WO2004016819A1 - Intermetallisches material und verwendung dieses materials - Google Patents

Intermetallisches material und verwendung dieses materials Download PDF

Info

Publication number
WO2004016819A1
WO2004016819A1 PCT/CH2003/000503 CH0300503W WO2004016819A1 WO 2004016819 A1 WO2004016819 A1 WO 2004016819A1 CH 0300503 W CH0300503 W CH 0300503W WO 2004016819 A1 WO2004016819 A1 WO 2004016819A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermetallic
felt
turbine blade
intermetallic felt
blade
Prior art date
Application number
PCT/CH2003/000503
Other languages
English (en)
French (fr)
Inventor
Andreas KÜNZLER
Mohamed Nazmy
Markus E. Staubli
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Priority to EP20030739941 priority Critical patent/EP1529123B1/de
Priority to US10/524,889 priority patent/US7141128B2/en
Priority to AU2003285270A priority patent/AU2003285270A1/en
Publication of WO2004016819A1 publication Critical patent/WO2004016819A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/24997Of metal-containing material

Definitions

  • the invention relates to an intermetallic material according to claims 1 to 3 and the use of this material as a felt and as a high-temperature protective layer according to claims 4 and 5.
  • the guide and rotor blades of gas turbines are exposed to heavy loads.
  • the impeller of the gas turbine is fitted to the stator with a very small amount of play, so that it can be rubbed.
  • a honeycomb structure is attached to the stator of the gas turbine.
  • the honeycomb structure consists of a heat-resistant metal alloy.
  • Another design are smooth, coated or uncoated heat accumulation segments (WSS), which face the rotating blade radially on the outer radius. The blade tip then rubs against these heat accumulation segments. In order to prevent the blade tip itself from being rubbed off, it can be coated so that the heat accumulation segments can then be rubbed off to a greater extent.
  • a disadvantage of this embodiment is that the coating has only limited adhesion to the turbine blade. It is also disadvantageous that cooling air bores, with which either the heat accumulation segment and / or the blade can be provided, become blocked when rubbing. From documents DE-C2 32 35 230, EP-132 667 or DE-C2-32 03 869 it is known to use metal felts at various points in gas turbine components, for example at the tip of a turbine blade (DE-C2-32 03 869) , between a metal core or a ceramic outer skin (DE-C2 32 35 230) or as a jacket of the turbine blade (EP-B1-132 667). However, these designs have the disadvantage that the metal felt used has an insufficient resistance to oxidation.
  • metal felts which are composed of an intermetallic alloy , known. These felts consist of sintered and pressed intermetallic fibers. Materials significantly improved material properties in terms of strength, oxidation resistance, deformability and abrasion. Metallic high-temperature fibers have also been described in VDI report 1151, 1995 (Metallic high-temperature fibers by melt extraction - production, properties, applications).
  • the invention solves the problem of further improving the material properties of intermetallic alloys, so that they can be used as felt or as a high-temperature protective layer on thermally highly stressed gas turbine components.
  • the composition of the intermetallic alloy it should have sufficient strength, resistance to oxidation, deformability, abrasion and sufficient vibration-damping properties.
  • the present invention also relates to an intermetallic material consisting of the following composition (% by weight) 8-15% Al, 15-25% Cr, 20-40% Co, 0-5% Ta, 0-0.03% La, 0-0.5% Y, 0-1.5% Si, 0-1% Hf, 0-0.2% Zr, 0-0.2% B, 0.01% C, 0-4% Fe, balance Ni and inevitable impurities, especially from (wt .-%) 12% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 3% Fe, balance Ni and unavoidable impurities or from 10% AI, 22% Cr, 36% Co, 0.2% Y , 0.2% Hf, 2% Ta, 3% Fe, balance Ni and unavoidable impurities.
  • such an intermetallic material can advantageously be used as a high-temperature coating of, for example, the turbine blades or other components.
  • intermetallic felt on components subject to friction in thermal turbomachinery is also conceivable.
  • This can be, for example, the rotor or stator, the tip of a turbine blade, the heat accumulation segments arranged opposite the turbine blade, or the platform of the turbine blade.
  • a further advantage arises when the intermetallic felt is coated with a ceramic material, since the ceramic material has very good adhesion to the rough surface of the intermetallic felt. This provides, for example, the tip of the guide or rotor blade with good protection against thermal and mechanical influences caused by friction.
  • Another advantage arises from the fact that cooling air bores are not clogged by abrasion during operation, since it is a porous material.
  • the intermetallic felt also has sufficient vibration-absorbing properties.
  • 1 shows an embodiment of a turbine blade according to the invention with an intermetallic felt on the tip
  • 2 shows an embodiment of a gas turbine with heat accumulation segments, which are arranged opposite the guide or rotor blade and consist of an intermetallic felt
  • FIG 3 shows a second embodiment of a turbine blade according to the invention, the intermetallic felt being arranged on the platform of the turbine blade,
  • FIG. 4 shows a variant of the second embodiment of detail iv of FIG. 3, the intermetallic felt between the turbine blades being arranged on the platforms of the turbine blades on a supporting basic structure,
  • FIG. 5 shows a heat accumulation segment according to the invention with a load-bearing basic structure according to section V in FIG. 2,
  • FIG. 6 shows a section through the heat accumulation segment along the line VI-VI in FIG. 5
  • FIG. 7 shows the oxidation behavior of different materials at a temperature of 1050 ° C.
  • FIG. 1 shows a turbine blade 1 with a tip 11, an airfoil 14, a platform 12 and a blade root 13.
  • This can be, for example, a guide vane or a rotor blade of a gas turbine or a compressor.
  • An intermetallic felt 2 according to the invention is arranged at the tip 11 of this turbine blade 1.
  • the intermetallic felt 2 was produced on the basis of a Ni-Co aluminide. In order to achieve sufficient strength, resistance to oxidation and deformability, the elements Ta, Cr, Y, B and Zr added.
  • Tab. 1 shows the composition of Ni-Co-A! Uminides according to the invention.
  • composition of the intermetallic alloy according to the invention (an Ni-Co aluminide is indicated)
  • Nickel-cobalt aluminides (figures in% by weight)
  • intermetallic felts 2 is the significantly improved resistance to oxidation.
  • 7 and 8 show the oxidation of different materials in comparison with the commercial nickel-based alloys Hastelloy X, Haynes 230, Haynes 214 and the alloy SV349.
  • Table 2 shows the composition of the test alloys.
  • FIG. 8 shows the weight gain in [mg / cm] given in Table 2 over a period of 12 hours at a temperature of 1200 ° C.
  • the weight gain is representative of the oxidation of the materials. From Fig. 8 it can be seen that the comparison alloy Hastelloy X after a short time of about 100 minutes. up to approx. 300 min. has a double weight gain. As the time progresses, the weight gain of the Hastelloy X continues to increase, while the intermetallic felts IM14 and IM15 adjust to a constant value between 0.6 - 0.8 mg / cm 2 , while the two alloys IM 28 and 29 are still below.
  • the resistance to oxidation in the intermetallic felts is significantly improved since a constant oxide layer has formed.
  • the resistance to oxidation is one of the most important factors for the life of the entire component.
  • the two alloys IM 28 and 29 differ in their Co content in a range from 20 to 40%. This further increases the oxidation resistance of the intermetallic material.
  • FIG. 7 shows a representation comparable to FIG. 8, but the tests were carried out at a temperature of 1050 ° C.
  • the intermetallic felt 2 can be covered with a ceramic material 3, for example with a TBC (Thermal Barrier Coating).
  • TBC is a Zr oxide stabilized with Y. Equivalent materials are also conceivable.
  • the ceramic material 3 can be sprayed onto the intermetallic felt 2, because of the uneven surface of the intermetallic felt 2 it has a very good hold on it and good oxidation resistance.
  • the ceramic material 3 is good protection against thermal and mechanical, for example friction-related effects.
  • cooling air bores which may be present in the turbine blade 1 or on the rotor / stator 4, cannot become blocked, since the intermetallic felt 2 is a porous material. Another embodiment is shown in FIG. FIG.
  • FIG. 2 shows a schematic representation of a gas turbine with a rotor 4a, a stator 4b. Blades 6 are attached to the rotor 4a, and guide blades 7 are attached to the stator 7.
  • Heat accumulation segments 8 are usually arranged on the rotor 4a or on the stator 4b opposite the guide / rotor blades 6, 7. According to the invention, these heat accumulation segments 8 can also consist entirely or partially of an intermetallic felt. Due to the porous properties, an improved cooling at this point is also possible if there has been abrasion, since the porous structure of the intermetallic felt prevents clogging. As already described, the abrasion can be reduced by a layer of TBC. The component can also be cooled under the TBC layer, since the cooling medium can escape laterally through the porous felt.
  • FIG. 5 shows a heat accumulation segment 8 according to the invention in accordance with section V in FIG. 2.
  • the intermetallic felt 2 was attached to a load-bearing basic structure 5.
  • the load-bearing basic structure 5 has fastening means 9 which are used for fastening to the rotor 4a or stator 4b (not shown in FIG. 5).
  • the lateral fastening means 9 are connected to one another by struts 10.
  • the intermetallic felt 2 is inserted and mechanically connected to the struts 10 on the side facing the turbine blades. This can be done, for example, by soldering, welding or by casting. For reasons of durability, the felt should be cohesively attached to the load-bearing basic structure 5.
  • FIG. 6 shows the section VI-VI of FIG. 5.
  • the struts 10 connecting the two fastening means 9 do not penetrate the intermetallic felt 2, but rather the intermetallic felt 2 is only fastened to them.
  • the intermetallic felt 2 can in turn be coated with a ceramic material 3, for example with a TBC (Thermal Barrier Coating). Equivalent materials are also conceivable.
  • TBC Thermal Barrier Coating
  • the intermetallic felt in the exemplary embodiment in FIG. 3 is attached to the platform 12 of the turbine blade 1 of the thermal turbomachine.
  • the TBC also serves as protection against wear.
  • FIG. 4 shows a second variant of the exemplary embodiment of the detail iv from FIG. 3.
  • a supporting basic structure 5 consisting of a cast part or another metal, attached.
  • the supporting basic structure 5 can also consist of different chambers in order to ensure an optimal air supply to the intermetallic felt 2.
  • the intermetallic felt can also be used in places within the gas turbine that are subject to vibrations, since the felt also has very good vibration-damping properties in addition to the oxidation resistance mentioned.
  • an intermetallic material according to the invention can advantageously also be used as a high-temperature coating 15 on the turbine blades or other components.
  • the two alloys in contrast to the alloy SV 349, also have improved properties with regard to the oxidation.
  • various coating methods are known from the prior art in order to apply the protective layer, for example a plasma spraying method.
  • a metallic powder consisting of the material to be applied is introduced into a flame or a plasma jet. This pulse ver melts on the spot and is sprayed against the surface to be coated, where the material solidifies and forms a continuous layer.
  • a physical (or chemical) vapor deposition process is also possible.
  • solid coating material in block form is heated and evaporated (e.g. with a laser or an electron beam).
  • the vapor is deposited on the base material and forms a coating there after an adequate time.
  • Other, equivalent coating processes are also conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Offenbart ist ein intermetallisches Material bestehend aus folgender Zusammensetzung (Gew.-%) 8-15% Al, 15-25% Cr, 20-40% Co, 0-5%Ta, 0-0.03% La, 0-0.5% Y, 0-1.5% Si, 0-1% Hf, 0-0.2% Zr, 0-0.2% B, 0-0.1% C, 0-4% Fe, Rest Ni und unvermeidbare Verunreinigungen. Auch die Verwendung als Hochtemperaturschutzschicht und an reibungs- oder schwingungsbehafteten Stellen von thermischen Turbomaschinen ist beschrieben.

Description

Intermetallisches Material und Verwendung dieses Materials
TECHNISCHES GEBIET
Die Erfindung betrifft ein intermetallisches Material gemäss den Ansprüchen 1 bis 3 und um die Verwendung dieses Material als Filz und als Hochtemperaturschutzschicht gemäss den Ansprüchen 4 und 5.
STAND DER TECHNIK
Die Leit- und Laufschaufeln von Gasturbinen sind starken Belastungen ausgesetzt. Um die Leckageverluste der Gasturbine klein zu halten wird beispielsweise das Laufrad der Gasturbine mit einem sehr kleinen Spiel zum Stator eingepasst, so dass es zum Anstreifen kommt. An dem Stator der Gasturbine ist eine Honigwabenstrukur angebracht. Die Honigwabenstruktur besteht aus einer warmfesten Metallegierung. Eine weitere Bauart sind glatte, beschichtete oder unbeschichtete Wärmestausegmente (WSS), welche der rotierenden Schaufel am Aussenradius radial gegenüberstehen. Die Schaufelspitze reibt dann gegen diese Wärmestausegmente. Um zu verhindern, dass die Schaufelspitze selbst abgerieben wird, kann sie beschichtet sein, um dann in einem grösseren Masse die Wärmestausegmente abzureiben. Nachteilig ist aber bei dieser Ausführungsform, dass die Beschichtung nur eine begrenzte Haftbarkeit an der Turbinenschaufel hat. Zudem ist nachteilig, dass Kühlluftbohrungen, mit welchen entweder das Wärmestausegment und/oder die Schaufel versehen sein können, beim Reiben verstopft werden. Aus den Schriften DE-C2 32 35 230, EP-132 667 oder DE-C2-32 03 869 ist es bekannt, Metallfilze an verschiedenen Stellen von Gasturbinenkomponenten einzusetzen, so z.B. an der Spitze einer Turbinenschaufel (DE-C2-32 03 869), zwischen einem Metallkern oder einer keramischen Aussenhaut (DE-C2 32 35 230) oder als Mantel der Turbinenschaufel (EP-B1-132 667). Diese Ausführungen haben aber den Nachteil, dass der eingesetzte Metallfilz eine ungenügende Oxidationsbeständigkeit aufweist. Die Erhöhungen der Heissgastemperaturen, beispielsweise in heutigen Gasturbinen, führen dazu, dass die eingesetzten Materialien immer höheren Anforderungen genügen müssen. Die Metallfilze in den erwähnten Schriften erfüllen aber die Anforderung an heutige Massstäbe nicht mehr, insbesondere in bezug auf eine notwendiges Mass an Oxdationsbeständigkeit.
Aus US-BI-6,241 ,469, US-B1-6.312.218, DE-A1-199 12 701 , EP-A2-0 916 897 und EP-A2-1 076 157 sind Metallfilze, welche sich aus einer intermetallischen Legierung zusammensetzen, bekannt geworden. Diese Filze bestehen aus gesinterten und ge- pressten intermetallischen Fasern und weisen durch die intermetallischen Phasen gegenüber den o.g. Materialien deutlich verbesserte Materialeigenschaften in bezug auf Festigkeit, Oxidationbeständigkeit, Verformbarkeit und Abreibbarkeit auf. Metallische Hochtemperaturfasern sind auch im VDI-Bericht 1151, 1995 (Metallische Hochtemperaturfasern durch Schmelzextraktion - Herstellung, Eigenschaften, Anwendungen) beschrieben worden.
DARSTELLUNG DER ERFINDUNG
Die Erfindung, wie sie in den unabhängigen Ansprüchen gekennzeichnet ist, löst die Aufgabe, die Materialeigenschaften von intermetallischen Legierungen noch weiter zu verbessern, so dass sie als Filz oder als Hochtemperaturschutzschicht an thermisch stark belasteten Gasturbinenbauteilen eingesetzt werden können. Durch eine entsprechende Wahl der Zusammensetzung der intermetallischen Legierung soll sie eine ausreichende Festigkeit, Oxidationsbeständigkeit, Verformbarkeit, Abreibbarkeit und ausreichende schwingungsdämpfende Eigenschaften besitzen. Die vorliegende Erfindung bezieht sich auch auf ein Intermetallisches Material bestehend aus folgender Zusammensetzung (Gew.-%) 8-15% AI, 15-25% Cr, 20-40% Co, 0-5%Ta, 0-0.03% La, 0-0.5% Y, 0-1.5% Si, 0-1% Hf, 0-0.2% Zr, 0-0.2% B, 0.01% C, 0-4% Fe, Rest Ni und unvermeidbare Verunreinigungen, insbesondere aus (Gew.-%) 12% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 3% Fe, Rest Ni und unvermeidbare Verunreinigungen oder aus 10% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 2% Ta, 3% Fe, Rest Ni und unvermeidbare Verunreinigungen.
Ein solches intermetallisches Material kann aufgrund der Materialeigenschaften vor- teilhaft als Hochtemperaturbeschichtung von beispielsweise den Turbinenschaufeln oder anderen Bauteilen eingesetzt werden.
Auch die Verwendung als intermetallischer Filz an reibungsbehafteten Komponenten in thermischen Turbomaschinen ist denkbar. Es kann sich dabei beispielsweise um den Rotor oder Stator, die Spitze einer Turbinenschaufel, um die der Turbinenschaufel gegenüberliegend angeordneten Wärmestausegmente oder um die Plattform der Turbinenschaufel handeln. Ein weiterer Vorteil entsteht, wenn der intermetallische Filz mit einem keramischen Material überzogen ist, da auf der rauhen Oberfläche des intermetallischen Filzes eine sehr gute Haftbarkeit des keramischen Mate- rials erzielt wird. Dadurch erhält beispielsweise die Spitze der Leit- oder Laufschaufel einen guten Schutz gegen thermische und gegen durch Reibung bedingte mechanische Einwirkungen. Ein weiterer Vorteil entsteht dadurch, dass Kühlluftbohrungen durch den Abrieb während des Betriebes nicht verstopfen, da es sich um ein poröses Material handelt. Zudem hat der intermetallische Filz auch ausreichende schwin- gungsabsorbierende Eigenschaften.
KURZE BESCHREIBUNG DER ZEICHNUNGEN
Die Erfindung wird an Hand der beiliegenden Zeichnungen erläutert, in denen
Fig. 1 eine Ausführungsform einer erfindungsgemässen Turbinenschaufel mit einem intermetallischen Filz an der Spitze zeigt, Fig. 2 eine Ausführungsform einer Gasturbine mit Wärmestausegmenten, welche der Leit- bzw. Laufschaufel gegenüberliegend angeordnet sind und aus einem intermetallischen Filz bestehen, darstellt,
Fig. 3 eine zweite Ausführungsform einer erfindungsgemässen Turbinenschaufel, wobei der intermetallische Filz auf der Plattform der Turbinenschaufel angeordnet ist, darstellt,
Fig. 4 eine Variante der zweiten Ausführungsform des Details iv der Figur 3, wobei der intermetallische Filz zwischen den Turbinenschaufeln auf den Plattformen der Turbinenschaufeln auf einer tragenden Grundstruktur an- geordnet ist, darstellt,
Fig. 5 ein erfind ungsgemässes Wärmestausegment mit einer tragenden Grundstruktur gemäss dem Ausschnitt V in der Fig. 2 zeigt,
Fig. 6 einen Schnitt durch das Wärmestausegment gemäss der Linie VI- VI in der Fig. 5 darstellt, Fig. 7 eine Darstellung des Oxidationsverhaltens von verschiedenen Materialien bei einer Temperatur von 1050°C zeigt und
Fig. 8 eine Darstellung des Oxidationsverhaltens von verschiedenen Materialien bei einer Temperatur von 1200°C zeigt.
Es sind nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche Elemente sind in unterschiedlichen Figuren mit gleichen Bezugszeichen versehen.
WEG ZUR AUSFÜHRUNG DER ERFINDUNG
In der Figur 1 ist eine Turbinenschaufel 1 mit einer Spitze 11 , einem Schaufelblatt 14, einer Plattform 12 und einem Schaufelfuss 13 dargestellt. Es kann sich dabei beispielsweise um eine Leit- oder eine Laufschaufel einer Gasturbine oder eines Verdichters handeln. An der Spitze 11 dieser Turbinenschaufel 1 ein erfindungsge- mässer intermetallischer Filz 2 angeordnet. Der intermetallische Filz 2 wurde auf der Basis eines Ni-Co-Aluminides hergestellt. Um eine ausreichende Festigkeit, Oxida- tionbeständigkeit und Verformbarkeit zu erreichen, sind die Elemente Ta, Cr, Y, B und Zr zugegeben. In der Tab. 1 ist die erfindungsgemässe Zusammensetzung des Ni-Co-A!uminides angegeben.
Zusammensetzung der erfindungsgemässen intermetallischen Legierung (angegeben ist eine Ni-Co-Aluminid)
Nickel-Cobalt-Aluminide (Angaben in Gew. -%)
Ni AI Cr Co Ta Y Si c La Hf Zr B Fe
15- 20- 0- 0-
Rest 8-15% 0-5% 0-1.5% 0-0.1% 0-1% 0-0.2% 0-0.2% 0-4% 25% 40% 0.5% 0.03%
Ta b. 1
Der Vorteil der intermetallischen Filze 2 ist die deutlich verbesserte Oxidationsbe- ständigkeit. Aus den Fig. 7 und 8 ist die Oxidation verschiedener Materialien im Vergleich mit den kommerziellen Nickelbasislegierungen Hastelloy X, Haynes 230, Hay- nes 214 und der Legierung SV349 ersichtlich. Die Tab. 2 gibt die Zusammensetzung der Versuchslegierungen wieder.
Zusammensetzung von Versuchslegierungen (Angaben in Gew.-%)
Figure imgf000006_0001
Tab. 2
Die Figur 8 zeigt die Gewichtszunahme der in Tab. 2 angegebenen in [mg/cm ] über eine Zeit von 12 Stunden bei einer Temperatur von 1200° C. Die Gewichtszunahme ist stellvertretend für die Oxidation der Materialien aufgetragen. Aus der Fig. 8 wird ersichtlich, dass die Vergleichslegierung Hastelloy X schon nach einer kurzen Zeit von ca. 100 min. bis ca. 300 min. eine doppelte Gewichtszunahme aufweist. Mit fortschreitender Zeit steigt die Gewichtszunahme der Hastelloy X kontinuierlich weiter, während sich die intermetallischen Filze IM14 und IM15 auf einen konstanten Wert zwischen 0.6 - 0.8 mg/cm2 einstellen, während die beiden Legierungen IM 28 und 29 noch darunter liegen. Es wird deutlich, dass die Oxdiationbeständigkeit bei den intermetallischen Filzen wesentlich verbessert ist, da sich eine konstante Oxidschicht gebildet hat. Für die erfindungsgemässe Verwendung des intermetallischen Filzes an reibungsbehafteten Stellen einer thermischen Turbomaschine ist die Oxidationsbeständigkeit einer der wichtigsten Faktor für die Lebensdauer der ganzen Komponente. Die beiden Legierungen IM 28 und 29 unterscheiden sich durch einen Co- Anteil in einem Bereich von 20 bis 40%. Dies steigert die Oxidationsbeständigkeit des intermetallischen Material noch weiter.
Die Fig. 7 zeigt eine mit der Fig. 8 vergleichbare Darstellung, jedoch wurden die Versuche bei einer Temperatur von 1050°C durchgeführt.
Um die Festigkeit dieser Turbinenschaufel 1 der Figur 1 an der Spitze 11 noch zu erhöhen, kann der intermetallische Filz 2 mit einem keramischen Material 3 überzogen werden, beispielsweise mit einem TBC (Thermal Barrier Coating). Es handelt sich bei TBC um ein mit Y stabilisiertes Zr-Oxid. Gleichwertige Materialien sind aber ebenso denkbar. Das keramische Material 3 kann auf den intermetallischen Filz 2 aufgespritzt werden, es hat durch die unebene Oberfläche des intermetallischen Fil- zes 2 einen sehr guten Halt auf ihm und eine gute Oxidationsbeständigkeit. Das keramische Material 3 ist ein guter Schutz gegen thermische und mechanische, beispielsweise reibungsbedingte Einwirkungen. Vorteilhaft können Kühlluftbohrungen, welche in der Turbinenschaufel 1 oder am Rotor/Stator 4 vorhanden sein können, nicht verstopfen, da es sich bei dem intermetallischen Filz 2 um ein poröses Material handelt. In der Figur 2 ist eine weitere Ausführungsform dargestellt. Die Figur 2 zeigt schematische eine Darstellung einer Gasturbine mit einem Rotor 4a, einem Stator 4b. An dem Rotor 4a sind Laufschaufeln 6, an dem Stator 7 sind Leitschaufeln 7 befestigt. Am Rotor 4a bzw. am Stator 4b sind üblicherweise dem Leit-/Laufschaufeln 6,7 ge- genüberliegend Wärmestausegmente 8 angeordnet. Erfindungsgemäss können diese Wärmestausegmente 8 ebenfalls ganz oder teilweise aus einem intermetallischen Filz bestehen. Durch die porösen Eigenschaften ist eine verbesserte Kühlung an dieser Stelle auch dann möglich, wenn es zu einem Abrieb gekommen ist, da die poröse Struktur des intermetallischen Filzes ein Verstopfen verhindert. Der Abrieb kann wie bereits beschrieben durch eine Schicht aus TBC verringert werden. Das Bauteil kann auch unter der TBC Schicht gekühlt sein, da das Kühlmedium seitlich durch den porösen Filz entweichen kann.
Die Figur 5 zeigt ein erfindungsgemässes Wärmestausegment 8 gemäss dem Aus- schnitt V in der Figur 2. Der intermetallische Filz 2 wurde an einer tragenden Grundstruktur 5 angebracht. Die tragenden Grundstruktur 5 weist Befestigungsmittel 9 auf, welche zur Befestigung am in der Figur 5 nicht dargestellten Rotor 4a bzw. Stator 4b dienen. Die seitlichen Befestigungsmittel 9 sind durch Streben 10 miteinander verbunden. Zwischen den Streben 10 ist auf der Seite, welche den Turbinenschaufeln zugewandt ist, der intermetallische Filz 2 eingesetzt und mit ihm mechanisch verbunden. Dies kann beispielsweise durch Löten, Schweissen oder durch Eingiessen geschehen. Aus Haltbarkeitsgründen sollte der Filz stoffschlüssig an der tragenden Grundstruktur 5 befestigt sein.
Die Figur 6 zeigt den Schnitt VI- VI der Figur 5. Dort ist ersichtlich, dass die die beiden Befestigungsmittel 9 verbindenden Streben 10 den intermetallischen Filz 2 nicht durchdringen, sondern der intermetallische Filz 2 lediglich an ihnen befestigt ist. Wie aus der Figur 6 ersichtlich ist, kann, um die Temperaturbeständigkeit des Wärmestausegments 8 noch zu erhöhen, der intermetallische Filz 2 wiederum mit einem keramischen Material 3 überzogen werden, beispielsweise mit einem TBC (Thermal Barrier Coating). Gleichwertige Materialien sind aber ebenso denkbar. Wie bei der Turbinenschaufel 1 der Figur 1 bleibt eine Kühlwirkung auch bei einem Abrieb erhalten, da es zu keinem Verstopfen des intermetallischen Filzes 2 kommt.
Zu verbesserten Kühlzwecken ist der intermetallische Filz im Ausführungsbeispiel in der Figur 3 auf der Plattform 12 der Turbinenschaufel 1 der thermischen Turbomaschine angebracht. Auch hier macht es Sinn, wie bereits bei den Figur 1 ,2,5 und 6 beschrieben, den Filz 2 mit einem keramischen Material 3 zu überziehen. Das hat den Vorteil, dass das TBC besonders gut auf dem intermetallischen Filz haftet und der Filz oxidationsbeständig ist. Es wird keine zusätzliche Bindeschicht (z.B. MCrAIY) benötigt. In der Figur 3 ist dies neben der rechten Turbinenschaufel 1 dargestellt. Das TBC dient auch als Schutz gegen Abnutzung.
Figur 4 zeigt eine zweite Variante des Ausführungsbeispiels des Details iv aus Figur 3. Zwischen zwei Turbinenschaufeln 1 - auf der Plattform 12 der Turbinen- schaufei 1 - ist der intermetallische Filz 2 auf einer tragenden Grundstruktur 5, bestehend aus einem Gussteil oder einem anderen Metall, befestigt. Die tragende Grundstruktur 5 kann auch aus verschiedenen Kammern bestehen, um eine optimale Luftzufuhr zum intermetallischen Filz 2 zu gewährleisten.
Der intermetallischen Filzes kann auch an Stellen innerhalb der Gasturbine eingesetzt werden, die schwingungsbehaftet sind, da der Filz neben der erwähnten Oxidationsbeständigkeit zudem sehr gute schwingungsdämpfende Eigenschaften besitzt.
Ein erfindungsgemässes intermetallisches Material kann aufgrund der Materialei- genschaften vorteilhaft auch als Hochtemperaturbeschichtung 15 an den Turbinenschaufeln oder anderen Bauteilen eingesetzt werden. Wie aus den beiden Fig. 8 und 7 ersichtlich, haben die beiden Legierungen im Gegensatz zu der Legierung SV 349 ebenfalls verbesserte Eigenschaften in bezug auf die Oxidation. Für eine solche Turbinenschaufel sind verschiedene Beschichtungsverfahren aus dem Stand der Technik bekannt, um die Schutzschicht aufzutragen, beispielsweise ist ein Plasma- Spritz-Verfahren. Dabei wird ein aus dem aufzutragenden Material bestehendes, metallisches Pulver in eine Flamme oder einen Plasmastrahl eingeführt. Dieses Pul- ver schmilzt auf der Stelle und wird gegen die zu beschichtende Oberfläche gespritzt, wo sich das Material verfestigt und eine durchgehende Schicht bildet.
Auch ein physikalisches (oder chemisches) Aufdampf-Verfahren ist möglich. Bei die- sem Verfahren wird festes Beschichtungsmaterial in blockförmiger Form erhitzt und evaporiert (z.B. mit einem Laser oder einem Elektronenstrahl). Der Dampf schlägt sich auf dem Grundmaterial nieder und bildet dort nach einer adäquaten Zeit eine Beschichtung. Andere, gleichwertige Beschichtungsverfahren sind ebenso denkbar.
B E Z U G S Z E I C H E N L I S T E
1 Turbinenschaufel
2 Intermetallischer Filz
3 Keramischer Überzug 4 Rotor bzw. Stator
4a Rotor
4b Stator
5 Tragende Grundstruktur
6 Laufschaufel 7 Leitschaufel
8 Wärmestausegment
9 Befestigungsmittel
10 Streben
11 Spitze der Turbinenschaufel 1 12 Plattform
13 Schaufelfuss der Turbinenschaufel 1
14 Schaufelblatt der Turbinenschaufel 1
15 Hochtemperaturbeschichtung

Claims

PATENTANSPRÜCHE
1. Intermetallisches Material bestehend aus folgender Zusammensetzung (Gew.-%) 8-15% AI, 15-25% Cr, 20-40% Co, 0-5%Ta, 0-0.03% La, 0-0.5% Y, 0-1.5% Si, 0- 1% Hf, 0-0.2% Zr, 0-0.2% B, 0-0.1% C, 0-4% Fe, Rest Ni und unvermeidbare
Verunreinigungen.
2. Intermetallisches Material nach Anspruch 1 , bestehend aus folgender Zusammensetzung (Gew.-%) 12% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 3% Fe, Rest Ni und unvermeidbare Verunreinigungen.
3. Intermetallisches Material nach Anspruch 1 , bestehend aus folgender Zusammensetzung (Gew.-%) 10% AI, 22% Cr, 36% Co, 0.2% Y, 0.2% Hf, 2% Ta, 3% Fe, Rest Ni und unvermeidbare Verunreinigungen.
4. Verwendung eines intermetallischen Materials gemäss einem der Ansprüche 1 bis 3 als Hochtemperaturbeschichtung (15) in thermischen Turbomaschinen.
5. Verwendung eines intermetallischen Materials gemäss einem der Ansprüche 1 bis 3 als Filz an reibungsbehafteten Komponenten in thermischen Turbomaschinen.
6. Verwendung eines intermetallischen Filzes gemäss Anspruch 5, dadurch gekennzeichnet, dass der intermetallische Filz an einem Rotor (4,4a) oder Stator (4,4b) angeordnet ist.
7. Verwendung eines intermetallischen Filzes gemäss Anspruch 5, dadurch gekennzeichnet, dass die Komponente (1 , 8) eine Turbinenschaufel (1) ist und die Spitze (11) der Tur- binenschaufel (1) mit einem intermetallischen Filz (2) ausgestattet ist.
8. Verwendung eines intermetallischen Filzes gemäss Anspruch 5, dadurch gekennzeichnet, dass die Komponente (1 , 8) eine Turbinenschaufel (1) ist und die Plattform (12) der Turbinenschaufel (1) mit einem intermetallischen Filz (2) ausgestattet ist.
9. Verwendung eines intermetallischen Filzes gemäss Anspruch 5, dadurch gekennzeichnet, dass die Komponente (1 , 8) ein Wärmestausegment (8) ist und das Wärmestausegment (8) ganz oder teilweise aus einem intermetallischen Filz (2) besteht.
10.Verwendung eines intermetallischen Filzes gemäss einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der intermetallische Filz (2) mit einem keramischen Material (3) überzogen ist.
11.Verwendung eines intermetallischen Filzes gemäss Anspruch 5, dadurch gekennzeichnet, dass der Filz an schwingungssbehafteten Komponenten in thermischen Turbomaschinen eingesetzt wird.
PCT/CH2003/000503 2002-08-16 2003-07-24 Intermetallisches material und verwendung dieses materials WO2004016819A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20030739941 EP1529123B1 (de) 2002-08-16 2003-07-24 Intermetallisches material und verwendung dieses materials
US10/524,889 US7141128B2 (en) 2002-08-16 2003-07-24 Intermetallic material and use of this material
AU2003285270A AU2003285270A1 (en) 2002-08-16 2003-07-24 Intermetallic material and use of said material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH14062002 2002-08-16
CH1406/02 2002-08-16

Publications (1)

Publication Number Publication Date
WO2004016819A1 true WO2004016819A1 (de) 2004-02-26

Family

ID=31722378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2003/000503 WO2004016819A1 (de) 2002-08-16 2003-07-24 Intermetallisches material und verwendung dieses materials

Country Status (5)

Country Link
US (1) US7141128B2 (de)
EP (1) EP1529123B1 (de)
CN (1) CN100430499C (de)
AU (1) AU2003285270A1 (de)
WO (1) WO2004016819A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025865A3 (en) * 2004-03-02 2006-06-15 Honeywell Int Inc Mcra1y coatings on turbine blade tips with high durability
DE102006006025B3 (de) * 2005-04-12 2006-12-14 Mitsubishi Heavy Industries, Ltd. Komponente für eine Rotationsmaschine
EP1818419A1 (de) * 2006-01-16 2007-08-15 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
US7378132B2 (en) * 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
EP2374909A1 (de) * 2010-03-30 2011-10-12 United Technologies Corporation Verbesserte Nickellötlegierungszusammensetzung
US8273148B2 (en) 2009-01-30 2012-09-25 Untied Technologies Corporation Nickel braze alloy composition
EP3985138A1 (de) * 2020-10-14 2022-04-20 Siemens Energy Global GmbH & Co. KG Legierung auf nicocral-basis, pulver, beschichtung und komponente

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0807008D0 (en) * 2008-04-17 2008-05-21 Advanced Interactive Materials Helicoidal motors for use in down-hole drilling
CN107663605A (zh) * 2016-07-29 2018-02-06 泰州市艾瑞克新型材料有限公司 单晶涡轮叶片锯齿冠阻尼面耐磨涂层及其制备工艺
US11426822B2 (en) * 2020-12-03 2022-08-30 General Electric Company Braze composition and process of using
CN115747607B (zh) * 2023-01-10 2023-04-14 西安稀有金属材料研究院有限公司 一种用于纤维金属层板的高熵合金薄板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB607616A (en) * 1945-11-28 1948-09-02 Harold Ernest Gresham Nickel base alloy
US3928026A (en) * 1974-05-13 1975-12-23 United Technologies Corp High temperature nicocraly coatings
GB1456554A (en) * 1973-03-28 1976-11-24 United Aircraft Corp High temperature abradable material
WO1995012004A1 (en) * 1993-10-29 1995-05-04 United Technologies Corporation Plasma sprayed abradable seals for gas turbine engines
EP1076157A2 (de) * 1999-08-09 2001-02-14 ALSTOM POWER (Schweiz) AG Reibungskomponente einer thermischen Turbomaschine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101713A (en) * 1977-01-14 1978-07-18 General Electric Company Flame spray oxidation and corrosion resistant superalloys
US4447503A (en) * 1980-05-01 1984-05-08 Howmet Turbine Components Corporation Superalloy coating composition with high temperature oxidation resistance
US4615864A (en) * 1980-05-01 1986-10-07 Howmet Turbine Components Corporation Superalloy coating composition with oxidation and/or sulfidation resistance
DE3203869C2 (de) 1982-02-05 1984-05-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbinenlaufschaufel für Strömungsmaschinen, insbesondere Gasturbinentriebwerke
JPS58153752A (ja) * 1982-03-08 1983-09-12 Takeshi Masumoto Ni−Cr系合金材料
DE3235230A1 (de) 1982-09-23 1984-03-29 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Gasturbinenschaufel mit metallkern und keramikblatt
DE3327218A1 (de) 1983-07-28 1985-02-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Thermisch hochbeanspruchtes, gekuehltes bauteil, insbesondere turbinenschaufel
US5192625A (en) * 1990-02-28 1993-03-09 General Electric Company Cobalt-base wrought alloy compositions and articles
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
AU2663797A (en) * 1996-04-10 1997-10-29 Penn State Research Foundation, The Improved superalloys with improved oxidation resistance and weldability
DE19750517A1 (de) 1997-11-14 1999-05-20 Asea Brown Boveri Hitzeschild
DE19848104A1 (de) * 1998-10-19 2000-04-20 Asea Brown Boveri Turbinenschaufel
DE19848103A1 (de) * 1998-10-19 2000-04-20 Asea Brown Boveri Dichtungsanordnung
DE19912701B4 (de) 1999-03-20 2006-01-19 Alstom Brennkammerwand
KR100372482B1 (ko) * 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 니켈 베이스 내열합금

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB607616A (en) * 1945-11-28 1948-09-02 Harold Ernest Gresham Nickel base alloy
GB1456554A (en) * 1973-03-28 1976-11-24 United Aircraft Corp High temperature abradable material
US3928026A (en) * 1974-05-13 1975-12-23 United Technologies Corp High temperature nicocraly coatings
WO1995012004A1 (en) * 1993-10-29 1995-05-04 United Technologies Corporation Plasma sprayed abradable seals for gas turbine engines
EP1076157A2 (de) * 1999-08-09 2001-02-14 ALSTOM POWER (Schweiz) AG Reibungskomponente einer thermischen Turbomaschine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; HAUGSRUD, REIDAR ET AL: "On the oxidation of Ni-23Co-17Cr-12Al-0.5Y alloy serving as bond coat in thermal barrier coatings", XP002224930, retrieved from STN Database accession no. 134:20082 CA *
HIGH TEMPERATURE MATERIAL PROCESSES (NEW YORK) (2000), 4(3), 339-350, 2000 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006025865A3 (en) * 2004-03-02 2006-06-15 Honeywell Int Inc Mcra1y coatings on turbine blade tips with high durability
US7316850B2 (en) 2004-03-02 2008-01-08 Honeywell International Inc. Modified MCrAlY coatings on turbine blade tips with improved durability
US7378132B2 (en) * 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
DE102006006025B3 (de) * 2005-04-12 2006-12-14 Mitsubishi Heavy Industries, Ltd. Komponente für eine Rotationsmaschine
US7410701B2 (en) 2005-04-12 2008-08-12 Mitsubishi Heavy Industries, Ltd. Component for rotary machine and rotary machine
EP1818419A1 (de) * 2006-01-16 2007-08-15 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
US8273148B2 (en) 2009-01-30 2012-09-25 Untied Technologies Corporation Nickel braze alloy composition
US8771398B2 (en) 2009-01-30 2014-07-08 United Technologies Corporation Nickel braze alloy composition
EP2374909A1 (de) * 2010-03-30 2011-10-12 United Technologies Corporation Verbesserte Nickellötlegierungszusammensetzung
EP3985138A1 (de) * 2020-10-14 2022-04-20 Siemens Energy Global GmbH & Co. KG Legierung auf nicocral-basis, pulver, beschichtung und komponente
WO2022078735A1 (en) * 2020-10-14 2022-04-21 Siemens Energy Global GmbH & Co. KG Nicocral based alloy, a powder, a coating and a component

Also Published As

Publication number Publication date
AU2003285270A1 (en) 2004-03-03
EP1529123B1 (de) 2011-10-05
US7141128B2 (en) 2006-11-28
CN100430499C (zh) 2008-11-05
US20060127660A1 (en) 2006-06-15
EP1529123A1 (de) 2005-05-11
CN1708598A (zh) 2005-12-14

Similar Documents

Publication Publication Date Title
DE69926858T2 (de) Abreibbare Dichtungsschicht und deren Herstellungsweise
EP1076157B1 (de) Reibungskomponente einer thermischen Turbomaschine
DE60010271T2 (de) Verbundbeschichtung für turbinenkomponenten und verfahren zur herstellung
DE69732404T2 (de) Teilbeschichtung von Gasturbinenschaufeln zur Erhöhung der Dauerfestigkeit
DE60021178T2 (de) Abrasions- und hochtemperaturbeständige, abschleifbare wärmedämmende verbundbeschichtung
DE60309819T2 (de) Wärmedämmschicht (TBC), welche durch eine thermisch glasierte Schicht geschützt ist, und Verfahren zu ihrer Herstellung
DE19918900B4 (de) Hochtemperatur-Komponente für eine Gasturbine und Verfahren zu deren Herstellung
EP1902160B1 (de) Keramische wärmedämmschicht
DE2829369B2 (de) Verfahren zum Ausbilden von harten, verschleißfestenMetallkarbide enthaltenden Überzügen
EP2317078A2 (de) Abrasive einkristalline Turbinenschaufel
EP2465958B1 (de) Legierung, Schutzschicht und Bauteil
WO2006103127A1 (de) Matrix und schichtsystem
DE102009049707A1 (de) Verfahren zur Herstellung einer Lauf- oder Statorschaufel und eine derartige Schaufel
DE4126989A1 (de) Einkristalliner, gegenueber der umgebung bestaendiger gasturbinenmantel
EP1529123B1 (de) Intermetallisches material und verwendung dieses materials
WO2008095463A1 (de) Vorrichtung zum schutz von bauteilen mit brennbarer titanlegierung vor titanfeuer und verfahren zu deren herstellung
DE2842848A1 (de) Ueberzogener gegenstand, insbesondere superlegierungsgasturbinenschaufel
WO2007063091A1 (de) Legierung, schutzschicht zum schutz eines bauteils gegen korrosion und oxidation bei hohen temperaturen und bauteil
EP1798299B1 (de) Legierung, Schutzschicht und Bauteil
DE602005001990T2 (de) Hitzebeständige Superlegierung auf Nickelbasis und einkristalline Gegenstände aus dieser Legierung
DE3036206A1 (de) Verschleissfester, vor oxidation und korrosion schuetzender ueberzug, korrosions- und verschleissfeste ueberzugslegierung, mit einem solchen ueberzug versehener gegenstand und verfahren zum herstellen eines solchen ueberzugs
EP1462617A2 (de) Schaufelanordnung für eine axiale Turbomaschine
EP1790743A1 (de) Legierung, Schutzschicht und Bauteil
WO2007051755A1 (de) Legierung, schutzschicht zum schutz eines bauteils gegen korrosion und/oder oxidation bei hohen temperaturen und bauteil
DE10356953B4 (de) Einlaufbelag für Gasturbinen sowie Verfahren zur Herstellung desselben

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003739941

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038239647

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003739941

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006127660

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10524889

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10524889

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP