WO2004016806A1 - Utilisation d'une polymerase dotee d'une activite de 3'-5' exonuclease pour effectuer une analyse de sequence de genes - Google Patents

Utilisation d'une polymerase dotee d'une activite de 3'-5' exonuclease pour effectuer une analyse de sequence de genes Download PDF

Info

Publication number
WO2004016806A1
WO2004016806A1 PCT/CN2003/000695 CN0300695W WO2004016806A1 WO 2004016806 A1 WO2004016806 A1 WO 2004016806A1 CN 0300695 W CN0300695 W CN 0300695W WO 2004016806 A1 WO2004016806 A1 WO 2004016806A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
polymerase
exonuclease activity
primers
sequence analysis
Prior art date
Application number
PCT/CN2003/000695
Other languages
English (en)
French (fr)
Inventor
Kai Li
Original Assignee
Zhang, Xu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang, Xu filed Critical Zhang, Xu
Priority to EP03787581A priority Critical patent/EP1536019A4/en
Priority to AU2003257798A priority patent/AU2003257798A1/en
Priority to JP2004528265A priority patent/JP2005535336A/ja
Publication of WO2004016806A1 publication Critical patent/WO2004016806A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6853Nucleic acid amplification reactions using modified primers or templates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Definitions

  • the present invention relates to a method for gene sequencing, and specifically refers to the use of a polymerase having 3 'to 5' exonuclease activity in combination with a specific 3 'terminal modified primer for rapid sequencing of a gene's base sequence.
  • the current reliable genetic assay method uses a polymerase without 3 'to 5' exonuclease activity for primer extension reaction.
  • the gene analysis process is complicated, and each signal can only provide up to one base of information, which is more prominent.
  • the problem is that the existing methods are difficult to perform high-throughput analysis of single base polymorphisms.
  • existing methods can achieve all-gene sequencing, more economical and faster gene sequencing technology has become a hotspot for competition in various countries. For example, Airfymetrix's oligonucleotide hybridization chip has some research value.
  • Another method of sequencing is the end-stop method, which is the main method of modern gene sequencing. Although this method is very reliable, because each signal can only provide information about one base at most, the sequencing speed is limited. Importantly, this method requires a known sequence of genes as the basis for sequencing. This dependence on known sequences greatly slows down the speed of this method in determining unknown sequences. In addition, the amplification efficiency of this method is limited, and it is often necessary to amplify the gene to be tested first. Obviously, this method has the disadvantage of being time-consuming, but it is actually an indirect sequencing method.
  • Oligonucleotide hybridization sequencing chips can also be used for sequencing, but due to the inherent thermodynamic heterogeneity of hybridization technology, its accuracy is not high. It is still in the laboratory research and improvement stage, and its practicality remains to be seen.
  • all current enzymatic methods related to sequencing include the classic terminal termination method and the recently developed single base extension method. Their labeling pathways are through dideoxy triphosphate nucleotides, because dideoxy triphosphate nucleotides cannot be dehydrated. It has the effect of stopping extension, and the reaction is a one-way primer extension process.
  • the use of dideoxytriphosphate in a unidirectional primer extension reaction causes the amplification efficiency of primer extension to be only proportional to the number of reaction cycles. In a two-way primer extension reaction without dideoxytriphosphate, the efficiency is proportional to the square of the number of reaction cycles. Summary of the invention
  • the purpose of the present invention is to overcome the deficiencies in the prior art, and to provide an application
  • a 3 'to 5' exonuclease-active polymerase performs gene sequence analysis, and the present invention can detect single base polymorphisms and unknown gene sequences.
  • a method for performing gene sequence analysis using a polymerase having 3 'to 5' exonuclease activity includes the following steps:
  • a polymer having 3 'to 5' exonuclease activity and a modified primer constitute a molecule "on / off", and a selective primer extension reaction is performed with the participation of said molecule "on / off";
  • the primer set is composed of a sub-set of primers with different 3 'terminal sequences.
  • the primer set is composed of an unmodified oligonucleotide and a modified oligonucleotide.
  • the product is a product without a labeled signal or a labeled signal.
  • the labeled signal of the product comes from a labeled primer or from a labeled nucleotide triphosphate substrate.
  • the modification refers to chemical modification of the oligonucleotide so that it has a labeled signal or changes the response characteristics of the primer to the nuclease.
  • Said molecule "on / off” can change the characteristic of 3 'terminal modification which is not resistant to exonuclease Determine the marker signal carried by the oligonucleotide primer set, or turn off the extension reaction of the specific oligonucleotide primer set that is resistant to the 3 'end modification of the exonase.
  • This method uses a polymerase with 3 'to 5' exonuclease activity and "on / off" consisting of modified primers for primer extension reaction.
  • the molecular switch is more accurate than conventional polymerases without correction function The primer extension reaction performed;
  • This method can be used for direct sequencing of unknown sequences
  • This method does not rely on a known sequence when sequencing
  • Each signal obtained by this method contains information of one or more base sequences.
  • This method provides a high-throughput analysis method for single base polymorphism analysis and gene sequence analysis.
  • FIG. 1 is a schematic diagram of the basic principle of the present invention
  • Example 3 is a gel electrophoresis diagram of Example 1 of the present invention.
  • Example 4 is a sequencing diagram of Example 1 of the present invention.
  • FIG. 5 is a measurement diagram of liquid scintillation counting in Example 2 of the present invention.
  • Example 6 is a gel electrophoresis diagram of Example 3 of the present invention.
  • Example 7 is a gel electrophoresis diagram of Example 4 of the present invention.
  • Example 8 is a gel electrophoresis diagram of Example 5 of the present invention.
  • FIG. 9 is a gel electrophoresis diagram of Example 5 of the present invention.
  • Fig. 10 is a schematic diagram of the molecules 'on / off' of the present invention.
  • 1 represents a polymerase-mediated primer extension with 3 'to 5' exonuclease activity.
  • Extension reaction 2 for ordinary primers, 4 for 3 'specific modified primers, 6 for products with no labeled signal or no products; 1 in FIG.
  • P represents the paired primers, and 1, 2, 3, 4, 5, 6 respectively represent primers -1, -2, -3 , -4, -5, -6 base unpaired primers;
  • PM indicates a paired primer
  • MM indicates an unpaired primer
  • 1 indicates a polymerization center
  • 2 indicates an enzymatic hydrolysis center
  • 3 indicates Primers
  • 4 means correction for unpaired primers
  • 5 means on effect
  • 6 means off effect
  • Y means meeting matching requirements
  • N means not matching Matching requirements.
  • a molecule "on / off" composed of a polymerase having 3 'to 5' exonuclease activity and a 3 'terminal modified primer is used to perform a primer extension reaction, and the difference between the pairing of the primer and the template or the incomplete pairing is used.
  • This method utilizes the highly specificity of the enzyme's proofreading effect during primer extension to directly obtain one or more base sequence information of the 3 'end or near 3' end of a known primer, thereby achieving a primer extension reaction. Rapid determination of polymorphic base sites of known sequences or unknown base sequences in templates.
  • the probability of a mutation occurring is about 2/1000.
  • a primer extension reaction of a polymerase with 'to 5' exonuclease activity can reduce the chance of mutations by 80-90%, thereby greatly increasing the number of correct products and reducing the number of incorrect products. This huge difference is known throughout the world in the process of DNA replication in animals, plants and bacteria.
  • the bigger, yet unknown, difference is in the first primer extension reaction.
  • the first step in primer extension determines whether the reaction changes the sequence of the primer.
  • a primer extension reaction is performed by a polymerase without a 3 'to 5' exonuclease activity, it will proceed in a manner that does not change the sequence of the primer, regardless of whether the primer and the template are completely paired. In this way, the pairing of the primer and the template may be distorted, that is, the sequence of the template cannot be accurately reflected from the primer sequence.
  • the primer extension reaction performed by a polymerase having 3 'to 5' exonuclease activity depends on the pairing, and if it is paired, the primer sequence is not changed by 100%; if it is not paired, the primer sequence is changed so that It matches the template exactly. It can be seen that if a polymerase with 3 'to 5' exonuclease activity can reasonably be used to distinguish pairing conditions during primer extension reactions, the template sequence can be read accurately from the primer sequence.
  • the modification of the primer includes: (1) labeling the 3 'terminal nucleotide of the primer, and the product of the primer that has been completely paired retains the labeled nucleotide, and the product of the primer that is not completely paired is the labeled nucleoside.
  • the acid is cleaved by the 3 'to 5' exonuclease correction function without a labeled signal; (2) the use of a modified 3 'terminal nucleoside Acid, to cause insensitivity to 3 'to 5' exonuclease, to achieve a perfectly matched primer has an extension product and a 3 'or near 3' terminal incompletely matched primer has no extension effect. (see picture 1 )
  • the extension of the paired primers has nothing to do with the fidelity of the polymerase used, or whether the 3 'end of the paired primers can be degraded by exonase.
  • the extension and otherwise depend on the fidelity of the polymerase used and the extent to which the 3' end of the unpaired primer is degraded by the exonase.
  • Efficacy of "on” and “off” in a composite molecular switch For paired primers, the polymerization reaction is directly performed in the polymerization center of the enzyme, that is, the "on” effect, as shown in Fig. 10; Primers are transferred from the polymerization center of the enzyme to the 3 'to 5' exonuclease digestion center. Due to the characteristics of the 3 'end exonuclease modified by the primer, a long-term non-enzymatic product appears. During the enzymatic hydrolysis process, the DNA polymerization reaction was "closed” due to the idling of the polymerization center, as shown in Figure 10. This paired primer is extended, and the unbindable primer does not extend the binary effect of presence or absence, which perfectly satisfies the binary identification of specific sites in the single-base polymorphism analysis.
  • the products are expressed as polymerases with detectable signals and without detectable signals, that is, 3 'to 5' exonuclease activities Turning off the detectable signal of the unpaired primer is actually an 'on / off' effect on the presence or absence of the detectable signal.
  • the signal source of the present invention differs depending on the labeling method. There are three main labeling methods that can be used, namely the 3 'terminal base of a primer in a primer set, a labeled nucleotide triphosphate substrate, and a labeled paired primer.
  • a primer that is fully paired with the template will produce a product containing the labeled signal.
  • a label may be a radioactive label or a non-radioactive label such as a fluorescent label.
  • a primer that is incompletely paired with the template will have two possibilities depending on the modification of the primer, that is, no product is generated due to base mismatches, or no polymerase is generated due to the correction function of the polymerase from 3 'to 5' exonuclease Marked products.
  • the ratio of the labeled triphosphate nucleotide substrate to the unlabeled tribasic acid nucleotide substrate varies depending on the type of the label, and the variation varies between Between 1: 10 and 1: 100.
  • the label can be at its 5 'end, or at any other base than the 3' end.
  • Primer design for detection of single base polymorphisms Generally, two forward primers are designed at one site, and one reverse primer is a primer set. The specific number depends on the actual needs.
  • the directional primers are fully matched and incompletely matched with the template, that is, a sub-set of primers.
  • the labeling method is selected according to the experimental conditions and detection methods, and designed and synthesized by the biosynthesis company. For example, the following primers are designed:
  • X represents a base paired with a template
  • Y represents a base not paired with a template
  • X, Y are unmodified bases
  • X, 2 are modified bases.
  • Primer design for detection of unknown gene fragments A mathematical model for sequence analysis using a DNA polymerase with 3 'to 5' exonuclease activity to recognize base sequences.
  • the primer set depends on the determined number of bases at the 3 ′ end, and is composed of four bases with a 5 ′ end of 4: a four-base 1: 1 1: 1: 1 swing sequence and 3 ′ a sequence-specific primer.
  • the following 3 'end of two bases determined set of primers comprising 42 primers, i.e., primer 16 (X represents the wobble base).
  • a polymer having "3 'to 5' exonuclease activity and a modified primer constitute a molecule" on / off ", and a selective primer extension reaction is performed with the participation of said molecule" on / off ";
  • the specific separation method depends on the specific application method. When the present invention is applied to electrophoresis, the separation process can be omitted; when the present invention is applied to a biochip, the washing under stringent conditions will remove the labeled signal on non-DNA molecules. If the labeling signal originates from labeled primers and the background noise is too high, you can incubate with a low concentration of exonuclease for 15 minutes to 1 hour at 25 to 37 degrees Celsius. The labeled signal on the DNA molecule can be visualized and detected by corresponding conventional methods, and the specific method is determined by the labeling method. For enzyme labels or other chemical reactant labels such as digoxigenin and biotin, a specific chemical imaging reaction is required before detecting the signal.
  • the labeling method is a method that cannot be directly scanned and detected, such as sulfurization, ethidium bromide or GYBR staining can be used to analyze the results under gel electrophoresis, or the results can be analyzed by mass spectrometry. Make judgments. If the labeling method is radioactive or direct fluorescence method, no imaging process is required, and the radioactive intensity or fluorescent intensity can be directly scanned for measurement or the auto-imaging method is used for subsequent scanning analysis of the image. If the labeling method is chemiluminescence or indirect fluorescence, you need to perform pre-blocking of development, imaging reaction, and washing process after the house image, and then detect the labeling signal.
  • the labeling method is chemiluminescence or indirect fluorescence, you need to perform pre-blocking of development, imaging reaction, and washing process after the house image, and then detect the labeling signal.
  • the detected label signal directly represents the specific fluorenyl sequence at the 3 'end of the primer at the corresponding site. Sequence analysis can be performed manually or computer-assisted. Whether a single base site of a gene to be tested is homozygous or heterozygous can be determined by corresponding extended primers. Such as the following primers: Forward primer: 5 XXXXXXXXXX 3 '
  • X represents a base paired with a template (ie, a common genotype)
  • Y represents a base paired with a template (ie, a polymorphic genotype)
  • X, Y are unmodified bases
  • Z is a modified base.
  • the extension product can be obtained or the product has a label signal, and 5'XXXXXXXXXXX 'can not obtain the extension product or the product does not have a label signal, it means that the tested template is in the base
  • the homozygous genotype of the base is X; if the primer extension reaction is performed at 5′ ⁇ : 3 ′, an extension product or a product with a label signal can be obtained, and 5 ⁇ ⁇ 3 'can not get an extension product or the product without a label signal , It means that the tested template is homozygous for this base site; if both primers have products, it means that the base site is a heterozygous polymorphic genotype.
  • the invention provides a new method for determining a gene sequence.
  • the method is characterized by directness, sensitivity, simplicity, and speed.
  • the use of the present invention for determining the sequence of a gene does not require that the template to be tested is pre-amplified. Therefore, the direct base sequencing technology created by the present invention can be widely applied to the detection of single base polymorphisms.
  • the method will enable rapid gene sequence determination of biological samples that require high reliability and high sensitivity.
  • primer design from the mouse genome take any length of DNA of 217 bases, sequences bad '] is: cccaagatat ctgagaattc tcagcagcct tccatttaga agggtgttgt tgtctctgag gcaaaaccac atttcttacc gcacaactag agactgagac cagtttctct cattgtcatt gctgctcaga gccagcagaa aagcactcat gacacacact tagaataata gtgcatctga gccaggactg cccttggggt ccattcagct gttc gene region
  • a primer set is designed upstream and downstream of the segment: two forward primers (ie, a primer sub-collection) and a reverse primer. The length of the product of the reverse primer and the forward primer is 217 base pairs, which is completely the same as
  • the perfectly matched forward primer sequence is:
  • the incompletely matched forward primer sequence is:
  • the reverse primer sequence ⁇ ' is: 5'gaaacagctgaatggacccaa3'
  • Primer extension reaction The amplified forward primer used in the experiment is a base-specific primer.
  • the above primer and the reverse primer are respectively added to a primer extension reaction system containing a Deep Vent + enzyme and a Deep Vent- enzyme to perform a primer extension reaction.
  • the conditions of the extension reaction are: first melting at 95 degrees for 5 minutes, then melting at 95 degrees for 10 seconds, 56 degrees for 30 seconds for annealing, 72 degrees for 1 second for extension, and 30 cycles.
  • primers that are not perfectly matched to the template use 3 'to 5'
  • a polymerase with a dicerase activity is subjected to a primer extension reaction
  • its product can be digested by EcoR I
  • a polymerase that does not have a 3 'to 5' exonuclease activity is used for a primer extension reaction
  • the product cannot be digested by EcoR I.
  • the sequence of the product of the Deep Vent-enzyme-directed extension reaction is 5'AGT CCT CTC CTA TCC CAA GAT ATC TGA CAA TTC TTGGGTCCATTCAGCTGTTTC 3 '.
  • primer extension products produced by polymerases without 3 'to 5' exonuclease activity cannot alter primer sequences
  • primer extension products produced by polymerases with 3 'to 5' exonuclease activity can The sequence is changed to make it complementary to the template sequence; if a polymerase with 3 'to 5' exonuclease activity can reasonably be used to distinguish the pairing situation during primer extension reaction, the template can be read accurately from the primer sequence the sequence of.
  • Primer design taken from mouse genomic DNA length of 217 bases, sequences bad '1 ⁇ cccaagatat ctgagaattc tcagcagcct tccatttaga agggtgttgt tgtctctgag gcaaaaccac atttcttacc gcacaactag agactgagac cagtttctct cattgtcatt gctgctcaga gccagcagaa aagcactcat gacacacact tagaataata gtgcatctga gccaggactg cccttggggt ccattcagct gttc of SNP analysis
  • two forward primers and a reverse primer are designed upstream and downstream, respectively.
  • the product length of the reverse primer and the forward primer is 217 ⁇ base pairs.
  • Forward primers include three-terminal unlabeled primers 5'atcccaagatatctgagaatt3 'and three terminal 3 [E ⁇
  • Primer extension reaction The above-mentioned forward primer and reverse primer are respectively added to a primer extension reaction system containing a Deep Vent + enzyme and a Deep Vent- enzyme to perform a primer extension reaction, and the conditions of the primer extension reaction are: first melting 95 ° C for 5 minutes, then melted at 94 ° C for 40 seconds, annealed at 58.9 ° C for 30 seconds, 72 ° extended for 30 seconds, and cycled 25 times.
  • the primer extension reaction at the 3 'end of the radiolabeling has fewer extension products of primers that are incompletely paired than those of primers that are completely paired. Quantitative radiometric measurement showed that the extension product of the incompletely paired primer had lost the radiolabeled signal, which was 91 cpm, which was no difference from the blank control; while the extension product of the perfectly paired primer retained the radiolabel, which was 1019 cpm, ten times higher than the blank the above.
  • the primer extension product contains a detectable label signal; when the template is not paired with the primer, the label signal is lost as the three terminal bases are cleaved by the three exonuclease, so the primer Although it can be extended, the extension product has no obvious labeling signal.
  • the combination of Deep Vent + enzyme and Rox fluorescent three-terminal labeled primers also has a good recognition effect on single bases.
  • Primer design taken from a human genomic DNA length of 217 bases, sequences bad 1 J is: cccaagatat ctgagaattc tcagcagcct tccatttaga agggtgttgt tgtctctgag gcaaaaccac atttcttacc gcacaactag agactgagac cagtttctct cattgtcatt gctgctcaga gccagcagaa aagcactcat gacacacact tagaataata SNP analysis gtgcatctga gccaggactg cccttggggt ccattcagct gttc with a particular For the gene segment, seven forward primers and one reverse primer (ie, a set of primers) are designed upstream and downstream, respectively.
  • the forward primer is a base-specific primer, which contains a paired primer and a single base
  • the perfectly matched primer sequence is 5'atcccaagatatctgagaattc3 ';
  • sequences of primers that are incompletely matched from -1 to -6 base positions indicated by capital letters are:
  • the reverse primer has no combing modification, and its sequence is 5'gaaacagctgaatggacccaa3 '. After the primers are designed, they will be synthesized by MWG USA.
  • Primer extension reaction The above primers and reverse primers are respectively added to a primer extension reaction system containing a Deep Vent + enzyme and a Deep Vent- enzyme to perform a primer extension reaction.
  • the conditions of the primer extension reaction are: the first melting point is 95 degrees 5 minutes, then Melt 94 degrees and 40 seconds, anneal for 30 seconds, 72 degrees and extend for 30 seconds, and cycle 25 times.
  • the 3 'sulfur-modified 3' end or sub 3 'end single base unpaired primers are polymerized immature due to resistance to exonuclease digestion Termination, that is, the effect of closing the DNA polymerization reaction, cannot be extended without obtaining an extension product. It proves that the present invention can be used for gene sequence analysis.
  • primer design from mouse genomic DNA to take a length of 217 bases, sequences bad 1] is: cccaagatat ctgagaattc tcagcagcct tccatttaga agggtgttgt tgtctctgag gcaaaaccac atttcttacc gcacaactag agactgagac cagtttctct cattgtcatt gctgctcaga gccagcagaa aagcactcat gacacacact tagaataata SNP analysis gtgcatctga gccaggactg cccttggggt ccattcagct gttc with a particular Gene segment, divided upstream and downstream Do not design two forward primers and one reverse primer.
  • the forward primer is a base-specific primer, which contains a paired primer and a single base incompletely matched primer:
  • the sequence of the perfectly matched primer is 5atcccaagatatctgagaattc3, and the single base at the 3 'end is not matched.
  • the sequence of the primer is 5atcccaagatatct gagaattG3; the three ends of the perfectly matched primer and the unpaired base are all sulfurized modified; the reverse primer has no sulfurized modification, and its sequence is 5gaaacagctgaatggacccaa3 ', the length of the primer extension product is 217 base pairs, and the primer design After that, it will be synthesized by MWG USA.
  • Primer extension reaction The above primers and reverse primers are respectively added to a primer extension reaction system containing a Deep Vent + enzyme and a Deep Vent- enzyme to perform a primer extension reaction.
  • the conditions of the primer extension reaction are: the first melting point is 95 degrees 5 minutes, then melted 94 degrees and 40 seconds, annealed for 30 seconds, the temperature was in the range of 46-66 degrees, 72 degrees was extended for 30 seconds, and the cycle was 25 times.
  • Deep Vent + enzymes with 3 'to 5' exonuclease ability extend only 100% accurate primers, and incompletely matched primers do not Extended, while Deep Vent-enzymes without 3 'to 5' exonuclease ability showed resolution of the primer's 3 'end sequence only at greater than 62 degrees, indicating that the method can be used at a wide range of annealing temperatures in a similar manner. Or under the same reaction conditions to analyze the gene sequence.
  • Primer design The forward primer sequence corresponding to wild type allele C in the human genomic DNA neurodeafness-related SNP site gene segment is 5'caa cat cgt gga ctg cta cat tgc cc3 ', which 5'gtg aag reverse primer sequence Att ttc ttc ttg gta ggt cg3 '.
  • the forward primer sequence corresponding to the deafness mutation site T is 5'caa cat cgt gga ctg cta cat tgc ct3', and its reverse primer sequence is 5'gtg aag att tc ttc ttg gta ggt ca3 '.
  • the 3' end of the forward primer must be thinned.
  • the primers are designed and delivered to Shanghai Bioengineering Company for synthesis.
  • Primer extension reaction The above two sets of forward primers and reverse primers are respectively added to a primer extension reaction system containing pfu enzyme and Taq enzyme without 3 'to 5' exonuclease activity to perform a primer extension reaction, and a primer extension reaction The conditions are: first melting at 95 ° C for 5 minutes, then melting at 94 ° C for 40 seconds, annealing at 56 ° C for 40 seconds, extending at 72 ° C for 30 seconds, and cycling 30 times.
  • PCR products were electrophoretic separated using a 2.5% agarose gel pre-containing ethidium bromide under a DC electric field of 10 V / cm.
  • the electrophoresis solution was 0.5x TBE buffer.
  • FIG. 8 when a Taq enzyme lacking 3 ′ to 5 ′ exonuclease activity is used, although the template used is homozygous for a wild-type site, wild-type allele site-specific primers and point mutation alleles All site-specific primers can be extended.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

利用具有 3'至 5'外切酶活性的
多聚酶进行基因序列分析 技术领域
本发明涉及一种用于基因测序的方法, 具体地指利用具有 3' 至 5'外切酶活性的多聚酶与特定的 3'末端修饰的引物相结合进行 基因碱基序列的快速测序。 背景技术
目前可靠的基因测定方法,采用没有 3'至 5'外切酶活性的多聚 酶进行引物延伸反应, 基因分析过程复杂, 且每检测到一个信号 最多只能提供一个碱基的信息,更为突出的问题是现有方法难以 对单碱基多态性进行高通量分析。 虽然现有的方法能够实现全基 因测序, 但更经济、 更快速的基因测序技 , 已成为各国竟争的 一个热点。 如 Airfymetrix的寡核苷酸杂交芯片, 已具有一定的研 究价值。
还有一种测序的方法是末端中止法, 它是当代基因测序的主 要方法, 该方法虽然十分可靠, 但因其每一信号最多只能提供有 关一个碱基的信息, 测序速度受到限制, 更为重要的是, 这一方 法要求一段已知的基因序列作为测序的基础。 这种对已知序列的 依赖性, 极大地減慢了这一方法在未知序列测定时的速度。 此外, 这一方法放大效率有限, 常常需要对待测基因先进行放大, 很显 然, 这一方法具有费时这样的不足, 而实际上是一种间接的测序 方法。
寡核苷酸杂交测序芯片也可用于测序, 但由于杂交技术固有 的热力学不均一性, 其准确性不高, 目前仍处在实验室研究和改 进阶段, 实用性尚有待观察。 另外, 目前所有与测序有关的酶法包括经典的末端中止法和 最近发展的单碱基延伸法等, 其标记途径均通过双脱氧三磷酸核 苷酸, 由于双脱氧三磷酸核苷酸不能脱水而具有中止延伸的作用, 其反应为单向引物延伸过程。 双脱氧三磷酸核苷酸在单向引物延 伸反应中的应用, 致使引物延伸的放大效率仅与反应循环次数成 正比。 而在没有双脱氧三磷酸核苷酸的双向引物延伸反应中, 效 率是与反应循环次数的二次方成正比。 发明内容
本发明的目的是克服现有技术中的不足, 提供一种利用具有
3'至 5'外切酶活性的多聚酶进行基因序列分析, 利用本发明, 可以 对单碱基多态性及未知基因序列进行检测。
本发明的技术方案概述如下:
一种利用具有 3'至 5'外切酶活性的多聚酶进行基因序列分析, 该方法包括以下步碌:
a. 制备 3'末端修饰的特定寡核苷酸引物集合;
b.将具有 3'至 5'外切酶活性的多聚酶与修饰引物组成分子 "开 /关 ", 在所述分子 "开 /关 "的参与下, 进行选择性的引物延伸反 应;
c. 引物延伸反应产物的显像与序列分析。
所述的引物集合是由 3'末端序列各异的引物亚集合组成。
所述的引物集合是由未被修饰的寡核苷酸和被修饰的寡核苷 酸组成。 其产物是不带标记信号或是带标记信号的产物, 产物的 标记信号来自于标记的引物或来自于标记的三磷酸核苷酸底物。
所述的修饰是指对寡核苷酸进行化学修饰以使其具有标记信 号或改变引物对核酸酶的反应特性。
所述的的分子 "开 /关 "能改变不耐外切酶的 3'末端修饰的特 定寡核苷酸引物集合所携带的标记信号,或关闭耐外切酶的 3'末端 修饰的特定寡核苷酸引物集合的延伸反应。
本发明具有如下优点:
1. 本方法使用了具有 3'至 5'外切酶活性的多聚酶与修饰引物 所组成的 "开 /关"进行引物延伸反应, 该分子开关准确性要高于 常规使用的无校正功能的多聚酶进行的引物延伸反应;
2.本方法可用于未知序列的直接测序;
3.本方法测序时可不依赖一段已知序列;
4.本方法所得每一信号含有一个或多个碱基序列的信息。
5. 本方法为单碱基多态性分析和基因序列分析提供了高通 量分析手段。 附图说明
图 1为本发明的基本原理示意图;
图 2为本发明的测序原理示意图;
图 3为本发明的实施例 1凝胶电泳图;
图 4为本发明的实施例 1测序图;
图 5为本发明的实施例 2液闪计数测定图;
图 6为本发明的实施例 3凝胶电泳图;
图 7为本发明的实施例 4凝胶电泳图;
图 8为本发明的实施例 5凝胶电泳图;
图 9为本发明的实施例 5凝胶电泳图;
图 10为本发明所迷分子 '开 /关"示意图。 具体实施方式
下面结合附图及具体实施例对本发明作进一步说明。
在图 1中 1表示具有 3'至 5'外切酶活性的多聚酶介导的引物延 伸反应, 2表示普通引物, 4表示 3'特异性修饰引物, 6表示得到不 带标记信号的产物或得不到产物; 在图 2中 1表示未知序列, 2表示 具 3'至 5'外切酶活性的多聚酶介导的引物延伸反应; 在图 3中-表 示产物未进行 EcoR I消化, +表示产物进行了 EcoR I消化; 在图 5 中 product表示产物, backgroud表示背景噪音; 在图 6中 1、 1、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12代表不同的退火温度, 具休的温 度为: 46度、 48度、 50度、 52度、 54度、 56度、 58度、 60度、 62 度、 64度、 66度; 在图 7中 P表示配对引物, 1, 2, 3, 4, 5, 6分 别表示引物 -1, -2, -3, -4, -5, -6位碱基不配对的引物; 在图 8、 9中 PM表示配对引物, MM表示不配对引物; 图 10中 1表示聚合中 心, 2表示酶解中心, 3表示引物, 4表示对不配对引物进行校正, 5表示开的效应, 6表示关效应 Y表示符合配对要求的, N表示不符 合配对要求的。
本发明采用具有 3'至 5'外切酶活性的多聚酶与 3'末端修饰的 引物相结合所组成的分子 "开 /关" 进行引物延伸反应, 利用引 物与模板的配对或不完全配对的差别以进行核酸特定碱基的序列 分析。 该方法利用该酶在引物延伸时的校对作用所具有的高度特 异性而直接获取已知引物 3'末端或近 3'末端的一个或多于一个的 碱基序列信息, 从而达到对引物延伸反应中模板的已知序列的多 态性碱基位点或 未知碱基序列的快速测定。
就第一个碱基加上之后的延伸过程而言,没有 3'至 5'外切酶活 性的多聚酶所进行的引物延伸反应产物中, 突变发生的机率约为 2 /1000, 而利用具有 3'至 5'外切酶活性的多聚酶进行引物延伸反应, 则能使突变发生的机率减少 80-90%, 从而大大提高正确产物的数 量和减少错误产物的数量。 这一巨大差别, 在动、 植物及细菌体 内的 DNA复制过程中,已为世人所知。
而尚不为人所知的更为巨大的差别, 是在引物延伸反应的第 一步。 引物延伸的第一步, 决定该反应是否改变引物的序列。 没 有 3'至 5'外切酶活性的多聚酶所进行的引物延伸反应时,无论引物 与模板是否完全配对,它将以 100%不改变引物的序列的方式进 行。 这样就可能造成引物与模板相互配对的失真, 即无法从引物 序列来准确无误地反映出模板的序列。 与此相反, 具有 3'至 5'外切 酶活性的多聚酶所进行的引物延伸反应则视配对情况而定, 若配 对则 100%不改变引物的序列; 若不配对则改变引物的序列, 使之 与模板完全配对。 由此可见, 若能合理利用具有 3'至 5'外切酶活性 的多聚酶在引物延伸反应时对配对情况的区别能力, 则可从引物 序列准确无误地阅读出模板的序列。
应用含有多个不同反应的单一反应体系的关键之一, 是这些 不同的反应必须能在相似或相同的反应条件下进行。 我们通过对 具有 3'至 5'外切酶活性的多聚酶进行引物延伸反应的研究,找到了 从 46 至 66摄氏度的广泛范围内,使该酶能够很容易地分辨完全配 对与不完全配对的引物序列的反应条件。 由于具有 3'至 5'外切酶活 性的多聚酶的校正能力与反应体系中的三磷酸核苷酸浓度呈现出 反相关关系, 在 1倍 至 2倍 浓度的三磷酸核苷酸中, 完全配对与 不完全配对的引物序列的分辨依赖于产物多与少的比较; 当三磷 酸核苷酸的浓度降为 0.8倍 至 0.2倍 时, 这种分辨则越来越容易, 表现为信号的有或无变化。
合理利用具有 3'至 5'外切酶活性的多聚酶在引物延伸反应中 对配对情况的区別能力的另一关键,则是如何将具有 3'至 5'外切酶 活性的多聚酶对引物序列的准确无误辨认转化为可为高能量分析 所能检测到的信号。 本发明通过对引物的修饰, 包括:(1 ) 标记 引物的 3'末端核苷酸, 达到完全配对的引物的产物保留该标记核 苷酸,而不完全配对的引物的产物则该标记核苷酸被 3'至 5'外切酶 的校正功能所切除而不带标记信号; (2 )利用修饰的 3'末端核苷 酸, 以造成对 3'至 5'外切酶的不敏感性, 达到完全配对的引物具有 延伸产物而 3'或近 3'末端不完全配对的引物没有延伸的效果。(见 图 1 )
我们通过大量的实验观察发现, 配对引物的延伸既与所用聚 合酶的保真性无关, 也与配对引物 3'末端是否能被外切酶降解无 关。 而对 3'末端非配对引物, 其延伸与否则取决于所用聚合酶的 保真性及非配对引物 3'末端被外切酶降解的程度。
因此, 当耐外切酶的非配对引物与具有 3'末端外切酶活性的 多聚合酶联合时, 表现为 3'末端外切酶参与的非成熟性聚合反应 终止。 由于这一终止效应被非配对引物疏化磷酸修饰或其它修饰 方式的耐外切酶消化的特点而强化达到完全的终止, 构成了对 SNP具有高度辨认能力的 "关 "的系统。 对碱基特异性引物而言, 具 3'至 5'外切酶活性的多聚酶分子中相距三纳米的聚合中心和 3' 至 5'外切酶的酶解中心则既合作又独立地起到了复合分子开关中 "开 "和 "关 "的效能: 对于配对的引物, 则直接在该酶的聚合 中心进行聚合反应, 即 "开 "的效应, 如图 10; 而对于 3'末端错 配的引物, 则从该酶的聚合中心转移至 3'至 5'外切酶的酶解中心, 由于引物修饰了的 3'末端耐外切酶的特点, 继而出现了一种长时 间无酶解产物的酶解过程, 最后因酶的聚合中心空转而 "关 "闭 DNA聚合反应, 如图 10。 这种配对引物被延伸, 不配对引物不延 伸的有或无的二元化效果, 完美地满足了单碱基多态性分析时对 特定位点进行非此即彼的二元化辨认。
此外, 对于不耐外切酶消化的带可探测信号的引物的延伸产 物而言, 其产物表现为带可探测信号和不带可探测信号, 即具 3' 至 5'外切酶活性的多聚酶关闭了不配对引物所带有的可探测信 号, 对于可探测信号的有无, 实际上也是一种 '开 /关"效应。
利用新的检测基因序列的分子开关,探讨高分辨 SNP分析在单 基因遗传病致病基因研究中的作用,具有很强的理论和实用意义。 本发明的信号来源视其标记方法不同而不同。 可采用的标记 方法主要有三种, 即引物集合中引物的 3'末端碱基, 标记的三磷 酸核苷酸底物, 和标记配对引物。
当采用引物 3'末端标记时, 与模板完全配对的引物将产生含 有标记信号的产物。 这种标记可以是放射性的标记也可以是非放 射性的标记如荧光标记。 而与模板不完全配对的引物将视引物的 修饰情况而具有两种可能, 即由于碱基不配对不产生产物, 或由 于 3'至 5'外切酶活性的多聚酶的校正功能而产生不含标记的产物。
当采用标记的三碑酸核苷酸作为标记来源时, 标记的三磷酸 核苷酸底物与未标记的三嶙酸核苷酸底物的比例视标记物的种类 的不同而不同, 变化在 1: 10 至 1: 100 之间。
当对非碱基特异性的配对引物进行标记时, 标记可在其 5'末 端, 也可在非 3'末端的其他任何碱基。
当三末碱基采用耐外切酶消化的修饰方式时, 仅改变引物对 具 3'至 5'外切酶活性的多聚酶的反应性, 不能使产物带有可直接 探测的信号, 其结果只表现为产物的有无时, 我们可以通过对产 物进行溴化乙锭及 GYBR或其它方式的染色, 达到对产物有无的 判定, 从而对所要检测的碱基位点进行准确分析。
1. 制备 3'末端修饰的特定寡核苷酸引物集合
根据实际需要从所需物种的基因组 DNA中挑选一段基因片段 进行引物设计,它包括以下几种情况:
1) 对单碱基多态性进行检测的引物设计:一般情况下,一个 位点设计两条正向引物, 一条反向引物,即一个引物集合, 具体数 量视实际需要而定, 两条正向引物分别与模板完全配对和不完全 配对, 即一个引物亚集合; 根据实验条件及检测方法选用标记方 式,设计好后交生物合成公司合成。 例如设计如下引物:
正向引物: 5'ΧΧΧΧΧΧΧΧΧΧΧ 3'
5'XXXXXXXXXXXF3'
反向引物: 5 XXXXXXXXXXXX3 '
X表示与模板配对的碱基, Y表示与模板不配对的碱基, X、 Y为未修饰碱基, X, 2为被修饰碱基。
2) 对未知基因片段进行检测的引物设计: 利用具有 3'至 5' 外切酶活性的 DNA多聚酶辨认碱基序列的能力进行序列分析的数 学模型。 引物集合视 3'末端的确定碱基数而定, 由 4的 n次方个 5' 末端为四碱基 1: 1: 1: 1摇摆序列而 3'为序列特异性的引物组成。 例如如下 3' 末端含有两个确定碱基的引物集合, 含有 42条引物, 即 16条引物 (X代表摇摆碱基) 。
xxxxxxxxaa
xxxxxxxxag
xxxxxxxxac
xxxxxxxxat
xxxxxxxxta
xxxxxxxtg
xxxxxxxxtc
xxxxxxxxtt
xxxxxxxxta
xxxxxxxxcg
xxxxxxxxcc
xxxxxxxxct
xxxxxxxxga
xxxxxxxxgg
xxxxxxxxgc xxxxxxxxgt 序列分析时通过以有产物的引物相邻序列的一定个数的碱基 重叠为基础, 进行序列的集成。 (见图 2 )
2. 将具有 3'至 5'外切酶活性的多聚酶与修饰引物组成分子 "开 /关", 在所述分子 "开 /关"的参与下, 进行选择性的引物延 伸反应;
除使用具有 3'至 5'外切酶活性的多聚酶介导引物延伸反应外, 本方法对引物延伸反应条件无特殊要求。
3. 引物延伸反应产物的显像与序列分析。
在显象与获取信号之前, 须对 DNA分子上的标记信号与非 DNA分子上的标记信号进行分离。 具体分离方法视具体应用方法 而决定。 当本发明用于电泳时, 分离过程可省略; 当本发明用于 生物芯片时, 严格条件的洗涤将去除非 DNA分子上的标记信号。 若标记信号来源于标记的引物且背景噪音太大时, 则可在 25至 37 摄氏度时使用低浓度的核酸外切酶孵化 15分钟至 1小时。 DNA分子 上的标记信号, 可采用相应的常规方法进行显像与检测, 具体方 法由标记方法决定。 对采用酶标记或其他化学反应物标记如地高 辛原和生物素, 在检测信号之前则需进行专一的化学显象反应。
在进行到显像与检测阶段时, 若标记方式为硫化等不能直接 进行扫描检测的方式时, 可以通过溴化乙锭或 GYBR染色, 在凝 胶电泳下进行结果分析, 或通过质谱分析对结果进行判断。 若标 记方式为放射性或直接荧光法, 则不需显像的过程, 即可直接扫 描测定放射性强度或荧光强度或采用自显影方式而随后进行图像 的扫描分析。 如标记方式为化学发光法或间接荧光, 则需要进行 显影预阻断、 显像反应、 屋像后的洗涤过程, 然后再进行标记信 号的检测。 所检测到的标记信号直接代表相应部位的引物的 3'末端的特 异性硷基序列。 序列分析可采用人工分析, 或计算机辅助。 待测 基因的单一碱基位点是纯合子还是杂合子, 可由相应的延伸的引 物来决定。 如以下引物: 正向引物: 5 XXXXXXXXXXX 3 '
5'XXXXXXXXXXXF3'
反向引物: 5 'XXXXXXXXXXXX3 '
X表示与模板配对的碱基(即普通基因型), Y表示与模板不 配对的碱基(即多态性基因型) , X、 Y为未修饰碱基, 、 Z为 被修饰碱基。
若 5'ΧΧΧΧΧΧΧΧΧΧΧ^3'进行引物延伸反应, 能得到延伸产 物或产物带有标记信号, 而 5'XXXXXXXXXXXJ '不能得到延伸 产物或产物不带有标记信号, 则表示被测模板为在在该碱基位点 为 X的纯合子基因型; 若 5'ΧΧΧΧΧΧΧΧΧΧΧΐ:3'进行引物延伸反 应 , 能得 到 延伸 产 物 或 产 物 带 有标 记 信 号 , 而 5 ΧΧΧΧΧΧΧΧΧΧΧ 3 '不能得到延伸产物或产物不带有标记信 号, 则表示被测模板在该碱基位点 为 Υ 的纯合子; 如果两条引 物均有产物, 则说明该碱基位点为杂合型的多态性基因型。
本发明提供了一种基因序列测定新方法, 该方法的特点是直 接, 敏感, 简单, 快速。 使用本发明测定基因序列时不要求对待 测模板预先进行放大。 因而本发明创造的直接碱基测序技术, 能 广泛应用于单碱基多态性的检测, 此外, 该方法将使要求高可靠 性和高敏感性的生物样本的快速基因序列测定成为可能。
实施例 1
利用具有 3'至 5'外切酶活性的多聚酶 Deep Vent+和不具有 3' 至 5'外切酶活性的多聚酶 Deep Vent-分辨与模板序列完全配对与 不完全配对的引物。 该实验以说明多聚酶的校对作用在序列分析 中的意义。 (见图 3、 4 )
1 ) 引物设计: 从小鼠基因组 DNA中任取长度为 217个碱 基, 序歹'】为: cccaagatat ctgagaattc tcagcagcct tccatttaga agggtgttgt tgtctctgag gcaaaaccac atttcttacc gcacaactag agactgagac cagtttctct cattgtcatt gctgctcaga gccagcagaa aagcactcat gacacacact tagaataata gtgcatctga gccaggactg cccttggggt ccattcagct gtttc的基因区段, 在其上游及下游分别设计 一个引物集合: 两个正向引物 (即一个引物亚集合) 和一个反向 引物, 反向引物与正向引物的产物长度为 217硷基对, 与模板完 全配对的引物延伸反应产物含有一限制性内切酶 EcoR I 的位点。
完全配对的正向引物序列为:
AGT CCT CTC CTA TCC CAA GAT ATC TGA GAA TTC
不完全配对的正向引物序列为:
AGT CCT CTC CTA TCC CAA GAT ATC TGA CAA TTC
反向引物序歹 '】为: 5'gaaacagctgaatggacccaa3'
引物设计好后, 交由 MWG美国分公司合成。
2 )引物延伸反应:试验用放大的正向引物为碱基特异性引物, 将上述引物分别与反向引物加入含有 Deep Vent+酶和 Deep Vent- 酶的引物延伸反应体系, 进行引物延伸反应, 引物延伸反应的条 件为: 第一次解链 95度 5分钟, 然后解链 95度 10秒, 56度退 火 30秒, 72度延伸 1秒, 循环 30次。
3 )结果: PCR产物采用预含溴化乙锭的 2.5%琼脂糖凝胶, 在 10V/cm的直流电场下电泳分离, 电泳液为 0.5x的 TBE緩冲液。 如图 3 所示, 与模板完全配对的引物有大小正确的产物, 能被 EcoR I 消化。 而与模板不完全配对的引物, 使用具有 3'至 5'外 切酶活性的多聚酶进行引物延伸反应时, 其产物能被 EcoR I消 化; 相反, 使用不具有 3'至 5'外切酶活性的多聚酶进行引物延伸 反应时, 其产物则不能被 EcoR I消化。 通过对与模板不完全配 对引物由 Deep Vent+酶和 Deep Vent-酶介导引物延伸反应的产物 进行测序, 如图 4所示, 证明: 由 Deep Vent+酶介导引物延伸反 应的产物的序列为 5'AGT CCT CTC CTA TCC CAA GAT ATC
TGA ^AA TTC TTGGGTCCATTCAGCTGTTTC 3', 而由
Deep Vent-酶介导引物延伸反应的产物的序列为 5'AGT CCT CTC CTA TCC CAA GAT ATC TGA CAA TTC TTGGGTCCATTCAGCTGTTTC 3'。
以上结果表明无 3'至 5'外切酶活性的多聚酶所产生的引物延 伸产物不能对引物序列进行改变, 而具有 3'至 5'外切酶活性的多 聚酶所产生的引物延伸产物能够对引物序列进行改变以使其与模 板序列互补; 若能合理利用具有 3'至 5'外切酶活性的多聚酶在引 物延伸反应时对配对情况的区别能力, 则可从引物序列准确无误 地阅读出模板的序列。
实施例 1
利用具有 3'至 5'外切酶活性的多聚酶 Deep Vent及与模板序 列完全配对与不完全配对的放射标记引物进行单硷基多态性测定
1 ) 引物设计: 从小鼠基因组 DNA取长度为 217个碱基, 序 歹 '1为 ·· cccaagatat ctgagaattc tcagcagcct tccatttaga agggtgttgt tgtctctgag gcaaaaccac atttcttacc gcacaactag agactgagac cagtttctct cattgtcatt gctgctcaga gccagcagaa aagcactcat gacacacact tagaataata gtgcatctga gccaggactg cccttggggt ccattcagct gtttc的 SNP分析用特定基因区段, 在其上游及下游分 別设计两个正向引物和反向引物, 反向引物与正向引物的产物长 度为 217 硷基对。 正向引物包括三末端未标记引物 5'atcccaagatatctgagaatt3'和三末端 3[ΕΓ|标记的碱基特异性引物, 其序列为 5'atcccaagatatctgagaatT3'; 反向引物无三末端修饰,其 序列为 5'gaaacagctgaatggacccaa3', 引物设计好后, 交由 MWG 美国分公司合成。
2 )引物延伸反应: 将上述正向引物与反向引物分别与加入含 有 Deep Vent+酶和 Deep Vent-酶的引物延伸反应体系, 进行引物 延伸反应, 引物延伸反应的条件为: 第一次解链 95度 5分钟, 然 后解链 94度 40秒, 退火 58.9 °C 30秒, 72度延伸 30秒, 循环 25次。
3 )结果: PCR产物采用预含溴化乙锭的 2.5%琼脂糖凝胶, 在 10V/cm的直流电场下电泳分离, 电泳液为 0.5x的 TBE緩沖液。
PCR产物片段回收后通过液闪计数测定其放射活性。如图 5所示, 放射标记 3'末端的引物延伸反应, 不完全配对的引物的延伸产物 较完全配对的引物的延伸产物延伸产物少。 放射定量测定表明不 完全配对的引物的延伸产物已丢失放射标记信号, 为 91cpm, 与 空白对照无差异; 而完全配对的引物的延伸产物则保留放射标 记, 为 1019 cpm, 高出空白对照十倍以上。
本实验结果表明, 当模板与引物配对时, 引物延伸产物含有 可探测标记信号; 当模板与引物不配对时, 标记信号随着三末端 碱基被三外切酶的切除而丟失, 因而该引物虽能延伸但延伸产物 却无明显的标记信号。 除氚标记引物外, Deep Vent+酶与 Rox荧 光三末端标记的引物相结合对单碱基也具有很好的辨认效果。 通 过三末端标记引物的实验研究, 我们发现 Deep Vent+酶的错配纠 正机制与标记的三末端引物结合能够有效辨认核酸序列单碱基, 提示该方法可用于单碱基多态性检测。
实施例 3
利用具有 3'至 5'外切酶活性的多聚酶 Deep Vent+及与模板序 列完全配对与不完全配对的 3'末端硫取代核苷酸引物进行单硷基 多态性测定 。
1 ) 引物设计: 从人类基因组 DNA取长度为 217个碱基, 序 歹1 J为: cccaagatat ctgagaattc tcagcagcct tccatttaga agggtgttgt tgtctctgag gcaaaaccac atttcttacc gcacaactag agactgagac cagtttctct cattgtcatt gctgctcaga gccagcagaa aagcactcat gacacacact tagaataata gtgcatctga gccaggactg cccttggggt ccattcagct gtttc的 SNP分析用特定基因区段, 在其上游及下游分 别设计 7个正向引物和一个反向引物(即一个引物集合), 正向引 物为碱基特异性引物,含配对引物与单碱基不完全配对引物(即一 个引物亚集合), 引物延伸产物长度为 217碱基对。
完全配对引物序列为 5'atcccaagatatctgagaattc3';
相应用大写字母标明的从 -1至 -6碱基位置不完全配的引物的 序列分别为:
5'atcccaagatatct gagaattG3'
5'atcccaagatatctgagaatAc3';
5'atcccaagatatctgagaaAtc3'
5'atcccaagatatctgagaTttc3';
5'atcccaagatatctgagTattc3';
5'atcccaagatatctgaC aattc3 ';
完全配对引物三末端及不完全配对引物不配对碱基均疏化修 饰;
反向引物无梳化修饰,其序列为 5'gaaacagctgaatggacccaa3', 引物设计好后, 交由 MWG美国分公司合成。
2 ) 引物延伸反应: 将上述引物分别与反向引物与加入含有 Deep Vent+酶和 Deep Vent-酶的引物延伸反应体系, 进行引物延 伸反应, 引物延伸反应的条件为: 第一次解链 95度 5分钟, 然后 解链 94度 40秒, 退火 30秒, 72度延伸 30秒, 循环 25次。
3 ) 结果: 电泳采用预含溴化乙锭的 2.5%琼脂糖凝胶, 在 10V/cm的直流电场下电泳分离, 电泳液为 0.5X的 TBE緩沖液。 如图 7所示, 与模板完全配对的引物, 引物延伸与否与所用多聚 酶的保真度无关; 与模板不完全配对的引物, 在具有 3'至 5'外切 酶活性的多聚酶所介导的引物延伸反应中, 不能被延伸而得不到 延伸产物; 在不具 3'至 5'外切酶活性的多聚酶所介导的引物延伸 反应中, 能被延伸而得到延伸产物。 根据上述反应的结果, 我们 至少可以得出所测模板的该区段含有下列序列: GAATTC。
结果表明通过 Deep Vent-酶所得到的引物, 延伸产物由于引 物次 3'末端的不配对碱基未能校正, 仍保留在终产物中, 故此引 物 3'硫化修饰对 Deep Vent-晦介导的 PCR无影响, 3'末端及次 3' 末端单碱基不配对的引物同样能得到延伸产物。 当使用具有 3'至 5'外切酶活性的 Deep Vent+酶时, 3'硫化修饰的 3'末端或次 3'末 端单碱基不配对引物, 因耐外切酶消化, 使聚合非成熟性终止, 即"关,,闭 DNA聚合反应的效应, 不能被延伸而得不到延伸产物。 证明本发明可用于基因序列分析。
实施例 4
利用具有 3'至 5'外切酶活性的多聚酶 Deep Vent+及与模板序 列完全配对与不完全配对的 3'末端硫取代核苷酸引物进行基因序 列测定 (见图 6)
1 ) 引物设计: 从小鼠基因组 DNA取长度为 217个碱基, 序 歹1】为: cccaagatat ctgagaattc tcagcagcct tccatttaga agggtgttgt tgtctctgag gcaaaaccac atttcttacc gcacaactag agactgagac cagtttctct cattgtcatt gctgctcaga gccagcagaa aagcactcat gacacacact tagaataata gtgcatctga gccaggactg cccttggggt ccattcagct gtttc的 SNP分析用特定基因区段, 在其上游及下游分 别设计 2个正向引物和一个反向引物, 正向引物为碱基特异性引 物,含配对引物与单碱基不完全配对引物: 完全配对引物序列为 5atcccaagatatctgagaattc3 , 3' 末端单碱基不配对引物其序列为 5atcccaagatatct gagaattG3; 完全配对引物三末端及不完全配对引 物不配对碱基均硫化修饰; 反向引物无硫化修饰, 其序列为 5gaaacagctgaatggacccaa3', 引物延伸产物长度为 217碱基对, 引 物设计好后, 交由 MWG美国分公司合成。
2 ) 引物延伸反应: 将上述引物分别与反向引物与加入含有 Deep Vent+酶和 Deep Vent-酶的引物延伸反应体系, 进行引物延 伸反应, 引物延伸反应的条件为: 第一次解链 95度 5分钟, 然后 解链 94度 40秒, 退火 30秒, 温度为 46-66度的范围内, 72度延 伸 30秒, 循环 25次。
3 ) 结果: 电泳采用预含溴化乙锭的 2.5%琼脂糖凝胶, 在 10V/cm的直流电场下电泳分离, 电泳液为 0.5X的 TBE緩冲液。 如图 6所示, 在大于十度以上的退火温度范围内, 具有 3'至 5'外 切酶能力的 Deep Vent+酶以 100%的准确率只延伸完全配对的引 物, 不完全配对的引物不延伸, 而无 3'至 5'外切酶能力的 Deep Vent-酶则仅在大于 62度才表现出对引物 3'末端序列的分辨, 说 明该方法能在大范围的退火温度内, 在相似或相同的反应条件下 对基因序列进行分析。
实施例 5
利用具有 3'至 5'外切酶活性的 pfu酶及与模板序列完全配对 与不完全配对的 3'末端硫取代核苷酸引物对神经性耳聋 GJB3 中 C- T突变点的识别(见图 9)
1 )引物设计: 在人类基因组 DNA神经性耳聋相关 SNP位点 基因区段设计野生型等位基因位点 C 相对应的正向引物序列为 5'caa cat cgt gga ctg cta cat tgc cc3', 其反向引物序列为 5'gtg aag att ttc ttc ttg gta ggt cg3'„ 耳聋突变位点 T相对应的正向引物序 列为 5'caa cat cgt gga ctg cta cat tgc ct3',其反向引物序列为 5'gtg aag att ttc ttc ttg gta ggt ca3'。 正向引物 3'末端须疏化修饰。 引物 设计完后交上海生物工程公司合成。
2 )引物延伸反应: 将上述两组正向引物与反向引物分别加入 含有 pfu酶和无 3'至 5'外切酶活性的 Taq酶的引物延伸反应体系, 进行引物延伸反应, 引物延伸反应的条件为: 第一次解链 95度 5 分钟, 然后解链 94度 40秒, 退火 56°C 40秒,延伸 72 °C 30秒, 循环 30次。
3 ) 结果: PCR产物采用预含溴化乙锭的 2.5%琼脂糖凝胶 在 10V/cm的直流电场下电泳分离,电泳液为 0.5x的 TBE緩冲液。 如图 8所示, 当使用缺乏 3'至 5'外切酶活性的 Taq酶时, 虽然所 用模板为野生型位点的纯合子, 野生型等位基因位点特异性引物 与点突变等位基因位点特异性引物均能被延伸, 其区别仅在于非 配对引物的延伸产物在数量上少于配对引物的产物;如图 9所示, 具有 3'至 5'外切酶活性的 pfu酶对等位基因位点特异性引物具有 高度的分辨能力, 野生型等位基因位点特异性引物与所用模板完 全配对, 能被 pfu酶延伸; 而点突变等位基因位点特异性引物与 所用模板不完全配对, 未见引物延伸产物。
证明采用硫化修饰引物与具有 3'至 5'外切酶活性的 pfu酶相 结合的聚合反应,能快速而又准确地达到了对染色体 DNA单碱基 水平的直接分析。

Claims

1. 一种利用具有 3'至 5'外切酶活性的多聚酶进行基因序列分 析, 其特征是该方法包括以下步骤:
a. 制备 3'末端修饰的特定寡核苷酸引物集合;
b. 将具有 3'至 5'外切酶活性的多聚酶与修饰引物组成分子 "开 /关 在所述分子 "开 /关 "的参与下, 进行选择性的引物延 伸反应;
c. 引物延伸反应产物的显像与序列分析。
2. 根据权利要求 1所述的一种利用具有 3'至 5'外切酶活性的 多聚酶进行基因序列分析, 其特征是所述的引物集合是由 3'末端 序列各异的引物亚集合组成。
3. 根据权利要求 1所述的一种利用具有 3'至 5'外切酶活性的 多聚酶进行基因序列分析, 其特征是所述的引物集合是由未被修 饰的寡核苷酸和被修饰的寡核苷酸组成。
4. 根据权利要求 3所述的一种利用具有 3'至 5'外切酶活性的 多聚酶进行基因序列分析, 其特征是所述的修饰是指对寡核苷酸 进行化学修饰以使其具有标记信号或改变引物对核酸酶的反应特 性。
5. 根据权利要求 1所述的一种利用具有 3'至 5'外切酶活性的 多聚酶进行基因序列分析, 其特征是所述的的分子 "开 /关 "能改 变不耐外切酶的 3'末端修饰的特定寡核苷酸引物集合所携带的标 记信号,或关闭耐外切酶的 3'末端修饰的特定寡核苷酸引物集合的 延伸反应。
6. 根据权利要求 3所述的一种利用具有 3'至 5'外切酶活性的 多聚酶进行基因序列分析, 其特征是所迷的引物进行引物延伸反 应的产物是不带标记信号的产物, 或者是带标记信号的产物。
7. 根据权利要求 3所述的一种利用具有 3'至 5'外切酶活性的 多聚酶进行基因序列分析, 其特征是所迷的引物进行引物延伸反 应的产物的标记信号来自于标记的引物或来自于标记的三磷酸核 苷酸底物。
PCT/CN2003/000695 2002-08-19 2003-08-19 Utilisation d'une polymerase dotee d'une activite de 3'-5' exonuclease pour effectuer une analyse de sequence de genes WO2004016806A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03787581A EP1536019A4 (en) 2002-08-19 2003-08-19 USE OF A POLYMERASE WITH 3'-TO-5'-EXONUCLEASE ACTIVITY FOR IMPLEMENTING A GENEQUENCE ANALYSIS
AU2003257798A AU2003257798A1 (en) 2002-08-19 2003-08-19 Using a polymerase with 3' to 5' exonuclease activity to perform gene sequence analysis
JP2004528265A JP2005535336A (ja) 2002-08-19 2003-08-19 3’−5’エキソヌクレアーゼを有するポリメラーゼを用いる配列決定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02129166.7 2002-08-19
CN02129166A CN1414110A (zh) 2002-08-19 2002-08-19 利用具有3'至5'外切酶活性的多聚酶进行基因序列分析

Publications (1)

Publication Number Publication Date
WO2004016806A1 true WO2004016806A1 (fr) 2004-02-26

Family

ID=4746142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000695 WO2004016806A1 (fr) 2002-08-19 2003-08-19 Utilisation d'une polymerase dotee d'une activite de 3'-5' exonuclease pour effectuer une analyse de sequence de genes

Country Status (6)

Country Link
US (1) US20060172307A1 (zh)
EP (1) EP1536019A4 (zh)
JP (1) JP2005535336A (zh)
CN (1) CN1414110A (zh)
AU (1) AU2003257798A1 (zh)
WO (1) WO2004016806A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141255A (ja) * 2004-11-18 2006-06-08 Eiken Chem Co Ltd 遺伝子変異を検出する方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102443596A (zh) * 2011-12-01 2012-05-09 中国农业科学院作物科学研究所 利用核酸外切酶的3’-5’外切酶活性克隆目的dna的方法
EP2982762B1 (en) * 2013-04-01 2018-08-01 Genomictree, Inc. Nucleic acid amplification method using allele-specific reactive primer
CN104561248A (zh) * 2013-10-22 2015-04-29 常州金麦格生物技术有限公司 用于检测靶核酸的引物和其应用
CN106055924B (zh) * 2016-05-19 2019-02-01 完美(中国)有限公司 微生物操作分类单元确定和序列辅助分离的方法和系统
WO2024049358A1 (en) * 2022-08-31 2024-03-07 Agency For Science, Technology And Research A method of detecting the presence of a nucleic acid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248526B1 (en) * 1997-12-15 2001-06-19 Aventis Behring, Gmbh Labeled primer for use in and detection of target nucleic acids
WO2001081631A1 (en) * 2000-04-25 2001-11-01 Dna Sciences, Inc. Detection of nucleotide sequence variations via the proofreading activity of polymerases
JP2002223799A (ja) 2001-02-01 2002-08-13 Shimadzu Corp 核酸配列変異の検出方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2112302T3 (es) * 1991-10-11 1998-04-01 Behringwerke Ag Metodo para producir un polinucleotido para uso en amplificacion con un unico cebador y oligonucleotidos que contienen fosforotioato como cebadores para la amplificacion de acidos nucleicos.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248526B1 (en) * 1997-12-15 2001-06-19 Aventis Behring, Gmbh Labeled primer for use in and detection of target nucleic acids
WO2001081631A1 (en) * 2000-04-25 2001-11-01 Dna Sciences, Inc. Detection of nucleotide sequence variations via the proofreading activity of polymerases
JP2002223799A (ja) 2001-02-01 2002-08-13 Shimadzu Corp 核酸配列変異の検出方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1536019A4 *
ZHANG JIA ET AL.: "Application of DNA polymerase with 3' exonuclease in SNP assay", JOURNAL OF NANHUA UNIVERSITY (MEDICAL EDITION), vol. 31, no. 2, 30 June 2003 (2003-06-30), pages 128 - 131 AND 143, XP008048612 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006141255A (ja) * 2004-11-18 2006-06-08 Eiken Chem Co Ltd 遺伝子変異を検出する方法

Also Published As

Publication number Publication date
CN1414110A (zh) 2003-04-30
AU2003257798A1 (en) 2004-03-03
EP1536019A1 (en) 2005-06-01
EP1536019A4 (en) 2007-09-26
US20060172307A1 (en) 2006-08-03
JP2005535336A (ja) 2005-11-24

Similar Documents

Publication Publication Date Title
US9133516B2 (en) Methods for identification of alleles using allele-specific primers for amplification
KR101958659B1 (ko) 유전자 변이 특이적 증폭 효율이 증가된 dna 중합효소
JP2002512814A (ja) 核酸を検出するためのプライマ伸長法
JPH06505394A (ja) ターミネーター複合物を利用するオリゴヌクレオチドのポリメラーゼ伸長による核酸分類
US20170051343A1 (en) Strand exchange hairpin primers that give high allelic discrimination
EP1737978A1 (en) Nucleic acid sequencing
CN104450869B (zh) 一种双脱氧核苷修饰的引物方法、反应体系及其在突变检测中的应用
US8409829B2 (en) Methods for analysis of molecular events
US20100297633A1 (en) Method of amplifying nucleic acid
US20160289752A1 (en) Method for the Isothermic Amplification of Nucleic Acid and SNP Detection
WO2004016806A1 (fr) Utilisation d'une polymerase dotee d'une activite de 3'-5' exonuclease pour effectuer une analyse de sequence de genes
CN110172500B (zh) 一种单核苷酸多态性的等温分型方法
KR20010051353A (ko) 변동된 종결 분석에 의한 핵산 서열의 변형 검출 방법
US20030235827A1 (en) Methods and compositions for monitoring primer extension and polymorphism detection reactions
Gu et al. Development of a candidate method for forensic microbial genotyping using multiplex pyrosequencing combined with a universal biotinylated primer
US20080305470A1 (en) Nucleic Acid Sequencing
CN106916882B (zh) 用于辨识核苷酸基因多型性的基因型鉴定芯片的双重等位基因特异性聚合酶链锁反应的方法
CN105400877B (zh) 一种基于免疫酶联反应的基因组snp位点检测方法
KR20200129600A (ko) 헬리코박터 파일로리(Helicobacter pylori) 유전형 판별용 PNA 프로브 및 이를 이용한 헬리코박터 파일로리 유전형 판별방법
KR20190092883A (ko) 삼중접합구조 기반 등온 핵산 증폭 기술을 이용한 표적핵산 검출 방법
Park et al. DNA Microarray‐Based Technologies to Genotype Single Nucleotide Polymorphisms
US20120053064A1 (en) Determining the identity of terminal nucleotides
JP4395363B2 (ja) 核酸検出方法
CN114317767A (zh) 一种区别c57bl/6亚系小鼠的引物、试剂盒和方法
CN117487891A (zh) 一种多片段多位点的基因点突变检测方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004528265

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003787581

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003787581

Country of ref document: EP