EP1529123B1 - Intermetallisches material und verwendung dieses materials - Google Patents

Intermetallisches material und verwendung dieses materials Download PDF

Info

Publication number
EP1529123B1
EP1529123B1 EP20030739941 EP03739941A EP1529123B1 EP 1529123 B1 EP1529123 B1 EP 1529123B1 EP 20030739941 EP20030739941 EP 20030739941 EP 03739941 A EP03739941 A EP 03739941A EP 1529123 B1 EP1529123 B1 EP 1529123B1
Authority
EP
European Patent Office
Prior art keywords
intermetallic
felt
turbine blade
intermetallic felt
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030739941
Other languages
English (en)
French (fr)
Other versions
EP1529123A1 (de
Inventor
Andreas KÜNZLER
Mohamed Nazmy
Markus E. Staubli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Vernova GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP1529123A1 publication Critical patent/EP1529123A1/de
Application granted granted Critical
Publication of EP1529123B1 publication Critical patent/EP1529123B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249962Void-containing component has a continuous matrix of fibers only [e.g., porous paper, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249967Inorganic matrix in void-containing component
    • Y10T428/24997Of metal-containing material

Definitions

  • the invention relates to an intermetallic material according to claims 1 and 2 and the use of this material as a felt and as a high-temperature protective layer according to claims 3 and 4.
  • the guide vanes and rotor blades of gas turbines are exposed to heavy loads.
  • the impeller of the gas turbine is fitted with a very small clearance to the stator, so that it comes to rub against.
  • a honeycomb structure is attached on the stator of the gas turbine.
  • the honeycomb structure is made of a heat-resistant metal alloy.
  • Another type are smooth, coated or uncoated thermal damper segments (WSS), which radially face the rotating blade at the outer radius. The blade tip then rubs against these heat dam segments.
  • WSS thermal damper segments
  • the coating has only a limited liability to the turbine blade.
  • cooling air bores with which either the heat spreader segment and / or the blade can be provided, are clogged during rubbing.
  • EP 132,667 or DE-C2-32 03 869 It is known to use metal felts at various points of gas turbine components, such as at the tip of a turbine blade ( DE-C2-32 03 869 ), between a metal core or a ceramic outer skin ( DE-C2 32 35 230 ) or as a shell of the turbine blade ( EP-B1-132 667 ).
  • these embodiments have the disadvantage that the metal felt used has insufficient oxidation resistance. Increases in hot-gas temperatures, for example in gas turbines today, mean that the materials used must always meet higher requirements. However, the metal felts in the mentioned documents no longer meet the requirement of today's standards, in particular with regard to a necessary degree of oxidation resistance.
  • EP-A2-0 916 897 and EP-A2-1 076 157 are metal felts, which are composed of an intermetallic alloy, known. These felts are made of sintered and pressed intermetallic fibers and have by the intermetallic phases compared to the above materials significantly improved material properties in terms of strength, oxidation resistance, ductility and abradability. Metallic high temperature fibers have also been described in VDI Report 1151, 1995 (Metallic High Temperature Fibers by Melt Extraction - Fabrication, Properties, Applications).
  • US 3,928,026 is a coating for Ni and Co base superalloys known with the following chemical composition (in wt .-%): 11-48 Co, 10-40 Cr, 9-15 Al, 0.1-1.0 reactive metal from the group of Y, Sc, Th, La and other rare earths, balance Ni, with the Ni content being at least 15%.
  • the invention solves the problem of further improving the material properties of intermetallic alloys, so that they as a felt or as a high-temperature protective layer of thermal heavily loaded gas turbine components can be used.
  • a suitable choice of the composition of the intermetallic alloy it should have sufficient strength, oxidation resistance, deformability, abradability and sufficient vibration damping properties.
  • the present invention also relates to an intermetallic material consisting of the following composition (wt .-%) 12 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 3 Fe, balance Ni and unavoidable impurities or from 10 Al, 22 Cr , 36 Co, 0.2 Y, 0.2 Hf, 2 Ta, 3 Fe, balance Ni and unavoidable impurities.
  • Such an intermetallic material can be used advantageously as a high-temperature coating of, for example, the turbine blades or other components due to the material properties.
  • intermetallic felt on frictional components in thermal turbomachinery is conceivable.
  • This may be, for example, the rotor or stator, the tip of a turbine blade, the turbine blades arranged opposite heat accumulation segments or the platform of the turbine blade.
  • a further advantage arises when the intermetallic felt is coated with a ceramic material, since a very good adhesion of the ceramic material is achieved on the rough surface of the intermetallic felt. This gives, for example, the tip of the guide or blade good protection against thermal and friction-induced mechanical effects.
  • Another advantage arises from the fact that cooling air holes are not clogged by the abrasion during operation, since it is a porous material.
  • the intermetallic felt also has sufficient vibration-absorbing properties.
  • a turbine blade 1 with a tip 11, an airfoil 14, a platform 12 and a blade root 13 is shown. It may be, for example, a guide or a blade of a gas turbine or a compressor.
  • an intermetallic felt 2 according to the invention is arranged at the tip 11 of this turbine blade 1.
  • the intermetallic felt 2 was made on the basis of a Ni-Co aluminide. To ensure adequate strength, oxidation resistance and to achieve ductility, the elements Ta, Cr, Y are added. Table 1 shows the composition according to the invention of the Ni-Co aluminide (designation IM 28 and IM 29).
  • the advantage of the intermetallic felts 2 is the significantly improved oxidation resistance. From the Fig. 7 and 8th For example, the oxidation of various materials can be seen in comparison with the commercial nickel base alloys Hastelloy X, Haynes 230, Haynes 214, and the alloy SV349. Tab. 1 shows the composition of the experimental alloys.
  • FIG. 8 shows the increase in weight given in Tab. 2 in [mg / cm 2 ] over a period of 12 hours at a temperature of 1200 ° C.
  • the weight gain is representative of the oxidation of the materials applied. From the Fig. 8 It can be seen that the comparative alloy Hastelloy X already after a short time of about 100 min. up to approx. 300 min. has a double weight gain. As the time progresses, Hastelloy X's weight gain continues to increase, while the IM14 and IM15 intermetallic felts are set to a constant between 0.6 - 0.8 mg / cm 2 , while the IM 28 and 29 alloys are even lower.
  • the oxidation resistance in the intermetallic felts is significantly improved, since a constant oxide layer has formed.
  • the two alloys IM 28 and 29 differ from the alloys IM 14 and IM 15 by a Co content of 36%. This further increases the oxidation resistance of the intermetallic material.
  • the Fig. 7 shows one with the Fig. 8 comparable presentation, but the experiments were carried out at a temperature of 1050 ° C.
  • the intermetallic felt 2 can be coated with a ceramic material 3, for example with a TBC (Thermal Barrier Coating).
  • TBC is a Y stabilized Zr oxide.
  • Equivalent materials are also conceivable.
  • the ceramic material 3 can be sprayed onto the intermetallic felt 2, it has by the uneven surface of the intermetallic felt 2 a very good grip on it and a good oxidation resistance.
  • the ceramic material 3 is a good protection against thermal and mechanical, for example, frictional effects.
  • cooling air holes which may be present in the turbine blade 1 or on the rotor / stator 4, do not clog, since the intermetallic felt 2 is a porous material.
  • FIG. 2 schematically shows a representation of a gas turbine with a rotor 4a, a stator 4b.
  • blades 6, on the stator 7 vanes 7 are attached.
  • heat guide segments 8 are usually arranged opposite the guide vanes 6, 7.
  • these heat barrier segments 8 may also consist wholly or partly of an intermetallic felt. Due to the porous properties improved cooling at this point is also possible if it has come to an abrasion, as the porous structure of the intermetallic felt prevents clogging.
  • the abrasion can be reduced as already described by a layer of TBC.
  • the component may also be cooled below the TBC layer, since the cooling medium can escape laterally through the porous felt.
  • the FIG. 5 shows a heat recovery segment according to the invention 8 according to the section V in the FIG. 2 ,
  • the intermetallic felt 2 was attached to a supporting base structure 5.
  • the supporting base structure 5 has fastening means 9, which for attachment to in the FIG. 5 not shown rotor 4a and stator 4b are used.
  • the lateral fastening means 9 are interconnected by struts 10. Between the struts 10 is on the side which faces the turbine blades, the intermetallic felt 2 is used and mechanically connected thereto. This can be done for example by soldering, welding or pouring. For reasons of durability, the felt should be firmly bonded to the supporting base structure 5.
  • FIG. 6 shows the section VI-VI of FIG. 5 ,
  • the struts 10 connecting the two fastening means 9 do not penetrate the intermetallic felt 2, but the intermetallic felt 2 is merely attached to them.
  • the intermetallic felt 2 can in turn be coated with a ceramic material 3, for example with a TBC (Thermal Barrier Coating). Equivalent materials are also conceivable.
  • a cooling effect is maintained even with abrasion, since there is no clogging of the intermetallic felt 2.
  • the intermetallic felt in the embodiment in the FIG. 3 mounted on the platform 12 of the turbine blade 1 of the thermal turbomachinery. Again, it makes sense, as with the Figure 1,2 . 5 and 6 described to coat the felt 2 with a ceramic material 3.
  • This has the advantage that the TBC adheres particularly well to the intermetallic felt and the felt is oxidation resistant. There is no additional binding layer (eg MCrA-IY) needed. In the FIG. 3 this is shown next to the right turbine blade 1.
  • the TBC also serves as protection against wear.
  • FIG. 4 shows a second variant of the embodiment of the detail IV of Figure 3.
  • a supporting base structure 5 consisting of a casting or other metal attached.
  • the supporting basic structure 5 may also consist of different chambers in order to ensure an optimal air supply to the intermetallic felt 2.
  • the intermetallic felt can also be used at points within the gas turbine that are subject to vibration, since the felt in addition to the aforementioned oxidation resistance also has very good vibration damping properties.
  • an intermetallic material according to the invention can advantageously also be used as a high-temperature coating 15 on the turbine blades or other components.
  • the two alloys also have improved oxidation properties, unlike the SV 349 alloy.
  • various prior art coating methods are known for applying the protective layer, for example, a plasma spray method.
  • a plasma spray method In this case, an existing of the material to be applied, metallic powder is introduced into a flame or a plasma jet. This powder melts on the spot and is sprayed against the surface to be coated, where the material solidifies and forms a continuous layer.
  • a physical (or chemical) vapor deposition process is also possible.
  • solid coating material is heated in block form and evaporated (eg with a laser or an electron beam). The vapor settles on the base material and forms a coating there after an adequate time.
  • Other, equivalent coating methods are also conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Offenbart ist ein intermetallisches Material bestehend aus folgender Zusammensetzung (Gew.-%) 8-15% Al, 15-25% Cr, 20-40% Co, 0-5%Ta, 0-0.03% La, 0-0.5% Y, 0-1.5% Si, 0-1% Hf, 0-0.2% Zr, 0-0.2% B, 0-0.1% C, 0-4% Fe, Rest Ni und unvermeidbare Verunreinigungen. Auch die Verwendung als Hochtemperaturschutzschicht und an reibungs- oder schwingungsbehafteten Stellen von thermischen Turbomaschinen ist beschrieben.

Description

    TECHNISCHES GEBIET
  • Die Erfindung betrifft ein intermetallisches Material gemäss den Ansprüchen 1 und 2 und die Verwendung dieses Materials als Filz und als Hochtemperaturschutzschicht gemäss den Ansprüchen 3 und 4.
  • STAND DER TECHNIK
  • Die Leit- und Laufschaufeln von Gasturbinen sind starken Belastungen ausgesetzt. Um die Leckageverluste der Gasturbine klein zu halten wird beispielsweise das Laufrad der Gasturbine mit einem sehr kleinen Spiel zum Stator eingepasst, so dass es zum Anstreifen kommt. An dem Stator der Gasturbine ist eine Honigwabenstrukur angebracht. Die Honigwabenstruktur besteht aus einer warmfesten Metallegierung. Eine weitere Bauart sind glatte, beschichtete oder unbeschichtete Wärmestausegmente (WSS), welche der rotierenden Schaufel am Aussenradius radial gegenüberstehen. Die Schaufelspitze reibt dann gegen diese Wärmestausegmente. Um zu verhindern, dass die Schaufelspitze selbst abgerieben wird, kann sie beschichtet sein, um dann in einem grösseren Masse die Wärmestausegmente abzureiben. Nachteilig ist aber bei dieser Ausführungsform, dass die Beschichtung nur eine begrenzte Haftbarkeit an der Turbinenschaufel hat. Zudem ist nachteilig, dass Kühlluftbohrungen, mit welchen entweder das Wärmestausegment und/oder die Schaufel versehen sein können, beim Reiben verstopft werden.
  • Aus den Schriften DE-C2 32 35 230 , EP-132 667 oder DE-C2-32 03 869 ist es bekannt, Metallfilze an verschiedenen Stellen von Gasturbinenkomponenten einzusetzen, so z.B. an der Spitze einer Turbinenschaufel ( DE-C2-32 03 869 ), zwischen einem Metallkern oder einer keramischen Aussenhaut ( DE-C2 32 35 230 ) oder als Mantel der Turbinenschaufel ( EP-B1-132 667 ). Diese Ausführungen haben aber den Nachteil, dass der eingesetzte Metallfilz eine ungenügende Oxidationsbeständigkeit aufweist. Die Erhöhungen der Heissgastemperaturen, beispielsweise in heutigen Gasturbinen, führen dazu, dass die eingesetzten Materialien immer höheren Anforderungen genügen müssen. Die Metallfilze in den erwähnten Schriften erfüllen aber die Anforderung an heutige Massstäbe nicht mehr, insbesondere in bezug auf ein notwendiges Mass an Oxdationsbeständigkeit.
  • Aus US-B1-6,241,469 , US-B1-6,312,218 , DE-A1-199 12 701 , EP-A2-0 916 897 und EP-A2-1 076 157 sind Metallfilze, welche sich aus einer intermetallischen Legierung zusammensetzen, bekannt geworden. Diese Filze bestehen aus gesinterten und gepressten intermetallischen Fasern und weisen durch die intermetallischen Phasen gegenüber den o.g. Materialien deutlich verbesserte Materialeigenschaften in bezug auf Festigkeit, Oxidationbeständigkeit, Verformbarkeit und Abreibbarkeit auf. Metallische Hochtemperaturfasern sind auch im VDI-Bericht 1151, 1995 (Metallische Hochtemperaturfasern durch Schmelzextraktion - Herstellung, Eigenschaften, Anwendungen) beschrieben worden.
  • Aus US 3,928,026 ist eine Beschichtung für Ni- und Co-Basis-Superlegierungen bekannt mit folgender chemischer Zusammensetzung (Angaben in Gew.-%): 11-48 Co, 10-40 Cr, 9-15 Al, 0.1-1.0 reaktives Metall aus der Gruppe von Y, Sc, Th, La und anderen seltenen Erden, Rest Ni, wobei der Ni-Anteil mindestens 15 % beträgt.
  • DARSTELLUNG DER ERFINDUNG
  • Die Erfindung, wie sie in den unabhängigen Ansprüchen gekennzeichnet ist, löst die Aufgabe, die Materialeigenschaften von intermetallischen Legierungen noch weiter zu verbessern, so dass sie als Filz oder als Hochtemperaturschutzschicht an thermisch stark belasteten Gasturbinenbauteilen eingesetzt werden können. Durch eine entsprechende Wahl der Zusammensetzung der intermetallischen Legierung soll sie eine ausreichende Festigkeit, Oxidationsbeständigkeit, Verformbarkeit, Abreibbarkeit und ausreichende schwingungsdämpfende Eigenschaften besitzen.
  • Die vorliegende Erfindung bezieht sich auch auf ein intermetallisches Material bestehend aus folgender Zusammensetzung (Gew.-%) 12 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 3 Fe, Rest Ni und unvermeidbare Verunreinigungen oder aus 10 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 2 Ta, 3 Fe, Rest Ni und unvermeidbare Verunreinigungen.
  • Ein solches intermetallisches Material kann aufgrund der Materialeigenschaften vorteilhaft als Hochtemperaturbeschichtung von beispielsweise den Turbinenschaufeln oder anderen Bauteilen eingesetzt werden.
  • Auch die Verwendung als intermetallischer Filz an reibungsbehafteten Komponenten in thermischen Turbomaschinen ist denkbar. Es kann sich dabei beispielsweise um den Rotor oder Stator, die Spitze einer Turbinenschaufel, um die der Turbinenschaufel gegenüberliegend angeordneten Wärmestausegmente oder um die Plattform der Turbinenschaufel handeln. Ein weiterer Vorteil entsteht, wenn der intermetallische Filz mit einem keramischen Material überzogen ist, da auf der rauhen Oberfläche des intermetallischen Filzes eine sehr gute Haftbarkeit des keramischen Materials erzielt wird. Dadurch erhält beispielsweise die Spitze der Leit- oder Laufschaufel einen guten Schutz gegen thermische und gegen durch Reibung bedingte mechanische Einwirkungen. Ein weiterer Vorteil entsteht dadurch, dass Kühlluftbohrungen durch den Abrieb während des Betriebes nicht verstopfen, da es sich um ein poröses Material handelt. Zudem hat der intermetallische Filz auch ausreichende schwingungsabsorbierende Eigenschaften.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Die Erfindung wird an Hand der beiliegenden Zeichnungen erläutert, in denen
  • Fig. 1
    eine Ausführungsform einer erfindungsgemässen Turbinenschaufel mit einem intermetallischen Filz an der Spitze zeigt,
    Fig. 2
    eine Ausführungsform einer Gasturbine mit Wärmestausegmenten, welche der Leit- bzw. Laufschaufel gegenüberliegend angeordnet sind und aus ei- nem intermetallischen Filz bestehen, darstellt,
    Fig. 3
    eine zweite Ausführungsform einer erfindungsgemässen Turbinenschaufel, wobei der intermetallische Filz auf der Plattform der Turbinenschaufel an- geordnet ist, darstellt,
    Fig. 4
    eine Variante der zweiten Ausführungsform des Details IV der Figur 3, wobei der intermetallische Filz zwischen den Turbinenschaufeln auf den Plattformen der Turbinenschaufeln auf einer tragenden Grundstruktur an- geordnet ist, darstellt,
    Fig. 5
    ein erfindungsgemässes Wärmestausegment mit einer tragenden Grund- struktur gemäss dem Ausschnitt V in der Fig. 2 zeigt,
    Fig. 6
    einen Schnitt durch das Wärmestausegment gemäss der Linie VI-VI in der Fig. 5 darstellt,
    Fig. 7
    eine Darstellung des Oxidationsverhaltens von verschiedenen Materialien bei einer Temperatur von 1050°C zeigt und
    Fig. 8
    eine Darstellung des Oxidationsverhaltens von verschiedenen Materialien bei einer Temperatur von 1200°C zeigt.
  • Es sind nur die für die Erfindung wesentlichen Elemente dargestellt. Gleiche Elemente sind in unterschiedlichen Figuren mit gleichen Bezugszeichen versehen.
  • WEG ZUR AUSFÜHRUNG DER ERFINDUNG
  • In der Figur 1 ist eine Turbinenschaufel 1 mit einer Spitze 11, einem Schaufelblatt 14, einer Plattform 12 und einem Schaufelfuss 13 dargestellt. Es kann sich dabei beispielsweise um eine Leit- oder eine Laufschaufel einer Gasturbine oder eines Verdichters handeln. An der Spitze 11 dieser Turbinenschaufel 1 ein erfindungsgemässer intermetallischer Filz 2 angeordnet. Der intermetallische Filz 2 wurde auf der Basis eines Ni-Co-Aluminides hergestellt. Um eine ausreichende Festigkeit, Oxidationbeständigkeit und Verformbarkeit zu erreichen, sind die Elemente Ta, Cr, Y zugegeben. In der Tab. 1 ist die erfindungsgemässe Zusammensetzung des Ni-Co-Aluminides angegeben (Bezeichnung IM 28 und IM 29).
  • Der Vorteil der intermetallischen Filze 2 ist die deutlich verbesserte Oxidationsbeständigkeit. Aus den Fig. 7 und 8 ist die Oxidation verschiedener Materialien im Vergleich mit den kommerziellen Nickelbasislegierungen Hastelloy X, Haynes 230, Haynes 214 und der Legierung SV349 ersichtlich. Die Tab. 1 gibt die Zusammensetzung der Versuchslegierungen wieder.
  • Zusammensetzung von Versuchslegierungen (Angaben in Gew.-%) Tab. 1
    Bez. Ni Cr Co Mo W Fe Mn Si C Al Ta Y Zr Hf La
    Hastelloy X bal 22 1.5 9 0.6 18.5 0.5 0.5 0.1 0.3 -- -- -- -- --
    Haynes 230 bal 22 3 2 14 3 0.5 0.4 -- -- -- -- -- -- 0.02
    Haynes 214 bal 16 -- -- -- 3 -- -- -- -- -- 0.01 -- -- --
    SV349 bal 13 30 -- -- -- -- 1.2 -- 11.5 0.5 0.3 -- -- --
    IM14 bal 22 -- -- -- 3 -- -- -- 10 -- 0.2 -- -- --
    IM15 bal 9 -- -- -- 1.6 -- -- -- 27 2 0.2 0.2 -- --
    IM 28 bal 22 36 -- -- 3 -- -- -- 12 -- 0.2 -- 0.2 --
    M 29 bal 22 36 -- -- 3 -- -- -- 10 2 0.2 -- 0.2 --
  • Die Figur 8 zeigt die Gewichtszunahme der in Tab. 2 angegebenen in [mg/cm2] über eine Zeit von 12 Stunden bei einer Temperatur von 1200° C. Die Gewichtszunahme ist stellvertretend für die Oxidation der Materialien aufgetragen. Aus der Fig. 8 wird ersichtlich, dass die Vergleichslegierung Hastelloy X schon nach einer kurzen Zeit von ca. 100 min. bis ca. 300 min. eine doppelte Gewichtszunahme aufweist. Mit fortschreitender Zeit steigt die Gewichtszunahme der Hastelloy X kontinuierlich weiter, während sich die intermetallischen Filze IM14 und IM15 auf einen konstanten Wert zwischen 0.6 - 0.8 mg/cm2 einstellen, während die beiden Legierungen IM 28 und 29 noch darunter liegen. Es wird deutlich, dass die Oxdiationbeständigkeit bei den intermetallischen Filzen wesentlich verbessert ist, da sich eine konstante Oxidschicht gebildet hat. Für die erfindungsgemässe Verwendung des intermetallischen Filzes an reibungsbehafteten Stellen einer thermischen Turbomaschine ist die Oxidationsbeständigkeit einer der wichtigsten Faktor für die Lebensdauer der ganzen Komponente. Die beiden Legierungen IM 28 und 29 unterscheiden sich durch einen Co-Anteil von 36% von den Legierungen IM 14 und IM 15. Dies steigert die Oxidationsbeständigkeit des intermetallischen Material noch weiter.
  • Die Fig. 7 zeigt eine mit der Fig. 8 vergleichbare Darstellung, jedoch wurden die Versuche bei einer Temperatur von 1050°C durchgeführt.
  • Um die Festigkeit dieser Turbinenschaufel 1 der Figur 1 an der Spitze 11 noch zu erhöhen, kann der intermetallische Filz 2 mit einem keramischen Material 3 überzogen werden, beispielsweise mit einem TBC (Thermal Barrier Coating). Es handelt sich bei TBC um ein mit Y stabilisiertes Zr-Oxid. Gleichwertige Materialien sind aber ebenso denkbar. Das keramische Material 3 kann auf den intermetallischen Filz 2 aufgespritzt werden, es hat durch die unebene Oberfläche des intermetallischen Filzes 2 einen sehr guten Halt auf ihm und eine gute Oxidationsbeständigkeit. Das keramische Material 3 ist ein guter Schutz gegen thermische und mechanische, beispielsweise reibungsbedingte Einwirkungen. Vorteilhaft können Kühlluftbohrungen, welche in der Turbinenschaufel 1 oder am Rotor/Stator 4 vorhanden sein können, nicht verstopfen, da es sich bei dem intermetallischen Filz 2 um ein poröses Material handelt.
  • In der Figur 2 ist eine weitere Ausführungsform dargestellt. Die Figur 2 zeigt schematische eine Darstellung einer Gasturbine mit einem Rotor 4a, einem Stator 4b. An dem Rotor 4a sind Laufschaufeln 6, an dem Stator 7 sind Leitschaufeln 7 befestigt. Am Rotor 4a bzw. am Stator 4b sind üblicherweise dem Leit-/Laufschaufeln 6,7 gegenüberliegend Wärmestausegmente 8 angeordnet. Erfindungsgemäss können diese Wärrriestausegmente 8 ebenfalls ganz oder teilweise aus einem intermetallischen Filz bestehen. Durch die porösen Eigenschaften ist eine verbesserte Kühlung an dieser Stelle auch dann möglich, wenn es zu einem Abrieb gekommen ist, da die poröse Struktur des intermetallischen Filzes ein Verstopfen verhindert. Der Abrieb kann wie bereits beschrieben durch eine Schicht aus TBC verringert werden. Das Bauteil kann auch unter der TBC Schicht gekühlt sein, da das Kühlmedium seitlich durch den porösen Filz entweichen kann.
  • Die Figur 5 zeigt ein erfindungsgemässes Wärmestausegment 8 gemäss dem Ausschnitt V in der Figur 2. Der intermetallische Filz 2 wurde an einer tragenden Grundstruktur 5 angebracht. Die tragenden Grundstruktur 5 weist Befestigungsmittel 9 auf, welche zur Befestigung am in der Figur 5 nicht dargestellten Rotor 4a bzw. Stator 4b dienen. Die seitlichen Befestigungsmittel 9 sind durch Streben 10 miteinander verbunden. Zwischen den Streben 10 ist auf der Seite, welche den Turbinenschaufeln zugewandt ist, der intermetallische Filz 2 eingesetzt und mit ihm mechanisch verbunden. Dies kann beispielsweise durch Löten, Schweissen oder durch Eingiessen geschehen. Aus Haltbarkeitsgründen sollte der Filz stoffschlüssig an der tragenden Grundstruktur 5 befestigt sein.
  • Die Figur 6 zeigt den Schnitt VI-VI der Figur 5. Dort ist ersichtlich, dass die die beiden Befestigungsmittel 9 verbindenden Streben 10 den intermetallischen Filz 2 nicht durchdringen, sondern der intermetallische Filz 2 lediglich an ihnen befestigt ist. Wie aus der Figur 6 ersichtlich ist, kann, um die Temperaturbeständigkeit des Wärmestausegments 8 noch zu erhöhen, der intermetallische Filz 2 wiederum mit einem keramischen Material 3 überzogen werden, beispielsweise mit einem TBC (Thermal Barrier Coating). Gleichwertige Materialien sind aber ebenso denkbar. Wie bei der Turbinenschaufel 1 der Figur 1 bleibt eine Kühlwirkung auch bei einem Abrieb erhalten, da es zu keinem Verstopfen des intermetallischen Filzes 2 kommt.
  • Zu verbesserten Kühlzwecken ist der intermetallische Filz im Ausführungsbeispiel in der Figur 3 auf der Plattform 12 der Turbinenschaufel 1 der thermischen Turbomaschine angebracht. Auch hier macht es Sinn, wie bereits bei den Figur 1,2,5 und 6 beschrieben, den Filz 2 mit einem keramischen Material 3 zu überziehen. Das hat den Vorteil, dass das TBC besonders gut auf dem intermetallischen Filz haftet und der Filz oxidationsbeständig ist. Es wird keine zusätzliche Bindeschicht (z.B. MCrA-IY) benötigt. In der Figur 3 ist dies neben der rechten Turbinenschaufel 1 dargestellt. Das TBC dient auch als Schutz gegen Abnutzung.
  • Figur 4 zeigt eine zweite Variante des Ausführungsbeispiels des Details IV aus Figur 3. Zwischen zwei Turbinenschaufeln 1 - auf der Plattform 12 der Turbinenschaufel 1 - ist der intermetallische Filz 2 auf einer tragenden Grundstruktur 5, bestehend aus einem Gussteil oder einem anderen Metall, befestigt. Die tragende Grundstruktur 5 kann auch aus verschiedenen Kammern bestehen, um eine optimale Luftzufuhr zum intermetallischen Filz 2 zu gewährleisten.
  • Der intermetallischen Filzes kann auch an Stellen innerhalb der Gasturbine eingesetzt werden, die schwingungsbehaftet sind, da der Filz neben der erwähnten Oxidationsbeständigkeit zudem sehr gute schwingungsdämpfende Eigenschaften besitzt.
  • Ein erfindungsgemässes intermetallisches Material kann aufgrund der Materialeigenschaften vorteilhaft auch als Hochtemperaturbeschichtung 15 an den Turbinenschaufeln oder anderen Bauteilen eingesetzt werden. Wie aus den beiden Fig. 8 und 7 ersichtlich, haben die beiden Legierungen im Gegensatz zu der Legierung SV 349 ebenfalls verbesserte Eigenschaften in bezug auf die Oxidation. Für eine solche Turbinenschaufel sind verschiedene Beschichtungsverfahren aus dem Stand der Technik bekannt, um die Schutzschicht aufzutragen, beispielsweise ist ein Plasma-Spritz-Verfahren. Dabei wird ein aus dem aufzutragenden Material bestehendes, metallisches Pulver in eine Flamme oder einen Plasmastrahl eingeführt. Dieses Pulver schmilzt auf der Stelle und wird gegen die zu beschichtende Oberfläche gespritzt, wo sich das Material verfestigt und eine durchgehende Schicht bildet.
  • Auch ein physikalisches (oder chemisches) Aufdampf-Verfahren ist möglich. Bei diesem Verfahren wird festes Beschichtungsmaterial in blockförmiger Form erhitzt und evaporiert (z.B. mit einem Laser oder einem Elektronenstrahl). Der Dampf schlägt sich auf dem Grundmaterial nieder und bildet dort nach einer adäquaten Zeit eine Beschichtung. Andere, gleichwertige Beschichtungsverfahren sind ebenso denkbar.
  • BEZUGSZEICHENLISTE
  • 1
    Turbinenschaufel
    2
    Intermetallischer Filz
    3
    Keramischer Überzug
    4
    Rotor bzw. Stator
    4a
    Rotor
    4b
    Stator
    5
    Tragende Grundstruktur
    6
    Laufschaufel
    7
    Leitschaufel
    8
    Wärmestausegment
    9
    Befestigungsmittel
    10
    Streben
    11
    Spitze der Turbinenschaufel 1
    12
    Plattform
    13
    Schaufelfuss der Turbinenschaufel 1
    14
    Schaufelblatt der Turbinenschaufel 1
    15
    Hochtemperaturbeschichtung

Claims (10)

  1. Intermetallisches Material bestehend aus folgender Zusammensetzung (Gew.-%) 12 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 3 Fe, Rest Ni und unvermeidbare Verunreinigungen.
  2. Intermetallisches Material bestehend aus folgender Zusammensetzung (Gew.-%) 10 Al, 22 Cr, 36 Co, 0.2 Y, 0.2 Hf, 2 Ta, 3 Fe, Rest Ni und unvermeidbare Verunreinigungen.
  3. Verwendung eines intermetallischen Materials gemäss einem der Ansprüche 1 bis 2 als Hochtemperaturbeschichtung (15) in thermischen Turbomaschinen.
  4. Verwendung eines intermetallischen Materials gemäss einem der Ansprüche 1 bis 2 als Filz an reibungsbehafteten Komponenten in thermischen Turbomaschinen.
  5. Verwendung eines intermetallischen Filzes gemäss Anspruch 4,
    dadurch gekennzeichnet, dass
    der intermetallische Filz an einem Rotor (4,4a) oder Stator (4,4b) angeordnet ist.
  6. Verwendung eines intermetallischen Filzes gemäss Anspruch 4,
    dadurch gekennzeichnet, dass
    die Komponente (1, 8) eine Turbinenschaufel (1) ist und die Spitze (11) der Turbinenschaufel (1) mit einem intermetallischen Filz (2) ausgestattet ist.
  7. Verwendung eines intermetallischen Filzes gemäss Anspruch 4,
    dadurch gekennzeichnet, dass
    die Komponente (1, 8) eine Turbinenschaufel (1) ist und die Plattform (12) der Turbinenschaufel (1) mit einem intermetallischen Filz (2) ausgestattet ist.
  8. Verwendung eines intermetallischen Filzes gemäss Anspruch 4,
    dadurch gekennzeichnet, dass
    die Komponente (1, 8) ein Wärmestausegment (8) ist und das Wärmestausegment (8) ganz oder teilweise aus einem intermetallischen Filz (2) besteht.
  9. Verwendung eines intermetallischen Filzes gemäss einem der Ansprüche 4 bis 7,
    dadurch gekennzeichnet, dass der intermetallische Filz (2) mit einem keramischen Material (3) überzogen ist.
  10. Verwendung eines intermetallischen Filzes gemäss Anspruch 4,
    dadurch gekennzeichnet, dass der Filz an schwingungsbehafteten Komponenten in thermischen Turbomaschinen eingesetzt wird.
EP20030739941 2002-08-16 2003-07-24 Intermetallisches material und verwendung dieses materials Expired - Lifetime EP1529123B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH14062002 2002-08-16
CH140602 2002-08-16
PCT/CH2003/000503 WO2004016819A1 (de) 2002-08-16 2003-07-24 Intermetallisches material und verwendung dieses materials

Publications (2)

Publication Number Publication Date
EP1529123A1 EP1529123A1 (de) 2005-05-11
EP1529123B1 true EP1529123B1 (de) 2011-10-05

Family

ID=31722378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030739941 Expired - Lifetime EP1529123B1 (de) 2002-08-16 2003-07-24 Intermetallisches material und verwendung dieses materials

Country Status (5)

Country Link
US (1) US7141128B2 (de)
EP (1) EP1529123B1 (de)
CN (1) CN100430499C (de)
AU (1) AU2003285270A1 (de)
WO (1) WO2004016819A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7316850B2 (en) 2004-03-02 2008-01-08 Honeywell International Inc. Modified MCrAlY coatings on turbine blade tips with improved durability
US7378132B2 (en) * 2004-12-14 2008-05-27 Honeywell International, Inc. Method for applying environmental-resistant MCrAlY coatings on gas turbine components
JP2006291307A (ja) * 2005-04-12 2006-10-26 Mitsubishi Heavy Ind Ltd 回転機械の部品及び回転機械
EP1818419A1 (de) * 2006-01-16 2007-08-15 Siemens Aktiengesellschaft Legierung, Schutzschicht und Bauteil
GB0807008D0 (en) * 2008-04-17 2008-05-21 Advanced Interactive Materials Helicoidal motors for use in down-hole drilling
US8273148B2 (en) 2009-01-30 2012-09-25 Untied Technologies Corporation Nickel braze alloy composition
RU2389816C1 (ru) * 2009-04-09 2010-05-20 Российская Федерация, от имени которой выступает государственный заказчик - Министерство промышленности и торговли Российской Федерации (Минпромторг России) Сплав на основе интерметаллида никеля
EP2374909B1 (de) * 2010-03-30 2015-09-16 United Technologies Corporation Verbesserte Nickellötlegierungszusammensetzung
CN107663605A (zh) * 2016-07-29 2018-02-06 泰州市艾瑞克新型材料有限公司 单晶涡轮叶片锯齿冠阻尼面耐磨涂层及其制备工艺
EP3985138A1 (de) * 2020-10-14 2022-04-20 Siemens Energy Global GmbH & Co. KG Legierung auf nicocral-basis, pulver, beschichtung und komponente
US11426822B2 (en) * 2020-12-03 2022-08-30 General Electric Company Braze composition and process of using
CN115747607B (zh) * 2023-01-10 2023-04-14 西安稀有金属材料研究院有限公司 一种用于纤维金属层板的高熵合金薄板及其制备方法
CN118637054A (zh) * 2024-06-11 2024-09-13 华中科技大学 一种将定子叶片尾缘设计为泡沫金属的泵喷推进器及降噪方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB607616A (en) 1945-11-28 1948-09-02 Harold Ernest Gresham Nickel base alloy
GB1456554A (en) * 1973-03-28 1976-11-24 United Aircraft Corp High temperature abradable material
US3928026A (en) 1974-05-13 1975-12-23 United Technologies Corp High temperature nicocraly coatings
US4101713A (en) * 1977-01-14 1978-07-18 General Electric Company Flame spray oxidation and corrosion resistant superalloys
US4615864A (en) * 1980-05-01 1986-10-07 Howmet Turbine Components Corporation Superalloy coating composition with oxidation and/or sulfidation resistance
US4447503A (en) * 1980-05-01 1984-05-08 Howmet Turbine Components Corporation Superalloy coating composition with high temperature oxidation resistance
DE3203869C2 (de) 1982-02-05 1984-05-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Turbinenlaufschaufel für Strömungsmaschinen, insbesondere Gasturbinentriebwerke
JPS58153752A (ja) * 1982-03-08 1983-09-12 Takeshi Masumoto Ni−Cr系合金材料
DE3235230A1 (de) 1982-09-23 1984-03-29 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Gasturbinenschaufel mit metallkern und keramikblatt
DE3327218A1 (de) 1983-07-28 1985-02-07 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Thermisch hochbeanspruchtes, gekuehltes bauteil, insbesondere turbinenschaufel
US5192625A (en) * 1990-02-28 1993-03-09 General Electric Company Cobalt-base wrought alloy compositions and articles
US5536022A (en) * 1990-08-24 1996-07-16 United Technologies Corporation Plasma sprayed abradable seals for gas turbine engines
US5455119A (en) * 1993-11-08 1995-10-03 Praxair S.T. Technology, Inc. Coating composition having good corrosion and oxidation resistance
AU2663797A (en) * 1996-04-10 1997-10-29 Penn State Research Foundation, The Improved superalloys with improved oxidation resistance and weldability
DE19750517A1 (de) 1997-11-14 1999-05-20 Asea Brown Boveri Hitzeschild
DE19848103A1 (de) 1998-10-19 2000-04-20 Asea Brown Boveri Dichtungsanordnung
DE19848104A1 (de) 1998-10-19 2000-04-20 Asea Brown Boveri Turbinenschaufel
DE19912701B4 (de) 1999-03-20 2006-01-19 Alstom Brennkammerwand
KR100372482B1 (ko) * 1999-06-30 2003-02-17 스미토모 긴조쿠 고교 가부시키가이샤 니켈 베이스 내열합금
DE19937577A1 (de) * 1999-08-09 2001-02-15 Abb Alstom Power Ch Ag Reibungsbehaftete Gasturbinenkomponente

Also Published As

Publication number Publication date
US20060127660A1 (en) 2006-06-15
US7141128B2 (en) 2006-11-28
WO2004016819A1 (de) 2004-02-26
CN100430499C (zh) 2008-11-05
AU2003285270A1 (en) 2004-03-03
EP1529123A1 (de) 2005-05-11
CN1708598A (zh) 2005-12-14

Similar Documents

Publication Publication Date Title
EP1076157B1 (de) Reibungskomponente einer thermischen Turbomaschine
EP1529123B1 (de) Intermetallisches material und verwendung dieses materials
DE60021178T2 (de) Abrasions- und hochtemperaturbeständige, abschleifbare wärmedämmende verbundbeschichtung
DE69926858T2 (de) Abreibbare Dichtungsschicht und deren Herstellungsweise
DE60010271T2 (de) Verbundbeschichtung für turbinenkomponenten und verfahren zur herstellung
DE102011055246B4 (de) Verfahren zur Herstellung und Beschichtung von Komponenten mit einspringend ausgebildeten Kühlkanälen
DE69903595T2 (de) Wärmedämmendes Beschichtungssystem mit lokaler Auftragung einer Haftungsschicht
DE2637443C2 (de)
DE102009049707A1 (de) Verfahren zur Herstellung einer Lauf- oder Statorschaufel und eine derartige Schaufel
DE10305912B4 (de) Hybrid- Schaufel für thermische Turbomaschinen
DE2842848C2 (de) Werkstoff zum Überziehen von Gegenständen
DE3103129A1 (de) Thermisch belastbares maschinenteil und verfahren zu dessen herstellung
DE19859477A1 (de) Verschleißschutzschicht
EP2544852B1 (de) Verfahren zur reparatur von dichtsegmenten in der rotor-/statordichtung einer gasturbine
EP2122009A1 (de) Vorrichtung zum schutz von bauteilen mit brennbarer titanlegierung vor titanfeuer und verfahren zu deren herstellung
EP1462617B1 (de) Schaufelanordnung für eine axiale Turbomaschine
EP2696033A1 (de) Schaufelelement einer Strömungsmachine mit duktiler Ausgleichsschicht, zugehörige Strömungsmachine, Verfahren zur Herstellung des Schaufelelements und der Strömungsmachine
DE3036206A1 (de) Verschleissfester, vor oxidation und korrosion schuetzender ueberzug, korrosions- und verschleissfeste ueberzugslegierung, mit einem solchen ueberzug versehener gegenstand und verfahren zum herstellen eines solchen ueberzugs
DE60203455T2 (de) Verfahren zur Herstellung von Zungen einer Labyrinthdichtung für bewegliche Teile einer Turbine
EP1902160B1 (de) Keramische wärmedämmschicht
EP2537959B1 (de) Mehrfache Verschleißschutzbeschichtung und Verfahren zu Ihrer Herstellung
WO2006069823A2 (de) Kunststoff enthaltend nanopartikel und daraus hergestellte be schichtungen
DE602005001990T2 (de) Hitzebeständige Superlegierung auf Nickelbasis und einkristalline Gegenstände aus dieser Legierung
DE10356953A1 (de) Einlaufbelag für Gasturbinen sowie Verfahren zur Herstellung desselben
WO2010149141A2 (de) Verfahren zum herstellen und/oder reparieren einer schaufel für eine strömungsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50313988

Country of ref document: DE

Effective date: 20111208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50313988

Country of ref document: DE

Effective date: 20120706

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170727 AND 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50313988

Country of ref document: DE

Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170719

Year of fee payment: 15

Ref country code: DE

Payment date: 20170724

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50313988

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180724

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201