの硫酸アンモェ ゥムを含む 10 mMリン酸緩衝液 (pH7. 0 ) で予め平衡化した P h e n y 1 -TOYOPEARL 65 OM (東ソ一株式会社製) カラム (100m l ) に 供し、 活性画分を吸着させた。 同一緩衝液でカラムを洗浄した後、 硫酸アンモニ ゥムのリニアグラジェント (11\1から01^まで) により活性画分を溶出させた。 活性画分を集め、 1 OmMリン酸緩衝液 (pH7. 0) にて 1夜透析を行い、 電 気泳動的に単一な精製酵素標品を得た。 以後、 この酵素を RDRと呼ぶことにす る。 実施例 2 酵素の性質の測定
実施例 1で得られた RDRの酵素学的性質について検討した。 酵素活性の測定 は、 基本的には、 100mMリン酸緩衝液 (pH6. 5) に、 基質 Ν—べンジル — 3—ピロリジノン 5mM、 補酵素 NADH0. 25 mMおよび酵素を添加し、 30°Cで 1分間反応させ、 波長 340 nmの吸光度の減少を測定することにより 行った。
(1) 作用
NADHを補酵素として、 N—ベンジル一 3—ピロリジノンに作用し、 光学純 度 99. 9%e e以上の (R) —N—べンジルー 3—ピロリジノールを生成した。 NADPHを捕酵素として上記方法に準じて酵素活性を測定した場合、 NADH を補酵素とした場合の約 0. 6%の活性を示した。
(2) 作用至適 pH
緩衝液として 10 OmMリン酸緩衝液および 10 OmM酢酸緩衝液を用いて、 pHを 4. 0から 8. 0の範囲とした以外は、 上記酵素活性の測定と同様にして 酵素活性を測定した。 その結果、 N—べンジルー 3—ピロリジノンに作用する至 適 pHは 5. 5から 6. 0であった。 (3) 作用至適温度
温度を 20°Cから 60°Cとした以外は、 上記酵素活性の測定と同様にして、 酵 素活性を測定した。 その結果、 N—ベンジルー 3—ピロリジノンに作用する至適 温度は 50 °Cから 5 5 °Cであった。
(4) 分子量
溶離液として 150 mMの塩化ナトリウムを含む 50 mMリン酸緩衝液 ( H 7. 0) を用い、 TSK— GEL G 3000 SWXLカラム (東ソ一株式会 社製) による精製酵素 R D Rのゲル濾過クロマトグラフィー分析を行つた結果、 標準タンパク質との相対保持時間から算出した本酵素の分子量は約 55000で あった。 また、 酵素のサブユニットの分子量は SDS—ポリアクリルアミドゲル 電気泳動により、 標準タンパク質との相対移動度から算出した。 本酵素のサブュ ニットの分子量は約 28000であった。 実施例 3 RDR遺伝子のクローニング
(P CRプライマーの作成)
実施例 1で得られた精製 RDRを 8 M尿素存在下で変性した後、 ァク口モバク ター由来のリシルエンドぺプチダーゼ (和光純薬工業株式会社製) で消化し、 得 られたペプチド断片のアミノ酸配列を AB I 492型プロテインシーケンサー ( パーキンエルマ一社製) により決定した。 このアミノ酸配列をもとに、 DNAプ ライマー 2種 (プライマー 1 :配列番号 3、 プライマー 2 :配列番号 4) を常法 に従って合成した。
(P CRによる RDR遺伝子の増幅)
デボシァ, リボフラビナ (D e V o s i a r i b o f l a v i n a) I FO 13584株の培養菌体から Mu r r a y等の方法 (Nu c 1. , Ac i d s R e s. 8 : 4321-4325 (1 980) ) に従って染色体 DNAを抽出し た。 次に、 上記で調製した DNAプライマーを用い、 得られた染色体 DNAを铸 型として PC Rを行ったところ、 RDR遺伝子の一部と考えられる約 700 b p の DNA断片が增幅された (PCRは、 DNAポリメラ一ゼとして TaKa Ra Ex T a q (宝酒造株式会社製) を用いて行い、 反応条件はその取り扱い説 明書に従った。 ) 。 この DNA断片を、 プラスミド pT 7B 1 u e T— Ve c t o r (No v a g e n社製) にクローユングし、 AB I P R I SM Dy e T e rm i n a t o r Cy c l e S e q u e n c i n g Re a d y R e a c t i o n K i t (P e r k i n E l me r社製) および AB I 37 3 A DNA S e q u e n c e r (P e r k i n E 1 m e r社製) を用いて その塩基配列を確認した。
( i— PCR法による RDR遺伝子の全長配列の決定)
デポシァ■ リボフラビナ (D e V o s i a r i b o f l a v i n a) I FO 1 3584株の染色体 DNAを制限酵素 E c o R Iで完全消化し、 得られた DN A断片の混合物を T 4リガーゼにより分子內環化させた。 これを錡型として用い、 前項で判明した R D R遺伝子の部分塩基配列情報をもとに、 i一 P C R法 (N u c 1. Ac i d s R e s. 16, 8186 (1 988) ) により、 染色体 D N A上の RDR遺伝子の全塩基配列を決定した (PCRは、 DN Aポリメラーゼと して T aKa R a Ex T a q (宝酒造株式会社製) を用いて行い、 反応条件 はその取り扱い説明書に従った。 また、 塩基配列の決定は先と同様に行った) 。 その塩基配列を図 1に示した。 また、 塩基配列がコードするアミノ酸配列を塩 基配列の下段に示した。 このアミノ酸配列と、 精製 RDRのリシルエンドべプチ ダーゼ消化断片の部分アミノ酸配列を比較した結果、 精製 RDRの部分アミノ酸 配列は全て、 このアミノ酸配列中に存在した。 図 1中のアミノ酸配列において、 精製 RDRの部分アミノ酸配列と一致した部分には下線を付した。 なお、 図 1の 塩基配列及ぴァミノ酸配列は、 配列表の配列番号 2のものと同一である。 実施例 4 RDR遺伝子を含む組換えプラスミ ドの作製
実施例 3で決定された塩基配列を基に、 RDR遺伝子の開始コドン部分に Nd e I部位を付加した N末端 DNAプライマー (プライマー 3 :配列番号 5 ) 、 お ょぴ同遺伝子の 3 ' 末端の直後に E c o R I部位を付加した C末端 DN Aプライ マー (プライマー 4 :配列番号 6) を合成した。 次に、 この 2種の DNAをプラ イマ一として用い、 実施例 3で調製したデポシァ■ リボフラビナ (D e V o s i a r i b o f l a v i n a) I F O 1 3584株の染色体 DNAを錡型として PCRを行い、 開始コドン部分に Nd e I部位を付加し、 3' 末端の直後に Ec oR I切断点を付加した、 RDR遺伝子を增幅した (PCRは、 DNAポリメラ ーゼとして T aKa R a Ex T a q (宝酒造株式会社製) を用いて行い、 反 応条件はその取り扱い説明書に従った。 ) 。 これを、 Nd e Iおよび E c' oR I で消化し、 プラスミド p UCNT (WO 94/0361 3) の l a cプロモータ 一の下流の Nd e I -E c o R I部位に揷入することにより、 組換えプラスミド p NTDRを得た。 実施例 5 RD R遺伝子およびグルコース脱水素酵素遺伝子の両者を含む組換え プラスミ ドの作製
ノ ンラス .メガテリゥム (B a c i 1 1 u s me g a t e r i um) I AM 1030株由来のグルコース脱水素酵素 (以後、 GDHと称する) の遺伝子の塩 基配列情報 (Eu r. J. B i o c h em. 186, 389 (1989) ) を基 に、 GDHの構造遺伝子の開始コドンから 5塩基上流に大腸菌の S h a i n e - D a 1 g a r n o配列 (9塩基) を、 さらにその直前に E c o R I切断点を付加 した N末端 DNAプライマー (プライマー 5 :配列番号 7) と、 GDHの構造遺 伝子の終始コドンの直後に S a 1 I部位を付加した C末端 DNAプライマー (プ ライマー 6 :配列番号 8) を常法に従って合成した。 これら 2つの DNAプライ マーを用い、 プラスミド pGDKl (Eu r. J. B i o c h em. 186, 3 89 (1989) ) を鍀型として P C Rにより二本鎖 DNAを合成した。 この D NA断片を E c o R Iおよび S a 1 Iで消化し、 プラスミド pUCNT (WO 9 4/0361 3) の l a cプロモーターの下流の E c o R I— S a 1 I部位に揷 入することにより、 組換えプラスミド!) NTG 1を得た。 次に、 実施例 4で調製 した pNTDRを Nd e Iおよび E c o R Iで消化して得られる RD R遺伝子を、 この p NT G 1上の GDH遺伝子の上流に存在する Nd e I— E c oR I部位に 揷入し、 プラスミ ド p NTDRG 1を得た。 pNTDRG 1の作製法および構造 を図 2に示す。 実施例 6 組換_ 大腸菌の作製 実施例 4および 5で得た組換えプラスミド pNTDR又は pNTDRG 1を用 いて大腸菌 HB 101 (宝酒造株式会社製) を形質転換し、 組換え大腸菌 HB 1 01 (p NTDR) および HB 10 1 (pNTDRG 1) を得た。
こうして得られた形質転換体 E. c o l i HB 101 (pNTDR) および E. c o 1 i HB 101 ( p N T D R G 1 ) は、 それぞれ、 受託番号 F E RM B P— 08457および FERM BP— 08458として、 平成 1 5年 8月 25日付で、 日本国茨城県つくば市東 1丁目 1番地 1中央第 6にある独立行政法 人産業技術総合研究所に寄託されている。 実施例 7 組換え大腸菌における RDRの生産
実施例 6で得た組換え大腸菌 HB 101 (pNTDR) を 120/i g/m lの アンピシリンを含む 2 XYT培地で培養し、 遠心分離により集菌後、 l O OmM リン酸緩衝液 (pH6. 5) に懸濁し、 UH— 50型超音波ホモゲナイザー (S MT社製) を用いて破砕し、 無細胞抽出液を得た。
この無細胞抽出液の RDR活性を以下のように測定した。 RDR活性の測定は、 100 mMリン酸緩衝液 ( p H 6. 5 ) に、 基質 N—べンジルー 3—ピロリジノ ン 5mM、 捕酵素 NADH0. 25 mMおよび酵素を添カ卩し、 30°Cで波長 34
0 nmの吸光度の減少を測定することにより行った。 この反応条件において、 1 分間に 1 μηιο 1の NAD Hを NADに酸化する酵素活性を 1 u n i tと定義し た。 この様に測定した無細胞抽出液中の RDR活性を比活性として表し、 ベクタ 一プラスミ ドを保持する形質転換体と比較した。 また、 実施例 1と同様の方法で 調製したデボシァ■ リボフラビナ (D e V o s i a r i b o f l a v i n a)
1 FO 13584株の無細胞抽出液中の RDR活性についても同様に比較した。 それらの結果を表 1に示す。
大腸菌 HB 101 (pNTDR) では、 ベクタープラスミ ドのみの形質転換体 である大腸菌 HB 101 (pUCNT) と比較して明らかな RDR活性の増加が 見られ、 デポシァ . リボフラビナ (D e V o s i a r i b o f l a v i n a) I FO 1 3584株と比較して、 比活性は約 1 7倍に達した。 菌株名 RDR比活性 (U/mg)
£ coli HB101 (pUCNT) <0.01
£ coli HB101 (pNTDR) 0.67
Devosia riboflavina IF013584 0.04
実施例 8 組換え大腸菌における R D Rおよび G D Hの同時生産
実施例 6で得た組換え大腸菌 H B 101 (pNTDRG 1) を、 実施例 7と同 様に処理して得られる無細胞抽出液の GDH活性を、 以下のように測定した。 G DH活性の測定は 1Mトリス塩酸緩衝液 (pH8. 0) に、 基質グルコース 0. 1M、 補酵素 NAD P 2 mM及び酵素を添加し、 25 °Cで波長 340 n mの吸光 度の増加を測定することにより行った。 この反応条件において、 1分間に Ι μπι ο 1の NADPを NADPHに還元する酵素活性を 1 u n i tと定義した。 また、 RDR活性についても実施例 7と同様に測定した。
このように測定した無細胞抽出液中の RDRおよび GDH活性を比活性として 表し、 大腸菌 HB 101 (pNTDR) およびベクターのみの形質転換体 H B 1 01 (pUCNT) と比較した結果を表 2に示す。 大腸菌 HB 101 (p NTD RG 1) では、 ベクタープラスミドのみの形質転換体である大腸菌 HB 101 ( pUCNT) と比較して、 明らかな RDRおよび GDH活性の増加が見られた。 表 2
Figure imgf000024_0001
実施例 9 R D Rおよびグルコース脱水素酵素を同時生産させた組換え大腸菌を 用いた N—ベンジル一 3—ピロリジノンからの (R) — N—ベンジル一 3—ピロ
V -ルの合成
実施例 8で得られた組換え大腸菌 H B 101 (pNTDRG 1) の培養液を、 SON I F I RE 250 (BRAN SON社製) を用いて超音波破碎した。 この 菌体破砕液 2 Om 1にグルコース 2 g、 NAD 1 m g N N—ベンジルー 3—ピロ リジノン l gを添加した。 この反応液を、 5 Mの塩酸および水酸化ナトリウム水 溶液を添加することにより PH6. 5に調整しつつ、 窒素雰囲気下、 30でで1 8時間攪拌した。 反応終了後、 5 Mの水酸化ナトリウム水溶液 2 m 1を添カ卩し、 反応液をトルエンで抽出した。 抽出液をエバポレーターで脱溶剤した後、 抽出物 の分析を行ったところ、 収率 96%で N—べンジルー 3—ピロリジノールが得ら れた。 この際、 生成した N—べンジルー 3—ピロリジノールは光学純度 99. 9 % e eの R体であった。
N—べンジルー 3—ピロリジノン、 及ぴ、 N—べンジルー 3—ピロリジノール の定量は、 ガスクロマトグラフィー (カラム: Un i p o r t B 10% PEG - 2 OM (I D 3. OmmX l. 0m、 ジーエルサイエンス社製) 、 カラム温度 : 200°C、 キヤリァガス :窒素、 検出: F I D) で行った。
また、 N—ベンジルー 3 -ピロリジノールの光学純度の測定は、 高速液体力ラ ムクロマトグラフィー (カラム: Ch i r a l c e l OB ( I D 4. 6mmX 25 Omm ダイセル化学工業社製) 、 溶離液: n—へキサン / /イソプロパノー ルノジェチルアミン= 99/1/0. 1、 流速 : 1m l / i n、 検出 : 254 n m、 カラム温度:室温) で行つた。 実施例 10 RDRおよびグルコース脱水素酵素を同時生産させた組換え大腸菌 を用いた 7—メ トキシ _ 2—テトラロンからの (R) —7—メ トキシー 2—テト ラローノレの合成
実施例 8で得られた組換え大腸菌 HB 101 (pNTDRG 1) の培養液 20 m lにグノレコース 3 g、 NAD2mg、 7—メトキシー 2—テトラロン 2 gを添 力 tlし、 5 Mの水酸化ナトリウム水溶液の滴下により pH6. 5に調整しつつ、 窒 素雰囲気下、 30°Cで 1 5時間攪拌した。 この反応液をトルエンで抽出し、 脱溶 剤した後、 抽出物をシリカゲルカラムクロマトグラフィーに供し、 7—メ トキシ 一 2—テトラロール 1. 7 gを得た。 光学純度を測定した結果、 生成した 7—メ トキシー 2—テトラロールは光学純度 99. 9 % e eの R体であった。 ^-NMR (CD C 1 3) δ p pm 1. 62 (s, 1 H) , 1. 73〜: L. 87 (m, 1 H) , 1. 98〜2. 08 (m, 1 H) , 2. 70— 2. 81 (m, 2H) , 2. 88 (a p p d t, 1H) , 3. 05 (d d, 1 H) , 3. 76 (s, 3 H) , 4. 09〜4. 19 (m, 1 H) , 6. 6 1 (d, 1 H) , 6. 6 9 (d d, 1H) , 7. 00 (d, 1H)
7—メ トキシ一 2—テトラロン、 及び、 7—メ トキシー 2—テトラロールの定 量は、 高速液体カラムクロマトグラフィー ('カラム:ナカライテスタ株式会社製 COSMOS I L 5 C 8 -MS ( I D 4. 6 mm X 250 mm) 、 溶離液:水 /ァセトニトリゾレ =: 1/1、 流速 : 1m l /m i n、 検出: 210 n m、 カラム 温度:室温) で行った。
また、 7—メ トキシー 2—テトラロールの光学純度の測定は、 高速液体カラム クロマトグラフィー (カラム:ダイセル化学工業株式会社製 C h i r a 1 c e 1 O J ( I D4. 6mmX 250mm) 、 溶離液: n—へキサン Zイソプロパノ 一ル= 9 / 1、 流速: 1m l /m i n、 検出: 254 n m、 力ラム温度:室温) で行った。 実施例 1 1 RDRおよびグルコース脱水素酵素を同時生産させた組換え大腸菌 を用いた 3—メ トキシー 6, 7, 8, 9ーテトラヒ ドロー 5 H—べンゾシクロへ プテン一 6—オンからの (R) — 3—メ トキシ一 6, 7, 8, 9ーテトラヒ ドロ - 5 H—ベンゾシク口ヘプテン一 6—ォーノレの合成
実施例 8で得られた組換え大腸菌 H B 101 (pNTDRG 1) の培養液 20 m lにグノレコース 3 g、 NAD 2mg、 50% (w/w) の 3—メ トキシー 6, 7, 8, 9—テトラヒドロー 5 H—ベンゾシク口ヘプテン一 6—オンのトノレエン 溶液 4 gを添加し、 5 Mの水酸化ナトリウム水溶液の滴下により p H 6. 5に調 整しつつ、 窒素雰囲気下、 30°Cで 18時間攪拌した。 この反応液をトルエンで 抽出し、 脱溶剤した後、 抽出物をシリカゲルカラムクロマトグラフィーに供し、 3—メ トキシ一6, 7, 8, 9—テトラヒドロ一 5 H—ベンゾシクロヘプテン一 6—オール 1. 6 gを得た。 光学純度を測定した結果、 生成した 3—メ トキシ一 6, 7, 8, 9ーテトラヒドロ一 5 H—ベンゾシクロヘプテン一6—オールは光 学純度 99. 9% 6 6の1 体でぁった。
'H-NMR (CDC 13) δ p p m 1. 40〜: L. 65 (m, 2 H) , 1.
70〜: L. 95 (m, 2 H) , 1. 95〜 2. 20 (m, 1 H) , 2. 65〜 2.
75 (m, 2H) , 2. 90〜3. 10 (m, 2 H) , 3. 78 (s, 3 H) , 3. 65〜 3. 90 (m, 1H) , 6. 66 (d d, 1H) , 6, 73 (d, 1
H) , 6. 98 (d, 1 H)
3—メ トキシー 6, 7, 8, 9—テトラヒドロ一 5 H—べンゾシクロヘプテン
—6—オン、 及び、 3—メ トキシー 6, 7, 8, 9ーテトラヒドロ一 5 H—ベン ゾシクロヘプテン一 6—オールの定量は、 高速液体カラムクロマトグラフィー ( カラム:ナカライテスク株式会社製 CO SMO S I L 5 C 8 -MS ( I D 4.
6mmX 250 mm) 、 溶離液:水/ァセトニトリノレ = 1 Z 1、 流速: lm 1 Z m i n、 検出: 210 nm、 カラム温度:室温) で行った。
また、 3—メ トキシー 6, 7 , 8, 9—テトラヒドロー 5 H—べンゾシクロへ プテン一 6—オールの光学純度の測定は、 高速液体カラムクロマトグラフィー ( カラム :ダイセル化学工業株式会社製 Ch i r a 1 c e 1 O J ( I D4. 6m mX 250 mm) 、 溶離液: n—へキサン/イソプロパノール = 9 / 1、 流速: lm 1 /m i n、 検出: 254 nm、 カラム温度:室温) で行った。 実施例 1 2 RDRおよびグルコース脱水素酵素を同時発現させた組換え大腸菌 を用いた 2—クロ口一 1一 (4, ーフノレオロフェニノレ) エタノンからの (S) — 2—クロロー 1一 (4, —フ /レオ口フエ二ノレ) エタノーノレの合成
実施例 8で得られた組換え大腸菌 H B 101 (pNTDRG 1) の培養液 50 m 1にグノレコース 10 g、 NAD 5 ra g、 及ぴ、 50 % (w/w) の 2—クロ口 —1— (4, 一フルオロフェニル) エタノンのトルエン溶液 10 gを添加し、 5 Mの水酸化ナトリゥム水溶液の滴下により p H 6. &に調整しつつ、 30でで 2 2時間攪拌した。 この反応液をトルエンで抽出し、 脱溶剤した後、 蒸留 (1 10 °C, 0. 8mmH g) し、 無色オイル状の 2—クロロー 1— (4, 一フルオロフ ェエル) エタノール 4. l gを得た。 光学純度を測定した結果、 生成した 2—ク ロロ一 1一 (4, 一フルオロフェニル) エタノールは光学純度 99. 9%e eの S体であった。
XH-NMR (CD C 1 3) δ p pm 3. 1 0 ( s , 1 H) , 3. 6 1 (d d , 1 H) , 3. 7 0 (d d, 1 H) , 4. 8 8 (d d, 1 H) , 7. 0 6 (m, 2 H) , 7. 3 5 (m, 2 H)
2—クロロー 1一 (4, 一フノレオ口フエ-ノレ) エタノン、 及び、 2—クロ口一 1— (4, 一フルオロフェニル) エタノールの定量は、 高速液体カラムクロマト グラフィー (カラム:株式会社ヮイエムシィ製 YMC— P a c k OD S A— 3 0 3 ( I D 4. 6 mm X 2 5 0 mm) 、 溶離液:水/ァセトニトリノレ = 1 Z 1、 流速: l m 1 /m i n、 検出: 2 1 0 nm、 カラム温度:室温) で行った。 また、 2—クロロー 1一 (4, 一フルオロフェニル) エタノールの光学純度の測 定は、 高速液体カラムクロマトグラフィー (カラム:ダイセル化学工業株式会社 製 C h i r a l c e l O J ( I D 4. 6 mmX 2 5 0 mm) 、 溶離液: n—へ キサン/ィソプロパノーノレニ 3 9/ 1、 流速 : 1 m l /m i n、 検出 : 2 5 4 η m、 カラム温度:室温) で行った。 実施例 1 3 RDRおよびグルコース脱水素酵素を同時発現させた組換え大腸菌 を用いた 2—クロロー 1一 (3, 一クロ口フエニル) エタノンからの (S) - 2 —クロ口一 1— (3, 一クロ口フエ二ノレ) エタノーノレの合成
実施例 8で得られた組換え大腸菌 HB 1 0 1 (p NTDRG 1) の培養液 5 0 m lにグルコース 1 0 g、 NAD 5mgN 及び、 5 0% (w/w) の 2—クロ口 一 1一 (3, 一クロ口フエ-ル) エタノンのトルエン溶液 1 0 gを添加し、 5M の水酸化ナトリウム水溶液の滴下により r> H 6. 5に調整しつつ、 30でで 22 時間攪拌した。 この反応液をトルエンで抽出し、 脱溶剤した後、 抽出物の分析を 行った。 その結果、 収率 9 7%で 2—クロ口一 1一 (3, 一クロ口フエニル) ェ タノールが得られた。 この際、 生成した 2—クロ口一 1— (3, 一クロ口フエ二 ル) ェタノールは光学純度 9 9. 9 % e eの S体であった。
2—クロ口一 1一 (3, 一クロ口フエェノレ) エタノン、 及び、 2—クロロー 1 ― (3, 一クロ口フエ二ノレ) エタノールの定量は、 2—クロロー 1— (4, ーフ ノレオロフェニノレ) エタノン、 及び、 2—クロロー 1一 (4, 一フルオロフェニノレ ) エタノールの場合と同様に行った。 また、 2—クロロー 1— (3' —クロロフ ェニル) エタノールの光学純度の測定は、 2—クロ口一 1一 (4, 一フルオロフ ェニル) エタノールの場合と同様に行った。 実施例 14 RDRの基質特異性
0. 33% (v/v) のジメチルスルフォキシドを含む 10 OmMリン酸緩衝 液 (pH6. 5) に、 基質となる表 3の各種カルボニル化合物を終濃度 lmM、 補酵素 NADHを終濃度 0. 25 mMとなるようそれぞれ溶解した。 これに RD Rを添加し、 30 °Cで波長 340n mの吸光度の減少を測定した。 この反応条件 において、 1分間に 1 /imo 1の NADHを NADに酸化する酵素活性を 1 u n i tと定義した。 そして、 各種カルボニル化合物に対する活性を、 N—ベンジノレ 一 3 _ピロリジノンに対する活性を 100 %とした場合の相対値で表し、 表 3に 示した。 R D Rは非常に広範なカルボニル化合物に対して還元活性を示した。
Figure imgf000030_0001
ln i¾mwt 3»i脚R Rs D 産業上の利用可能性
N—べンジル _ 3—ピロリジノンを立体選択的に還元して (R) —N—ベンジ ルー 3 _ピロリジノールを生成する活性を有するポリべプチド遺伝子のクローニ ング、 およびそのヌクレオチド配列の解析により、 該ポリぺプチド産生能の高い 形質転換体を得ることが可能になった。 また、 該ポリペプチドおよびグルコース 脱水素酵素を同時に高生産する能力を有する形質転換体をも得ることが可能にな つた。 さらに、 これらの形質転換体を用いることにより、 種々のカルボニル化合 物から光学活性アルコールを効率良く合成することが可能となった。

Claims

請求の範囲
L. 以下の (1) から (4) の理化学的性質を有するポリペプチド
(1) 作用: NADHまたは NAD PHを補酵素として、 式 (1)
Figure imgf000032_0001
で表される N—ベンジルー 3 _ピロリジノンを立体選択的に還元して、 式 (2)
Figure imgf000032_0002
で表される (R) 一 N—ベンジル一 3—ピロリジノールを生成する、
(2) 作用至適 p H: 5. 5から 6. 0、
(3) 作用至適温度: 50でから 55で、
( 4 ) 分子量:ゲル濾過分析において約 55000、 SDSポリアクリルアミド ゲル電気泳動分析において約 28000。
2. 以下の (a) 又は (b) のポリペプチド:
( a ) 配列表の配列番号 1に示したアミノ酸配列からなるポリぺプチド
( b ) 配列表の配列番号 1に示したアミノ酸配列または配列表の配列番号 1に示 したアミノ酸配列において 1若しくは数個のアミノ酸が置換、 揷入、 欠失または 付加されたアミノ酸配列を含み、 かつ、 式 (1)
Figure imgf000032_0003
で表される N—べンジルー 3—ピロリジノンを立体選択的に還元して、 式 (2)
Figure imgf000033_0001
で表される (R) — N—ベンジル一 3—ピロリジノールを生成する活性を有する ポリぺプチド。
3. ポリペプチドがデポシァ (D e V o s i a) 属に属する微生物に由来する 請求の範囲第 1または 2項に記載のポリぺプチド。
4. デボシァ属に属する微生物が、 デボシァ · リボフラビナ (D e V o s i a r i b o f l a v i n a) I FO 13584株である請求の範囲第 3項記載の ポリぺプチド。 5. 請求の範囲第 1から 4項のいずれかに記載のポリペプチドをコードするポ リヌクレオチド。
6. 以下の (c) 又は (d) のポリヌクレオチド:
( c ) 配列表の配列番号 2に示した塩基配列からなるポリヌクレオチド ( d ) 配列表の配列番号 2に示した塩基配列と相補的な塩基配列を有するポリヌ クレオチドと、 ストリンジェントな条件下でハイブリダィズし、 かつ、 式 (1)
Figure imgf000033_0002
で表される N—べンジル _ 3—ピロリジノンを立体選択的に還元して、 式 (2)
Figure imgf000033_0003
(2) で表される (R) — N—ベンジル一 3—ピロリジノールを生成する活性を有する ポリぺプチドをコードするポリヌクレオチド。
7. 請求の範囲第 5または 6項に記載のポリヌクレオチドを含む発現ベクター。
8. プラスミ ド! NTDRである請求の範囲第 7項記載の発現ベクター。
9. グルコース脱水素酵素活性を有するポリペプチドをコードするポリヌクレ ォチドをさらに含む、 請求の範囲第 7項に記載の発現べクタ一。
10. 前記ダルコース脱水素酵素活性を有するポリペプチドがバシラス 'メガ テ yゥム (B a c i l l u s me g a t e r i u m) 由来のグルコース脱水素 酵素である、 請求の範囲第 9項に記載の発現ベクター。 1 1. プラスミ ド pNTDRGlである請求の範囲第 10項に記載の発現べク ター。
1 2. 請求の範囲第 7から 11項のいずれかに記載の発現ベクターを用いて宿 主細胞を形質転換して得られた形質転換体。
1 3 · 前記宿主細胞が大腸菌である請求の範囲第 1 2項に記載の形質転換体。
14. E. c o l i HB 101 (p NTDR) (FERM BP— 0845 7) である請求の範囲第 1 3項に記載の形質転換体。
1 5. E. c o l i HB 101 (pNTDRG 1) (FERM BP— 08 458) である請求の範囲第 1 3項に記載の形質転換体。
16. 請求の範囲第 1 2から 15項のいずれかに記載の形質転換体の培養物ま たはその処理物を、 カルボ二ル基を有する化合物と反応させることを特徴とする 光学活性アルコールの製造方法。
1 7. 前記カルボ二ル基を有する化合物が、 式 (1)
Figure imgf000035_0001
で表される N_ベンジルー 3—ピロリジノンであり、 前記光学活性アルコールが、 式 (2)
Figure imgf000035_0002
で表される (R) —N—ベンジル一 3—ピロリジノールである、 請求の範囲第 6項に記載の製造方法。
8. 前記カルボ二ル基を有する化合物が、 一般式 (3)
Figure imgf000035_0003
(式中、 R R2は水素原子、 水酸基又はアルコキシ基を示し、 それぞれ同一 でも異なってもよい。 また、 nは 1又は 2を示す。 ) で表される 2—テトラロン 誘導体であり、 前記光学活性アルコールが、 一般式 (4) (4)
(CH2)n
(式中、 R R 2及び nは前記と同じ) で表される 2—テトラロール誘導体で ある請求の範囲第 1 6項に記載の製造方法。
1 9 . 前記 2—テトラロン誘導体が 7—メトキシ一 2—テトラロンであり、 前 記 2—テトラロール誘導体が (R) — 7—メトキシ一 2—テトラロールである請 求の範囲第 1 8項に記載の製造方法。
2 0 . 前記 2—テトラロン誘導体が 3—メ トキシ一 6 , 7, 8, 9—テトラヒ ドロー 5 H—ベンゾシクロヘプテン一 6—オンであり、 前記 2—テトラ口ール誘 導体が ( R ) 一 3—メ トキシ一 6 , 7 , 8 , 9ーテトラヒドロー 5 H—べンゾシ ク口ヘプテン一 6—オールである請求の範囲第 1 8項に記載の製造方法。
2 前記カルボ二ル基を有する化合物が、 一般式 (5 )
Figure imgf000036_0001
(式中、 R 3、 R 4は水素原子、 ハロゲン原子、 アルコキシ基又はニトロ基を示 し、 それぞれ同一でも異なってもよい。 また、 R 5は水素原子、 ハロゲン原子、 水酸基又は置換基を有してもよいアルキル基を示す。 ) で表される 1一フエニル エタノン誘導体であり、 前記光学活性アルコールが、 一般式 (6 )
Figure imgf000037_0001
(式中、 R3、 R4、 及び、 R 5は前記と同じ) で表される 1—フエニルエタノー ル誘導体である請求の範囲第 16項に記載の製造方法。
22. 前記 1一フエ-ルエタノン誘導体が 2—クロロー 1一 (4, 一フ^ /レオ口 フエニル) エタノンであり、 前記 1一フエエルエタノール誘導体が (S) — 2— クロロー 1— (4, 一フルオロフェニル) エタノールである、 請求の範囲第 21 項に記載の製造方法。
23. 前記 1一フエニルエタノン誘導体が 2—クロ口一 1一 (3, ークロロフ ェニル) エタノンであり、 前記 1 _フエ-ルエタノール誘導体が (S) — 2—ク ロロ _ 1一 (3, 一クロ口フエ-ル) エタノールである請求の範囲第 21項に記 載の製造方法。
PCT/JP2003/011957 2002-09-19 2003-09-19 新規カルボニル還元酵素、その遺伝子、およびその利用法 WO2004027055A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004537990A JP4414337B2 (ja) 2002-09-19 2003-09-19 新規カルボニル還元酵素、その遺伝子、およびその利用法
US10/528,000 US7220564B2 (en) 2002-09-19 2003-09-19 Carbonyl reductase, gene thereof and method of using the same
AU2003264502A AU2003264502A1 (en) 2002-09-19 2003-09-19 Novel carbonyl reductase, gene thereof and method of using the same
EP03797682A EP1553170B1 (en) 2002-09-19 2003-09-19 Novel carbonyl reductase, gene thereof and method of using the same
US11/730,549 US7531329B2 (en) 2002-09-19 2007-04-02 Carbonyl reductase, gene thereof and method of using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002272976 2002-09-19
JP2002-272976 2002-09-19

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10528000 A-371-Of-International 2003-09-19
US11/730,549 Division US7531329B2 (en) 2002-09-19 2007-04-02 Carbonyl reductase, gene thereof and method of using the same

Publications (1)

Publication Number Publication Date
WO2004027055A1 true WO2004027055A1 (ja) 2004-04-01

Family

ID=32024942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011957 WO2004027055A1 (ja) 2002-09-19 2003-09-19 新規カルボニル還元酵素、その遺伝子、およびその利用法

Country Status (5)

Country Link
US (2) US7220564B2 (ja)
EP (1) EP1553170B1 (ja)
JP (1) JP4414337B2 (ja)
AU (1) AU2003264502A1 (ja)
WO (1) WO2004027055A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010944A1 (ja) 2005-07-20 2007-01-25 Kaneka Corporation 光学活性2-(n-置換アミノメチル)-3-ヒドロキシ酪酸エステル類の製造方法
WO2007097336A1 (ja) * 2006-02-21 2007-08-30 Kaneka Corporation (2r,3r)および(2s,3s)-3-フェニルイソセリン誘導体の製造法
WO2007114217A1 (ja) * 2006-03-31 2007-10-11 Kaneka Corporation エリスロ又はスレオ-2-アミノ-3-ヒドロキシプロピオン酸エステルの製造方法、新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
WO2007138928A1 (ja) 2006-05-26 2007-12-06 Kaneka Corporation 光学活性3-アミノ-2-ヒドロキシプロピオン酸シクロプロピルアミド誘導体およびその塩の製造方法
EP2226386A1 (de) 2009-03-05 2010-09-08 IEP GmbH Verfahren zur stereoselektiven enzymatischen Reduktion von Ketoverbindungen
WO2020213731A1 (ja) 2019-04-19 2020-10-22 株式会社エーピーアイ コーポレーション (1r,3r)-3-(トリフルオロメチル)シクロヘキサン-1-オール及びその中間体の製造法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10327454A1 (de) * 2003-06-18 2005-01-20 Juelich Enzyme Products Gmbh Oxidoreduktase aus Pichia capsulata
DE102005038606A1 (de) * 2005-08-16 2007-03-01 Consortium für elektrochemische Industrie GmbH Verfahren zur enzymatischen Herstellung von chiralen 1-acylierten 1,2-Diolen
EP2639216B1 (en) 2010-11-09 2018-07-11 Kaneka Corporation Halogenated indenones and method for producing optically active indanones or optically active indanols by using same
EP3134519B1 (en) 2014-04-22 2018-06-06 c-LEcta GmbH Ketoreductases
EP3652328A1 (en) 2017-07-14 2020-05-20 c-LEcta GmbH Ketoreductases

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654534A2 (en) * 1993-11-18 1995-05-24 Daicel Chemical Industries, Ltd. Processes for producing optically active 2-amino-1-phenylethanol derivatives
JPH0889261A (ja) * 1994-09-30 1996-04-09 Kanegafuchi Chem Ind Co Ltd 光学活性な1−(3,4−ジメトキシフェニル)−2−プロパノールの製造法
WO2003031636A1 (fr) * 2001-10-05 2003-04-17 Kaneka Corporation Procede de production de 3-hydroxy-pentanenitrile optiquement actif

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3067817B2 (ja) 1990-07-24 2000-07-24 鐘淵化学工業株式会社 光学活性(−)−2−ハロ−1−(置換フェニル)エタノールの製造法
JPH06141876A (ja) * 1992-11-10 1994-05-24 Kyowa Hakko Kogyo Co Ltd 光学活性なn−ベンジル−3−ピロリジノールの製造法
JP3703928B2 (ja) 1996-11-26 2005-10-05 株式会社カネカ 光学活性n−ベンジル−3−ピロリジノールの製造方法
JP3919918B2 (ja) 1998-02-02 2007-05-30 株式会社カネカ 光学活性2−ハロ−1−(置換フェニル)エタノールの製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0654534A2 (en) * 1993-11-18 1995-05-24 Daicel Chemical Industries, Ltd. Processes for producing optically active 2-amino-1-phenylethanol derivatives
JPH0889261A (ja) * 1994-09-30 1996-04-09 Kanegafuchi Chem Ind Co Ltd 光学活性な1−(3,4−ジメトキシフェニル)−2−プロパノールの製造法
WO2003031636A1 (fr) * 2001-10-05 2003-04-17 Kaneka Corporation Procede de production de 3-hydroxy-pentanenitrile optiquement actif

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010944A1 (ja) 2005-07-20 2007-01-25 Kaneka Corporation 光学活性2-(n-置換アミノメチル)-3-ヒドロキシ酪酸エステル類の製造方法
EP2357248A1 (en) 2005-07-20 2011-08-17 Kaneka Corporation Method for producing optically active 2-(N-substituted aminomethyl)-3-hydroxybutyric acid ester
WO2007097336A1 (ja) * 2006-02-21 2007-08-30 Kaneka Corporation (2r,3r)および(2s,3s)-3-フェニルイソセリン誘導体の製造法
WO2007114217A1 (ja) * 2006-03-31 2007-10-11 Kaneka Corporation エリスロ又はスレオ-2-アミノ-3-ヒドロキシプロピオン酸エステルの製造方法、新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
US8304216B2 (en) 2006-03-31 2012-11-06 Kaneka Corporation Method for production of erythro-or threo-2-amino-3-hydroxypropionic acid ester, novel carbonyl reductase, gene for the reductase, vector, transformant, and method for production of optically active alcohol using those
WO2007138928A1 (ja) 2006-05-26 2007-12-06 Kaneka Corporation 光学活性3-アミノ-2-ヒドロキシプロピオン酸シクロプロピルアミド誘導体およびその塩の製造方法
US7834190B2 (en) 2006-05-26 2010-11-16 Kaneka Corporation Process for production of optically active-3-amino-2-hydroxypropionic cyclopropylamide derivatives and salts thereof
EP2226386A1 (de) 2009-03-05 2010-09-08 IEP GmbH Verfahren zur stereoselektiven enzymatischen Reduktion von Ketoverbindungen
WO2010100195A1 (de) 2009-03-05 2010-09-10 Iep Gmbh Verfahren zur stereoselektiven enzymatischen reduktion von ketoverbindungen
WO2020213731A1 (ja) 2019-04-19 2020-10-22 株式会社エーピーアイ コーポレーション (1r,3r)-3-(トリフルオロメチル)シクロヘキサン-1-オール及びその中間体の製造法
US11396666B2 (en) 2019-04-19 2022-07-26 Api Corporation Method for producing (1R,3R)-3-(trifluoromethyl)cyclohexan-1-ol and intermediate thereof

Also Published As

Publication number Publication date
EP1553170A4 (en) 2006-05-31
US20060035357A1 (en) 2006-02-16
EP1553170B1 (en) 2012-06-27
AU2003264502A1 (en) 2004-04-08
US20070178565A1 (en) 2007-08-02
US7531329B2 (en) 2009-05-12
EP1553170A1 (en) 2005-07-13
JP4414337B2 (ja) 2010-02-10
JPWO2004027055A1 (ja) 2006-01-19
US7220564B2 (en) 2007-05-22

Similar Documents

Publication Publication Date Title
JP4510351B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JP4746548B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JP4757804B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
US7531329B2 (en) Carbonyl reductase, gene thereof and method of using the same
CN105624125B (zh) 醛酮还原酶及其在合成(2s,3r)-2-苯甲酰氨甲基-3-羟基丁酸酯中的应用
WO2003078634A1 (fr) Carbonyl reductase, gene codant pour celle-ci, et procede de production d&#39;alcools optiquement actifs utilisant celle-ci
JP5308163B2 (ja) 新規アルコール脱水素酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
JP4426437B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JPWO2007094178A1 (ja) 新規な(s,s)−ブタンジオール脱水素酵素、その遺伝子、及びその利用法
JP5005672B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびそれらを利用した光学活性アルコールの製造方法
JP5761641B2 (ja) (r)−3−キヌクリジノールの製造方法
EP2128258B1 (en) Novel amidase, gene for the same, vector, transformant, and method for production of optically active carboxylic acid amide and optically active carboxylic acid by using any one of those items
JP4880859B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
WO2005123921A1 (ja) 新規グリセロール脱水素酵素、その遺伝子、及びその利用法
WO2007099994A1 (ja) 新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
WO2006109632A1 (ja) 新規α-ケト酸還元酵素、その遺伝子、およびその利用法
JP2003061668A (ja) 新規グリセロール脱水素酵素およびその利用法
JP2005027552A (ja) 新規な光学活性2−ヒドロキシメチル−3−アリールプロピオン酸の製造方法
JP2010279272A (ja) 新規カルボニル還元酵素、その遺伝子、ベクター、形質転換体、およびそれらを利用した光学活性アルコールの製造方法
JP4796323B2 (ja) 新規カルボニル還元酵素、その遺伝子、およびその利用法
JPWO2005044973A1 (ja) 新規アセトアセチルCoA還元酵素および光学活性アルコールの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004537990

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006035357

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10528000

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003797682

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003797682

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10528000

Country of ref document: US