WO2004016556A1 - ガラス体の高純度化方法及び、高純度ガラス体ならびに、ガラス管の製造方法及び装置 - Google Patents

ガラス体の高純度化方法及び、高純度ガラス体ならびに、ガラス管の製造方法及び装置 Download PDF

Info

Publication number
WO2004016556A1
WO2004016556A1 PCT/JP2003/010149 JP0310149W WO2004016556A1 WO 2004016556 A1 WO2004016556 A1 WO 2004016556A1 JP 0310149 W JP0310149 W JP 0310149W WO 2004016556 A1 WO2004016556 A1 WO 2004016556A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass body
glass
voltage
tube
glass pipe
Prior art date
Application number
PCT/JP2003/010149
Other languages
English (en)
French (fr)
Inventor
Shuichiro Kato
Tomomi Moriya
Yuichi Oga
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002234563A external-priority patent/JP2004075412A/ja
Priority claimed from JP2003166430A external-priority patent/JP2004131367A/ja
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to US10/501,523 priority Critical patent/US20050081565A1/en
Priority to EP03788064A priority patent/EP1529759A1/en
Publication of WO2004016556A1 publication Critical patent/WO2004016556A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/043Heating devices specially adapted for re-forming tubes or rods in general, e.g. burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/045Tools or apparatus specially adapted for re-forming tubes or rods in general, e.g. glass lathes, chucks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/049Re-forming tubes or rods by pressing
    • C03B23/0496Re-forming tubes or rods by pressing for expanding in a radial way, e.g. by forcing a mandrel through a tube or rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01254Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing by expanding radially, e.g. by forcing a mandrel through or axial pressing a tube or rod
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified

Definitions

  • the present invention relates to a method for purifying a glass body, a high-purity glass body obtained by the method, and a method and an apparatus for producing a glass tube for performing high-purification.
  • optical fibers In recent years, with the progress of optical communication technology, the use of optical fibers has been increasing.
  • the main manufacturing methods for optical fiber include VAD (Vapor phase Axial Deposition), OVD (Outer Vapor phase Deposition), and MCVD (Modified Chemical Vapor phase Deposition). , Law) There is power S.
  • VAD Very phase Axial Deposition
  • OVD Outer Vapor phase Deposition
  • MCVD Modified Chemical Vapor phase Deposition
  • glass particles are deposited on the inner wall of an internal pipe made of a glass tube.
  • this glass tube becomes a part of the preform as it is, the non-circularity and the eccentricity are reduced. It must be small, have a uniform wall thickness, and have excellent properties.
  • Optical fibers made from glass tubes with large non-circularity or uneven wall thickness have large values of polarization dispersion (PMD).
  • the piercing method is, for example, as shown in FIG. 25, by bringing a perforating jig 202 into contact with a glass body 201 and heating the periphery of the contacting portion of the perforating jig 202 with a heating furnace 203.
  • This is a method in which the glass body 201 is gradually formed into a cylindrical glass tube 205 from the front end side by pressing the drilling jig 202 against the glass body 201.
  • At least a portion of the drilling jig 202 that contacts the glass body 201 can be used at the softening temperature of the glass, and is made of a material such as carbon, which hardly chemically reacts with the glass.
  • the glass tube thus obtained often contains impurities during the manufacturing process of the glass ingot or the perforating process using a perforating member, and in recent years, there has been a further demand for higher performance optical fibers. Accordingly, there is a need for a glass tube with higher purity than before.
  • Patent No. 27 26 67 29 states that a fused silica tube is heated at a temperature of 100 ° C or more (in the embodiment, 150 ° C, 160 ° C, 210 ° C). (° C), while applying a voltage, the metal impurity ions are diffused on the outer wall surface of the tube by applying a voltage.This is said to improve the purity of the fused silica tube. I have.
  • the fused quartz tube obtained in this way has a large deformation of the tube due to the application of heat, and it is necessary to apply this to a glass pipe that requires a high degree of shape accuracy.
  • a post-forming process for reworking the tube into a desired shape, following the above-mentioned purification of the tube.
  • the post-forming process in order to keep the inner and outer diameters of the tube constant in the longitudinal direction, it is necessary to measure the entire length and then form the inner and outer peripheral surfaces of the tube based on the measured length.
  • the manufacturing cost of the tube significantly It can be a factor to increase.
  • An object of the present invention is to provide a method for purifying a glass body and a high-purity glass body capable of performing high-purification while suppressing deformation of the glass body in a high order, and a glass tube capable of obtaining a high-purity glass tube. To provide a manufacturing method and apparatus.
  • the method for purifying a glass body according to the present invention includes at least a portion disposed on an outer peripheral surface side with respect to at least a part of a cylindrical or cylindrical glass body in a longitudinal direction. A voltage is applied from a pair of electrodes in a substantially radial direction of the glass body.
  • the glass body specifically, a cylindrical glass rod or a cylindrical glass pipe finished to a predetermined size by an appropriate manufacturing method is used.
  • a plurality of anodes and cathodes are arranged in the circumferential direction of the glass body, and the potential of each anode and each cathode is set respectively.
  • the glass body and the electrode are relatively swung in the circumferential direction of the glass body.
  • the method further includes a surface removing step of removing a region from the outer peripheral surface of the glass body to a predetermined depth after applying the voltage.
  • the method for purifying a glass body according to the present invention comprises: rotating a cylindrical glass body around a central axis as a rotation axis in a range of 1 rpm or more and 100 rpm or less. While rotating at a speed, a voltage is applied to at least a part of the glass body in the longitudinal direction of the glass body from the electrodes arranged on the outer peripheral surface and the inner peripheral surface of the glass body in a substantially radial direction of the glass body. It is. Further, the rotation speed is preferably in the range of lrpm to 20rpm.
  • the voltage gradient of the voltage is made to be a negative gradient from the inner peripheral surface side to the outer peripheral surface side of the glass body, and after applying the voltage, a region from the outer peripheral surface of the glass body to a predetermined depth is removed. It is preferable to have a surface removing step.
  • the voltage gradient of the voltage is made a negative gradient from the outer peripheral surface side to the inner peripheral surface side of the glass body, and after applying the voltage, a region from the inner peripheral surface of the glass body to a predetermined depth is removed. It is preferable to have a surface removing step.
  • a voltage is simultaneously applied to the entire length of the effective portion of the glass body.
  • the length of the effective portion of the glass body in the longitudinal direction is preferably 50 Omm or more.
  • the method of purifying a glass body according to the present invention comprises an electrode disposed outside a first end face and a second end face in a longitudinal direction of a cylindrical or cylindrical glass body. Therefore, a voltage is applied in the longitudinal direction of the glass body.
  • the voltage gradient of the voltage is made a negative gradient in the direction from the first end face to the second end face of the glass body, and after applying the voltage, a region from the second end face of the glass body to a predetermined depth is removed. It is preferable to have an end removing step.
  • the length of the effective portion of the glass body in the longitudinal direction is preferably less than 50 Omm.
  • a voltage can be applied without bringing the electrode into contact with the glass body.
  • the electrode can be brought into contact with the glass body. Further, it is preferable to apply a voltage by heating a portion of the columnar glass body to which a voltage is to be applied so as to have a temperature of less than 450 ° C.
  • the portion of the glass body to which a voltage is applied be heated to a temperature of less than 130 ° C. to apply the voltage. Further, it is preferable to apply a voltage by heating a portion of the glass body to which a voltage is to be applied so as to have a temperature of 450 ° C. or higher.
  • the portion of the glass body to which a voltage is applied is heated to a temperature of 600 ° C. or more and the voltage is applied.
  • the portion of the glass body to which a voltage is applied is heated to a temperature of 900 ° C. or more, and the voltage is applied.
  • the content concentration of impurity cations contained in the effective part of the glass body is 0.01 wt ppm or less.
  • the high-purity glass body according to the present invention which can achieve the above object, is subjected to a high-purity treatment by the above-mentioned glass body high-purification method of applying a voltage in a substantially radial direction of the glass body.
  • the outer diameter is 100 mm or more and the length of the effective portion in the longitudinal direction is 500 mm or more.
  • a high-purity glass body to which a voltage is applied in a substantially radial direction of the glass body has a high purity because the length does not hinder the high-purity treatment when the length of the effective portion is long. Processing has been done.
  • the high-purity glass body according to the present invention which can achieve the above object, has been subjected to a high-purity treatment by the above-mentioned glass body high-purification method of applying a voltage in the longitudinal direction of the glass body.
  • the outer diameter is 100 mm or more and the length of the effective portion in the longitudinal direction is less than 500 mm.
  • a high-purity glass body to which a voltage is applied in the longitudinal direction of the glass body has been subjected to a high-purity treatment satisfactorily due to the short length of the effective portion when the length in the longitudinal direction is short.
  • the content of the impurity cation in the effective portion of the glass body is preferably 0.01 wt ppm or less.
  • the method for manufacturing a glass tube according to the present invention comprises heating a columnar or cylindrical glass body to soften it, and bringing a perforation jig into contact with the softened area of the glass body.
  • the outer peripheral surface of the glass tube is A voltage is applied to the glass tube from at least a pair of electrodes provided outside the glass tube to generate a voltage gradient in a substantially radial direction of the glass tube.
  • perforation includes not only making a hole in a cylindrical glass body, but also making the inner diameter of the hole in a cylindrical glass body larger (increase the diameter).
  • the method for manufacturing a glass tube according to the present invention comprises heating a columnar or cylindrical glass body to soften it, and bringing a perforation jig into contact with the softened area of the glass body.
  • the method for manufacturing a glass tube in which a glass body is gradually formed into a glass tube when the drilling jig is brought into contact with the glass body, the outer peripheral side of the drilling jig and the glass body, or the inner circumferential side of the glass tube.
  • a voltage is applied to the outer periphery to generate a voltage gradient in the radial direction of the glass body or glass tube.
  • the method for manufacturing a glass tube according to the present invention comprises heating a columnar or cylindrical glass body to soften it, and bringing a perforation jig into contact with the softened area of the glass body.
  • the jig is arranged outside the first end face and the second end face in the longitudinal direction of the glass body. A voltage is applied to the glass body from the electrode, and a voltage gradient is generated in the longitudinal direction of the glass tube.
  • the glass tube After the glass tube is formed, it is preferable to remove at least the edge of the glass tube on the side where the voltage gradient is reduced.
  • the glass tube manufacturing apparatus which can achieve the above object, has a heating element disposed around a cylindrical or cylindrical glass body and a glass body heated by the heating element.
  • An apparatus for manufacturing a glass tube which comprises a drilling jig and gradually forms the glass body into a glass tube by contacting, comprises at least a pair of electrodes outside the outer peripheral surface of the glass body.
  • the glass tube manufacturing apparatus which can achieve the above object, has a heating element disposed around a cylindrical or cylindrical glass body and a glass body heated by the heating element.
  • the drilling jig is an electrode and an electrode is provided on the outer peripheral side of the glass body.
  • Inner circumference and outer circumference of pipe Are provided with electrodes.
  • the glass tube manufacturing apparatus which can achieve the above object, has a heating element disposed around a cylindrical or cylindrical glass body and a glass body heated by the heating element.
  • An apparatus for manufacturing a glass tube which comprises a drilling jig and gradually forms the glass body into a glass tube by contacting the glass body, wherein at least a pair of electrodes are provided outside both end surfaces in the longitudinal direction of the glass body.
  • the drilling jig is preferably surface-treated so that at least a portion in contact with the glass body contains any of silicon carbide, pyrolytic carbon, and metal carbide.
  • the heating element and the drilling jig are made of graphite which is a conductive material, these heating elements and the drilling jig are connected to the electrodes. It is possible to use as. Further, the graphite of the drilling jig preferably has a content of impurity ions other than graphite of 1 ppm or less.
  • FIG. 1 is a schematic vertical sectional view of a first high-purification apparatus that can be used in the method for purifying a glass body according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a method for purifying a glass body according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating another embodiment of the method for purifying a glass body according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating another embodiment of the method for purifying a glass body according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating another embodiment of the method for purifying a glass body according to the first embodiment of the present invention.
  • FIG. 6 is a schematic longitudinal sectional view of a second high-purification apparatus that can be used in the method for purifying a glass body according to the second embodiment of the present invention.
  • FIG. 7 is a schematic longitudinal sectional view of a third purification device that can be used in the method for purifying a glass body according to the third embodiment and a modification of the fourth embodiment of the present invention.
  • FIG. 8 is a schematic longitudinal sectional view of a fourth purifying apparatus that can be used in the method for purifying a glass pipe according to the third embodiment of the present invention.
  • FIG. 9 is a diagram illustrating a method for purifying a glass pipe according to a third embodiment of the present invention.
  • FIG. 10 is a schematic longitudinal sectional view of a fifth high-purification apparatus that can be used for the method for purifying a glass pipe according to the fourth embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view illustrating a modified example of the third and fourth embodiments of the present invention.
  • FIG. 12 is a diagram illustrating a method for purifying a glass pipe according to another embodiment of the present invention.
  • FIG. 13 is a diagram illustrating a method for purifying a glass pipe according to another embodiment of the present invention.
  • FIG. 14 is a schematic vertical cross-sectional view of a sixth purification apparatus that can be used in the method for purifying a glass pipe according to the fifth embodiment of the present invention.
  • FIG. 15 is a diagram illustrating a method for purifying a glass pipe according to a fifth embodiment of the present invention.
  • FIG. 16 is a schematic longitudinal sectional view of a seventh high-purification apparatus that can be used in the method for purifying a glass pipe according to the sixth embodiment of the present invention.
  • FIG. 17 is a schematic diagram showing a manufacturing apparatus for performing the method for manufacturing a glass tube according to the seventh embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a main part near the heating furnace shown in FIG.
  • FIG. 19 is a schematic diagram of a main part showing a modification of the device of the seventh embodiment.
  • FIG. 20 is a schematic diagram of a main part showing an apparatus according to an eighth embodiment of the present invention.
  • FIG. 21 is a schematic diagram of a main part showing an apparatus according to a ninth embodiment of the present invention.
  • FIG. 22 is a schematic diagram of a main part showing an apparatus according to a tenth embodiment of the present invention.
  • FIG. 23 is a schematic diagram of a main part showing the device of the eleventh embodiment of the present invention.
  • FIG. 24 is a schematic diagram showing an apparatus according to the 12th embodiment of the present invention.
  • FIG. 25 is a schematic diagram of a main part of an apparatus for performing a conventional method for manufacturing a glass tube.
  • reference numerals 1, 2 are electrodes
  • 11 is a glass pipe
  • 11A is a first end face of a glass pipe
  • 11 B is a second end face of a glass pipe
  • 16 is a glass rod
  • 10 1a is a glass tube manufacturing apparatus
  • 103 is a glass rod (glass body)
  • 104 is a dummy pipe (glass body)
  • 106 is a glass tube
  • 110 is an inlet base
  • 111 is a first feed support.
  • 1 1 2 is the 1st chuck
  • 1 20 is the outlet side base
  • 1 21 is the 2nd feed support
  • 1 22 is the 2nd chuck
  • 1 30 is the drilling jig
  • 1 3 1 is the piece (electrode)
  • 1 32 is a support opening
  • 133 is an electrode member (electrode)
  • 135 is a fixing member
  • 140, 140a, 140b is a heating furnace
  • 141 is a heating element (electrode)
  • 142 is a coil
  • 144 is a furnace tube (electrode)
  • 146 is a die (electrode).
  • the first embodiment of the method for purifying a glass body according to the present invention is a cylindrical glass body.
  • a voltage is applied in a substantially radial direction from a pair or a plurality of pairs of electrodes brought into contact with the outer peripheral surface side, and the voltage gradient causes impurities contained in the glass body to be applied to one electrode. It is to move to the side.
  • the first high-purification apparatus 100 has a long base 2 as shown in a schematic longitudinal sectional view of FIG. 1, a heating means 22 arranged at a specific distance along the longitudinal direction of the base 21 so as to surround the glass pipe 11, and a power supply 51.
  • the base 21 is arranged so that its longitudinal direction is substantially vertical.
  • a first chuck 31 capable of holding one end of the glass pipe 11 is provided with a first support 32.
  • a second chuck 41 capable of holding the other end of the glass pipe 11 is mounted outside the base 21 via a second support 42.
  • the first chuck 31 and the second chuck 41 are configured to rotate in synchronization with each other by a motor (not shown) so that the glass pipe 11 can rotate around its central axis as a rotation axis. ing.
  • the second support base 42 is configured to be movable in the vertical direction in order to facilitate attachment and detachment of the glass pipe 11 to and from the first chuck 31 and the second chuck 41.
  • a pair of electrodes 1 and 2 arranged so as to sandwich the outer periphery of the glass pipe 11 are provided inside the heating means 22 .
  • These electrodes 1 and 2 have a length substantially equal to that of the heating means 22 and have such a length as to be able to make overall contact in the longitudinal direction of the effective portion 11 a of the glass pipe 11.
  • the electrodes 1 and 2 are supported by an electrode support 3 installed on a base 21.
  • the electrode support portion 3 can move the electrodes 1 and 2 so as to open and close in the radial direction of the glass pipe 11, respectively.
  • the glass pipes held by the first and second chucks 3 1 and 4 1 It is possible to make contact with pinch 1.
  • the electrodes 1 and 2 have a surface in contact with the glass pipe 11 having a shape curved with the same curvature as the outer peripheral surface of the glass pipe 11. Thereby, a desired contact area can be obtained between the electrode 2 and the glass pipe.
  • the power supply 51 is usually a DC power supply.
  • a conductive wire coming out of a positive electrode is connected to the electrode 2
  • a conductive wire coming out of the negative electrode is connected to the electrode 1.
  • the electrode 2 is an anode and the electrode 1 is a cathode.
  • the anode and the cathode may be reversed.
  • the material for the electrodes 1 and 2 include graphite and surface-treated dalafite.
  • the material of the electrodes 1 and 2 is preferably a surface-treated graphite in consideration of contact with the glass pipe 11.
  • surface treatment graphite examples include pyrolytic carbon (PyC), metal carbide (NbC, TaC, TiC, ZrC), or silicon carbide (Si) on the surface.
  • Graphite provided with C) can be suitably cited.
  • the heating means 22 has a cylindrical heating element, and this heating element can generate heat by, for example, a resistance heating method.
  • the heating element of the heating means 22 is preferably made of carbon or the like.
  • carbon such as graphite preferably has an impurity content of 1 p or less, which makes it difficult for impurities to enter the glass pipe 11.
  • a gas pipe 84 that can communicate with the space of the glass pipe 11 that is gripped is provided at the upper end 31 A of the first chuck, and the gas pipe 84 can open and close the flow path. It is connected to the inner gas supply device 83 via a valve 82.
  • a gas pipe 63 is provided at the lower end of the second chuck 41 so as to communicate with the space of the held glass pipe 11. The gas pipe 63 is a valve that can open and close the flow path. It is connected to the intake pump 81 through 61.
  • the first high-purification apparatus 100 is provided with a gas outlet 27 for blowing the outer gas G2 from above the base 21 to below.
  • the electrodes 1 and 2 are open by the driving of the electrode support 3.
  • the glass pipe 11 is formed by connecting a dummy pipe 11 b above and below an effective part 11 a to be purified.
  • the portion gripped by the first chuck 31 and the second chuck 41 is 1 lb of a dummy pipe.
  • Dummy pipes are usually inexpensive pipes with low purity, and are separated from the effective part 11a after high purity.
  • the effective portion 11a has a length such that substantially the entire area can be heated to a temperature of less than 130 ° C. by receiving heat from the heating means 22.
  • Effective portion 1 la of the material, as a optical fiber typically 3 1_Rei 2 9 9.9 9 containing% by weight or more but that is a high-purity S i 0 2, fluorine or chlorine, boron, An additive for adjusting the refractive index, such as germanium, may be contained. In this case, the concentration of S I_ ⁇ 2 is lower depending on the amount of these additives. Note that these additives are not included in the category of impurity cations in this specification.
  • the second support table 42 is moved vertically toward the heating means 22, and the lower end of the glass pipe 11 is held by the second chuck 41.
  • the electrodes 1 and 2 are moved toward the glass pipe 11 by the electrode support portion 3 and are brought into contact with the glass pipe 11 so as to sandwich a part of the outer periphery as shown in FIG.
  • the valve 82 is closed, the valve 61 is opened, and the suction pump 81 is operated to exhaust gas from the hollow of the glass pipe 11, and then the valve 82 is opened.
  • the inner gas supply device 83 is operated to supply the inner gas G1 to the hollow.
  • the valve 82 is closed as required.
  • the inner gas G1 is a rare gas such as argon or a nitrogen gas.
  • the pressure of the inner gas G1 in the hollow of the glass pipe 11 is adjusted to 0.5 kPa'gage 1.5 kPa'gage by adjusting the supply amount of the side gas G1.
  • the pressure of the inner gas G1 is more preferably a positive pressure. In this case, 0.1kPa'gage to 1.0kPa ⁇ gage.
  • the heating means 22 is operated to remove the glass pipe 11 from the base 21. 1 While heating at a temperature lower than 300 ° C, the power supply 51 is operated to apply a voltage to the glass pipe 11 from the electrodes 1 and 2.
  • the voltage is usually a DC voltage, and is preferably set within a range of 1 kV to 50 kV.
  • the flow rate of the outer gas G 2 is preferably 10 liters / minute to 20 liters / minute, and the pressure of the outer gas G 2 is preferably 0.1 lk P a 'gage to l.Ok P a' gage. . Further, it is preferable that the pressure of the inner gas G1 and the pressure of the outer gas G2 are substantially equal.
  • an electrode 2 as an anode and an electrode 1 as a cathode are arranged so as to face each other so as to face the outside of the outer peripheral surface of the glass pipe 11.
  • a voltage is applied to the glass pipe 11 such that the direction of the voltage gradient is substantially the radial direction of the glass pipe 11.
  • the voltage gradient has a negative gradient from the side where the electrode 2 contacts to the side where the electrode 1 contacts.
  • the direction of the voltage gradient of the voltage is substantially in the radial direction of the glass pipe 11, which means that the inner peripheral surface side and the outer peripheral surface side of the glass pipe 11
  • the occurrence of a voltage difference in the diameter direction of the glass pipe 11 is also included.
  • a voltage gradient is generated between the electrodes 1 and 2 in the diameter direction of the glass pipe 11.
  • FIG. 2 is a schematic cross-sectional view of the glass pipe 11 in a radial direction in a state where a voltage gradient has occurred.
  • the impurity cations C eg, alkali metal ions such as lithium ions, sodium ions, and potassium ions, and copper ions
  • the impurity cations C eg, alkali metal ions such as lithium ions, sodium ions, and potassium ions, and copper ions
  • the impurity cations C contained in the glass pipe 11 are converted into a portion of the glass pipe 11 in contact with the electrode 1 as a cathode. It can be concentrated and concentrated in the vicinity.
  • the glass pipe 11 is preferably heated so that at least a portion to which a voltage is applied, that is, the effective portion 11a has a temperature of less than 130 ° C.
  • the temperature of the glass pipe 11 is increased by heating, the diffusion coefficient of the impurity cation contained in the glass pipe 11 is increased, and the glass pipe 11 is easily moved in a negative voltage gradient direction.
  • the processing time for applying the voltage can be shortened.
  • the glass pipe 11 is easily deformed, and depending on the materials of the electrodes 1 and 2, impurities are easily mixed into the glass pipe 11, so that the material that can be used for the electrodes 1 and 2 is For example, the surface-treated graphite described above is desirable.
  • heating is performed so that the effective portion 11a has a temperature of 450 ° C. or higher.
  • heating is performed so that the effective portion 11a has a temperature of 600 ° C. or higher.
  • heating is performed so that the effective portion 11a has a temperature of 900 ° C. or more.
  • a temperature of 450 ° C or higher removal of alkali metals is easy, and at a temperature of 600 ° C or higher, removal of divalent metal ions (such as Cu 2 + ) is generally easy.
  • the temperature is 900 ° C. or higher, it is easy to remove iron ions (F e 3 + ) and nickel ions (N 2 + ).
  • the glass pipe 11 when the glass pipe 11 is exposed to a temperature exceeding 130 ° C., the glass pipe 11 is significantly deformed, and the inner diameter and the outer diameter of the glass pipe 11 after the purification are high. It becomes extremely necessary to add a post-processing step to make the length constant in the longitudinal direction.
  • the preferred lower limit of the heating temperature for the glass pipe 11 is 450 ° C. or 600 ° C., and the upper limit is less than 130 ° C. (the same applies to the following embodiments).
  • the first pipe 31 and the second table 41 are rotated synchronously while their rotation directions are reversed in a short period of time, so that the center axis of the glass pipe 11 is changed. It is preferable to swing the electrode 1 and 2 in the circumferential direction as the rotation axis.
  • the glass pipe 11 is formed such that a half-peripheral region (a region demarcated by a broken line X in the figure) of the outer peripheral surface of the glass pipe 11 comes into contact with the electrodes 1 and 2, respectively.
  • the heat received by the glass pipe 11 from the heating means 22 can be made more uniform in the circumferential direction. Therefore, the deformation of the glass pipe 11 caused by the temperature of the glass pipe 11 becoming uneven in the circumferential direction can be reduced more reliably.
  • Heating means in the high-purification device When it is provided partially, it is particularly preferable to swing.
  • a surface removing step of removing a region from the outer peripheral surface of the glass pipe 11 to a predetermined depth may be performed. Thereby, impurity cations unevenly distributed on the outer peripheral surface side of the glass pipe 11 can be removed, and the glass pipe 11 leaving only a highly purified portion can be obtained.
  • the surface removal step can be performed by using a grinding process, a chemical etching process such as hydrofluoric acid, or a flame polishing process.
  • Temperature of heating means 1200 ° C
  • the width of the electrode refers to the length of a straight line tangentially measuring the portion where the electrode contacts the glass body in the cross-sectional direction of the glass body as shown in FIG. 2, for example.
  • the concentration of the impurity cation contained in the effective portion 11a can be set to 0.01 p or less by weight.
  • Table 1 shows an example of the relationship between the heating temperature, the applied voltage, and the processing time in the method for purifying a glass body according to the first embodiment. Heating temperature Applied voltage Processing time
  • Example 3 9 00 40 50
  • the impurity cation of the metal can be moved.
  • metal ions having a valence of 2 or less can be moved.
  • other impurity cations can also be moved.
  • the first purification apparatus 100 shown in FIG. 1 applies a voltage to the glass pipe 11 using a pair of electrodes 1 and 2.
  • the width of each electrode (each electrode) is 20% to 40% of the outer diameter of the glass body.
  • a plurality of electrodes may be provided to apply a voltage.
  • three pairs of electrodes consisting of electrodes 1a, 1b, and lc serving as anodes and electrodes 2a, 2b, and 2c serving as cathodes may be provided.
  • the electrodes 1a, 1b, and 1c are arranged in a half area of the outer peripheral surface of the glass pipe 11, and the electrodes 2a, 2b, and 2c are arranged in the other half area.
  • the width of the electrode (per electrode) is preferably set to 10% to 30% of the outer diameter of the glass body.
  • the voltages applied to the paired electrodes la and 2a, electrodes lb and 2b, and electrodes 1c and 2c should be set respectively.
  • a voltage of 30 kV is applied to the electrodes 1 b and 2 b located at the center among the three pairs of electrodes, and the other electrodes 1 a and 2 a and the electrodes lc and 2 c are applied to the other electrodes.
  • a voltage of 25 kV is applied.
  • the glass pipe 11 is moved in the circumferential direction with respect to the electrodes 1 and 2 with the center axis as the rotation axis. It is good to rock it. This effectively promotes the movement of impurity cations. At the same time, impurity cations can be unevenly distributed over a wide range near the outer peripheral surface of the glass pipe 11.
  • Inner diameter of glass pipe 1 Omm ⁇ 15mm
  • Electrodes l a, 2 a, l c, 2 c 25 kV
  • Electrode (per) width 36mm
  • the concentration of impurity cations contained in the effective portion 11a can be reduced to 0.008 weight ppm or less.
  • the method for purifying a glass body of the first embodiment of the present invention described above it is possible to carry out high purification while suppressing deformation of the glass pipe, and to adjust the inner diameter and the outer diameter of the glass pipe in the longitudinal direction. Since the post-forming process (cutting of the glass pipe part or the entire inner peripheral surface and the outer peripheral surface, and partial or overall diameter reduction / expansion, etc.) to maintain a constant The production cost of the purified glass pipe can be greatly reduced.
  • the term “cutting” as used herein refers to, for example, processing a glass body with an NC lathe or the like so that its outer diameter is uniform in the longitudinal direction.
  • the surface removing step is a step of removing the outer peripheral surface of the highly purified glass pipe while suppressing deformation by etching or outer peripheral grinding at a predetermined depth. This is limited to the step of removing a predetermined depth, and is extremely easy to perform as compared with the post-forming processing step by deformation. (Second embodiment)
  • a second embodiment of the purification method is to sequentially apply a voltage in a substantially radial direction from an electrode brought into contact with the outer peripheral surface side to a glass pipe in a longitudinal direction.
  • the length in the longitudinal direction was set to be short.
  • a heating means 23 is provided, and instead of the electrodes 1 and 2, the electrodes 5 and 6 are configured to be approximately the same length as the heating means 23.
  • the second purification device 200 is replaced with a first support table 32 and a first support table 42 provided in the first purification device 100, respectively. 35 and a second support base 45.
  • the first support base 35 and the second support base 45 are provided with a motor (not shown), and are configured to be vertically movable at a predetermined speed along the base 21.
  • the end of the glass pipe 11 is gripped by the first chuck 31 and the second chuck 41.
  • the length of the effective portion 11a in the longitudinal direction is sufficiently longer than the length of the heating means 23, and a part of the effective portion 11a receives the heat from the heating means 23.
  • the length is such that it can be heated to a temperature of less than 300 ° C.
  • the first support 35 and the second support 45 are moved along the base 21 to move the glass pipe 11 relatively to the heating means 23.
  • heating to a temperature lower than 130 ° C. and application of a voltage in a substantially radial direction can be performed to the entire area of the glass pipe 11.
  • the heating means may be moved instead of the glass pipe 11.
  • the glass pipe 11 is rotated around the center axis of the glass pipe 11 in relation to the electrodes 5 and 6 in the circumferential direction. Further, after the voltage application step, the above-described surface uniform removal step may be performed.
  • a cooling means 7 is provided near the upper part of the heating means 23, and the heating means 23 of the glass pipe 11 is used to heat the glass pipe 11. It is preferable to forcibly cool the portion where the impurity cations are unevenly distributed due to the application of the voltage.
  • the cooling means may be a means for injecting a cooling gas such as an inert gas or clean air toward the glass pipe 11, or a water-cooled jacket (not shown) may be used to cool the glass pipe 11. It may cover the surroundings. Further, it is preferable that the cooling is performed such that the temperature of the cooling portion of the glass pipe 11 is 800 ° C. or lower, or 500 ° C. or lower.
  • a cooling gas such as an inert gas or clean air toward the glass pipe 11
  • a water-cooled jacket (not shown) may be used to cool the glass pipe 11. It may cover the surroundings. Further, it is preferable that the cooling is performed such that the temperature of the cooling portion of the glass pipe 11 is 800 ° C. or lower, or 500 ° C. or lower.
  • the unevenly distributed impurity cations return to the glass pipe 11 immediately after the impurity cations are unevenly distributed.
  • the impurity ions can remain unevenly distributed on the outer periphery of the glass pipe. Therefore, the effect of the method for purifying a glass body according to the present invention can be maximized.
  • a cylindrical glass pipe has been described as an example of a glass body to be subjected to the purification treatment.
  • a cylindrical glass body (hereinafter, referred to as a glass rod) ) Can also be targeted.
  • the purification can be performed by the same apparatus and method as used for purifying the glass pipe.
  • the third high-purification apparatus 100a preferably used for high-purification of the glass rod is the same as the first high-purification apparatus 100 shown in FIG. Moth
  • the configuration for using G1 is excluded.
  • the glass rod 16 is formed by connecting a dummy rod 16 b above and below an effective portion 16 a to be purified.
  • the effective portion 16a is made of the same material as the effective portion 11a of the glass pipe 11 described above, and the dummy rod 16b is made of the same material as the dummy pipe 11b of the glass pipe 11 described above. It is.
  • the third purification device 100a shown in FIG. 7 is used when simultaneously applying a voltage to the entire effective portion 16a in the longitudinal direction.
  • a method in which a voltage in a substantially radial direction is sequentially applied in a longitudinal direction can be adopted.
  • high purity is also applied to the glass rod 16 in the same manner as in the case where a substantially radial voltage is sequentially applied to the glass pipe 11 in the longitudinal direction. Can be performed.
  • a glass rod is a solid glass body, and therefore is less likely to be deformed by heat than a glass pipe. For this reason, the upper limit of the heating temperature during the purification can be set higher than that of the glass pipe.
  • a preferable upper limit of the heating temperature is 144 ° C.
  • Example 3 in contrast to Examples 1 to 3 (see Table 1) shown in the first embodiment, when the glass head is subjected to a high-purification treatment under substantially the same conditions as in the first embodiment, for example, Assuming that the heating temperature is 140 ° C. and the applied voltage is 40 kV, the processing time is 24 hours, and the same impurity cation as in Example 3 can be moved.
  • a voltage is applied to a glass pipe in a substantially radial direction from electrodes arranged on the outer peripheral surface side and the inner peripheral surface side, and the voltage is applied to the glass pipe.
  • the impurity contained in the glass body is moved to the outer peripheral surface side or the inner peripheral surface side by the voltage gradient.
  • the fourth high-purification apparatus 300 has a long base 21 and a longitudinal direction of the base 21 so as to surround the glass pipe 11. And a power source 51 arranged at a specific distance along the line.
  • Base 2 1 is long It is arranged so that the hand direction is substantially vertical, and a first chuck 31 capable of holding one end of the glass pipe 11 is provided above the heating means 22 via a first support base 32. Mounted on table 21. Below the heating means 22, a second chuck 41 capable of holding the other end of the glass pipe 11 is attached to the base 21 via a second support base 42.
  • the first chuck 31 and the second chuck 41 are rotated by a motor (not shown) so that the glass pipe 11 can rotate about its center axis as a rotation axis. Have been.
  • the second support base 42 is configured to be movable in the vertical direction in order to facilitate attachment and detachment of the glass pipe 11 to and from the first chuck 31 and the second chuck 41.
  • An electrode fixing member 33 is attached above the first chuck 31, and the long inner electrode 12 is connected to a conductive electrode connection portion 14 penetrating through the upper end 31 A of the first chuck. Is held by the electrode fixing member 33 through the contact hole.
  • the inner electrode 12 is configured to extend vertically downward to near the lower end of the heating means 22.
  • the inner electrode 12 is set so that the maximum outer diameter in the cross section is smaller than the inner diameter of the glass pipe 11 to be subjected to the purification treatment. Are configured not to contact.
  • a gas pipe 84 that can communicate with the hollow of the gripped glass pipe 11 is provided at the upper end 31 A of the first chuck, and the gas pipe 84 can open and close the flow path. It is connected to the inner gas supply device 83 via a valve 82.
  • a gas pipe 63 is provided at the lower end of the second chuck 41 so as to be able to communicate with the hollow of the gripped glass pipe 11, and the gas pipe 63 can open and close the flow path It is connected to the intake pump 81 via the valve 61.
  • the power supply 51 is usually a DC power supply, and a conductive wire coming out of a positive electrode is connected to the electrode connection section 14.
  • Examples of the material for the inner electrode 12 and the electrode connection portion 14 include the above-described graphite and surface-treated graphite.
  • the material of the inner electrode 12 is preferably surface-treated graphite.
  • the conductive wire coming out of the negative pole of the power source 51 is a heating element of the heating means 22.
  • the material of the heating element is preferably exemplified by carbon and the like.
  • carbon such as graphite preferably has an impurity content of 1 ppm or less, which makes it difficult for impurities to enter the glass pipe 11.
  • the fourth purification device 300 is provided with a gas outlet 27 for blowing out the outer gas G2 from above the base 21 to below.
  • the glass pipe 11 is the same as that described in the first embodiment.
  • the second support base 42 is moved vertically toward the heating means 22, and the lower end of the glass pipe 11 is held by the second chuck 41.
  • the center axis of the glass pipe 11 substantially coincides with the center axis of the inner electrode 12, and the glass pipe 11 is attached so as not to contact the inner electrode 12.
  • the valve 82 is closed, the valve 61 is opened, and the suction pump 81 is operated to exhaust the gas from the hollow of the glass pipe 11, and then the valve 82 is opened.
  • the inner gas supply device 83 is operated to supply the inner gas G1 to the hollow. Vanolep 82 is closed as needed.
  • the inner gas G1 is a rare gas such as argon or a nitrogen gas.
  • the pressure of the inner gas G1 in the hollow of the glass pipe 11 can be adjusted from 0.5 kPa'gage to 1.5 kPa'gage by adjusting the supply amount of the inner gas G1. It is preferred that Alternatively, the pressure of the inner gas G 1 is preferably a positive pressure. In this case, the pressure is set to 0.1 kPa′gage to 1.0 kPa ⁇ gage.
  • the heating means 22 was operated while flowing the outer gas G 2 such as a rare gas such as argon or nitrogen gas from the gas outlet 27 downward from above the base 21, to thereby operate the glass pipe 1. 1 at a temperature lower than 1300 ° C and a power supply 5 1 Is operated to apply a voltage to the glass pipe 11 to perform a voltage marking process.
  • the voltage is usually a DC voltage, preferably in the range of 1 kV to 50 kV.
  • the flow rate of the outer gas G2 is preferably 10 l / min to 20 l / min, and the pressure of the outer gas G2 is preferably 0.5 kPa'gage to 1.5 kPa'gage. .
  • the inner electrode 12 as an anode and the heating means 22 as a cathode are arranged inside and outside the glass pipe 11 so as to face each other, and the inner electrode 12 and the glass pipe 11 are
  • the inner gas G 1 is interposed between the cathode and the glass pipe 11
  • the outer gas G 2 is interposed between the cathode and the glass pipe 11.
  • the voltage direction of the voltage is substantially in the radial direction of the glass pipe 11 when the inner electrode 12 deviates from the center axis of the glass pipe 11 and the voltage gradient direction is the glass pipe 1. This also includes the case where it slightly deviates from the radial direction of (1).
  • the impurity cations C contained in the glass pipe 11 are diffused from the outer peripheral surface of the glass pipe 11, and the flow of the outer gas G 2 is Force to be discharged from the high-purification apparatus 100 of FIG. 1 ⁇ As shown in the sectional view of the main part of FIG. 9 (b), it can be unevenly distributed near the outer peripheral surface of the glass pipe 11.
  • the glass pipe 11 is preferably heated at a temperature of less than 1300 ° C.
  • the first chuck 31 and the second chuck 41 are rotated in synchronization with each other, so that the glass pipe 11 has a center axis as a rotation axis of 1 rpm or more. While rotating at a rotation speed within the range of rpm 2003/010149
  • the rotational speed and 1 rpm or more it is possible to more uniformly heat the glass pipe 1 1 receives from the heating unit 2 2 in the circumferential direction. Therefore, the deformation of the glass pipe 11 caused by the temperature of the glass pipe 11 becoming uneven in the circumferential direction can be effectively reduced.
  • the heating means in the high-purification apparatus is not provided continuously in the circumferential direction of the glass pipe, it is preferable to rotate the glass pipe within the above rotation speed range.
  • the rotation speed by setting the rotation speed to 100 rpm or less, deformation of the glass pipe 11 due to centrifugal force can be effectively suppressed.
  • the rotation speed it is preferable that the rotation speed be 20 rpm or less, because the deformation of the glass pipe 11 due to the centrifugal force can be more reliably suppressed.
  • a uniform surface removal step of uniformly removing a region from the outer peripheral surface of the glass pipe 11 to a predetermined depth can be performed. Purification can be performed more reliably.
  • the method for purifying a glass pipe according to the third embodiment of the present invention described above it is possible to purify the glass pipe while suppressing deformation of the glass pipe, and to reduce the inner diameter and the outer diameter of the glass pipe.
  • Manufacturing of highly purified glass pipes because post-forming processing steps (cutting of the inner and outer peripheral surfaces of the glass pipe, partial or overall diameter expansion and contraction, etc.) to make it constant in the longitudinal direction can be omitted. Cost can be greatly reduced.
  • the surface uniform removal step which is added as necessary, is a step of removing the peripheral surface of the highly purified glass pipe at a predetermined depth while suppressing deformation. This is a process that is limited to the process of uniformly removing a predetermined depth, and is extremely easy to implement as compared with the post-forming process by deformation. Note that each electrode may be in contact with the glass pipe.
  • the fifth purification device 400 has a longitudinal length instead of the heating means 22 provided in the fourth purification device 300.
  • the heating means 23 having a shorter length is provided, and instead of the upper electrode 12, the upper electrode 13 is configured to be approximately the same length as the heating means 23.
  • the fifth purification device 400 is replaced with a first support table 32 and a second support table 42 provided in the fourth purification device 300, respectively. It has a platform 35 and a second support platform 45.
  • the first support base 35 and the second support base 45 are provided with a motor (not shown), and are configured to be vertically movable at a predetermined speed along the base 21.
  • the end of the glass pipe (quartz pipe) 11 is inserted into the first chuck 31 and the second chuck 4 so that the inner electrode 13 is housed in the hollow of the glass pipe 11. Hold with 1.
  • the length in the longitudinal direction of the effective portion 11a is sufficiently longer than the length in the longitudinal direction of the heating means 23, and a partial area of the effective portion 11a receives heat from the heating means 22 so as to be 1300. The length is such that it can be heated to a temperature lower than 0 ° C.
  • the first support 35 and the second support 45 are moved along the base 21 to move the glass pipe 11 relatively to the heating means 23.
  • a voltage application step of heating to a temperature lower than 130 ° C. and applying a voltage can be performed on the entire area of the glass pipe 11.
  • a heating means may be operated instead of the glass pipe 11.
  • the glass pipe 11 is rotated at a rotation speed in a range of 1 rpm to 100 rpm with its center axis as a rotation axis. More preferably, the rotation speed is 1 rpm or more and 20 rpm or less. Further, the surface removing step may be performed after the voltage applying step. According to the fourth embodiment described above, it is possible to achieve the same effects as those of the third embodiment.
  • the outer peripheral surface of the glass pipe 11 and the heating means are not connected.
  • An outer electrode 15 to be connected to the power supply may be separately arranged between 22 and 23.
  • the inner electrode is an anode
  • the outer electrode or the heating means is a cathode
  • an embodiment in which the inner electrode is a cathode and the outer electrode or a heating means is an anode. Can also be exemplified.
  • a voltage is applied to the glass pipe 11 such that the direction of the voltage gradient is substantially the radial direction of the glass pipe 11.
  • a negative gradient is formed from the outer peripheral surface side to the inner peripheral surface side.
  • impurity cations contained in the glass pipe eg, alkali metal ions such as lithium ions, sodium ions, and lithium ions and copper ions
  • impurity cations contained in the glass pipe move toward the inner peripheral surface of the glass pipe.
  • the inner gas is sealed in the hollow of the glass pipe 11 and the outer gas is made to flow.However, while the inner gas is made to flow in the hollow of the glass pipe, The outer gas may be flowed in the base. Further, in the above-described embodiment, the mode in which the inner gas G1 and the outer gas G2 are used in the voltage applying step is exemplified, but the method of purifying the glass pipe of the embodiment of the present invention is not limited to this.
  • the inner gas G1 a form in which the inner electrode is in sliding contact with the inner peripheral surface of the glass pipe rotating around the central axis as a rotation axis, without using the outer gas G2
  • the surface treatment graphite described above can be preferably exemplified in order to surely suppress the transfer of impurities from the electrode to the glass pipe.
  • An outer electrode 15 that is connected to a power source and that is in contact with the outer peripheral surface of the glass pipe 11 may be separately arranged.
  • Temperature of heating means 110 ° C
  • the concentration of impurity cations contained in the effective portion 11a can be reduced to 0.010 weight ppm or less.
  • the sixth high-purification apparatus 500 has a long base 71 and a longitudinal base 71 so as to surround the glass pipe 11. It has a heating means 25 arranged at a specific distance along the direction, and a power supply 52.
  • the base 71 is disposed so that its longitudinal direction is substantially vertical.
  • a first chuck 36 capable of holding one end of the glass pipe 11 is provided with a first support base. It is attached to the base 71 through 37.
  • a first electrode 65 is provided inside the first chuck 36 so as to be able to contact the end face of the glass pipe 11.
  • a second chuck 46 capable of gripping the other end of the glass pipe 11 is attached to the base 71 via a second support base 47.
  • a second electrode 66 is provided inside the second chuck 46 so as to be able to contact the end face of the glass pipe 11.
  • the first chuck 36 and the second chuck 46 each have a motor (not shown), and rotate in synchronization with each other so that the glass pipe 11 can rotate around its central axis as a rotation axis. Is configured.
  • the power supply 52 is normally a DC power supply, and a conductive wire extending from a positive electrode is connected to the first electrode 65.
  • the conductive wire coming out of the negative pole of the power supply 52 is connected to the second electrode 66.
  • Examples of the material of the first electrode 65 and the second electrode 66 include graphite and the above-described surface-treated graphite.
  • a glass pipe 11 to which a dummy pipe 19 is fusion-spliced so that the center axis is aligned with one end is prepared.
  • the end of the glass pipe 11 on the dummy pipe 19 side is gripped by the second chuck 46, and the other end is gripped by the first chuck 36.
  • the first end face 11 A of the glass pipe (the end face opposite to the dummy pipe) is opposed to the first electrode 65
  • the second end face 11 B of the glass pipe is the second end face.
  • the two electrodes 66 are in contact with each other.
  • the length in the longitudinal direction of the glass pipe 11 is set so that substantially the entire area of the glass pipe 11 can be heated to a temperature of less than 130 ° C. by receiving heat from the heating means 25. .
  • the heating means 25 is operated to heat the glass pipe 11 at a temperature of less than 1300 ° C., and the power supply 52 is operated to apply a voltage to the glass pipe 11.
  • a voltage application step is performed.
  • the voltage is usually a DC voltage, and preferably ranges from 1 kV to 50 kV.
  • a first electrode 65 serving as an anode and a second electrode 66 serving as a cathode are arranged at both ends of the glass pipe 11 so as to face each other. Is applied in the direction (longitudinal direction) of the central axis of the glass pipe 11.
  • the voltage gradient has a negative gradient in the direction from the first end face 11A to the second end face 11B of the glass pipe.
  • the impurity cations C eg, lithium ions, sodium ions, alkali metal ions such as lithium ions, copper ions, etc.
  • the glass pipe 11 moves in the direction of the second end face 11B.
  • the impurity cations C in the glass pipe 11 can be unevenly distributed in the dummy pipe 19 as shown in FIG. 15 (b).
  • an end removing step of removing an area from the second end face 11B of the glass pipe to a predetermined depth can be performed.
  • a dummy This can be easily implemented by removing the pipe 19 from the glass pipe 11. This makes it possible to more reliably purify the glass pipe 11.
  • Length of glass pipe in the longitudinal direction (including dummy pipe): 100 O mn! ⁇ 1500 mm Dummy pipe longitudinal length: 50 mm ⁇ : LOO mm
  • the glass pipe 11 is rotated at a rotation speed within a range of 1 rpm or more and 100 rpm or less around its central axis as a rotation axis. preferable. More preferably, the rotation speed is 1 rpm or more and 20 rpm or less.
  • the seventh purification device 600 has a longitudinal length instead of the heating means 25 included in the sixth purification device 500.
  • Heating means 26 with a short setting is provided.
  • a first support 39 and a second support 49 are provided, respectively. I have.
  • the first support 39 and the second support 49 are provided with a motor (not shown), and are configured to be able to move in the vertical direction at a predetermined speed along the base 71. Note that the heating means may be moved instead of the glass pipe 11.
  • the end of the glass pipe 11 is held by the first chuck 36 and the second chuck 46.
  • Longitudinal length of the glass pipe 1 1 is sufficiently longer than the longitudinal length of the heating means 2 6, a partial region of the glass pipe 1 1 receives heat from the heating means 2 6 1 3 0 0 ° C It is long enough to be heated to a temperature below.
  • the first support table 3 9 and the second support 4 9 by moving along the base 71, to cause relative movement of the glass pipe 1 1 to the heating means 2 6
  • a voltage application step of heating to a temperature lower than 130 ° C. and applying a voltage can be performed on the entire area of the glass pipe 11.
  • the impurity cations contained in the glass pipe 11 move in the direction of the second end face 11 B of the glass pipe, first, the first chuck 36 and the heating means 26 Are placed in the vicinity, and a voltage application step is performed on the upper end of the glass pipe 11. Subsequently, the glass pipe 11 and the heating means 26 are moved relatively to each other, whereby the glass pipe 1 is moved. It is preferable to perform the voltage application step toward the lower region of 1.
  • the impurity ions in the glass pipe 11 can be efficiently distributed in the dummy pipe 19.
  • the glass pipe 11 is rotated at a rotation speed in the range of 1 rpm or more and 100 rpm or less around the center axis as the rotation axis. preferable. More preferably, the rotation speed is 5 r or more and 20 r or less. Further, after the voltage applying step, the end removing step can be performed as necessary. In the sixth embodiment as well, it can be easily performed by removing the dummy pipe 19 from the glass pipe 11. . This makes it possible to more reliably purify the glass pipe 11.
  • a cylindrical glass rod may be used instead of using the glass pipe 11.
  • the glass rod can be highly purified by the same apparatus and method as in the case of purifying the glass pipe 11, but the preferable upper limit of the heating temperature is 1450 ° C.
  • the effective portion when a voltage is applied in the longitudinal direction (central axis direction) of the glass body, the effective portion preferably has a length of less than 50 Omm.
  • the movement distance becomes longer, so the time required for high-purification processing And the applied voltage must be increased. If the applied voltage becomes too high (for example, more than 50 kV), it is applied to the glass body. There is a risk of discharging before.
  • the length of the effective portion may be 50 Omm or more. Therefore, for a glass body having a long effective portion, applying a voltage substantially in the radial direction of the glass body enables more efficient purification.
  • concentration of each impurity cation eg, alkali metal ion such as lithium ion, sodium ion, and potassium ion and copper ion
  • the concentration of each impurity cation is 10% by weight.
  • a high-purity glass pipe having a voltage application step of applying a voltage to the glass pipe while heating the glass pipe to a temperature within a range of 100 ° C. or more and less than 130 ° C. Method.
  • the voltage applying step is performed while rotating the glass pipe at a rotation speed within a range of 1 rpm or more and 100 rpm or less with its central axis as a rotation axis. Purification of the glass pipe described in 2 above Method.
  • the voltage gradient has a negative gradient from the inner peripheral surface side to the outer peripheral surface side of the glass pipe, and a region from the outer peripheral surface of the glass pipe to a predetermined depth is removed following the voltage application step. 3.
  • the voltage gradient has a negative slope from the outer peripheral side to the inner peripheral side of the glass pipe.
  • the purification of the glass pipe according to the third embodiment is performed under the following conditions using a purification device similar to the fourth purification device 300 described above.
  • the composition of the glass pipe is S io 2 impurity cations (the lithium ion, Natoriumui on the sum of the potassium ions and copper ions) containing at 0.1 weight p pm.
  • the concentration of the impurity cation means the content of the impurity cation in the entire glass pipe, and the same applies to the following.
  • the deformation of the outer diameter of the above glass pipe in the longitudinal direction was measured with an ultrasonic measuring instrument, and the standard deviation (hereinafter, this standard deviation was also referred to as the glass pipe diameter standard deviation) was calculated as 0.1 mm. is there.
  • Heating temperature 1 100 ° C
  • a method for purifying a glass pipe is performed in the same manner as in Example 1 except that the heating temperature is set to 128 ° C.
  • Example 1 Except for changing the heating temperature to 132 ° C., a method for purifying a glass pipe is performed in the same manner as in Example 1.
  • the heating temperature was set at less than 1300 ° C.
  • the amount of impurity cations was reduced, and the standard deviation of the glass pipe diameter was hardly changed. That is, high purification is performed while deformation of the glass pipe is suppressed at a high level.
  • the glass pipe whose dimensions have been increased by the high purification method of the embodiment satisfies the shape accuracy and purity for an optical fiber, for example, as it is.
  • the standard deviation of the glass pipe diameter increases. This means that the glass pipe is deformed and, as it is, does not satisfy the shape accuracy for, for example, optical fibers.
  • the high-purity glass tube can be manufactured by perforating (including diameter expansion).
  • the heating element and the perforating jig are used as electrodes, and a voltage is applied to the inner and outer peripheral sides of the glass tube.
  • a voltage gradient is generated in the radial direction of the glass tube to be formed will be described.
  • the radial direction of the glass tube refers to a direction perpendicular to the longitudinal axis of the glass tube.
  • a glass tube manufacturing apparatus 101 used in the present embodiment is for manufacturing a glass tube by a so-called piercing method, and a heating furnace 140 for heating a glass rod 103. And an inlet base 110 disposed on the inlet side of the heating furnace 140, and an outlet base 120 disposed on the outlet side of the heating furnace 140.
  • a glass dummy pipe 104 is connected to one end of the glass rod 103 to be drilled.
  • a first feed support 111 that can slide in the left and right direction in the figure at a desired speed is provided.
  • the first feed support base 1 1 1 1 grips the end of the perforation end of the glass rod 103 with the first chuck 1 1 2, and further rotates the glass rod 103 around its longitudinal axis. It is configured so that it can be performed.
  • a second feed support 121 which is slidable in the left and right direction in the figure as in the case of the first feed support 111 is provided.
  • the moving speed of the second feed support base 121 is appropriately controlled in accordance with the moving speed of the first feed support base 111.
  • the second feed support table 1 2 1 holds the one end of the dummy pipe 104 connected to the piercing start end side of the glass rod 103 by the second chuck 122, and Is configured to be rotatable about its longitudinal axis.
  • the rotation is performed by the first chuck 1 1 2 of the first feed support 1 1 1 1 It can be controlled to synchronize with the rotation.
  • the rotation speed of the first chuck 112 and the rotation speed of the second chuck 122 can be made different.
  • the rotation speed of the first chuck 112 and the second chuck 122 is preferably about 1 rpm to 100 rpm.
  • a fixing member 135 for fixing the drill jig 130 is provided on the outlet side base 120.
  • the drilling jig 130 includes a support port 1 32 and a piece 13 1 provided at the tip of the support port 1 32, and a support rod 1 3 5 1 3 2 is fixed. Further, the support rod 13 2 has the same central axis as the piece 13 1, and is further supported so that the central axis coincides with the glass opening 10 3.
  • the piece 13 1 is made of a material that can be used at the softening temperature of the glass rod 103 and does not chemically react with the glass port 103.
  • the pieces 1 3 1 are made of graphite (graphite). Graphite has excellent stability even at high temperatures when the glass softens, and has high conductivity.
  • the content of impurities contained in general graphite is about 400 ppm, but it is preferable to use high-purity graphite for the piece 131 of the present embodiment. More preferably, the content of impurities is 1 ppm or less. This makes it difficult for impurities to be mixed into the glass rod 103 from the piece 13 1 when the piece 13 1 is brought into contact with the glass opening 10 3 and press-fitted.
  • pieces 13 1 are surface-treated so that at least the portion that comes into contact with glass contains any of silicon carbide (SiC), pyrolytic carbon (PyC), and metal carbide. Good to be.
  • the metal carbide is preferably made of, for example, niobium carbide (NbC), tantalum carbide (TaC), titanium carbide (TiC), or zircon carbide (ZrC). Can be illustrated.
  • a surface treatment method for example, by forming a coating layer such as the above-mentioned silicon carbide on the surface of the piece 131, strength / abrasion resistance can be improved, and oxidation in a high temperature state can be performed. Can also be prevented. Further, such a surface treatment can maintain the surface of the piece 13 1 with high purity, and also allows the inside of the piece 13 1 to be applied to the glass rod 10 3.
  • a coating layer such as the above-mentioned silicon carbide
  • the heating furnace 140 of the present embodiment is a high-frequency dielectric heating type furnace, and when an alternating current is passed through the coil 142, the heating element 1441 generates heat.
  • the heating element 14 1 is a cylindrical graphite covering the periphery of the contact portion between the glass rod 103 and the piece 13 1.
  • the heating element 141 When the heating element 141 generates heat at a temperature equal to or higher than the softening point of the glass, the glass rod 103 is heated and softened.
  • the softening point is about 170 ° C.
  • the heating element 14 1 and the bridge 13 1 are configured to be electrodes having a positively or negatively polarized potential, respectively. That is, the heating element 1 4 1 and the piece
  • a DC power supply is connected to 13 1.
  • the piece 13 1 can apply a voltage to the inner peripheral side of the glass tube 106 by contact with the perforated glass tube 106.
  • Heating element 1 4
  • a gas supply means (not shown) communicating with the space 144 is provided to supply gas into the space 144. This gas causes the non-contact heating element 1 4 1 and the glass tube
  • a rare gas such as argon or a nitrogen gas can be used. Further, it is preferable to use an ionized gas.
  • the glass opening 103 sent into the heating furnace 140 is heated by the heating element 14 1
  • the glass rod 103 is gradually pierced by contacting and pressing the piece 131 of the piercing jig 130 into the softened area by heating and heating the softened area.
  • Form 6 When the piece 13 1 is pressed into the glass rod 103, the voltage is applied from the heating element 14 1 and the piece 13 1 to the gradually formed glass tube 106. 3 010149
  • the potentials of the heating element 14 1 and the piece 13 1 are set to be different from each other. Thereby, a voltage gradient can be generated in the radial direction of the glass tube 106.
  • the heating element 14 1 is used as a cathode and the piece 13 1 is used as an anode.
  • the voltage gradient generated in this case is a negative gradient in which the potential changes from plus to minus from the inner circumference to the outer circumference of the glass tube 106.
  • the impurities mixed during the production of the glass body 103 and the impurities mixed from the piece 131 are lithium metal ions such as lithium ions, sodium ions, and lithium ions, alkaline earth metal ions such as calcium ions, and the like. Mainly cations such as copper ions. Therefore, the impurities move to the outer peripheral portion of the glass tube 106 located on the cathode side due to the voltage gradient generated in the radial direction of the softened glass tube 106. As described above, by moving the impurities mixed in the glass tube 106 to the outer peripheral portion, it is possible to purify the portion other than the outer peripheral portion with high purity.
  • the movement of impurities is more likely to occur as the glass softens and has a lower viscosity.
  • the glass tube 106 at the time of perforation is heated to, for example, about 180 ° C. in order to perform the purification treatment almost simultaneously with the piercing. Therefore, impurities can be efficiently moved, and high-purity treatment can be performed effectively.
  • impurities localized in the glass tube 106 can be removed from the outer peripheral portion of the glass tube 106 by using mechanical means such as grinding or chemical means such as etching using hydrofluoric acid. Can be removed to a desired depth and removed as appropriate.
  • a space 144 is provided between the heating element 141 and the glass tube 106, and the heating element 144, which is an electrode, and the glass tube 106 are in a non-contact state. These may be contacted. That is, as shown in FIG. 19, the inner diameter of the heating element 14 1 is set such that the outer peripheral surface of the perforated glass tube 106 contacts the inner peripheral surface of the heating element 14 1.
  • the outer diameter of the glass tube 106 can be formed to a desired size. Can be done.
  • the heating element 1441 is subjected to the same surface treatment as that of the piece 131, it is possible to prevent the glass tube 106 from being mixed with impurities.
  • the mode in which the impurities are localized on the outer peripheral side of the glass tube has been described.
  • the impurities may be localized on the inner peripheral side. That is, the heating element 141 is used as an anode, and the piece 131 is used as a cathode.
  • the voltage gradient generated in this case is a negative gradient in which the potential changes from positive to negative from the outer circumference to the inner circumference of the glass tube 106.
  • the piece 13 1 When the piece 13 1 is used as a cathode, impurities that are cations easily stay in the piece 13 1. Therefore, it is possible to prevent impurities from entering the glass tube 106 from the piece 13 1. Then, the impurities mixed in the glass body 103 can be localized in the inner peripheral portion of the glass tube 106 and can be absorbed by the piece 131.
  • the inner peripheral portion of the glass tube 106 can be removed to a desired depth as needed, and the impurities can be removed from the glass tube 106. .
  • the pieces 13 1 that have absorbed the impurities be subjected to a regeneration process.
  • the pieces 13 1 1 are heated using a heating furnace in which the heating space is a chlorine gas atmosphere, and the cation impurities contained in the pieces 13 1 are diffused into the chlorine gas for regeneration.
  • the heating element and the drilling jig are used as the electrodes.
  • other members can be used as the electrodes. The following describes such an embodiment.
  • the configuration of the glass tube manufacturing apparatus used in this embodiment is substantially the same as the glass tube manufacturing apparatus 101 shown in FIG.
  • the main part of the present embodiment will be described with reference to FIG.
  • the drill jig 130 a used in the present embodiment is an electrode member 13 3 serving as an electrode at a position near the back of the piece 13 1 (to the right in the figure).
  • the electrode member 133 has a cylindrical shape fixed to the support rod 132, and has an outer diameter substantially equal to that of the piece 1331. Further, the material of the electrode member 133 is the same as that of the above-mentioned piece 131, and is preferably subjected to the same surface treatment as that of the piece 131.
  • a DC power supply is connected to the electrode member 133 instead of connecting a DC power supply to the piece 13 1. Therefore, the electrode member 133 can apply a voltage to the inner peripheral side of the glass tube 106 by contact with the perforated glass tube 106.
  • the electrode member 133 configured as described above has a function as an electrode and acts so as to maintain the inner diameter of the softened glass tube 106. Further, if a coating layer of silicon carbide or the like is formed on the surface of the electrode member 133, no impurities are mixed into the glass tube 106.
  • the heating element 1 4 1 as an anode
  • the electrode member 1 3 3 cathode It can also be.
  • impurities are localized in the inner peripheral portion of the glass tube 106.
  • the electrode member 133 is used as a cathode
  • a voltage is also applied to the piece 131 to act as a cathode.
  • the impurities are absorbed by the pieces 13 1.
  • the piece 13 1 be made of a non-conductive material.
  • a portion of the support opening 132 located between the electrode member 133 and the bridge 131 may be made of a non-conductive material.
  • the non-conductive material boron nitride, zirconia, ceramics, or the like can be used.
  • the impurities can be absorbed only by the electrode member 133, so that the pieces 131 are not contaminated by the impurities.
  • the contaminated electrode member 133 may be removed from the support rod 132 and replaced with a new member or regenerated. As a result, maintenance can be easily performed.
  • the outer diameter of the electrode member 133 is made smaller than the piece 131, so that the inner peripheral surface of the glass tube 106 and the electrode member 133 are separated from each other. You can also. In this case, it is preferable to supply the above-described gas into the glass tube 106.
  • the heating element 141 may be brought into contact with the glass tube 106 as shown in FIG.
  • the heating furnace 140 a used in the present embodiment is provided with a cylindrical furnace tube 144 in a space on the inner peripheral side of the heating element 141.
  • a space 145 is provided between the core tube 144 and the glass tube 106 to be formed.
  • the material of the furnace tube 144 can be carbon or the like.
  • a DC power supply is connected to the core tube 144 instead of connecting a DC power supply to the heating element 144. Therefore, the core tube 144 can apply a voltage to the outer peripheral side of the glass tube 106. Also, when applying voltage, It is good to supply gas inside 5.
  • a voltage gradient can be generated in the radial direction of the glass tube 106 by using the furnace tube 144 and the piece 1331 as electrodes.
  • the glass tube 106 to be molded can be highly purified. Further, when the furnace tube 144 is contaminated, maintenance can be easily performed by replacing or regenerating the furnace tube 144.
  • the heating furnace 14 b used in the present embodiment is provided with a die 146 on the inner periphery of the heating element 141.
  • the dice 146 is made of graphite configured to prevent impurities from being mixed into the glass tube 106, similarly to the piece 1331 described above.
  • a DC power supply is connected to the dice 146 instead of the heating element 141. Therefore, a voltage gradient can be generated in the radial direction of the glass tube 106 by using the dice 1 46 and the bridge 13 1 as electrodes.
  • the efficiency can be improved with respect to the glass tube 106 without using gas as in the above embodiment. Voltage can be applied. Also, there is no need to provide a gas supply means. Also, by providing the dice 146, the outer diameter of the glass tube 106 can be reduced to a desired size while the glass rod 103 is pierced by the piece 131. It can be molded into
  • the glass tube 106 can be formed with high accuracy and can be efficiently purified.
  • the glass tube manufacturing apparatus used in the present embodiment includes a pair of electrodes arranged inside a heating furnace 140 so as to face each other with the outer periphery of the glass tube 106 interposed therebetween. 1 and 2 are provided. These electrodes 1 and 2 are formed of the same material as the electrodes 1 and 2 described in the above-described high-purification method, and have a surface force in contact with the glass tube 106 and an outer peripheral surface of the glass tube 106. It has a curved shape with a similar curvature.
  • the electrodes are used in the same manner as in the first embodiment or the second embodiment described with reference to FIGS. 2 to 5, for example. That is, high purity can be achieved by manufacturing a glass tube and distributing impurities contained therein to a part of the outer periphery.
  • the glass tube manufacturing apparatus 101a used in the present embodiment is the same as the sixth high-purification apparatus 500 (see FIG. 14) described in the fifth embodiment.
  • electrodes 65 and 66 are provided outside both end faces in the longitudinal direction of the glass body composed of the glass rod 103 and the dummy pipe 104. These electrodes 65 and 66 have substantially the same configuration as in the fifth embodiment, and are used in the same manner as in the fifth embodiment. That is, when drilling by the drill jig 130, a voltage is applied in the longitudinal direction of the glass tube 106 to generate a voltage gradient in the longitudinal direction. As a result, impurities can be unevenly distributed on the cathode side, and high purity can be achieved together with the production of the glass tube 106.
  • the electrode may or may not be in contact with the glass body (or glass tube).
  • the electrodes When the electrodes are brought into contact with each other, it is not necessary to use a gas, and it is preferable to remove at least the edge portion of the portion in contact with the cathode.
  • the electrodes When the electrodes are not brought into contact with each other, at least the edge on the side where the cathode is disposed, that is, on the side where the voltage gradient is reduced, may be removed.
  • the method and apparatus for the purification treatment such as the voltage applied to the electrodes are the same as those of the method and apparatus described in the first to sixth embodiments. Use as appropriate it can.
  • the mode in which the glass port which is a cylindrical glass body is perforated has been described.
  • the method for manufacturing a glass tube according to the present invention employs a cylindrical glass body. The same applies to the case where the inside diameter of the hole of the glass pipe as the body is increased.
  • an induction heating type furnace is described as an example, but a resistance heating type furnace may be used.
  • a method for purifying a glass body and a high-purity glass body capable of performing high-purity while suppressing deformation of the glass body in a high order A method and apparatus for manufacturing a glass tube from which a glass tube can be obtained can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本発明の課題は、ガラス体の変形を高次元で抑制しつつ高純度化を実施できるガラス体の高純度化方法及び高純度ガラス体、さらには高純度のガラス管を得ることのできるガラス管の製造方法及び装置を提供することである。本発明のガラス体の高純度化方法は、ガラスパイプ11を1300℃未満の範囲内の温度に加熱しながらガラスパイプ11に対して接触した電極1,2から、ガラスパイプ11の略径方向に電圧を印加するものである。また、本発明のガラス管の製造方法は、ガラスロッド103を加熱して軟化させ、ガラスロッド103の軟化した領域に穿孔治具130を接触させることで、ガラスロッド103を漸次ガラス管106に成形する際に、ガラス管106の内周側と外周側に電圧を印加して、ガラス管106の径方向に電圧勾配を発生させるものである。

Description

明 細 書 ガラス体の高純度化方法及び、 高純度ガラス体ならびに、 ガラス管の製造方法及
<技術分野 >
本発明は、 ガラス体の高純度化方法及びこれにより得られる高純度ガラス体、 さらには高純度化を行うガラス管の製造方法及び装置に関する。
<背景技術 >
近年、 光通信技術の進歩に伴い、 光ファイバの利用が高まってきている。 光フ アイバの主な製造方法としては、 V A D法 (Vapor phase Axial Deposition:気 相軸付法)、 O V D法 (Outer Vapor phase Deposition:外付法)、 M C V D法 ( Modified Chemical Vapor phase Deposition:内付、法) 力 Sある。 特に、 ビッ卜 レート化、 波長多重度の高度化により、 情報伝達容量の高密度化が高まっており 、 光ファイバの偏波分散の低減が強く望まれている。
光ファイバの製造に際しては、 通常はプリフォームと呼ばれる成形体を高速で 線引きすることによって所望の光ファイバを得るという方法がとられている。 光 ファイバの形状は、 プリフォームの形状および品質を引き継いでしまうため、 プ リフォームの形成に際しては、 極めて高精度の形状および品質制御が求められて いる。
例えば M C V D法は、 ガラス管からなる内付け用パイプの内壁にガラス微粒子 (すす) を堆積する方法であるが、 このガラス管はそのままプリフォームの一部 となるため、 非円率および偏心率が小さく、 肉厚が均一で、 特性の優れたもので ある必要がある。 非円率または偏肉の大きなガラス管から作製された光ファイバ は偏波分散 (P MD ) が大きな値となってしまう。
従来、 加熱したガラスインゴットに炭素ドリルなどの穿孔部材を回転しつつ押 し付けることにより、 石英パイプを形成する熱間炭素ドリル圧入法が提案されて 3 010149 いる (特開平 7— 1 0 9 1 3 5号)。
また、 この他、 円柱状の石英ガラスロッドを回転させながら、 先端を加熱軟化 させ、 口ッド先端面の中心部に穿孔部材の先鋭端を係合させてこの先鋭端の周縁 を穿孔部材に対して回転し、 引き抜く方法も提案されている (特許第 2 7 9 8 4 6 5号)。
これらの方法は、 ピアシング法と称される。 ピアシング法とは、 例えば図 2 5 に示すように、 ガラス体 2 0 1に穿孔治具 2 0 2を当接し、 穿孔治具 2 0 2の当 接部周辺を加熱炉 2 0 3により加熱しながら穿孔治具 2 0 2をガラス体 2 0 1に 押しつけることで、 ガラス体 2 0 1を先端側から漸次円筒状のガラス管 2 0 5に 成形する方法である。 穿孔治具 2 0 2は、 少なくともガラス体 2 0 1に接触する 部分が、 ガラスの軟化温度で使用可能であって、 ガラスと化学反応しにくい、 例 えばカーボン等の材料から形成されている。
しかしながら、 このようにして得られるガラス管には、 ガラスインゴットの製 造工程時や穿孔部材による穿孔工程時に不純物が混入している場合が多く、 近年 、 光ファイバの高性能化がさらに求められるに伴い、 従来に比して、 より高純度 のガラス管が必要とされている。
特許 2 7 2 6 7 2 9号には、 溶融石英のチューブを 1 0 0 0 °C以上の温度 (実 施例では、 1 5 0 0 °C, 1 6 0 0 °C, 2 1 0 0 °C) で加熱しながら、'電圧を印加 することによって、 金属不純物イオンをチューブの外部壁面で拡散させる技術が 記載されており、 これにより、 溶融石英のチューブの高純度化が図れるとされて いる。
し力、しながら、 このようにして得られる溶融石英のチューブは、 熱が加わった ことに起因するチューブの変形が大きく、 これを形状の精度が高次元で要求され るガラスパイプに適用しょうとする場合には、 前記したチューブの高純度化に次 いで、 一般に、 チューブを所望の形状に再加工するための後成形加工工程を追加 する必要がある。 通常、 後成形加工工程では、 チューブの内径および外径を長手 方向に一定とするために、 全長を測定した上で、 それに基づいてチューブの内周 面および外周面に対して成形加工が必要となり、 チューブの製造コストを著しく 上昇させる要因と成り得る。 また、 チューブの変形状態によっては、 所望の形状 のチューブの製造が非常に困難である。
また、 ガラスパイプの孔を形成する前のガラスロッドに対しても、 高い形状精 度や高純度の品質が求められているが、 高温に加熱されることによる変形を抑え つつ、 製造時に混入した不純物を除去することは困難であった。
<発明の開示 >
本発明の目的は、 ガラス体の変形を高次元で抑制しつつ高純度化を実施できる ガラス体の高純度化方法及び高純度ガラス体、 さらには高純度のガラス管を得る ことのできるガラス管の製造方法及び装置を提供することにある。
上記目的を達成することのできる本発明に係るガラス体の高純度化方法は、 円 柱形状または円筒形状のガラス体の長手方向の少なくとも一部分に対して、 外周 面側の外側に配置された少なくとも一対の電極から、 ガラス体の略径方向に電圧 を印加するものである。
なお、 ガラス体として、 具体的には、 適切な製造法によって所定の寸法に仕上 げた円柱状のガラスロッドや円筒状のガラスパイプ等を使用することが挙げられ る。
また、 電極は、 ガラス体の円周方向に、 陽極と陰極とをそれぞれ複数配置し、 各陽極及び各陰極の電位をそれぞれ設定することが好ましい。
また、 ガラス体と、 電極とを、 ガラス体の円周方向に相対的に揺動させること が好ましい。
また、 電圧を印加した後に、 ガラス体の外周面から所定深さまでの領域を除去 する表面除去工程を有することが好ましい。
また、 上記目的を達成することのできる本発明に係るガラス体の高純度化方法 は、 円筒形状のガラス体を、 その中心軸を回転軸として 1 r p m以上 1 0 0 r p m以下の範囲内の回転速度で回転させながら、 ガラス体の長手方向の少なくとも 一部分に対して、 ガラス体の外周面側と内周面側とに配置された電極から、 ガラ ス体の略径方向に電圧を印加するものである。 また、 回転速度は、 l r p m以上 2 0 r p m以下の範囲内とすることが好ましい。 また、 電圧の電圧勾配を、 ガラス体の内周面側から外周面側に向けて負の勾配 とするとともに、 電圧を印加した後に、 ガラス体の外周面から所定深さまでの領 域を除去する表面除去工程を有することが好ましい。
もしくは、 電圧の電圧勾配を、 ガラス体の外周面側から内周面側に向けて負の 勾配とするとともに、 電圧を印加した後に、 ガラス体の内周面から所定深さまで の領域を除去する表面除去工程を有することが好ましい。
また、 ガラス体の有効部の長手方向全体に対して、 同時に電圧を印加すること が好ましい。
もしくは、 ガラス体に対して、 長手方向に順次電圧を印加することが好ましい また、 ガラス体に対して、 長手方向に順次電圧を印加しつつ、 電圧を印加した 箇所を順次冷却することが好ましい。
また、 ガラス体の略径方向に電圧を印加する場合には、 ガラス体の有効部の長 手方向の長さが 5 0 O mm以上であることが好ましい。
また、 上記目的を達成することのできる本発明に係るガラス体の高純度化方法 は、 円柱形状または円筒形状のガラス体の長手方向の第 1端面及び第 2端面の外 側に配置された電極から、 ガラス体の長手方向に電圧を印加するものである。 また、 電圧の電圧勾配を、 ガラス体の第 1端面から第 2端面に向かう方向で負 の勾配とするとともに、 電圧を印加した後に、 ガラス体の第 2端面から所定深さ までの領域を除去する端部除去工程を有することが好ましい。
また、 ガラス体の長手方向に電圧を印加する場合には、 ガラス体の有効部の長 手方向の長さが 5 0 O mm未満であることが好ましい。
また、 電極をガラス体に接触させずに、 電圧を印加することができる。
また、 電極の少なくとも一部を前記ガラス体に接触させることができる。 また、 円柱形状のガラス体の、 電圧を印加する部分を、 1 4 5 0 °C未満の温度 になるように加熱して、 電圧を印加することが好ましい。
あるいは、 ガラス体の電圧を印加する部分を、 1 3 0 0 °C未満の温度になるよ うに加熱して、 電圧を印加することが好ましい。 また、 ガラス体の電圧を印加する部分を、 4 5 0 °C以上の温度になるように加 熱して、 電圧を印加することが好ましい。
もしくは、 ガラス体の電圧を印加する部分を、 6 0 0 °C以上の温度になるよう に加熱して、 電圧を印加することが好ましい。
もしくは、 ガラス体の電圧を印加する部分を、 9 0 0 °C以上の温度になるよう に加熱して、 電圧を印加することが好ましい。
また、 ガラス体の有効部に含まれる不純物陽イオンの含有濃度を 0 . 0 1重量 p p m以下にすることが好ましい。
また、 上記目的を達成することのできる本発明に係る高純度ガラス体は、 ガラ ス体の略径方向に電圧を印加する上記のガラス体の高純度化方法により高純度化 処理を施されており、 外径 1 0 0 mm以上かつ有効部の長手方向の長さが 5 0 0 mm以上である。
ガラス体の略径方向に電圧が印加された高純度ガラス体は、 有効部の長手方向 の長さが長い場合に、 その長さによって高純度化処理が妨げられないため、 良好 に高純度化処理がなされている。
また、 上記目的を達成することのできる本発明に係る高純度ガラス体は、 ガラ ス体の長手方向に電圧を印加する上記のガラス体の高純度化方法により高純度化 処理を施されており、 外径 1 0 0 mm以上かつ有効部の長手方向の長さが 5 0 0 m m未満—である。
ガラス体の長手方向に電圧が印加された高純度ガラス体は、 有効部の長手方向 の長さが短い場合に、 その長さが短いことによって良好に高純度化処理がなされ ている。
また、 高純度ガラス体は、 ガラス体の有効部における、 不純物陽イオンの含有 濃度が、 0 . 0 1重量 p p m以下であることが好ましい。
また、 上記目的を達成することのできる本発明に係るガラス管の製造方法は、 円柱形状または円筒形状のガラス体を加熱して軟化させ、 ガラス体の軟化した領 域に穿孔治具を接触させることで、 ガラス体を漸次ガラス管に成形するガラス管 の製造方法において、 穿孔治具をガラス体に接触させる際に、 ガラス管の外周面 の外側に設けた少なくとも一対の電極からガラス管に電圧を印加して、 ガラス管 の略径方向に電圧勾配を発生させるものである。
なお、 ここでいう穿孔とは、 円柱状のガラス体に孔をあけることのみならず、 円筒状のガラス体の孔の内径を拡げる (拡径する) ことも含まれる。
また、 上記目的を達成することのできる本発明に係るガラス管の製造方法は、 円柱形状または円筒形状のガラス体を加熱して軟化させ、 ガラス体の軟化した領 域に穿孔治具を接触させることで、 ガラス体を漸次ガラス管に成形するガラス管 の製造方法において、 穿孔治具をガラス体に接触させる際に、 穿孔治具とガラス 体の外周側、 または、 ガラス管の内周側と外周側に電圧を印加して、 ガラス体ま たはガラス管の径方向に電圧勾配を発生させるものである。
また、 上記目的を達成することのできる本発明に係るガラス管の製造方法は、 円柱形状または円筒形状のガラス体を加熱して軟化させ、 ガラス体の軟化した領 域に穿孔治具を接触させることで、 ガラス体を漸次ガラス管に成形するガラス管 の製造方法において、 穿孔治具をガラス体に接触させる際に、 ガラス体の長手方 向の第 1端面及び第 2端面の外側に配置された電極から、 ガラス体に電圧を印加 して、 ガラス管の長手方向に電圧勾配を発生させるものである。
また、 ガラス管の成形の後、 ガラス管における電圧勾配が低くされた側の少な く とも縁部を除去することが好ましい。
また、 上記目的を達成することのできる本発明に係るガラス管の製造装置は、 円柱形状または円筒形状のガラス体の周囲に配置された発熱体と、 発熱体により 加熱されたガラス体に接触させる穿孔治具とを備え、 接触によりガラス体を漸次 ガラス管に成形するガラス管の製造装置において、 ガラス体の外周面の外側に少 なくとも一対の電極を備えているものである。
また、 上記目的を達成することのできる本発明に係るガラス管の製造装置は、 円柱形状または円筒形状のガラス体の周囲に配置された発熱体と、 発熱体により 加熱されたガラス体に接触させる穿孔治具とを備え、 接触によりガラス体を漸次 ガラス管に成形するガラス管の製造装置において、 穿孔治具が電極であるととも にガラス体の外周側に電極を備えているか、 または、 ガラス管の内周側と外周側 に電極を備えているものである。
また、 上記目的を達成することのできる本発明に係るガラス管の製造装置は、 円柱形状または円筒形状のガラス体の周囲に配置された発熱体と、 発熱体により 加熱されたガラス体に接触させる穿孔治具とを備え、 接触によりガラス体を漸次 ガラス管に成形するガラス管の製造装置において、 ガラス体の長手方向の両端面 の外側に少なくとも一対の電極を備えているものである。
また、 穿孔治具は、 少なくともガラス体に接触する部分が、 炭化ケィ素、 熱分 解炭素、 金属炭化物のいずれかを含有するように表面処理されていることが好ま しい。
ここで、 ガラス管の内周側と外周側とに電極を設ける場合には、 発熱体と穿孔 治具の材質を、 導電性材料である黒鉛とすれば、 これら発熱体と穿孔治具を電極 として利用することが可能である。 また、 穿孔治具の黒鉛は、 黒鉛以外の不純物 イオンの含有量が 1 p p m以下であることが好ましい。
く図面の簡単な説明 >
図 1は、 本発明の第 1実施形態に係るガラス体の高純度化方法に使用できる第 1の高純度化装置の概略縦断面図である。
図 2は、 本発明の第 1実施形態に係るガラス体の高純度化方法を説明する図で ある。
図 3は、 本発明の第 1実施形態に係るガラス体の高純度化方法の他の態様を説 明する図である。
図 4は、 本発明の第 1実施形態に係るガラス体の高純度化方法の他の態様を説 明する図である。
図 5は、 本発明の第 1実施形態に係るガラス体の高純度化方法の他の態様を説 明する図である。
図 6は、 本発明の第 2実施形態に係るガラス体の高純度化方法に使用できる第 2の高純度化装置の概略縦断面図である。
図 7は、 本発明の第 3実施形態及び第 4実施形態の変形例に係るガラス体の高 純度化方法に使用できる第 3の高純度化装置の概略縦断面図である。 図 8は、 本発明の第 3実施形態に係るガラスパイプの高純度化方法に使用でき る第 4の高純度化装置の概略縦断面図である。
図 9は、 本発明の第 3実施形態に係るガラスパイプの高純度化方法を説明する 図である。
図 1 0は、 本発明の第 4実施形態に係るガラスパイプの高純度化方法に使用で きる第 5の高純度化装置の概略縦断面図である。
図 1 1は、 本発明の第 3実施形態及び第 4実施形態の変形例を説明する概略断 面図である。
図 1 2は、 本発明の他の実施形態に係るガラスパイプの高純度化方法を説明す る図である。
図 1 3は、 本発明の他の実施形態に係るガラスパイプの高純度化方法を説明す る図である。
図 1 4は、 本発明の第 5実施形態に係るガラスパイプの高純度化方法に使用で きる第 6の高純度化装置の概略縦断面図である。
図 1 5は、 本発明の第 5実施形態に係るガラスパイプの高純度化方法を説明す る図である。
図 1 6は、 本発明の第 6実施形態に係るガラスパイプの高純度化方法に使用で きる第 7の高純度化装置の概略縦断面図である。
図 1 7は、 本発明の第 7実施形態に係るガラス管の製造方法を実施するための 製造装置を示す概要図である。
図 1 8は、 図 1 7に示した加熱炉近傍の要部模式図である。
図 1 9は、 第 7実施形態の装置の変形例を示す要部模式図である。
図 2 0は、 本発明の第 8実施形態の装置を示す要部模式図である。
図 2 1は、 本発明の第 9実施形態の装置を示す要部模式図である。
図 2 2は、 本発明の第 1 0実施形態の装置を示す要部模式図である。
図 2 3は、 本発明の第 1 1実施形態の装置を示す要部模式図である。
図 2 4は、 本発明の第 1 2実施形態の装置を示す概要図である。
図 2 5は、 従来のガラス管の製造方法を実施する装置の要部模式図である。 なお、 図中の符号、 1, 2は電極、 1 1はガラスパイプ、 1 1Aはガラスパイ プの第 1端面、 1 1 Bはガラスパイプの第 2端面、 1 6はガラスロッド、 10 1 , 10 1 aはガラス管の製造装置、 1 03はガラスロッド (ガラス体)、 104は ダミーパイプ (ガラス体)、 106はガラス管、 1 10は入口側基台、 1 1 1は第 1送り支持台、 1 1 2は第 1チャック、 1 20は出口側基台、 1 21は第 2送り 支持台、 1 22は第 2チャック、 1 30は穿孔治具、 1 3 1は駒 (電極)、 1 32 は支持口ッド、 1 33は電極用部材 (電極)、 1 35は固定部材、 140, 140 a, 140 bは加熱炉、 141は発熱体 (電極)、 142はコイル、 143, 14 5は空間、 144は炉心管 (電極)、 146はダイス (電極)、 である。
<発明を実施するための最良の形態 >
(第 1実施形態)
本発明に係るガラス体の高純度化方法の第 1実施形態は、 円筒形状のガラス体
(以下、 ガラスパイプと呼ぶ) に対して、 外周面側に接触させた一対または複数 対の電極から略径方向に電圧を印加して、 その電圧勾配によってガラス体に含ま れる不純物を一方の電極側に移動させるものである。
本実施形態の高純度化方法を実施できる高純度化装置について以下に説明する 第 1の高純度化装置 1 00は、 図 1の概略縦断面図に示すように、 長尺状の基 台 2 1と、 ガラスパイプ 1 1を囲繞できるように基台 2 1の長手方向に沿って特 定距離で配置された加熱手段 22と、 電源 5 1とを有している。
基台 21は、 長手方向が略鉛直方向となるように配置されており、 加熱手段 2 2の上方には、 ガラスパイプ 1 1の一端部を把持できる第 1チャック 3 1が第 1 支持台 32を介して基台 2 1に対して取付けられている。 加熱手段 22の下方に は、 ガラスパイプ 1 1の他端部を把持できる第 2チャック 41が第 2支持台 42 を介して基台 21の外に取付けられている。 第 1チャック 31及び第 2チャック 41は、 それぞれモータ (図示せず) により、 互いが同期して回転することによ つて、 ガラスパイプ 1 1がその中心軸を回転軸として回転できるように構成され ている。
また、 第 2支持台 4 2は、 ガラスパイプ 1 1の第 1チャック 3 1及ぴ第 2チヤ ック 4 1に対する脱着を容易とするために、 鉛直方向に移動可能に構成されてい る。
さらに、 加熱手段 2 2の内側には、 ガラスパイプ 1 1の外周を挟むように配置 された一対の電極 1, 2が設けられている。 これら電極 1 , 2は、 加熱手段 2 2 と同程度の長さを有しており、 ガラスパイプ 1 1の有効部 1 1 aの長手方向にわ たって全体的に接触でき得る長さである。 電極 1 , 2は、 基台 2 1に設置された 電極支持部 3により支持されている。 この電極支持部 3は、 電極 1, 2をそれぞ れガラスパイプ 1 1の径方向に開閉するように移動させることができ、 第 1, 第 2チャック 3 1 , 4 1に把持されたガラスパイプ 1 1に対して、 挟み込むように 接触させることができる。 また、 電極 1 , 2は、 ガラスパイプ 1 1に接触する面 が、 ガラスパイプ 1 1の外周面と同様の曲率で湾曲した形状となっている。 これ により、 電極 2とガラスパイプとの間で、 所望の接触面積を得ることができ る。
電源 5 1は、 通常、 直流電源とされており、 例えば、 プラス極から出た導電線 が電極 2に接続され、 マイナス極から出た導電線が電極 1に接続されている。 す なわち、 電極 2は陽極とされ、 電極 1は陰極とされている。 なお、 陽極と陰極は 、 逆であっても良い。 電極 1, 2の素材としては、 グラフアイ トゃ表面処理ダラ ファイ トなどを挙げることができる。 特に、 電極 1, 2の素材は、 ガラスパイプ 1 1に接触することを考慮すると表面処理グラフアイ トであることが好ましい。 表面処理グラフアイ トの具体例としては、表面に熱分解炭素 (P y C )、金属炭化 物 (N b C , T a C , T i C , Z r C )、 または炭化ケィ素 ( S i C ) が設けられ たグラフアイ トを好適に挙げることができる。 このような表面処理グラフアイ ト を用いることで、 電極 1, 2からガラスパイプ 1 1に不純物が侵入することを防 止できる。
加熱手段 2 2は、 円筒状の発熱体を有しており、 この発熱体は、 例えば抵抗加 熱方式により発熱させることができる。 また、 加熱手段 2 2が備えている発熱体の素材は、 カーボン等を好適に例示で きる。
ここで、 グラフアイ ト等のカーボンは、 不純物の含有量が 1 p 以下である のが好ましく、 これにより、 ガラスパイプ 1 1に不純物が侵入しにくくなる。 また、 例えば第 1チャックの上端部 3 1 Aには、 把持されたガラスパイプ 1 1 の空間と連通できるガス管 8 4が設けられており、 ガス管 8 4は流路の開閉を実 施できるバルブ 8 2を介して内側ガス供給装置 8 3に接続されている。 さらに、 例えば第 2チャック 4 1の下端には、 把持されたガラスパイプ 1 1の空間と連通 できるガス管 6 3が設けられており、 ガス管 6 3は、 流路の開閉を実施できるバ ルプ 6 1を介して吸気ポンプ 8 1に接続されている。
また、 第 1の高純度化装置 1 0 0は、 基台 2 1の上方から下方に向けて、 外側 ガス G 2を吹き出すガス吹き出し口 2 7が設けられている。
次に、 第 1の高純度化装置 1 0 0を使用する本発明の第 1実施形態に係るガラ スパイプの高純度化方法について説明する。
第 2チャック 4 1と加熱手段 2 2とが充分に離れた状態で、 ガラスパイプ (石 英パイプ) 1 1の上端を第 1チャック 3 1にて把持する。 なお、 このとき電極 1 , 2は電極支持部 3の駆動により開いた状態となっている。
ここで、 ガラスパイプ 1 1は、 高純度化する有効部 1 1 aの上下にダミーパイ プ 1 1 bが接続されてなるものである。 第 1チャック 3 1 , 第 2チャック 4 1で 把持される部分はダミーパイプ 1 l bである。 ダミーパイプは、 通常、 純度の低 い廉価なパイプとされており、 高純度化後には有効部 1 1 aから切り離される。 有効部 1 1 aは、 略全域が、 加熱手段 2 2からの熱を受けて 1 3 0 0 °C未満の温 度に加熱され得る長さとされている。 有効部 1 l aの素材は、 光ファイバ用とし て、 通常、 3 1〇2を9 9 . 9 9重量%以上含有する高純度の S i 0 2とされてい るが、 フッ素や塩素、 ホウ素、 ゲルマニウム等の屈折率調整用の添加物を含有し ていても良い。 この場合には、 S i〇2の濃度は、 これらの添加物の分量に応じ て低くなる。 なお、 これらの添加物は、 本明細書中における不純物陽イオンの範 疇には含まれないものとする。 次いで、 第 2支持台 42を、 加熱手段 2 2に向けて鉛直方向に移動させ、 ガラ スパイプ 1 1の下端を、 第 2チャック 41にて把持する。 そして、 電極 1, 2を 電極支持部 3によりガラスパイプ 1 1に向けて移動させ、 図 2に示すように、 ガ ラスパイプ 1 1に対して外周の一部を挟むように接触させる。
次いで、 バルブ 8 2を閉状態, バルブ 6 1を開状態にして、 吸気ポンプ 8 1を 作動させて、 ガラスパイプ 1 1の中空からのガスの排気を行った後、 バルブ 8 2 を開状態, バルブ 6 1を閉状態にして、 内側ガス供給装置 83を作動させて、 該 中空へ内側ガス G 1を供給する。 バルブ 8 2は、 必要に応じて閉状態とされる。 内側ガス G 1は、 アルゴン等の希ガスや窒素ガスなどとされている。 ガラスパイ プ 1 1の中空内における内側ガス G 1の圧力は、 內側ガス G 1の供給量などを調 整することによって、 一 0. 5 k P a ' g a g e 1. 5 k P a ' g a g eと されるのが好ましい。 内側ガス G 1の圧力は陽圧であることがさらに好ましく、 その場合、 0. l k P a ' g a g e〜l. 0 k P a · g a g eとする。
次いで、 ガス吹き出し口 27からアルゴン等の希ガスや窒素ガスなどの外側ガ ス G 2を基台 2 1の上方から下方に向けて流動させながら、 加熱手段 22を作動 させてガラスパイプ 1 1を 1 300°C未満の温度で加熱するとともに、 電源 5 1 を作動させて電極 1 , 2からガラスパイプ 1 1に対して電圧を印加する。 電圧は 、 通常、 直流電圧であり、 1 k V〜50 k Vの範囲内で設定するのが好ましい。 外側ガス G 2の流量は、 10リツトル/分〜 20リツトル/分、 外側ガス G 2の 圧力は、 0. l k P a ' g a g e〜l. O k P a ' g a g eとされるのが好まし い。 また、 内側ガス G 1の圧力と外側ガス G 2の圧力がほぼ等しいことが好まし い。
ここでは、 図 2に示すように、 陽極である電極 2と、 陰極である電極 1とが、 対向するようにガラスパイプ 1 1の外周面の外側に接触して配置される。 これに より、 ガラスパイプ 1 1には、 電圧勾配の方向がガラスパイプ 1 1の略径方向と なる電圧が印加される。 また、 電圧勾配は、 電極 2が接触する側から電極 1が接 触する側に向けて負の勾配となっている。 なお、 電圧の電圧勾配の方向がガラス パイプ 1 1の略径方向になるとは、 ガラスパイプ 1 1の内周面側と外周面側との 間で半径方向に電圧差が生じることの他、 ガラスパイプ 1 1の直径方向に電圧差 が生じることも含まれる。 本実施形態では、 電極 1 , 2の間で、 ガラスパイプ 1 1の直径方向に電圧勾配が発生する。
図 2に、 電圧勾配が発生した状態におけるガラスパイプ 1 1の半径方向の断面 図を模式図にて示す。
この電圧勾配により、 ガラスパイプ 1 1に含有されている不純物陽イオン C ( リチウムイオン, ナトリウムイオン, カリウムイオン等のアルカリ金属イオンや 銅イオンなど) は、 図 2 ( a ) に示すように、 陰極である電極 1が接触したガラ スパイプ 1 1の外周面側方向に移動する。
そして、 この電圧の印加を一定時間継続することによって、 図 2 ( b ) に示す ように、 ガラスパイプ 1 1に含有されている不純物陽イオン Cを、 陰極である電 極 1が接触した部分の近傍に集中させて偏在させることができる。
このとき、 ガラスパイプ 1 1は、 少なくとも電圧を印加する部分、 すなわち有 効部 1 1 aが 1 3 0 0 °C未満の温度となるように加熱されると良い。 ガラスパイ プ 1 1が加熱されて温度が上昇するにしたがって、 ガラスパイプ 1 1内に含まれ る不純物陽イオンの拡散係数が上がり、 電圧勾配が負となっている方向に移動し やすくなる。
ガラスパイプ 1 1の加熱温度が低い状態では、 電極 2から不純物がガラス パイプ 1 1内に混入しにくく、 電極 1, 2として用いる材質を選定する際の自由 度が広くなる。 ただし、 電圧を印加する処理時間を長く設ける必要が生じたり、 不純物陽イオンの種類によっては、 ガラスパイプ 1 1内を移動させることが困難 になったりする。
ガラスパイプ 1 1の加熱温度が高い状態では、 電圧を印加する処理時間を短く することができる。 ただし、 ガラスパイプ 1 1が変形しやすくなるとともに、 電 極 1 , 2の材質によっては、 不純物がガラスパイプ 1 1内に混入しやすくなるた め、 電極 1 , 2として用いることのできる材質が、 例えば上述したような表面処 理グラフアイト等が望ましい。
好ましくは、 有効部 1 1 aが 4 5 0 °C以上の温度となるように加熱する。 より 好ましくは、 有効部 1 1 aが 6 0 0 °C以上の温度となるように加熱する。 さらに 好ましくは、 有効部 1 1 aが 9 0 0 °C以上の温度となるように加熱する。 4 5 0 °C以上の温度であれば、 アルカリ金属の除去が容易であり、 6 0 0 °C以上の温度 であれば、 2価の金属イオン (C u 2 +等) の除去が概ね容易であり、 9 0 0 °C以 上の温度であれば、 鉄イオン (F e 3 +) やニッケルイオン (N 2 +) の除去が容易 である。
ただし、 ガラスパイプ 1 1が 1 3 0 0 °Cを超える温度に曝されると、 ガラスパ イブ 1 1の変形が著しくなり、 高純度化後のガラスパイプ 1 1に対して、 内径お よび外径を長手方向に一定とするための後加工工程を追加する必要性が極めて高 くなる。
したがって、 ガラスパイプ 1 1に対する加熱温度の好ましい下限値は 4 5 0 °C あるいは 6 0 0 °Cであり、 上限値は 1 3 0 0 °C未満である (以下の実施形態でも 同様)。
電圧を印加する工程では、 第 1チャック 3 1と第 2チャック 4 1とを同期して 回転させつつ、 その回転方向を短周期的に反転させることによって、 ガラスパイ プ 1 1を、 その中心軸を回転軸として電極 1, 2に対して円周方向に揺動させる と良い。 例えば、 図 3に示すように、 ガラスパイプ 1 1の外周面のうち、 半周づ つの領域 (図中の破線 Xで区切られた領域) がそれぞれ電極 1, 2に接触するよ うにガラスパイプ 1 1を揺動させることで、 ガラスパイプ 1 1内の径方向の断面 の全域にわたって満遍なく電圧を印加することができ、 不純物陽イオンの移動を 効果的に促すとともに、 ガラスパイプ 1 1の外周面付近の広い範囲に不純物陽ィ オンを偏在させることができる。 したがって、 不純物陽イオンを外周面付近の浅 い領域内に偏在させることができ、 高純度化された領域を効果的に大きくするこ とができる。
また、 ガラスパイプを揺動させることにより、 ガラスパイプ 1 1が加熱手段 2 2から受ける熱を周方向でより均一化することができる。 よって、 ガラスパイプ 1 1の温度が周方向で不均一となることに起因するガラスパイプ 1 1の変形をよ り確実に低減できる。 高純度化装置における加熱手段がガラスパイプの周方向に 部分的に設けられる場合には、 揺動させることが特に好ましい。
電圧を印加する工程の後には、 ガラスパイプ 1 1の外周面から所定深さまでの 領域を除去する表面除去工程を実施すると良い。 これにより、 ガラスパイプ 1 1 の外周面側に偏在した不純物陽イオンを除去でき、 高純度化された部分のみを残 したガラスパイプ 1 1を得ることができる。 表面除去工程は、 研削加工処理ゃフ ッ酸等の化学エッチング処理、 または火炎研磨処理などを使用することによって 実施できる。
以上説明した第 1実施形態に係るガラス体 (ガラスパイプ) の高純度化方法に おける好適な実施条件を以下に示す。
ガラスパイプの外径: 1 2 0 mm
ガラスパイプの内径: 1 0 mm~ 1 5 mm
ガラスパイプの長手方向長さ : 1 2 0 0 mm
加熱手段の温度: 1 2 0 0 °C
印加電圧: 4 0 k V
電圧印加工程時間: 3 0時間
表面除去工程において除去されるガラスパイプの外周面からの深さ : 1 . 5 m m
電極 ( 1づあたり) の幅: 4 8 mm
ここでいう電極の幅とは、 例えば図 2に示したような、 ガラス体の断面方向に おいて、 電極がガラス体に接触する部分を接線方向に直線的に測つた長さを指す このような条件により高純度化処理を行ったガラスパイプ 1 1は、 有効部 1 1 aに含まれる不純物陽イオンの含有濃度を 0 . 0 1重量 p 以下とすることが できる。
また、 第 1実施形態に係るガラス体の高純度化方法における、 加熱温度と印加 電圧と処理時間との関係の一例を表 1に示す。 加熱温度 印加電圧 処理時間
(。c) (kV) (h)
例 1 4 5 0 5 0 2 00
例 2 6 00 4 5 8 0
例 3 9 00 40 5 0 表 1に示す例 1の場合は、 アル力リ金属の不純物陽イオンを移動させることが できる。 例 2の場合は、 アルカリ金属の他、 2価以下の金属イオンを移動させる ことができる。 例 3の場合は、 例 1 , 例 2で移動可能な不純物陽イオンに加えて 、 他の不純物陽イオンも移動させることができる。
なお、 図 1に示した第 1の高純度化装置 1 0 0は、 一対の電極 1, 2を用いて ガラスパイプ 1 1に対して電圧を印加するものである。 この場合、 電極 (1つあ たり) の幅は、 ガラス体の外径の 2 0%~4 0%とすることが好ましい。
また、 電極を複数対設けて電圧を印加するように構成しても良い。 例えば、'図 4に示す模式図のように、 陽極となる電極 1 a , 1 b, l cと陰極となる電極 2 a , 2 b, 2 cとからなる三対の電極を設けても良い。 このとき、 ガラスパイプ 1 1の外周面の半分の領域に電極 1 a, 1 b, 1 cを配置し、 もう半分の領域に 電極 2 a, 2 b, 2 cを配置する。 この場合、 電極 (1つあたり) の幅は、 ガラ ス体の外径の 1 0%~ 3 0%とすることが好ましい。 そして、 それぞれ対となつ ている電極 l a, 2 a、 電極 l b, 2 b、 電極 1 c, 2 cに印加する電圧をそれ ぞれ設定すると良い。 例えば、 三対の電極のうち中央に位置する電極 1 b, 2 b には、 3 0 kVの電圧を印加し、 他の電極である電極 1 a , 2 a、 及び電極 l c , 2 cには、 2 5 k Vの電圧を印加する。 これにより、 電極 1 bが接触している 箇所を中心に効果的に不純物陽イオンを移動させて偏在させることができる。 また、 図 5に示すように、 電圧を印加する工程では、 図 3を参照して説明した ように、 ガラスパイプ 1 1を、 その中心軸を回転軸として電極 1, 2に対して円 周方向に揺動させると良い。 これにより、 不純物陽イオンの移動を効果的に促す とともに、 ガラスパイプ 1 1の外周面付近の広い範囲に不純物陽イオンを偏在さ せることができる。
図 4を参照して説明した実施形態に係るガラス体 (ガラスパイプ) の高純度化 方法における好適な実施条件を以下に示す。
ガラスパイプの外径: 1 2 Omm
ガラスパイプの内径: 1 Omm〜 1 5mm
ガラスパイプの長手方向長さ : 1 20 Omm
加熱手段の温度: 1 100°C
印加電圧 (電極 l b, 2 b) : 30 k V
印加電圧 (電極 l a, 2 a、 l c , 2 c) : 25 k V
電圧印加工程時間: 30時間
表面除去工程において除去されるガラスパイプの外周面からの深さ : 1.. 5 m m
電極 (1つあたり) の幅: 36mm
このような条件により高純度化処理を行ったガラスパイプ 1 1は、 有効部 1 1 aに含まれる不純物陽イオンの含有濃度を 0. 008重量 p pm以下とすること ができる。
以上に説明した本発明に係る第 1実施形態のガラス体の高純度化方法によれば 、 ガラスパイプの変形を抑制しつつ高純度化を実施でき、 ガラスパイプの内径お よび外径を長手方向に一定とするための後成形加工工程 (ガラスパイプの部分又 は全体的な内周面おょぴ外周面に対する切削加工や、 部分又は全体的な縮拡径な ど) を省略できるので、 高純度化されたガラスパイプの製造コストを非常に低減 できる。 ここでいう切削加工とは、 例えば NC旋盤等で、 ガラス体を長手方向に その外径が均一となるように加工することを指す。 なお、 上記の表面除去工程は 、 エッチングや外周研削により、 変形が抑制されつつ高純度化がなされたガラス パイプの外周面を所定深さで除去する工程である。 これは所定深さを除去するェ 程に限られ、 変形による後成形加工工程と比較して実施が極めて容易な工程であ る。 (第 2実施形態)
上述したガラス体の高純度化方法の第 1実施形態は、 ガラスパイプの有効部の 長手方向全体に対して、 同時に電圧を印加する態様であつたが、 本発明に係るガ ラス体の高純度化方法の第 2実施形態は、 ガラスパイプに対して、 外周面側に接 触させた電極からの略径方向への電圧の印加を、 長手方向に順次行うものである 第 2の高純度化装置 2 0 0には、 図 6の概略縦断面図に示すように、 第 1の高 純度化装置 1 0 0が具備する加熱手段 2 2に代えて、 長手方向の長さが短く設定 された加熱手段 2 3が設けられるとともに、 電極 1 , 2に代えて、 電極 5, 6が 加熱手段 2 3と同程度の長さであるように構成されている。
また、 第 2の高純度化装置 2 0 0は、 第 1の高純度化装置 1 0 0が具備する第 1支持台 3 2及び第 2支持台 4 2に代えて、 それぞれ、 第 1支持台 3 5及び.第 2 支持台 4 5を有している。 第 1支持台 3 5及び第 2支持台 4 5はモータ (図示せ ず) を備えており、 基台 2 1に沿いながら、 それぞれ所定速度で鉛直方向に移動 可能に構成されている。
次に、 第 2の高純度化装置 2 0 0を使用する本発明の第 2実施形態に係るガラ ス体の高純度化方法を、 主として、 第 1実施形態との相違点を挙げることにより 説明する。
第 1実施形態と同様に、 ガラスパイプ 1 1の端部を、 第 1チャック 3 1及び第 2チャック 4 1にて把持する。 有効部 1 1 aの長手方向の長さは、 加熱手段 2 3 の長手方向の長さよりも充分に長く、 有効部 1 1 aの一部領域が加熱手段 2 3か らの熱を受けて 1 3 0 0 °C未満の温度となるように加熱され得る長さとなってい る。
第 2実施形態では、 第 1支持台 3 5及び第 2支持台 4 5を基台 2 1に沿って移 動させて、 ガラスパイプ 1 1を加熱手段 2 3に対して相対移動させることによつ て、 1 3 0 0 °C未満の温度に加熱するとともに、 略径方向への電圧の印加を、 ガ ラスパイプ 1 1の全域に対して実施できる。 なお、 ガラスパイプ 1 1の代わりに 加熱手段を動かしても良い。 T/JP2003/010149
第 2実施形態においても、 第 1実施形態と同様に、 ガラスパイプ 1 1を、 その 中心軸を回転軸として、 電極 5, 6に対して円周方向に摇動させながら実施する のが好ましい。 また、 電圧印加工程の後に、 上記の表面均一除去工程を実施して も良い。
以上に説明した第 2実施形態によれば、 第 1実施形態と同等の効果を奏するこ とができる。
なお、 図 6に示すように、 第 2実施形態では、 加熱手段 2 3の上部近傍に冷却 手段 7が設けられていると良く、 ガラスパイプ 1 1のうち、 加熱手段 2 3により 加熱されるとともに電圧が印加されて不純物陽イオンが偏在化された部分に対し て、 強制的に冷却を行うと良い。
冷却手段は、 図 6に示すように不活性ガスゃクリーンエア等の冷却用の気体を ガラスパイプ 1 1に向けて噴出するものや、 あるいは水冷のジャケット (図示せ ず) がガラスパイプ 1 1の周囲を覆うものであっても良い。 また、 冷却は、 ガラ スパイプ 1 1の冷却箇所が 8 0 0 °C以下、 あるいは 5 0 0 °C以下の温度となるよ うに行うことが好ましい。
不純物陽イオンの拡散係数が充分に低くなって移動しにくくなる温度まで強制 的に冷却を行うことにより、 不純物陽イオンが偏在した直後のガラスパイプ 1 1 に対して、 偏在した不純物陽イオンが再びガラスパイプ 1 1内に拡散してしまう 前に、 不純物陽ィオンをガラスパイプの外周に偏在したままとすることができる 。 したがって、 本発明に係るガラス体の高純度化方法の効果を最大限に得ること ができる。
なお、 上記第 1及び第 2実施形態において、 高純度化処理を行う対象のガラス 体として、 円筒形状のガラスパイプを例に挙げて説明したが、 円柱形状のガラス 体 (以下、 ガラスロッドと呼ぶ) を対象とすることもできる。 その場合、 ガラス パイプを高純度化する場合と同様の装置及ぴ方法により高純度化を行うことがで きる。 ただし、 ガラスパイプの内側に流す内側ガスを用いる必要がない。
図 7に示すように、 ガラスロッドを高純度化するために好適に用いられる第 3 の高純度化装置 1 0 0 aは、 図 1に示す第 1の高純度化装置 1 0 0から、 内側ガ ス G 1を用いるための構成を除いたものである。
ガラスロッド 1 6は、 高純度化する有効部 1 6 aの上下にダミーロッド 1 6 b が接続されてなるものである。 有効部 1 6 aは、 上述したガラスパイプ 1 1の有 効部 1 1 aと同様の材質であり、 ダミーロッド 1 6 bは、 上述したガラスパイプ 1 1のダミーパイプ 1 1 bと同様の材質である。
また、 この図 7に示した第 3の高純度化装置 1 0 0 aは、 有効部 1 6 aの長手 方向の全体に対して同時に電圧を印加する場合に用いられるが、 ガラスロッド 1 6に対しても、 略径方向の電圧を長手方向に順次印加する方法を採用できる。 例 えば、 図 6を参照して説明したように、 ガラスパイプ 1 1に対して略径方向の電 圧を長手方向に順次印加する場合と同様にして、 ガラスロッド 1 6に対しても高 純度化処理を行うことができる。
また、 ガラスロッドは、 内側に空間が形成されているガラスパイプと異なり、 中実のガラス体であるため、 ガラスパイプと比較して熱による変形が起こりにく い。 そのため、 高純度化する際の加熱温度の上限を、 ガラスパイプより高く設定 することができる。 ガラスロッドにおいて、 加熱される温度の好ましい上限値は 、 1 4 5 0 °Cである。
例えば、 第 1実施形態において示した例 1から例 3 (表 1参照) に対して、 第 1実施形態とほぼ同様の条件下でガラス口ッドを高純度化処理する場合には、 例 えば加熱温度を 1 4 0 0 °Cとして、 印加電圧を 4 0 k Vとすると、 処理時間は 2 4時間となり、 例 3と同様の不純物陽イオンを移動させることができる。
(第 3実施形態)
本発明に係るガラス体の高純度化方法の第 3実施形態は、 ガラスパイプに対し て、 外周面側と内周面側とに配置された電極から略径方向に電圧を印加して、 そ の電圧勾配によってガラス体に含まれる不純物を外周面側あるいは内周面側に移 動させるものである。
第 4の高純度化装置 3 0 0は、 図 8の概略縦断面図に示すように、 長尺状の基 台 2 1と、 ガラスパイプ 1 1を囲繞できるように基台 2 1の長手方向に沿って特 定距離で配置された加熱手段 2 2と、 電源 5 1とを有している。 基台 2 1は、 長 手方向が略鉛直方向となるように配置されており、 加熱手段 2 2の上方には、 ガ ラスパイプ 1 1の一端部を把持できる第 1チャック 3 1が第 1支持台 3 2を介し て基台 2 1に対して取付けられている。 加熱手段 2 2の.下方には、 ガラスパイプ 1 1の他端部を把持できる第 2チャック 4 1が第 2支持台 4 2を介して基台 2 1 に取付けられている。 第 1チャック 3 1及び第 2チャック 4 1は、 それぞれモー タ (図示せず) により、 互いが同期して回転することによって、 ガラスパイプ 1 1がその中心軸を回転軸として回転できるように構成されている。
また、 第 2支持台 4 2は、 ガラスパイプ 1 1の第 1チャック 3 1及び第 2チヤ ック 4 1に対する脱着を容易とするために、 鉛直方向に移動可能に構成されてい る。
第 1チャック 3 1の上方には、 電極固定部材 3 3が取付けられており、 長尺状 の内側電極 1 2は、 第 1チャックの上端部 3 1 Aを突き抜ける導電性の電極接続 部 1 4を介して電極固定部材 3 3に把持されている。 ここで、 内側電極 1 2は、 鉛直方向下向きに加熱手段 2 2の下端近傍に至るまで延びるように構成されてい る。 内側電極 1 2は、 その横断面における最大外径が、 高純度化処理に供される ガラスパイプ 1 1の内径よりも小さくなるように設定されており、 ガラスパイプ 1 1と内側電極 1 2とが接触しないように構成されている。
また、 例えば第 1チャックの上端部 3 1 Aには、 把持されたガラスパイプ 1 1 の中空と連通できるガス管 8 4が設けられており、 ガス管 8 4は流路の開閉を実 施できるバルブ 8 2を介して内側ガス供給装置 8 3に接続している。 さらに、 例 えば第 2チャック 4 1の下端には、 把持されたガラスパイプ 1 1の中空と連通で きるガス管 6 3が設けられており、 ガス管 6 3は、 流路の開閉を実施できるバル ブ 6 1を介して吸気ポンプ 8 1に接続している。
電源 5 1は、 通常、 直流電源とされており、 プラス極から出た導電線が電極接 続部 1 4に接続している。 内側電極 1 2及び電極接続部 1 4の素材としては、 上 述したグラフアイトゃ表面処理グラフアイ トなどを挙げることができる。 特に、 内側電極 1 2の素材は、 表面処理グラフアイトであることが好ましい。
一方、 電源 5 1のマイナス極から出た導電線は、 加熱手段 2 2が備える発熱体 に接続している。 発熱体の素材は、 カーボン等を好適に例示できる。 ここで、 グラフアイ ト等のカーボンは、 不純物の含有量が 1 p pm以下である のが好ましく、 これにより、 ガラスパイプ 1 1に不純物が侵入されにく くなる。 また、 第 4の高純度化装置 3 0 0は、 基台 2 1の上方から下方に向けて、 外側 ガス G 2を吹き出すガス吹き出し口 2 7が設けられている。
次に、 第 4の高純度化装置 3 0 0を使用する本発明の第 3実施形態に係るガラ スパイプの高純度化方法について説明する。
第 2チャック 4 1と加熱手段 2 2とが充分に離れた状態で、 ガラスパイプ (石 英パイプ) 1 1の上端を、 ガラスパイプ 1 1の中空に内側電極 1 2が収容される ように、 第 1チャック 3 1にて把持する。
ここで、 ガラスパイプ 1 1は、 第 1実施形態で説明したものと同様のものであ る。
次いで、 第 2支持台 4 2を、 加熱手段 2 2に向けて鉛直方向に移動し、 ガラス パイプ 1 1の下端を、 第 2チャック 4 1にて把持する。 ここでは、 ガラスパイプ 1 1の中心軸と内側電極 1 2の中心軸とはほぼ一致しており、 ガラスパイプ 1 1 が内側電極 1 2に対して接触しないように取付けられる。
次いで、 バルブ 8 2を閉状態、 バルブ 6 1を開状態にして、 吸気ポンプ 8 1を 作動させて、 ガラスパイプ 1 1の中空からのガスの排気を行った後、 バルブ 8 2 を開状態, バルブ 6 1を閉状態にして、 内側ガス供給装置 8 3を作動させて、 該 中空へ内側ガス G 1を供給する。 バノレプ 8 2は、 必要に応じて閉状態とされる。 内側ガス G 1は、 アルゴン等の希ガスや窒素ガスなどとされている。 ガラスパイ プ 1 1の中空内における内側ガス G 1の圧力は、 内側ガス G 1の供給量などを調 整することによって、 一 0. 5 k P a ' g a g e〜一 1. 5 k P a ' g a g eと されるのが好ましい。 もしくは、 内側ガス G 1の圧力は陽圧であることが好まし く、 その場合、 0. l k P a ' g a g e〜l . 0 k P a · g a g eとする。
次いで、 ガス吹き出し口 2 7からアルゴン等の希ガスや窒素ガスなどの外側ガ ス G 2を基台 2 1の上方から下方に向けて流動させながら、 加熱手段 2 2を作動 させてガラスパイプ 1 1を 1 3 0 0°C未満の温度で加熱するとともに、 電源 5 1 を作動させてガラスパイプ 1 1に対して電圧を印加することにより、 電圧印加工 程を実施する。 電圧は、 通常、 直流電圧であり、 1 k V〜50 k Vの範囲とする のが好ましい。 外側ガス G 2の流量は、 1 0リツトル/分〜 20リツトル/分、 外側ガス G 2の圧力は、 0. 5 k P a ' g a g e〜l . 5 k P a ' g a g eとさ れるのが好ましい。
ここでは、 陽極である内側電極 1 2と、 陰極である加熱手段 22とが、 対向す るようにガラスパイプ 1 1の内側と外側に配置されるとともに、 内側電極 1 2と ガラスパイプ 1 1との間に内側ガス G 1が介在し、 陰極とガラスパイプ 1 1との 間に外側ガス G 2が介在している。 これにより、 ガラスパイプ 1 1には、 電圧勾 配の方向がガラスパイプ 1 1の略径方向となる電圧が印加される。 また、 電圧勾 配は、 ガラスパイプ 1 1の内周面側から外周面側に向けて負の勾配となっている 。 なお、 本実施形態において、 電圧の電圧方向がガラスパイプ 1 1の略径方向に なるとは、 内側電極 1 2がガラスパイプ 1 1の中心軸からずれるなどして、 電圧 勾配の方向がガラスパイプ 1 1の径方向からわずかにずれる場合も包含するもの である。
これにより、 ガラスパイプ 1 1に含有されている不純物陽イオン Cは、 図 8の 要部断面図である図 9 (a) に示すように、 ガラスパイプ 1 1の外周面方向に移 動する。
そして、 電圧印加工程を一定時間継続することによって、 ガラスパイプ 1 1に 含有されている不純物陽イオン Cを、 ガラスパイプ 1 1の外周面から拡散させ、 外側ガス G 2の流動を利用して第 1の高純度化装置 100から排出させる力 \ 図 9 (b) の要部断面図に示すように、 ガラスパイプ 1 1の外周面近傍にて偏在さ せることができる。
また、 前記したように、 ガラスパイプ 1 1は、 1 300°C未満の温度で加熱さ れると良い。
本実施形態において、 電圧印加工程は、 第 1チャック 3 1と第 2チャック 4 1 とを同期して回転させることによって、 ガラスパイプ 1 1を、 その中心軸を回転 軸として 1 r pm以上 1 00 r p m以下の範囲内の回転速度で回転させながら実 2003/010149
施する。 なお、 ここでは、 ガラスパイプ 1 1の中心軸と前記回転軸とが多少ずれ ている場合も含むものとする。
回転速度を 1 r p m以上とすることによって、 ガラスパイプ 1 1が加熱手段2 2から受ける熱を周方向でより均一することができる。 よって、 ガラスパイプ 1 1の温度が周方向で不均一となることに起因するガラスパイプ 1 1の変形を効果 的に低減できる。 特に、 高純度化装置における加熱手段がガラスパイプの周方向 に連続して設けられない場合は、 上記回転速度範囲内でガラスパイプを回転させ るのが好ましい。
一方、 回転速度を 1 0 0 r p m以下とすることによって、 遠心力に起因するガ ラスパイプ 1 1の変形を効果的に抑制できる。 特に、 回転速度を 2 0 r p m以下 とすると、 遠心力に起因するガラスパイプ 1 1の変形をより確実に抑制でき、 好 ましい。
電圧印加工程の後には、 必要に応じて、 ガラスパイプ 1 1の外周面から所定深 さまでの領域を均一に除去する表面均一除去工程を実施することができ、 これに より、 ガラスパイプ 1 1の高純度化をより確実に行うことができる。
第 3実施形態に係るガラスパイプの高純度化方法における好適な実施条件を以 下に示す。
ガラスパイプの外径: 7 5 mn!〜 1 5 O mm
ガラスパイプの内径: 5 2 . 5 mm〜1 0 5 mm
ガラスパイプの長手方向長さ : 1 0 0 O mm〜 1 5 0 O mm
電圧印加工程時間: 2 0時間〜 3 0時間
表面均一除去工程において除去されるガラスパイプの外周面からの深さ : 0 . 1 mm〜 0 . 3 mm
以上に説明した本発明の第 3実施形態に係るガラスパイプの高純度化方法によ れば、 ガラスパイプの変形を抑制しつつ高純度化を実施でき、 ガラスパイプの内 径ぉよび外径を長手方向に一定とするための後成形加工工程 (ガラスパイプの内 周面および外周面に対する切削や、 部分又は全体的な縮拡径など) を省略できる ので、 高純度化されたガラスパイプの製造コストを非常に低減できる。 なお、 必 要に応じて追加される前記表面均一除去工程は、 変形が抑制されつつ高純度化が なされたガラスパイプの周面を所定深さで除去する工程である。 これは所定深さ を均一に除去する工程に限られ、 変形による後成形加工工程と比較して実施が極 めて容易な工程である。 なお、 それぞれの電極がガラスパイプに接するようにし ても良い。
(第 4実施形態)
第 5の高純度化装置 4 0 0には、 図 1 0の概略縦断面図に示すように、 第 4の 高純度化装置 3 0 0が具備する加熱手段 2 2に代えて、 長手方向長さが短く設定 された加熱手段 2 3が設けられるとともに、 內側電極 1 2に代えて、 內側電極 1 3が加熱手段 2 3と同程度の長さであるように構成されている。
また、 第 5の高純度化装置 4 0 0は、 第 4の高純度化装置 3 0 0が具備する第 1支持台 3 2及ぴ第 2支持台 4 2に代えて、 それぞれ、 第 1支持台 3 5及び第 2 支持台 4 5を有している。 第 1支持台 3 5及び第 2支持台 4 5はモータ (図示せ ず) を備えており、 基台 2 1に沿いながら、 それぞれ所定速度で鉛直方向に移動 可能に構成されている。
次に、 第 5の高純度化装置 4 0 0を使用する本発明の第 4実施形態に係るガラ スパイプの高純度化方法を、 主として、 第 3実施形態との相違点を挙げることに より説明する。
第 3実施形態と同様に、 ガラスパイプ (石英パイプ) 1 1の端部を、 ガラスパ ィプ 1 1の中空に内側電極 1 3が収容されるように、 第 1チャック 3 1及び第 2 チャック 4 1にて把持する。 有効部 1 1 aの長手方向長さは、 加熱手段 2 3の長 手方向長さよりも充分に長く、 有効部 1 1 aの一部領域が加熱手段 2 2からの熱 を受けて 1 3 0 0 °C未満の温度に加熱され得る長さとなっている。
第 4実施形態では、 第 1支持台 3 5及び第 2支持台 4 5を基台 2 1に沿って移 動させて、 ガラスパイプ 1 1を加熱手段 2 3に対して相対移動させることによつ て、 1 3 0 0 °C未満の温度に加熱するとともに電圧を印加する電圧印加工程を、 ガラスパイプ 1 1の全域に対して実施できる。 ガラスパイプ 1 1の代わりに加熱 手段を動かしても良い。 また、 本実施形態においても、 図 6に示した冷却手段 7を用いて、 電圧を印加 した後のガラスパイプ 1 1を冷却すると良い。
第 4実施形態においても、 第 3実施形態と同様に、 ガラスパイプ 1 1を、 その 中心軸を回転軸として 1 r p m以上 1 0 0 r p m以下の範囲内の回転速度で回転 させながら実施する。 より好ましくは、 回転速度を 1 r p m以上 2 0 r p m以下 とする。 また、 電圧印加工程の後に、 前記表面除去工程を実施しても良い。 以上に説明した第 4実施形態によれば、 第 3実施形態と同等の効果を奏するこ とができる。
第 3実施形態及び第 4実施形態においては、 図 1 1の概略断面図に示すように 、 加熱手段 2 2 , 2 3と電源とを接続しない代わりに、 ガラスパイプ 1 1の外周 面と加熱手段 2 2, 2 3との間に、 電源と接続する外側電極 1 5を別途配置して も良い。
また、 第 3実施形態及び第 4実施形態では、 内側電極を陽極とし、 外側電極あ るいは加熱手段を陰極としたが、 内側電極を陰極とし、 外側電極あるいは加熱手 段を陽極とする実施形態も例示できる。
この場合、 ガラスパイプ 1 1には、 前記第 3及び第 4実施形態と同様に、 電圧 勾配の方向がガラスパイプ 1 1の略径方向となる電圧が印加されるが、 電圧勾配 は、 ガラスパイプ 1 1の外周面側から内周面側に向けて負の勾配となる。
これにより、 ガラスパイプに含有されている不純物陽イオン (リチウムイオン , ナトリウムイオン, 力リゥムイオン等のアルカリ金属イオンや銅イオンなど) は、 ガラスパイプの内周面方向に移動する。
よって、 電圧印加工程の後に、 ガラスパイプの内周面から所定深さまでの領域 を除去する表面除去工程を実施することによって、 ガラスパイプの高純度化をよ り確実に行うことができる。
また、 前記第 3及び第 4実施形態では、 内側ガスをガラスパイプ 1 1の中空内 に封入するとともに、 外側ガスを流動させる形態としたが、 内側ガスをガラスパ イブの中空内で流動させるとともに、 外側ガスを基台内で流動させる形態であつ ても良い。 また、 前記実施形態では、 電圧印加工程において内側ガス G 1と外側ガス G 2 とを使用する形態を例示したが、 本発明の実施形態のガラスパイプの高純度化方 法はこれに限らない。
すなわち、 例えば、 内側ガス G 1を使用せずに、 中心軸を回転軸として回転す るガラスパイプの内周面に対して内側電極を摺接させる形態、 外側ガス G 2を使 用せずに、 中心軸を回転軸として回転するガラスパイプの外周面に対して外側電 極を摺接させる形態、 及び、 これらを組み合わせた形態 (図 1 2参照: この場合 、 内側ガス G 1、外側ガス G 2を必要としない。) なども例示できる。 ガラスパイ プに摺接する電極としては、 電極からガラスパイプへの不純物の移動を確実に抑 制するために、 前掲の表面処理グラフアイトを好適に例示できる。
また、 図 1 3の概略断面図に示すように、 加熱手段 2 2, 2 3と電源とを接続 しない代わりに、 ガラスパイプ 1 1の外周面と加熱手段 2 2 , 2 3との間に、 電 源と.接続し、 なおかつガラスパイプ 1 1の外周面に接触する外側電極 1 5を別途 配置しても良い。
また、 図 1 2に示した態様の実施形態に係るガラス体 (ガラスパイプ) の高純 度化方法における好適な実施条件を以下に示す。
ガラスパイプの外径: 1 5 O mm
ガラスパイプの内径: 1 0 mm〜 1 5 mm
ガラスパイプの長手方向長さ : 1 5 0 O mm
加熱手段の温度: 1 1 0 0 °C
印加電圧: 3 0 k V
電圧印加工程時間: 3 0時間
表面均一除去工程において除去されるガラスパイプの外周面からの深さ : 1 . 5 mm
このような条件により高純度化処理を行ったガラスパイプ 1 1は、 有効部 1 1 aに含まれる不純物陽イオンの含有濃度を 0 . 0 1 0重量 p p m以下とすること ができる。
(第 5実施形態) 第 6の高純度化装置 5 0 0は、 図 1 4の概略縦断面図に示すように、 長尺状の 基台 7 1と、 ガラスパイプ 1 1を囲繞できるように基台 7 1の長手方向に沿って 特定距離で配置された加熱手段 2 5と、 電源 5 2とを有している。 基台 7 1は、 長手方向が略鉛直方向となるように配置されており、 加熱手段 2 5の上方には、 ガラスパイプ 1 1の一端部を把持できる第 1チャック 3 6が第 1支持台 3 7を介 して基台 7 1に対して取付けられている。 第 1チャック 3 6の内部には、 ガラス パイプ 1 1の端面と接触可能に第 1電極 6 5が設けられている。 加熱手段 2 5の 下方には、 ガラスパイプ 1 1の他端部を把持できる第 2チャック 4 6が第 2支持 台 4 7を介して基台 7 1に対して取付けられている。 第 2チャック 4 6の内部に は、 ガラスパイプ 1 1の端面と接触可能に第 2電極 6 6が設けられている。
第 1チャック 3 6及び第 2チャック 4 6は、 それぞれモータ (図示せず) を備 えており、 互いが同期して回転することによって、 ガラスパイプ 1 1がその中心 軸を回転軸として回転できるように構成されている。
電源 5 2は、 通常、 直流電源とされており、 プラス極から出た導電線が第 1電 極 6 5に接続している。 一方、 電源 5 2のマイナス極から出た導電線は第 2電極 6 6に接続している。 第 1電極 6 5及び第 2電極 6 6の素材としては、 グラファ ィ トゃ前掲の表面処理グラフアイトなどを挙げることができる。
次に、 第 6の高純度化装置 5 0 0を使用する本発明に係るガラスパイプの高純 度化方法の第 5実施形態について説明する。
まず、 片端に中心軸が揃うようにダミーパイプ 1 9が融着接続されたガラスパ イブ 1 1を用意する。
ガラスパイプ 1 1のダミーパイプ 1 9側の端部を第 2チヤック 4 6にて把持し 、 他端部を第 1チャック 3 6にて把持する。 ここで、 ガラスパイプの第 1端面 1 1 A (ダミーパイプとは反対側の端面) は第 1電極 6 5に対して、 ガラスパイプ の第 2端面 1 1 B (ダミーパイプ側の端面) は第 2電極 6 6に対して、 それぞれ 接触している。 また、 ガラスパイプ 1 1の長手方向長さは、 ガラスパイプ 1 1の 略全域が、 加熱手段 2 5からの熱を受けて 1 3 0 0 °C未満の温度に加熱され得る 長さとされている。 次いで、 加熱手段 2 5を作動させてガラスパイプ 1 1を 1 3 0 0 °C未満の温度 で加熱するとともに、 電源 5 2を作動させてガラスパイプ 1 1に対して電圧を印 加することにより、 電圧印加工程を実施する。 電圧は、 通常、 直流電圧であり、 1 k V〜5 0 k Vの範囲とするのが好ましい。
ここでは、 陽極である第 1電極 6 5と陰極である第 2電極 6 6とが、 対向する ようにガラスパイプ 1 1の両端に配置されるとともに、 ガラスパイプ 1 1には、 電圧勾配の方向がガラスパイプ 1 1の中心軸の方向 (長手方向) となる電圧が印 加される。
また、 電圧勾配は、 ガラスパイプの第 1端面 1 1 Aから第 2端面 1 1 Bに向か う方向で負の勾配となっている。
これにより、 ガラスパイプ 1 1に含有されている不純物陽イオン C (リチウム イオン, ナトリウムイオン, 力リゥムイオン等のアルカリ金属イオンや銅イオン など) は、 図 1 4の要部断面図である図 1 5 ( a ) に示すように、 ガラスパイプ の第 2端面 1 1 Bの方向に移動する。
そして、 電圧印加工程を一定時間継続することによって、 ガラスパイプ 1 1の 不純物陽イオン Cを、 図 1 5 ( b ) に示すように、 ダミーパイプ 1 9にて偏在ざ せることができる。
電圧印加工程の後には、 必要に応じて、 ガラスパイプの第 2端面 1 1 Bから所 定深さまでの領域を除去する端部除去工程を実施することができ、 第 5実施形態 においては、 ダミーパイプ 1 9をガラスパイプ 1 1から除去することによって容 易に実施できる。 これにより、 ガラスパイプ 1 1の高純度化をより確実に行うこ とができる。
第 5実施形態のガラスパイプの高純度化方法における好適な実施条件を以下に 示す。
ガラスパイプの外径: 4 0 mm〜7 5 mm
ガラスパイプの内径: 2 8 mm〜5 2 . 5 mm
ガラスパイプの長手方向長さ (ダミーパイプも含む): 1 0 0 O mn!〜 1 5 0 0 mm ダミ一パイプの長手方向長さ : 5 0 mm〜: L O O mm
電圧印加工程時間: 2 0時間〜 3 0時間
第 5実施形態においても、 第 3実施形態と同様に、 ガラスパイプ 1 1を、 その 中心軸を回転軸として 1 r p m以上 1 0 0 r p m以下の範囲内の回転速度で回転 させながら実施するのが好ましい。 より好ましくは、 回転速度を 1 r p m以上2 0 r p m以下とする。
以上に説明した第 5実施形態によれば、 第 3実施形態と同等の効果を奏するこ とができる。
(第 6実施形態)
第 7の高純度化装置 6 0 0には、 図 1 6の概略縦断面図に示すように、 第 6の 高純度化装置 5 0 0が具備する加熱手段 2 5に代えて、 長手方向長さが短く設定 された加熱手段 2 6が設けられている。 第 6の高純度化装置 5 0 0が具備する第 1支持台 3 7及ぴ第 2支持台 4 7に代えて、 それぞれ、 第 1支持台 3 9及び第 2 支持台 4 9を有している。 第 1支持台 3 9及ぴ第 2支持台 4 9はモータ (図示せ ず) を備えており、 基台 7 1に沿いながら、 それぞれ所定速度で鉛直方向に移動 可能に構成されている。 なお、 ガラスパイプ 1 1の代わりに加熱手段を移動させ てもよい。
次に、 第 7の高純度化装置 6 0 0を使用する本発明の第 6実施形態に係るガラ スパイプの高純度化方法を、 主として、 第 5実施形態との相違点を挙げることに より説明する。
第 5実施形態と同様に、 ガラスパイプ 1 1の端部を第 1チャック 3 6及び第2 チャック 4 6にて把持する。 ガラスパイプ 1 1の長手方向長さは、 加熱手段 2 6 の長手方向長さよりも充分に長く、 ガラスパイプ 1 1の一部領域が加熱手段 2 6 からの熱を受けて 1 3 0 0 °C未満の温度に加熱され得る長さとなっている。 第 6実施形態では、 第 1支持台 3 9及び第 2支持台4 9を基台7 1に沿って移 動させて、 ガラスパイプ 1 1を加熱手段 2 6に対して相対移動させることによつ て、 1 3 0 0 °C未満の温度に加熱するとともに電圧を印加する電圧印加工程を、 ガラスパイプ 1 1の全域に対して実施できる。 第 5実施形態と同様、 ガラスパイプ 1 1に含有されている不純物陽イオンは、 ガラスパイプの第 2端面 1 1 Bの方向に移動することから、 先ず、 第 1チャック 3 6と加熱手段 2 6とを近傍に配置して、 ガラスパイプ 1 1の上端部に対して電 圧印加工程を実施し、 続いて、 ガラスパイプ 1 1と加熱手段 2 6とを相対移動さ せることによって、 ガラスパイプ 1 1の下側の領域に向けて電圧印加工程を実施 するのが好ましい。 これにより、 効率良く、 ガラスパイプ 1 1内の不純物陽ィォ ンをダミーパイプ 1 9にて偏在させることができる。
また、 本実施形態においても、 図 6に示した冷却手段 7を用いて、 電圧を印加 した後のガラスパイプ 1 1を冷却すると良い。
第 6実施形態においても、 第 3実施形態と同様に、 ガラスパイプ 1 1を、 その 中心軸を回転軸として 1 r p m以上 1 0 0 r p m以下の範囲内の回転速度で回転 させながら実施するのが好ましい。 より好ましくは、 回転速度を 5 r 以上 2 0 r 以下とする。 また、 電圧印加工程の後に、 必要に応じて、 前記端部除去 工程を実施することができ、 第 6実施形態においても、 ダミーパイプ 1 9をガラ スパイプ 1 1から除去することによって容易に実施できる。 これにより、 ガラス パイプ 1 1の高純度化をより確実に行うことができる。
以上に説明した第 6実施形態によれば、 第 3実施形態と同等の効果を奏するこ とができる。 '
また、 第 5, 第 6実施形態において、 ガラスパイプ 1 1を用いる代わりに、 円 柱形状のガラスロッドを用いても良い。 その場合、 ガラスパイプ 1 1を高純度化 する場合と同様の装置及び方法によってガラスロッドの高純度化を行うことがで きるが、 加熱温度の好ましい上限値は 1 4 5 0 °Cとなる。
なお、 本発明において用いるガラス体は、 ガラス体の長手方向 (中心軸方向) に電圧を印加する場合には有効部の長さが 5 0 O mm未満であると良い。 有効部 の長さが 5 0 O mm以上のガラス体に対して不純物陽イオンを長手方向に移動さ せようとした場合、 その移動距離が長くなつてしまうことから、 高純度化処理を 行う時間が長くなつてしまうとともに、 印加電圧を大きくする必要が生じる。 印 加電圧が大きくなりすぎる (例えば 5 0 k Vを超える) と、 ガラス体に印加する 前に放電してしまうおそれがある。
これに対して、 ガラス体の略径方向に電圧を印加する場合には、 有効部の長さ が 5 0 O mm以上であっても構わない。 したがって、 有効部の長さが長いガラス 体に対しては、 ガラス体の略径方向に電圧を印加する方が効率的に高純度化を実 施することができる。
また、 このような方法で高純度化された外径 1 0 0 mm以上の高純度ガラス体 は、 比較的大型のガラス体である。 また、 ガラス体の有効部における不純物陽ィ オンの含有濃度が、 0 . 0 1重量 p p m以下となるように高純度化を行うと良い 。 例えば、 各不純物陽イオン (リチウムイオン, ナトリウムイオン, カリウムィ オン等のアルカリ金属イオンや銅イオンなど) の含有濃度が、 それぞれ 1 0重量
P p b以下であることが好ましい。
このような高精度かつ大型の高純度ガラス体を光ファイバの母材として用いる と、 伝送特性が良好で、 高品質な光ファイバを効率的に製造することができる。 以下、 ガラスパイプの高純度化方法として採用し得る態様について簡潔に述べ る。
① ガラスパイプを 1 0 0 0 °C以上 1 3 0 0 °C未満の範囲内の温度に加熱しなが ら前記ガラスパイプに対して電圧を印加する電圧印加工程を有する、 ガラスパイ プの高純度化方法。
② 前記ガラスパイプを、 その中心軸を回転軸として 1 r p m以上 1 0 0 r p m 以下の範囲内の回転速度で回転させながら前記電圧印加工程を行う、 前記①に記 载のガラスパイプの高純度化方法。
③ 前記電圧の電圧勾配の方向を、 前記ガラスパイプの略径方向とする前記①ま たは前記②に記載のガラスパイプの高純度化方法。
④ 前記電圧勾配を、 前記ガラスパイプの内周面側から外周面側に向けて負の勾 配とするとともに、 前記電圧印加工程に次いで、 前記ガラスパイプの外周面から 所定深さまでの領域を除去する表面均一除去工程を有する、 前記③に記載のガラ スパイプの高純度化方法。
⑤ 前記電圧勾配を、 前記ガラスパイプの外周面側から内周面側に向けて負の勾 配とするとともに前記電圧印加工程に次いで、 前記ガラスパイプの内周面から所 定深さまでの領域を除去する表面均一除去工程を有する、 前記③に記載のガラス パイプの高純度化方法。
⑥ 前記電圧の電圧勾配の方向を、 前記ガラスパイプの中心軸の方向とする前記 ①または前記②に記載のガラスパイプの高純度化方法。
⑦ 前記電圧勾配を、 前記ガラスパイプの第 1端面から第 2端面に向かう方向で 負の勾配とするとともに、 前記ガラスパイプの第 2端面から所定深さまでの領域 を除去する端部除去工程を有する、 前記⑥に記載のガラスパイプの高純度化方法
(実施例 1 )
前記第 4の高純度化装置 300に準ずる高純度化装置を使用して第 3実施形態 に係るガラスパイプの高純度化を以下の条件で行う。
ガラスパイプの外径: 1 5 Omm
ガラスパイプの内径: 105 mm
ガラスパイプの長手方向長さ : 1 500 mm
上記ガラスパイプの組成は、 不純物陽イオン (リチウムイオン, ナトリゥムィ オン, カリウムイオン及び銅イオンの総和) を 0. 1重量 p pmで含有する S i o2である。
ここで、 不純物陽イオンの濃度は、 ガラスパイプ全体に対する不純物陽イオン の含有量を意味し、 以下においても同様とする。
また、 上記ガラスパイプの長手方向の外径の変形を超音波測定器で測定し、 標 準偏差 (以下、 この標準偏差をガラスパイプ径標準偏差ともいう) を算出したと ころ、 0. 1mmである。
内佃 jガス :アルゴン, 一 0. 5 k P a ' g a g e
外側ガス :アルゴン, 10リツトルノ分, l k P a · g a g e
加熱温度: 1 100 °C
電圧: 40 k Vの直流電圧
電圧印加工程時間: 30時間 ガラスパイプの回転速度: 3 0 r p m
表面均一除去工程 (化学エッチング) において除去されるガラスパイプの外周 面からの深さ : 0 . 2 4 mm
(実施例 2 )
加熱温度を 1 2 8 0 °Cとする以外は、 実施例 1と同様にガラスパイプの高純度 化方法を行う。
(比較例 1 )
加熱温度を 1 3 2 0 °Cとする以外は、 実施例 1と同様にガラスパイプの高純度 化方法を行う。
実施例及ぴ比較例の高純度化方法を施した後におけるガラスパイプの結果を下 表に示す。 表 2
Figure imgf000036_0001
表 2に示すように、 加熱温度が 1 3 0 0 °C未満とされた実施例の高純度化方法 によれば、 不純物陽イオンが減少し、 かつ、 ガラスパイプ径標準偏差はほとんど 変化しない。 すなわち、 ガラスパイプの変形が高次元で抑制されつつ、 高純度化 が実施される。 実施例の高純度化方法により高次元されたガラスパイプは、 その ままの状態で、 例えば光ファイバ用としての形状精度及び純度を満足する。 一方、 比較例 1は、 ガラスパイプ径標準偏差が増大する。 これは、 ガラスパイ プの変形を意味し、 そのままの状態では、 例えば光ファイバ用としての形状精度 を満足しない。
ところで、 以上説明したガラス体の高純度化方法を適宜利用しつつ、 ガラス体 の穿孔 (拡径を含む) を行って高純度のガラス管を製造することができる。
次に、 高純度化処理を伴う、 本発明に係るガラス管の製造方法及び製造装置の 実施の形態の例を、 図 1 7から図 2 4に基づいて説明する。
(第 7実施形態)
この第 7実施形態では、 穿孔治具をガラス体に接触させる際に、 発熱体と穿孔 治具とを電極として利用し、 ガラス管の内周側及び外周側に電圧を印加して、 漸 次成形してゆくガラス管の径方向に電圧勾配を発生させる態様について説明する 。 なお、 ガラス管の径方向とは、 ガラス管の長手方向の軸に対して垂直な方向を 指す。
図 1 7に示すように、 本実施形態に用いられるガラス管の製造装置 1 0 1は、 所謂ピアシング法によってガラス管を製造するものであり、 ガラスロッド 1 0 3 を加熱する加熱炉 1 4 0と、 加熱炉 1 4 0の入口側に配置された入口側基台 1 1 0と、 加熱炉 1 4 0の出口側に配置された出口側基台 1 2 0とが設けられている また、 孔あけされるガラスロッド 1 0 3の一端には、 ガラス製のダミーパイプ 1 0 4が接続されている。
入口側基台 1 1 0の上には、 所望の速度で図中左右方向にスライド移動するこ とが可能な第 1送り支持台 1 1 1が備えられている。 この第 1送り支持台 1 1 1 は、 ガラスロッド 1 0 3の穿孔終了端側を第 1チャック 1 1 2により把持して、 さらに、 ガラスロッド 1 0 3をその長手方向の軸を中心に回転させることが可能 なように構成されている。
また、 出口側基台 1 2 0の上には、 第 1送り支持台 1 1 1と同様に図中左右方 向にスライド移動が可能な第 2送り支持台 1 2 1が備えられている。 第 2送り支 持台 1 2 1の移動速度は、 第 1送り支持台 1 1 1の移動速度に対応して適宜制御 される。 この第 2送り支持台 1 2 1は、 ガラスロッド 1 0 3の穿孔開始端側に接 続されたダミーパイプ 1 0 4の一端を第 2チャック 1 2 2により把持して、 ガラ スロッド 1 0 3をその長手方向の軸を中心に回転させることが可能なように構成 されている。 また、 その回転は、 第 1送り支持台 1 1 1の第 1チャック 1 1 2の 回転に同期させるように制御可能である。 また、 第 1チャック 1 1 2の回転速度 と第 2チャック 1 2 2の回転速度を異ならせることも可能である。 第 1チャック 1 1 2及び第 2チャック 1 2 2の回転速度は、 1 r p m〜 1 0 0 r p m程度が好 ましい。
さらに、 出口側基台 1 2 0の上には、 穿孔治具 1 3 0を固定するための固定部 材 1 3 5が設けられている。 穿孔治具 1 3 0は、 支持口ッド 1 3 2と、 支持口ッ ド 1 3 2の先端に設けられた駒 1 3 1を備えており、 固定部材 1 3 5に対して支 持ロッド 1 3 2が固定されている。 また、 支持ロッド 1 3 2は、 駒 1 3 1と同一 の中心軸を有し、 さらにガラス口ッド 1 0 3と中心軸を一致させるように支持さ れる。
駒 1 3 1は、 ガラスロッド 1 0 3の軟化温度で使用可能であって、 ガラス口ッ ド 1 0 3と化学反応することのない材料から形成されている。 好適には、 駒 1 3 1は黒鉛 (グラフアイ ト) によって形成されている。 黒鉛は、 ガラスが軟化する 高温時においても安定性に優れているとともに、 高い導電性を有している。
また、 一般的な黒鉛に含まれる不純物の含有率は 4 0 0 p p m程度であるが、 本実施形態の駒 1 3 1には、 高純度の黒鉛を用いることが好ましい。 より好まし くは、 不純物の含有量を 1 p p m以下とする。 これにより、 駒 1 3 1をガラス口 ッド 1 0 3に接触させて圧入する際に、 駒 1 3 1からガラスロッド 1 0 3に対し て不純物が混入しにく くなる。
さらに、 駒 1 3 1は、 少なく ともガラスに接触する部分が、 炭化ケィ素 (S i C )、 熱分解炭素 (P y C )、 金属炭化物のいずれかを含有するように表面処理さ れていると良い。 なお、 金属炭化物は、 例えばニオブカーバイ ト (N b C )、 タン タルカ一バイ ト (T a C )、 チタンカーバイ ト ( T i C )、 ジルコンカーバイ ト ( Z r C ) を好適な材質として例示できる。
表面処理の方法として、 例えば駒 1 3 1の表面に上記の炭化ケィ素等の被膜層 を形成しておくことで、 強度ゃ耐磨耗性を向上させることができ、 高温状態にお ける酸化も防止できる。 さらに、 このような表面処理は駒 1 3 1の表面を高純度 に維持することができるとともに、 駒 1 3 1の内部からガラスロッド 1 0 3への P T/JP2003/010149
不純物の拡散も防止することができる。
また、 本実施形態の加熱炉 1 4 0は、 高周波誘電加熱方式の炉であり、 コイル 1 4 2に交流電流を流すことで発熱体 1 4 1が発熱する。 発熱体 1 4 1は、 ガラ スロッド 1 0 3と駒 1 3 1の当接部周辺を覆う円筒形状の黒鉛である。 この発熱 体 1 4 1がガラスの軟化点以上の温度に発熱することによって、 ガラスロッド 1 0 3を加熱して軟化させる。
なお、 V A D法等により作成された純度の高いガラス体の場合、 軟化点は 1 7 0 0 °C程度である。
次に、 漸次成形するガラス管の内周側及ぴ外周側に電圧を印加するための構成 について述べる。
図 1 8に示すように、 発熱体 1 4 1及ぴ駒 1 3 1は、 それぞれ正または負に分 極した電位の電極となるように構成されている。 すなわち、 発熱体 1 4 1及ぴ駒
1 3 1には、 直流電源が接続されている。
このような構成により、 駒 1 3 1は、 穿孔したガラス管 1 0 6との接触によつ て、 ガラス管 1 0 6の内周側に電圧を印加することができる。 また、 発熱体 1 4
1は、 ガラス管 1 0 6の外周側に電圧を印加することができる。 好ましくは、 空 間 1 4 3内に連通したガス供給手段 (図示せず) を設けて、 空間 1 4 3内にガス を供給すると良い。 このガスにより、 非接触状態にある発熱体 1 4 1とガラス管
1 0 6との間の導電性を向上させて、 ガラス管 1 0 6に効率良く電圧を印加する ことができる。
また、 ガスとしては、 アルゴン等の希ガスや窒素ガスを用いることができる。 さらに、 イオン化したガスを用いることが好ましい。
本実施形態においてガラス管を製造する際には、 図 1 7及び図 1 8に示すよう に、 加熱炉 1 4 0の内部に送られたガラス口ッド 1 0 3を、 発熱体 1 4 1を発熱 させることにより加熱して軟化させ、 その軟化した領域に穿孔治具 1 3 0の駒1 3 1を接触させて圧入することで、 ガラスロッド 1 0 3を漸次穿孔し、 ガラス管 1 0 6を成形してゆく。 そして、 ガラスロッド 1 0 3に駒 1 3 1を圧入する際に 、 漸次成形されるガラス管 1 0 6に対して、 発熱体 1 4 1及び駒 1 3 1から電圧 3 010149
を印加する。 このとき、 発熱体 1 4 1と駒 1 3 1の電位が異なる極となるように 設定する。 これにより、 ガラス管 1 0 6の径方向に電圧勾配を発生させることが できる。
例えば、 図 1 8に示すように、 発熱体 1 4 1を陰極として、 駒 1 3 1を陽極と する。 この場合に発生する電圧勾配は、 ガラス管 1 0 6の内周側から外周側に向 かって、 電位がプラスからマイナスに変化する負の勾配となる。
ガラス体 1 0 3の製造時に混入した不純物や、 駒 1 3 1から混入した不純物は 、 リチウムイオン、 ナトリウムイオン、 力リゥムイオン等のアル力リ金属イオン や、 カルシウムイオン等のアルカリ土類金属イオン、 銅イオンなどの陽イオンが 主体である。 したがって、 軟化しているガラス管 1 0 6の径方向に発生した電圧 勾配により、 不純物は陰極側に位置するガラス管 1 0 6の外周部分に移動する。 このように、 ガラス管 1 0 6内に混入していた不純物を外周部分に移動させる ことにより、 外周部分以外の高純度化を図ることができる。
なお、 不純物の移動は、 ガラスが軟化して粘度が低いほど起こりやすい。 本発 明においては、 ピアシングとほぼ同時に高純度化処理を行うため、 穿孔時のガラ ス管 1 0 6は、 例えば 1 8 0 0 °C程度に加熱されている。 そのため、 不純物を効 率良く移動させることができ、 高純度化処理を効果的に行うことができる。
また、 ガラス管 1 0 6内に局在させた不純物は、 研削加工等の機械的手段や、 フッ酸を使用したエッチング処理等の化学的手段を用いることによって、 ガラス 管 1 0 6の外周部分を所望の深さまで除去し、 適宜取り除くことができる。
また、 ガラス管 1 0 6に発生させる電圧勾配の大きさにより、 ガラス管 1 0 6 の外周部分に局在させた不純物を外周面から外方へ拡散させることも可能である また、 図 1 8に示した態様では、 発熱体 1 4 1とガラス管 1 0 6との間に空間 1 4 3を設け、 電極である発熱体 1 4 1とガラス管 1 0 6とが非接触状態である 力 これらを接触させても良い。 すなわち、 図 1 9に示すように、 穿孔されたガ ラス管 1 0 6の外周面が発熱体 1 4 1の内周面に接触するように、 発熱体 1 4 1 の内径を設定する。 このような構成により、 穿孔されつつ外径が大きくなつたガ ラス管 1 0 6に対して、 ガスを用いなくとも、 外周側と内周側の両方から直接に 電圧を印加することができ、 高純度化を効果的に行うことができる。 さらに、 ガ ス供給手段を設ける必要もない。
また、 発熱体 1 4 1の内径を、 得ようとするガラス管 1 0 6の外径と同じ寸法 に設定しておくと、 ガラス管 1 0 6の外径を所望の大きさに成形することができ る。
また、 この場合には、 発熱体 1 4 1に駒 1 3 1と同様の表面処理を施しておく と、 ガラス管 1 0 6に対して不純物を混入させてしまうことを防止できる。
なお、 本実施形態では、 不純物をガラス管の外周側に局在させる態様について 述べたが、 内周側に局在させることもできる。 すなわち、 発熱体 1 4 1を陽極と して、 駒 1 3 1を陰極とする。 この場合に発生する電圧勾配は、 ガラス管 1 0 6 の外周側から内周側に向かって、 電位がプラスからマイナスに変化する負の勾配 となる。
駒 1 3 1を陰極とした場合には、 陽イオンである不純物が駒 1 3 1内に留まり やすくなる。 そのため、 駒 1 3 1からガラス管 1 0 6に不純物が混入することを 防止できる。 そして、 ガラス体 1 0 3内に混入していた不純物を、 ガラス管 1 0 6の内周部分に局在させるとともに、 駒 1 3 1に吸収させることができる。
このように、 内周部分に不純物を局在させた場合も、 必要に応じてガラス管 1 0 6の内周部分を所望の深さまで除去し、 ガラス管 1 0 6から不純物を取り除く ことができる。
また、 不純物を吸収させた駒 1 3 1は、 再生化処理を行うことが好ましい。 例 えば、 加熱空間を塩素ガスの雰囲気とした加熱炉を用いて駒 1 3 1を加熱して、 駒 1 3 1内に含まれた陽イオンの不純物を塩素ガス中に拡散させることで、 再生 化することができる。
以上、 発熱体と穿孔治具とを電極として利用する態様について述べたが、 本発 明においては、 電極として他の部材を用いることも可能である。 以下にその態様 について説明する。
(第 8実施形態) この第 8実施形態では、 穿孔治具に設けた電極用部材を電極として利用する態 様について説明する。
本実施形態で用いられるガラス管の製造装置の構成は、 図 1 7に示したガラス 管の製造装置 1 0 1とほぼ同様である。 本実施形態の要部について、 図 2 0を参 照して説明する。
図 2 0に示すように、 本実施形態にて使用する穿孔治具 1 3 0 aは、 駒 1 3 1 の後方 (図中右方) の近傍位置に、 電極となる電極用部材 1 3 3が設けられてい る。 この電極用部材 1 3 3は、 支持ロッド 1 3 2に固定された円筒状の形状をな し、 その外径は、 駒 1 3 1とほぼ同等である。 また、 電極用部材 1 3 3の材質は 、 上述した駒 1 3 1と同様であり、 好ましくは駒 1 3 1と同様の表面処理が施さ れている。
本実施形態では、 駒 1 3 1に直流電源を接続する代わりに、 この電極用部材 1 3 3に直流電源が接続されている。 したがって、 電極用部材 1 3 3は、 穿孔した ガラス管 1 0 6との接触によって、 ガラス管 1 0 6の内周側に電圧を印加するこ とができる。
このように構成された電極用部材 1 3 3は、 電極としての機能を有するととも に、 軟化しているガラス管 1 0 6の内径を維持するように作用する。 また、 電極 用部材 1 3 3の表面に、 炭化ケィ素等の被膜層を形成しておけば、 ガラス管 1 0 6に不純物を混入させることもない。
ガラスロッド 1 0 3に駒 1 3 1を圧入する際には、 漸次成形されるガラス管 1 0 6に対して、 発熱体 1 4 1及ぴ電極用部材 1 3 3から電圧を印加する。 このと き、 発熱体 1 4 1と電極用部材 1 3 3の電位が異なる極となるように設定する。 これにより、 ガラス管 1 0 6の径方向に電圧勾配を発生させることができる。 図 2 0に示すように、 発熱体 1 4 1を陰極として、 電極用部材 1 3 3を陽極と すると、 ガラス管 1 0 6の内周側から外周側に向かって、 電位がプラスからマイ ナスに変化する負の電圧勾配が発生する。 この場合、 ガラス管 1 0 6の外周部分 に不純物が局在する。
また、 図 2 0とは逆に、 発熱体 1 4 1を陽極として、 電極用部材 1 3 3を陰極 とすることもできる。 この場合、 ガラス管 1 0 6の内周部分に不純物が局在する ここで、 電極用部材 1 3 3を陰極とした際に、 駒 1 3 1にも電圧が印加されて 陰極として作用することがある。 その場合、 不純物が駒 1 3 1に吸収されてしま う。 そのため、 駒 1 3 1を非導電性の材質で構成すると良い。 または、 電極用部 材 1 3 3と駒 1 3 1との間に位置する支持口ッド 1 3 2の一部分を、 非導電性の 材質で構成しても良い。 非導電性の材料は、 チッ化ホウ素、 ジルコニァ、 セラミ ックス等を用いることができる。
これにより、 不純物を電極用部材 1 3 3のみで吸収させることができるため、 駒 1 3 1を不純物により汚染させることがない。 汚染された電極用部材 1 3 3は 、 支持ロッド 1 3 2から外して、 新たな部材と交換するか、 再生化処理すると良 い。 これにより、 メンテナンスを容易に行うことができる。
また、 本実施形態においては、 電極用部材 1 3 3の外径を駒 1 3 1より小さく して、 ガラス管 1 0 6の内周面と電極用部材 1 3 3とを離反させるように構成す ることもできる。 その場合、 上述したようなガスをガラス管 1 0 6内に供給する と良い。
また、 第 7実施形態と同様に、 本実施形態においても、 図 1 9に示したように 発熱体 1 4 1をガラス管 1 0 6に接触させても良い。
(第 9実施形態)
この第 9実施形態では、 加熱炉内に設けた炉心管を電極として利用する態様に ついて説明する。
図 2 1に示すように、 本実施形態で用いられる加熱炉 1 4 0 aは、 発熱体 1 4 1の内周側の空間に、 円筒状の炉心管 1 4 4が設けられている。 この炉心管 1 4 4と成形されるガラス管 1 0 6との間には、 空間 1 4 5が設けられている。 また 、 炉心管 1 4 4の材質はカーボン等を用いることができる。
本実施形態では、 発熱体 1 4 1に直流電源を接続する代わりに、 この炉心管 1 4 4に直流電源が接続されている。 したがって、 炉心管 1 4 4は、 ガラス管 1 0 6の外周側に電圧を印加することができる。 また、 電圧を印加する際に空間 1 4 5内にガスを供給すると良い。
このような構成により、 炉心管 1 4 4及び駒 1 3 1を電極として利用し、 ガラ ス管 1 0 6の径方向に電圧勾配を発生させることができる。
したがって、 第 7実施形態の場合と同じく、 成形するガラス管 1 0 6を高純度 化することができる。 また、 炉心管 1 4 4が汚染された場合には、 その炉心管 1 4 4を交換または再生化処理することによってメンテナンスを行うことが容易で める。
(第 1 0実施形態)
この第 1 0実施形態では、 加熱炉内に設けたダイスを電樺として利用する態様 について説明する。
図 2 2に示すように、 本実施形態で用いられる加熱炉 1 4◦ bは、 発熱体 1 4 1の内周に、 ダイス 1 4 6が設けられている。 このダイス 1 4 6は、 上述した駒 1 3 1と同様に、 ガラス管 1 0 6に不純物を混入させないように構成された黒鉛 からなつている。 本実施形態では、 発熱体 1 4 1の代わりに、 ダイス 1 4 6に直 流電源が接続されている。 したがって、 ダイス 1 4 6及び駒 1 3 1を電極として 利用し、 ガラス管 1 0 6の径方向に電圧勾配を発生させることができる。
このとき、 ダイス 1 4 6と駒 1 3 1は、 ガラス管 1 0 6と接触した状態にある ため、 上記の実施形態のようにガスを用いなくとも、 ガラス管 1 0 6に対して効 率的に電圧を作用させることができる。 また、 ガス供給手段を設ける必要もない また、 ダイス 1 4 6を設けたことにより、 駒 1 3 1によってガラスロッド 1 0 3を穿孔しながら、 ガラス管 1 0 6の外径を所望の大きさに成形することができ る。
したがって、 ガラス管 1 0 6を精度良く成形するとともに、 効率的に高純度化 することができる。
(第 1 1実施形態)
この第 1 1実施形態では、 ガラス管の外周面の外側に設けた少なくとも一対の 電極からガラス管に電圧を印加する態様について説明する。 図 2 3に示すように、 本実施形態で用いられるガラス管の製造装置は、 加熱炉 1 4 0の内側に、 ガラス管 1 0 6の外周を挟むように対向して配置された一対の 電極 1, 2が設けられている。 これら電極 1 , 2は、 上述した高純度化方法で説 明した電極 1, 2と同様の材質で形成されており、 ガラス管 1 0 6に接触する面 力 ガラス管 1 0 6の外周面と同様の曲率で湾曲した形状となっている。 本実施 形態において、 電極は、 例えば図 2から図 5を参照して説明した第 1実施形態ま たは第 2実施形態と同様の態様で用いられる。 すなわち、 ガラス管を製造しつつ 、 その内部に含まれた不純物を外周の一部分に偏在化させて、 高純度化を行うこ とができる。
(第 1 2実施形態)
この第 1 2実施形態では、 ガラス体の長手方向の第 1端面及び第 2端面に接触 して配置された電極からガラス体に電圧を印加する態様について説明する。
図 2 4に示すように、 本実施形態で用いられるガラス管の製造装置 1 0 1 aは 、 第 5実施形態で説明した第 6の高純度化装置 5 0 0 (図 1 4参照) と同様に、 ガラスロッド 1 0 3とダミーパイプ 1 0 4からなるガラス体の長手方向の両端面 の外側に、 電極 6 5 , 6 6が設けられている。 これら電極 6 5, 6 6は、 第 5実 施形態の場合とほぼ同様の構成であり、 使用方法も第 5実施形態の場合と同様で ある。 すなわち、 穿孔治具 1 3 0によって穿孔を行う際に、 ガラス管 1 0 6の長 手方向に電圧を印加して、 長手方向の電圧勾配を発生させる。 これにより、 陰極 側に不純物を偏在させて、 ガラス管 1 0 6の製造とともに高純度化を行うことが できる。
また、 上記の全ての実施形態において、 電極は、 ガラス体 (もしくはガラス管 ) に対して接触させても、 させなくても良い。 電極を接触させた場合には、 ガス を用いる必要がなく、 また、 陰極が接触した部分の少なくとも縁部を除去すると 良い。 電極を接触させない場合には、 陰極が配置された側、 すなわち、 電圧勾配 が低くされた側の、 少なくとも縁部を除去すれば良い。 また、 上記の第 7〜第 1 2実施形態において、 電極に印加する電圧等、 高純度化処理の方法及び装置は、 上述した第 1〜第 6実施形態に記载した方法及び装置の構成を適宜用いることが できる。
なお、 上述した第 7〜第 1 2実施形態では、 円柱状のガラス体であるガラス口 ッドに孔あけを行う態様について説明したが、 本発明のガラス管の製造方法は、 円筒状のガラス体であるガラスパイプの孔の内径を拡径する場合についても、 同 様に採用することができる。
また、 加熱炉として、 誘導加熱方式の炉を一例として挙げたが、 抵抗加熱方式 の炉を用いても良い。 本発明を詳細にまた特定の実施態様を参照して説明したが、 本発明の主旨と範 囲を逸脱することなく様々な変更や修正を加えることができることは当業者にと つて明らかである。
本出願は、 2002年 8月 12 日出願の H本特許出願 (特願 2002— 235274)、 2002 年 8月 12日出願の曰本特許出願 (特願 2002— 234563)、 及ぴ 2003年 6月 11 日出 願の日本特許出願 (特願 2003— 166430) に基づくものであり、 その内容はここに 参照として取り込まれる。
<産業上の利用可能性 >
以上の説明から明らかなように、 本発明によれば、 ガラス体の変形を高次元で 抑制しつつ高純度化を実施できるガラス体の高純度化方法及び高純度ガラス体、 さらには高純度のガラス管を得ることのできるガラス管の製造方法及び装置を提 供することができる。

Claims

請 求 の 範 囲
1 . 円柱形状または円筒形状のガラス体の長手方向の少なくとも一部分に 対して、 外周面の外側に配置された少なくとも一対の電極から、 前記ガラス体の 略径方向に電圧を印加するガラス体の高純度化方法。
2 . 前記電極は、 前記ガラス体の円周方向に、 陽極と陰極とをそれぞれ複 数配置し、 各前記陽極及び各前記陰極の電位をそれぞれ設定する請求の範囲第 1 項に記載のガラス体の高純度化方法。
3 . 前記ガラス体と、 前記電極とを、 前記ガラス体の円周方向に相対的に 揺動させる請求の範囲第 1項または第 2項に記載のガラス体の高純度化方法。
4 . 前記電圧を印加した後に、 前記ガラス体の外周面から所定深さまでの 領域を除去する表面除去工程を有する請求の範囲第 1項から第 3項の何れか 1項 に記載のガラス体の高純度化方法。
5 . 円筒形状のガラス体を、 その中心軸を回転軸として 1 r p m以上 1 0 0 r p m以下の範囲内の回転速度で回転させながら、 前記ガラス体の長手方向の 少なくとも一部分に対して、 前記ガラス体の外周面側と内周面側とに配置された 電極から、 前記ガラス体の略径方向に電圧を印加するガラス体の高純度化方法。
6 . 前記円筒形状のガラス体を、 その中心軸を回転軸として 1 r p m以上 2 0 r p m以下の範囲内の回転速度で回転させながら、 前記電圧を印加する請求 の範囲第 5項に記載のガラス体の高純度化方法。
7 . 前記電圧の電圧勾配を、 前記ガラス体の内周面側から外周面側に向け て負の勾配とするとともに、 前記電圧を印加した後に、 前記ガラス体の外周面か ら所定深さまでの領域を除去する表面除去工程を有する請求の範囲第 5項または 第 6項に記載のガラス体の高純度化方法。
8 . 前記電圧の電圧勾配を、 前記ガラス体の外周面側から内周面側に向け て負の勾配とするとともに、 前記電圧を印加した後に、 前記ガラス体の内周面か ら所定深さまでの領域を除去する表面除去工程を有する請求の範囲第 5項または 第 6項に記載のガラス体の高純度化方法。
9 . 前記ガラス体の有効部の長手方向全体に対して、 同時に電圧を印加す る、 請求の範囲第 1項から第 8項の何れか 1項に記載のガラス体の高純度化方法
1 0 . 前記ガラス体に対して、 長手方向に順次前記電圧を印加する、 請求 の範囲第 1項から第 8項の何れか 1項に記載のガラス体の高純度化方法。
1 1 . 前記ガラス体に対して、 長手方向に順次前記電圧を印加しつつ、 前 記電圧を印加した箇所を順次冷却する請求の範囲第 1 0項に記載のガラス体の高 純度化方法。
1 2 . 前記ガラス体の有効部の長手方向の長さが 5 0 O mm以上である請 求の範囲第 1項から第 1 1項の何れか 1項に記載のガラス体の高純度化方法。
1 3 . 円柱形状または円筒形状のガラス体の長手方向の第 1端面及び第 2 端面の外側に配置された電極から、 前記ガラス体の長手方向に電圧を印加するガ ラス体の高純度化方法。
1 4 . 前記電圧の電圧勾配を、 前記ガラス体の第 1端面から第 2端面に向 かう方向で負の勾配とするとともに、 前記電圧を印加した後に、 前記ガラス体の 第 2端面から所定深さまでの領域を除去する端部除去工程を有する請求の範囲第 1 3項に記載のガラス体の高純度化方法。
1 5 . 前記ガラス体の有効部の長手方向の長さが 5 0 O mm未満である請 求の範囲第 1 3項または第 1 4項に記載のガラス体の高純度化方法。
1 6 . 前記電極を前記ガラス体に接触させずに、 電圧を印加する請求の範 囲第 1項から第 1 5項の何れか 1項に記載のガラス体の高純度化方法。
1 7 . 前記電極の少なくとも一部を前記ガラス体に接触させた状態で、 電 圧を印加する請求の範囲第 1項から第 1 5項の何れか 1項に記載のガラス体の高 純度化方法。
1 8 . 前記円柱形状の前記ガラス体の、 前記電圧を印加する部分を、 1 4 5 0 °C未満の温度になるように加熱して、 前記電圧を印加する請求の範囲第 1項 から第 4項, 第 1 3項から第 1 5項の何れか 1項に記載のガラス体の高純度化方 法。
1 9. 前記ガラス体の前記電圧を印加する部分を、 1 300°C未満の温度 になるように加熱して、 前記電圧を印加する請求の範囲第 1項から第 1 7項の何 れか 1項に記載のガラス体の高純度化方法。
20. 前記ガラス体の前記電圧を印加する部分を、 450°C以上の温度に なるように加熱して、 前記電圧を印加する請求の範囲第 1 8項または第 1 9項に 記載のガラス体の高純度化方法。
2 1. 前記ガラス体の前記電圧を印加する部分を、 600°C以上の温度に なるように加熱して、 前記電圧を印加する請求の範囲第 18項または第 1 9項に 記載のガラス体の高純度化方法。
22. 前記ガラス体の前記電圧を印加する部分を、 900°C以上の温度に なるように加熱して、 前記電圧を印加する請求の範囲第 18項または第 1 9項に 記載のガラス体の高純度化方法。
23. 前記ガラス体の有効部に含まれる不純物陽イオンの含有濃度を 0. 0 1重量 p pm以下にする、 請求の範囲第 1項から第 22項の何れか 1項に記載 のガラス体の高純度化方法。
24. 請求の範囲第 1項から第 1 2項の何れか 1項に記載のガラス体の高 純度化方法により高純度化処理を施した、 外径 10 Omm以上かつ有効部の長手 方向の長さが 50 Omm以上である高純度ガラス体。
25. 請求の範囲第 1 3項から第 1 5項に記載のガラス体の高純度化方法 により高純度化処理を施した、 外径 10 Omm以上かつ有効部の長手方向の長さ が 50 Omm未満である高純度ガラス体。
26. 前記ガラス体の有効部における、 不純物陽イオンの含有濃度が、 0 . 01重量!) pm以下である請求の範囲第 24項または第 25項に記載の高純度 ガラス体。
27. 円柱形状または円筒形状のガラス体を加熱して軟化させ、 前記ガラ ス体の前記軟化した領域に穿孔治具を接触させることで、 前記ガラス体を漸次ガ ラス管に成形するガラス管の製造方法において、
前記穿孔治具を前記ガラス体に接触させる際に、 前記ガラス体の外周面の外側 に設けた少なくとも一対の電極から前記ガラス管に電圧を印加して、 前記ガラス 管の略径方向に電圧勾配を発生させるガラス管の製造方法。
2 8 . 円柱形状または円筒形状のガラス体を加熱して軟化させ、 前記ガラ ス体の前記軟化した領域に穿孔治具を接触させることで、 前記ガラス体を漸次ガ ラス管に成形するガラス管の製造方法において、
前記穿孔治具を前記ガラス体に接触させる際に、 前記穿孔治具と前記ガラス体 の外周側、 または、 前記ガラス管の内周側と外周側に電圧を印加して、 前記ガラ ス体または前記ガラス管の径方向に電圧勾配を発生させるガラス管の製造方法。
2 9 . 円柱形状または円筒形状のガラス体を加熱して軟化させ、 前記ガラ ス体の前記軟化した領域に穿孔治具を接触させることで、 前記ガラス体を漸次ガ ラス管に成形するガラス管の製造方法において、
前記穿孔治具を前記ガラス体に接触させる際に、 前記ガラス体の長手方向の第 1端面及び第 2端面の外側に配置された電極から、 前記ガラス体に電圧を印加し て、 前記ガラス管の長手方向に電圧勾配を発生させるガラス管の製造方法。
3 0 . 前記ガラス管の成形の後、 前記ガラス管における前記電圧勾配が低 くされた側の少なくとも縁部を除去する、 請求の範囲第 2 7項から第 2 9項の何 れか 1項に記載のガラス管の製造方法。
• 3 1 . 円柱形状または円筒形状のガラス体の周囲に配置された発熱体と、 前記発熱体により加熱された前記ガラス体に接触させる穿孔治具とを備え、 前記 接触により前記ガラス体を漸次ガラス管に成形するガラス管の製造装置において 前記ガラス体の外周面の外側に少なくとも一対の電極を備えているガラス管の
3 2 . 円柱形状または円筒形状のガラス体の周囲に配置された発熱体と、 前記発熱体により加熱された前記ガラス体に接触させる穿孔治具とを備え、 前記 接触により前記ガラス体を漸次ガラス管に成形するガラス管の製造装置において 前記穿孔治具が電極であるとともに前記ガラス体の外周側に電極を備えている か、 または、 前記ガラス管の内周側と外周側に電極を備えているガラス管の製造
3 3 . 円柱形状または円筒形状のガラス体の周囲に配置された発熱体と、 前記発熱体により加熱された前記ガラス体に接触させる穿孔治具とを備え、 前記 接触により前記ガラス体を漸次ガラス管に成形するガラス管の製造装置において 前記ガラス体の長手方向の両端面の外側に少なくとも一対の電極を備えている ガラス管の製造装置。
3 4 . 前記穿孔治具は、 少なくとも前記ガラス体に 触する部分が、 炭化 ケィ素、 熱分解炭素、 金属炭化物のいずれかを含有するように表面処理されてい る、 請求の範囲第 3 1項から第 3 3項の何れか 1項に記載のガラス管の製造装置
PCT/JP2003/010149 2002-08-12 2003-08-08 ガラス体の高純度化方法及び、高純度ガラス体ならびに、ガラス管の製造方法及び装置 WO2004016556A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/501,523 US20050081565A1 (en) 2002-08-12 2003-08-08 Method of producing higher-purity glass element, high-purity glass element, and production method and device for glass tube
EP03788064A EP1529759A1 (en) 2002-08-12 2003-08-08 Method of producing higher-purity glass element, high-purity glass element, and production method and device for glass tube

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002234563A JP2004075412A (ja) 2002-08-12 2002-08-12 ガラス管の製造方法及び製造装置
JP2002235274 2002-08-12
JP2002/235274 2002-08-12
JP2002/234563 2002-08-12
JP2003166430A JP2004131367A (ja) 2002-08-12 2003-06-11 ガラス体の高純度化方法及び高純度ガラス体
JP2003/166430 2003-06-11

Publications (1)

Publication Number Publication Date
WO2004016556A1 true WO2004016556A1 (ja) 2004-02-26

Family

ID=31891903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010149 WO2004016556A1 (ja) 2002-08-12 2003-08-08 ガラス体の高純度化方法及び、高純度ガラス体ならびに、ガラス管の製造方法及び装置

Country Status (5)

Country Link
US (1) US20050081565A1 (ja)
EP (1) EP1529759A1 (ja)
KR (1) KR20050027086A (ja)
CN (1) CN1615279A (ja)
WO (1) WO2004016556A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8820119B2 (en) 2005-05-16 2014-09-02 Nipro Corporation Vial and method for producing the same
US7946135B2 (en) * 2007-01-02 2011-05-24 Draka Comteq, B.V. Extended-baking process for glass deposition tubes
CN101811819B (zh) * 2010-04-16 2011-11-16 李秀山 制造大口径玻璃管的模具和利用该模具制造玻璃管的方法
WO2012085619A1 (en) * 2010-12-20 2012-06-28 Becton Dickinson France Tool for forming medical glass containers free of contamination by a foreign element
JP2012153562A (ja) * 2011-01-26 2012-08-16 Shin-Etsu Chemical Co Ltd 光ファイバ及び光ファイバ用プリフォームの製造方法
CN112341006B (zh) * 2020-10-13 2022-12-23 江苏太平洋石英股份有限公司 石英管/棒的高纯度化方法、装置、石英管/棒及用途
CN113651526B (zh) * 2021-08-02 2023-02-10 富通集团(嘉善)通信技术有限公司 芯棒的加工工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002919A1 (en) * 1984-11-05 1986-05-22 Tsl Thermal Syndicate P.L.C. Vitreous silica
WO1990002103A1 (en) * 1988-08-18 1990-03-08 Tsl Group Plc Vitreous silica articles
JPH08104532A (ja) * 1994-10-04 1996-04-23 Nikon Corp 石英ガラスの熱処理方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2120467T3 (es) * 1992-11-19 1998-11-01 Shinetsu Quartz Prod Procedimiento para fabricar un tubo de vidrio de cuarzo de gran tamaño, una preforma y una fibra optica.
US5599144A (en) * 1995-06-23 1997-02-04 International Business Machines Corporation Low friction flute tungsten carbon microdrill

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986002919A1 (en) * 1984-11-05 1986-05-22 Tsl Thermal Syndicate P.L.C. Vitreous silica
WO1990002103A1 (en) * 1988-08-18 1990-03-08 Tsl Group Plc Vitreous silica articles
JPH08104532A (ja) * 1994-10-04 1996-04-23 Nikon Corp 石英ガラスの熱処理方法

Also Published As

Publication number Publication date
US20050081565A1 (en) 2005-04-21
EP1529759A1 (en) 2005-05-11
CN1615279A (zh) 2005-05-11
KR20050027086A (ko) 2005-03-17

Similar Documents

Publication Publication Date Title
JP5176274B2 (ja) 光ファイバとその製造方法
EP1924431A2 (en) Fused silica body and thermal reflow of glass
WO2004016556A1 (ja) ガラス体の高純度化方法及び、高純度ガラス体ならびに、ガラス管の製造方法及び装置
CN1261379C (zh) 玻璃管的制造方法和制造装置
CN106348584B (zh) 通过蚀刻和塌缩沉积管制备初级预制品的方法
WO2002085804A1 (fr) Procede de decoupe de verre et dispositif correspondant
JP2004131367A (ja) ガラス体の高純度化方法及び高純度ガラス体
CN106927686B (zh) 蚀刻初级预制品的方法及由此得到的蚀刻初级预制品
JP4455490B2 (ja) 石英ガラス管の製造方法および製造装置
JP3576873B2 (ja) 光ファイバ母材の製造方法
JP2004075412A (ja) ガラス管の製造方法及び製造装置
JP3912528B2 (ja) ガラス管の製造方法および製造装置
JP4886316B2 (ja) 石英ガラスインゴットの製造方法および製造装置
WO2005090247A1 (ja) 空孔ファイバ用ガラス母材の製造方法、空孔ファイバ及びその製造方法
JP4804796B2 (ja) 光ファイバ用母材の製造方法
JP2006169049A (ja) 光ファイバ母材の延伸方法及びこれに用いる石英ダミー棒
JP2005324986A (ja) ガラス体の高純度化方法
JP4329935B2 (ja) 石英ガラス管の製造方法および製造装置
JP3810235B2 (ja) 石英ガラスの製造方法及びその製造装置
JP2005097064A (ja) ガラス管の製造方法およびこれに用いられるガラス管の製造装置
JP4325888B2 (ja) 偏心中空ウエハ保持棒と該保持棒を用いたウエハ保持装置の製造方法
JP4464321B2 (ja) 石英ガラス棒の製造方法及び製造装置
JP4251274B2 (ja) 二層構造を有する石英ガラスの管および棒の製造方法
JP2004075405A (ja) ガラス管の製造方法
WO2008038298A2 (en) A process for preparing a mandrel for producing flawless optical fiber preform and a preform produced therefrom

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1508/CHENP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020047010613

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003788064

Country of ref document: EP

Ref document number: 20038020696

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10501523

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020047010613

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003788064

Country of ref document: EP