WO2004013559A1 - Flachrohr-wärmeübertrager - Google Patents

Flachrohr-wärmeübertrager Download PDF

Info

Publication number
WO2004013559A1
WO2004013559A1 PCT/EP2003/008251 EP0308251W WO2004013559A1 WO 2004013559 A1 WO2004013559 A1 WO 2004013559A1 EP 0308251 W EP0308251 W EP 0308251W WO 2004013559 A1 WO2004013559 A1 WO 2004013559A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fin
rib
exchanger according
corrugated
Prior art date
Application number
PCT/EP2003/008251
Other languages
English (en)
French (fr)
Inventor
Rainer Richter
Gerrit WÖLK
Ralf Bochert
Wolfgang Kramer
Martin Kaspar
Arnold Rehm
Original Assignee
Behr Gmbh & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. filed Critical Behr Gmbh & Co.
Priority to EP03766307.7A priority Critical patent/EP1527311B1/de
Priority to US10/522,920 priority patent/US7882708B2/en
Priority to JP2004525328A priority patent/JP2005534888A/ja
Priority to AU2003255295A priority patent/AU2003255295A1/en
Priority to BR0305705-4A priority patent/BR0305705A/pt
Publication of WO2004013559A1 publication Critical patent/WO2004013559A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0094Radiators for recooling the engine coolant

Definitions

  • the invention relates to a heat exchanger, in particular for motor vehicles, with a soldered heat transfer network consisting of flat tubes and corrugated fins, according to the preamble of patent claim 1, known from US Pat. No. 5,271,458.
  • the flat tube is replaced by a liquid and / or vaporous medium, eg. B.
  • Coolant or refrigerant flows through, which dissipates its heat to the ambient air or absorbs heat from the ambient air.
  • two very different heat capacity flows are in heat exchange with each other.
  • additional measures must be taken on the air side to improve the heat transfer there. This is done by arranging corrugated fins between the flat tubes, which increases the heat exchange area on the air side.
  • the surface of the corrugated fins is slotted, that is, covered with gills, which break up the boundary layer flows that form and a deflection of the air flow from one flow channel to the other and thus an extension of the flow path for the air.
  • corrugated ribs there are basically two different types of corrugated ribs, the so-called V-type with rib surfaces arranged at an angle to one another, known from US Pat. No. 3,250,325.
  • the second embodiment of the corrugated fin is the so-called U-type, in which the fin surfaces and thus the gills arranged on them are aligned parallel to one another - this U-type was known from US Pat. No. 5,271,458. From a thermodynamic point of view, the U-type has several advantages over the V-type, namely a relatively even flow through the roughly rectangular rib channel, a uniform flow deflection through the gills, a higher air throughput and thus a higher heat transfer performance.
  • the V-type is more advantageous because with a constant rib bending radius for the shaft crest, different rib densities can be produced by gathering or pulling the corrugated strip apart.
  • the so-called parallel rib is also determined by the bending radius of the wave crest, the rib density or the rib spacing.
  • Another disadvantage of the known parallel rib is that the gill length is dependent on the rib bending radius, i. H. the larger the radius, the shorter the gill, which has a negative impact on performance.
  • the well-known wave crest formed by a constant curvature is replaced by an arch piece which is composed of three sections of different curvatures: the middle section has a comparatively small curvature, ie , H. it is almost flat and is therefore largely against the outer surface of the pipe wall.
  • the radius of curvature of the arc piece is preferably greater in the central region than a rib height RH of the corrugated fin, particularly preferably 5 to 15 times the rib height RH.
  • a middle section is adjoined by two outer sections with relatively large curvatures, it being possible for the two curvatures to be borrowed differently, so that the entire arch piece has an asymmetrical course to the central plane.
  • a first outer section preferably has a radius of curvature R2 which is less than half a rib height RH of the corrugated fin, particularly preferably 3 to 20% of the rib height RH.
  • a radius of curvature R3 of the second outer section of the curved piece is preferably at least as large as the radius of curvature R2 of the first outer section.
  • This rib geometry in particular that of the curved piece, can be produced relatively easily on conventional rib rollers.
  • the advantages of a parallel or rectangular rib are retained, ie a relatively wide soldering area with good heat transfer and possibly one large gill length, which extends almost over the entire height of the ribs. If the rib surfaces deviate somewhat (up to about 6 degrees) from the parallelism, in which case they can still be regarded as essentially parallel within the scope of the invention, the thermodynamic advantages of the parallel rib are hardly affected.
  • the rib geometry according to the invention can be used in particular in motor vehicle heat exchangers such as coolant coolers, radiators, condensers and evaporators.
  • the rib surfaces are covered with gills, which preferably have a gill depth LP in a range from 0.5 to 1.5 mm, particularly advantageously in a range from 0.7 to 1.1 mm, with a gill angle between 20 and 35 degrees, particularly advantageously between 24 and 30 degrees.
  • gills act antesstei- hesitantly, because thereby the deflection of the air is improved by a channel in the neighboring, in turn resulting in a longer flow path for 'results in the air.
  • the gill depth is . in the range of 0.9 to 1.1 mm with a gill angle of 23 to 30 degrees, favorable for a pipe / fin system with a depth of 40 to 52 mm and a fin density of 45 to 65 fins / dm, which means a fin spacing of 1.538 corresponds to up to 2.222 mm.
  • the rib height for such a system is advantageously 7 to 9 mm.
  • FIG. 3 shows a further longitudinal section in the plane III-III according to FIG. 2.
  • Fig. 1 shows a so-called parallel rib 1, the flat tubes shown only partially between two 2, 3 extends.
  • the parallel or corrugated fin 1 and the flat tubes 2, 3 form a soldered network, not shown, of a heat exchanger, for.
  • B. a coolant cooler for cooling an internal combustion engine of a motor vehicle or a condenser for a motor vehicle air conditioning system.
  • the corrugated fin 1 has in each case two mutually parallel, flat ribs surfaces 4, 5, which are "connected by an arc stucco 6.
  • the sheet stucco 6 located respectively on the flat tubes 2, 3 and is soldered to them.
  • the planar rib surfaces 4, 5 are equipped with gills 7 which have a longitudinal extension LL
  • the corrugated fin 1 has a fin height RH which is greater than the gill length LL
  • the fin surfaces 4, 5, the arch piece 6 and the tube wall 2, 3 each form an approximately rectangular fin channel 8
  • the corrugated fin 1 has a specific fin density, which is characterized by the fin pitch, ie the dimension FP.
  • All three sections are formed by radii, the middle section having a relatively large radius R1 of approximately 50 to 70 mm.
  • the two outer radii R2 and R3 are considerably smaller, ie the radius R2 is in the range from 0.4 to 0.6 mm, while the radius R3 is greater than or equal to the radius R2.
  • R3 is in the range of 0.6 to 1.1 or 1.3 mm.
  • Fig. 2 shows a longitudinal section in the plane 11-11, i. H. through the rib channel 8.
  • the rib surface 5 has a gill field 9, which is composed of a plurality of individual gills 7.
  • the rib 5 has a rib depth RT, i. H. an extension in the air flow direction X.
  • Fig. 3 shows a section in the plane III-III in Fig.2, i. H. through the gill area 9 of the rib surface 5.
  • the gill area consists of front gills 7a rising to the right in the drawing, a central roof-shaped double gill 7b and rear gills 7c falling to the right.
  • the gills 7a, 7b, 7c are each inclined at a gill angle ⁇ .
  • gills 7a, 7c have a dimension LP which is referred to as the gill depth.
  • the boundary layer of the air flow in the rib channels is broken up by the gills 7 and deflected from one rib channel 8 into the adjacent rib channel. This results in a longer flow path for the air flow, which increases the heat transfer.
  • the deflection of the air flow depends on the gill angle ⁇ and the gill depth LP.
  • the first embodiment relates to a condenser for an air conditioning system of a motor vehicle.
  • the flat tubes of the condenser are thus of refrigerant, e.g. B. flows through R 134a.
  • a heat exchanger network consisting of flat tubes and a parallel fin with the following dimensions is provided for such a condenser: Fin depth RT: 12 ⁇ RT ⁇ 20 mm.
  • Rib pitch FP 1.33 mm ⁇ FP ⁇ 1.818 mm, corresponding to a rib density of 55 to 75 ribs / dm, gill angle ⁇ : 24 ° ⁇ ⁇ 30 °, gill length LL: 6.4 mm ⁇ LL ⁇ 7.2 mm, rib height RH: 6 mm ⁇ RH ⁇ 10 mm, plank depth LP: 0.7 mm ⁇ LP ⁇ 1, 1 mm,
  • Ratio of Kienentiefe LP to rib pitch FP 0.385 ⁇ LP / FP ⁇ 0.825, radius of curvature R1 of the middle section of the elbow:
  • a parallel fin system with the aforementioned dimensions is superior to a conventional rib system with a V-shaped rib in many respects, namely with regard to the air flow rate, the flow deflection, the homogenization of the flow speed and temperature profile and thus the heat transfer performance.
  • Rib pitch FP 1, 538 ⁇ FP ⁇ 2.222 mm, corresponding to a rib density of 45 to 65 ribs / dm
  • This system which is much deeper than the first embodiment, also brings a significant increase in performance compared to a comparable V-rib.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmeübertrager, insbesondere für Kraftfahrzeuge, mit einem aus Flachrohren (2, 3) und Wellrippen (1) bestehenden, gelöteten Wärmeübertragernetz, wobei die Flachrohre (2, 3) von einem flüssigen und/oder dampfförmigen Medium durchströmbar und die Wellrippen von Luft umströmbar sind, wobei die eine Wellrippe jeweils zwei im Wesentlichen parallel zu einander angeordnete Rippenflächen (4, 5) aufweist, die jeweils durch ein mit einem Flachrohr verlötetes Bogenstück (6) verbunden sind, das drei Abschnitte (6a, 6b, 6c) mit unterschiedlicher Krümmung aufweist.

Description

Flach rohr-Wärmeübertrager
Die Erfindung betrifft einen Wärmeübertrager, insbesondere für Kraftfahrzeuge, mit einem aus Flachrohren und Wellrippen bestehenden, gelöteten Wärmeübertragemetz nach dem Oberbegriff des Patentanspruches 1 , bekannt durch die US-A 5,271 ,458.
Bei den bekannten Wärmeübertragern für Kraftfahrzeuge wie Kühlmittelkühlern, Heizkörpern, Kondensatoren und Verdampfern werden die Flach- röhre von einem flüssigen und/oder dampfförmigen Medium, z. B. einem
Kühlmittel oder Kältemittel durchströmt, welches seine Wärme an die Umgebungsluft abführt oder Wärme aus der Umgebungsluft aufnimmt. Insofern stehen zwei sehr unterschiedliche Wärmekapazitätsströme miteinander in Wärmeaustausch. Um ein Gleichgewicht zwischen beiden Seiten herzustel- len, muss man auf der Luftseite zusätzliche Maßnahmen ergreifen, um dort die Wärmeübertragung zu verbessern. Dies geschieht durch die Anordnung von Wellrippen zwischen den Flachrohren, wodurch die Wärmeaustauschfläche auf der Luftseite vergrößert wird. Darüber hinaus ist die Fläche der Wellrippen geschlitzt, d. h. mit Kiemen besetzt, die die sich bildenden Grenzschichtströmungen aufbrechen und eine Umlenkung der Luftströmung von einem Strömungskanal in den anderen und damit eine Verlängerung des Strömungsweges für die Luft bewirken.
Bei den Wellrippen gibt es grundsätzlich zwei verschiedene Typen, den so genannten V-Typ mit schräg zu einander angeordneten Rippenflächen, bekannt durch die US-A 3,250,325. Die zweite Ausbildungsform der Wellrippe ist der so genannte U-Typ, bei welchem die Rippenflächen und damit auch die auf ihnen angeordneten Kiemen parallel zueinander ausgerichtet sind - dieser U-Typ wurde durch die US-A 5,271 ,458 bekannt. Thermodynamisch gesehen weist der U-Typ einige Vorteile gegenüber dem V-Typ auf, nämlich eine relativ gleichmäßige Durchströmung des etwa rechteckförmigen Rippenkanals, eine gleichmäßige Strömungsumlenkung durch die Kiemen, e nen höheren Luftdurchsatz und damit eine höhere Wärmeübertragungsie stung. Fertigungstechnisch gesehen ist der V-Typ vorteilhafter, weil mit e nem konstanten Rippenbiegeradius für den Wellenkamm durch Raffen oder Auseinanderziehen des Wellbandes verschiedene Rippendichten hergestellt werden können. Beim U-Typ dagegen, d. h. der so genannten Parailelrippe ist durch den Biegeradius des Wellenkammes auch die Rippendichte bzw. der Rippenabstand festgelegt. Nachteilig bei der bekannten Parallelrippe ist ferner, dass die Kiemenlänge abhängig ist vom Rippenbiegeradius, d. h. je größer der Radius ist, desto kürzer fällt die Kieme aus, was sich leistungs- mindemd auswirkt.
Man hat daher vorgeschlagen, den Rippenbiegeradius durch ein flaches Stück zu ersetzten, welches parallel zur Rohrwandung verläuft und mit dieser verlötet ist. Die Herstellung einer solchen rechteck- oder mäanderförmigen Wellrippe ist relativ aufwendig - entsprechende Herstellungsverfahren wurden in der EP-B 0 641 615 und in der EP-A 1 103 316 vorgeschlagen. Diese „Rechteck-Rippe" hat zwar den Vorteil, dass sich die Kiemen fast über die gesamte Rippenhöhe (Abstand von Rohr zu Rohr) erstrecken, allerdings wird dies mit einem hohen Fertigungsaufwand erkauft. Es ist Aufgabe der vorliegenden Erfindung, einen Wärmeübertrager der eingangs genannten Art, insbesondere mit einer Parallelrippe dahingehend zu verbessern, dass die Parallelrippe die Vorteile einer Rechteckform aufweist, die gegebenenfalls große Kiemenlängen erlaubt, jedoch mit relativ geringem Fertigungsaufwand herstellbar ist.
Die Lösung dieser Aufgabe ergibt sich aus den Merkmalen des Patentanspruches 1. Der bekannte, durch eine konstante Krümmung gebildete Wel- lenkamm ist erfindungsgemäß durch ein Bogenstuck ersetzt, welches sich aus drei Abschnitten unterschiedlicher Krümmungen zusammensetzt: Der mittlere Abschnitt hat eine vergleichsweise kleine Krümmung, d. h. er ist fast eben ausgebildet und liegt somit weitestgehend an der Außenfläche der Rohrwand an. Der Krümmungsradius des Bogenstücks ist in dem mittleren Bereich bevorzugt größer als eine Rippenhöhe RH der Wellrippe, besonders bevorzugt das 5- bis 15fache der Rippenhöhe RH.
An diesen mittleren Abschnitt schließen sich zwei äußere Abschnitte mit relativ großen Krümmungen an, wobei die beiden Krümmungen unterschied- lieh sein können, so dass das gesamte Bogenstuck einen asymmetrischen Verlauf zur Mittelebene aufweist. Bevorzugt weist ein erster äußerer Abschnitt einen Krümmungsradius R2 auf, der kleiner als eine halbe Rippenhöhe RH der Wellrippe, besonders bevorzugt 3 bis 20 % der Rippenhöhe RH, ist, Ein Krümmungsradius R3 des zweiten äußeren Abschnitts des Bogen- Stückes ist bevorzugt mindestens so groß wie der Krümmungsradius R2 des ersten äußeren Abschnitts.
Diese Rippengeometrie, insbesondere die des Bogenstückes lässt sich relativ einfach auf herkömmlichen Rippenwalzen herstellen. Darüber hinaus werden die Vorteile einer Parallel- bzw. Rechteckrippe beibehalten, d. h. eine relativ breite Lötfläche mit gutem Wärmeübergang und gegebenenfalls eine große Kiemenlänge, die sich fast über die gesamte Rippenhöhe erstreckt. Wenn die Rippenflächen etwas (bis etwa 6 Grad) von der Parallelität abweichen, wobei sie dann im Rahmen der Erfindung noch als im Wesentlichen parallel anzusehen sind, werden dadurch die thermodynamischen Vorteile der Parallelrippe kaum beeinträchtigt. Die erfindungsgemäße Rippengeometrie ist insbesondere bei Kraftfahrzeug-Wärmeübertragern wie Kühlmittelkühlern, Heizkörpern, Kondensatoren und Verdampfern anwendbar.
Nach einer vorteilhaften Weiterbildung der Erfindung sind die Rippenflächen mit Kiemen besetzt, die bevorzugt eine Kiementiefe LP in einem Bereich von 0,5 bis 1 ,5 mm, besonders vorteilhaft in einem Bereich von 0,7 bis 1 ,1 mm, bei einem Kiemenwinkel zwischen 20 und 35 Grad, besonders vorteilhaft zwischen 24 und 30 Grad, aufweisen. Solche Kiemen wirken leistungsstei- gernd, weil dadurch die Umlenkung der Luft von einem Kanal in den be- nachbarten verbessert wird, wodurch sich wiederum ein längerer Strömungsweg für' die Luft ergibt.
Weitere vorteilhafte Ausgestaltungen der Erfindung nach den Unteransprüchen 4 bis 7 ergeben weitere Leistungssteigerungen, insbesondere bei ei- nem 12 bis 20 mm tiefen Rohr/Rippensystem bei einer Rippendichte von 55 bis 75 Rippen/dm, was einem Rippenabstand bzw. einer Rippenteilung von 1 ,33 bis 1 ,82 mm entspricht. Die Rippenhöhe für dieses System liegt im Bereich von 3 bis 15 mm, besonders bevorzugt im Bereich von 6 bis 10 mm.
Nach einer alternativen vorteilhaften Weiterbildung der Erfindung ist die Kiementiefe .im Bereich von 0,9 bis 1 ,1 mm bei einem Kiemenwinkel von 23 bis 30 Grad günstig für ein Rohr-/Rippensystem mit einer Tiefe von 40 bis 52 mm bei einer Rippendichte von 45 bis 65 Rippen/dm, was einem Rippenabstand von 1,538 .bis 2,222 mm entspricht. Die Rippenhöhe für ein solches System beträgt vorteilhafterweise 7 bis 9 mm. Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschrieben. Es zeigen Fig. 1 einen Querschnitt durch eine Parallelrippe, Fig. 2 einen Längsschnitt durch die Parallellrippe in der Ebene ll-ll ge- maß Fig. 1 und
Fig. 3 einen weiteren Längsschnitt in der Ebene lll-lll gemäß Fig. 2.
Fig. 1 zeigt eine so genannte Parallelrippe 1 , die zwischen zwei nur teilweise dargestellten Flachrohren 2, 3 verläuft. Die Parallel- oder Wellrippe 1 und die Flachrohre 2, 3 bilden ein nicht dargestelltes gelötetes Netz eines Wärmeübertragers, z. B. eines Kühlmittelkühlers zur Kühlung eines Verbrennungsmotors eines Kraftfahrzeuges oder eines Kondensators für eine Kraftfahrzeug-Klimaanlage. Die Wellrippe 1 weist jeweils zwei parallel zueinander angeordnete, ebene Rippenflächen 4, 5 auf, welche durch ein Bogenstuck 6 verbunden" sind. Das Bogenstuck 6 liegt jeweils an den Flachrohren 2, 3 an und ist mit diesen verlötet. Die ebenen Rippenflächen 4, 5 sind mit Kiemen 7 besetzt, die eine Längserstreckung LL aufweisen. Die Wellrippe 1 hat eine Rippenhöhe RH, die größer als die Kiemenlänge LL ist. Die Rippenflächen 4, 5, das Bogenstuck 6 und die Rohrwand 2, 3 bilden jeweils einen etwa rechteckförmigen Rippenkanal 8. Die Wellrippe 1 weist eine bestimmte Rippendichte auf, die durch die Rippenteilung, d. h. das Maß FP gekennzeichnet ist. FP ist der reziproke Wert der Rippendichte, d. h. einer Rippendichte von 50 Rippen/dm entspricht eine Rippenteilung von FP = 2 mm. Das Bogenstuck 6. setzt sich aus drei Bpgenabschηitten zusammen, nämlich einem mittleren Abschnitt 6a und zwei angrenzenden äußeren Abschnitten 6b, 6c.
Alle drei Abschnitte werden durch Radien gebildet, wobei der mittlere Abschnitt einen relativ großen Radius R1 von etwa 50 bis 70 mm aufweist. Die beiden äußeren Radien R2 und R3 sind erheblich kleiner, d. h. der Radius R2 liegt im Bereich von 0, 4 bis 0,6 mm, während der Radius R3 größer oder gleich gegenüber dem Radius R2 ist. R3 liegt im Bereich von 0,6 bis 1 ,1 bzw. 1 ,3 mm. Durch diese Ausbildung des Bogenstückes 6 ergibt sich einer- seits eine relativ breite Lötfläche F, andererseits eine relativ große Kiemenlänge LL, was günstig für die Wärmeübertragung ist. Darüber hinaus lässt sich eine derartige Parallelrippe, dessen Bogenstuck 6 die genannten Dimensionen aufweist, einfach auf herkömmlichen Rippenwalzen herstellen.
Fig. 2 zeigt einen Längsschnitt in der Ebene 11-11, d. h. durch den Rippenkanal 8. Die Rippenfläche 5 weist ein Kiemenfeld 9 auf, welches sich aus einer Vielzahl von einzelnen Kiemen 7 zusammensetzt. Die Rippe 5 weist eine Rippentiefe RT auf, d. h. eine Erstreckung in Luftströmungsrichtung X.
Fig. 3 zeigte einen Schnitt in der Ebene lll-lll in Fig.2, d. h. durch das Kiemenfeld 9 der Rippenfläche 5. Das Kiemenfeld besteht aus vorderen, in der Zeichnung nach rechts ansteigenden Kiemen 7a, einer mittleren dachförmigen Doppelkieme 7b und hinteren nach rechts abfallenden Kiemen 7c. Die Kiemen 7a, 7b, 7c sind jeweils unter einem Kiemenwinkel α geneigt. Die
Kiemen 7a, 7c weisen, gemessen in Luftströmungsrichtung X ein Maß LP auf, welches als Kiementiefe bezeichnet wird. Durch die Kiemen 7 wird die Grenzschicht der Luftströmung in den Rippenkanälen aufgebrochen und von einem Rippenkanal 8 in den benachbarten Rippenkanal umgelenkt. Dadurch ergibt sich für die Luftströmung ein längerer Strömungsweg, der den Wärmeübergang erhöht. Die Umlenkung der Luftströmung ist vom Kiemenwinkel α und von der Kiementiefe LP abhängig.
Nach der Erfindung sind für die oben beschriebene Parallelrippe zwei bevor- zugte Ausführungsbeispiele mit folgenden Abmessungen optimal:
Erstes Ausführungsbeispiel
Das erste Ausführungsbeispiel betrifft einen Kondensator für eine Klimaanlage eines Kraftfahrzeuges. Die Flachrohre des Kondensators werden somit von Kältemittel, z. B. R 134a durchströmt. Für einen solchen Kondensator ist ein Wärmeübertragernetz, bestehend aus Flachrohren und einer Parallelrippe mit folgenden Abmessungen vorgesehen: Rippentiefe RT: 12 ≤ RT ≤ 20 mm. Rippenteilung FP: 1 ,33 mm < FP < 1 ,818 mm, entsprechend einer Rippendichte von 55 bis 75 Rippen/dm, Kiemenwinkel α: 24° < α < 30°, Kiemenlänge LL: 6,4 mm ≤ LL < 7,2 mm, Rippenhöhe RH: 6 mm < RH < 10 mm, Kiementiefe LP: 0,7 mm ≤ LP < 1 ,1 mm,
Verhältnis von Kiementiefe LP zu Rippenteilung FP: 0,385 < LP/FP < 0,825, Krümmungsradius R1 des mittleren Bogenstückabschnitts:
50 mm ≤ R1 < 70 mm, Krümmungsradius R2 des ersten äußeren Bogenstückabschnitts: 0,4 mm < R2 < 0,6 mm,
Krümmungsradius R3 des zweiten äußeren Bogenstückabschnitts:
0,6 mm < R3 < 1 ,1 mm.
Ein Parallelrippensystem mit den vorgenannten Abmessungen ist einem her- kömmlichen Rippensystem mit V-förmig angeordneter Rippe in vielen Punkten überlegen, und zwar hinsichtlich des Luftdurchsatzes, der Strömungs- umlenkung, der Homogenisierung des Strömungsgeschwindigkeits- und Temperaturprofils und somit der Wärmeübertragungsleistung.
Zweites Ausführungsbeispiel
Das zweite Ausführungsbeispiel betrifft einen Kühlmittelkühler, der bei
Kraftfahrzeugen im Kühlmittelkreislauf zur Kühlung des Verbrennungsmotors eingebaut und von Kühlmittel, d. h. einem Wasser/Glysantin-Gemisch durch- strömt wird. Zwischen den vorzugsweise in einer Reihe angeordneten Flachrohren sind Parallelrippen mit folgenden Abmessungen vorgesehen: Rippentiefe RT: 40 < RT < 52 mm
Rippenteilung FP: 1 ,538 < FP < 2,222 mm, entsprechend einer Rippendichte von 45 bis 65 Rippen/dm
Kiemenwinkel α: 23°< α < 30° Kiemenlänge LL: 6,5 ≤ LL < 7,2 mm Rippenhöhe RH: 7 < RH < 9 mm Kiementiefe LP: 0,9 < LP < 1 ,1 mm Verhältnis Kiementiefe LP zu Rippenteilung LP: 0,405 < LP/FP < 0,715.
Krümmungsradius R1 des mittleren Bogenstückabschnitts:
50 mm < R1 < 70 mm, . Krümmungsradius R2 des ersten äußeren Bogenstückabschnitts:
0,4 mm < R2 < 0,6 mm, Krümmungsradius R3 des zweiten äußeren Bogenstückabschnitts:
0,6 mm ≤ R3 < 1 ,3 mm.
Auch dieses gegenüber dem ersten Ausführungsbeispiel wesentlich tiefere System bringt eine deutliche Leistungssteigerung gegenüber einer vergleich- baren V-Rippe.

Claims

P a t e n t a n s p r ü c h e
1. Wärmeübertrager, insbesondere Kühlmittelkühler oder Kondensator für Kraftfahrzeuge, mit einem aus Flachrohren (2, 3) und Wellrippen
(1) bestehenden, gelöteten Wärmeübertragernetz, wobei die Flachrohre (2, 3) von einem flüssigen und/oder gasförmigen Medium durchströmbar und die Wellrippen (2) von Luft umströmbar sind, wobei eine Wellrippe (1) jeweils zwei im Wesentlichen parallel zu einan- der angeordnete Rippenflächen (4, 5) aufweist, die jeweils durch ein mit einem Flachrohr (2, 3) verlötetes Bogenstuck (6) verbunden sind, dadurch gekennzeichnet, dass das Bogenstuck (6) in einem mittleren Abschnitt (6a) eine geringere Krümmung aufweist als in einem ersten äußeren Abschnitt (6b) und in einem zweiten äußeren Abschnitt (6c).
2. Wärmeübertrager nach Anspruch 1 , dadurch gekennzeichnet, dass die Rippenflächen (4,5) mit Kiemen (7) besetzt sind.
3. Wärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Bogenstuck (6) in dem mittleren Abschnitt (6a) einen Krümmungsradius R1 aufweist, der größer als eine Rippenhöhe RH der Wellrippe (1) ist.
4. Wärmeübertrager nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Bogenstuck (6) in dem ersten äußeren Abschnitt (6b) einen Krümmungsradius R2 aufweist, der kleiner als eine Hälfte einer Rippenhöhe RH der Wellrippe (1) ist.
5. Wärmeübertrager nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Bogenstuck (6) in dem zweiten äußeren Abschnitt (6c) einen Krümmungsradius R3 aufweist, der größer oder gleich einem Krümmungsradius R2 in dem ersten äußeren Abschnitt (6b) ist.
6. Wärmeübertrager nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Bogenstuck (6) in dem zweiten äußeren Abschnitt (6c) einen Krümmungsradius R3 aufweist, der kleiner als eine Rippenhöhe RH der Wellrippe (1) ist.
7. Wärmeübertrager nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die Kiemen (7, 7a, 7c) eine Kiementiefe LP in einem Bereich von 0,5 bis 1 ,5 mm und einen Kiemenwinkel α im Be- reich von 20° bis 35° aufweisen.
8. Wärmeübertrager nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Wellrippe (1) eine Rippenteilung FP im Bereich von 1 bis 3 mm aufweist.
Wärmeübertrager nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Wellrippe (1) eine Rippentiefe RT im Bereich von 10 bis 70 mm, vorzugsweise 12 bis 20 mm oder 40 bis 64 mm aufweist.
10. Wärmeübertrager nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, dass das Verhältnis von Kiementiefe LP zu Rippenteilung FP in einem Bereich von 0,385 bis 0,825 liegt.
11. Wärmeübertrager nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Wellrippe (1) eine Rippenhöhe RH in einem Bereich von 3 bis 15 mm, vorzugsweise 6 bis 10 mm aufweist.
PCT/EP2003/008251 2002-07-31 2003-07-25 Flachrohr-wärmeübertrager WO2004013559A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03766307.7A EP1527311B1 (de) 2002-07-31 2003-07-25 Flachrohr-wärmeübertrager
US10/522,920 US7882708B2 (en) 2002-07-31 2003-07-25 Flat pipe-shaped heat exchanger
JP2004525328A JP2005534888A (ja) 2002-07-31 2003-07-25 扁平管形熱交換器
AU2003255295A AU2003255295A1 (en) 2002-07-31 2003-07-25 Flat pipe-shaped heat exchanger
BR0305705-4A BR0305705A (pt) 2002-07-31 2003-07-25 Permutador de calor de tubos planos

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10235038A DE10235038A1 (de) 2002-07-31 2002-07-31 Flachrohr-Wärmeübertrager
DE10235038.8 2002-07-31

Publications (1)

Publication Number Publication Date
WO2004013559A1 true WO2004013559A1 (de) 2004-02-12

Family

ID=30128586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/008251 WO2004013559A1 (de) 2002-07-31 2003-07-25 Flachrohr-wärmeübertrager

Country Status (9)

Country Link
US (1) US7882708B2 (de)
EP (1) EP1527311B1 (de)
JP (1) JP2005534888A (de)
CN (1) CN100373121C (de)
AU (1) AU2003255295A1 (de)
BR (1) BR0305705A (de)
DE (1) DE10235038A1 (de)
WO (1) WO2004013559A1 (de)
ZA (1) ZA200409593B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132920A (ja) * 2004-07-15 2006-05-25 Showa Denko Kk 熱交換器
JP2006138622A (ja) * 2004-10-13 2006-06-01 Showa Denko Kk コルゲートフィンおよびエバポレータ
EP2236971A3 (de) * 2009-03-25 2014-03-05 Sanhua Holding Group Co., Ltd. Lamelle für Wärmetauscher und Wärmetauscher mit einer solchen Lamelle
EP2253921A3 (de) * 2009-05-13 2014-04-09 Behr GmbH & Co. KG Rippe für einen Wärmeübertrager

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2471969A1 (en) 2004-06-23 2005-12-23 Lionel Gerber Heat exchanger for use in an ice machine
JP4786234B2 (ja) * 2004-07-05 2011-10-05 昭和電工株式会社 熱交換器
EP1831633A1 (de) * 2004-12-03 2007-09-12 Andries Meuzelaar Wärmetauscher für motorisierte transportmittel und mit solch einem wärmetauscher versehenes motorisiertes transportmittel
NL1027646C2 (nl) * 2004-12-03 2006-06-07 Andries Meuzelaar Warmtewisselaar voor gemotoriseerde vervoermiddelen, en gemotoriseerd vervoermiddel voorzien van een dergelijke warmtewisselaar.
US8854595B2 (en) 2008-03-03 2014-10-07 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
US8654302B2 (en) 2008-03-03 2014-02-18 Manufacturing Resources International, Inc. Heat exchanger for an electronic display
US8497972B2 (en) 2009-11-13 2013-07-30 Manufacturing Resources International, Inc. Thermal plate with optional cooling loop in electronic display
US8773633B2 (en) 2008-03-03 2014-07-08 Manufacturing Resources International, Inc. Expanded heat sink for electronic displays
US9173325B2 (en) 2008-03-26 2015-10-27 Manufacturing Resources International, Inc. Heat exchanger for back to back electronic displays
US8693185B2 (en) 2008-03-26 2014-04-08 Manufacturing Resources International, Inc. System and method for maintaining a consistent temperature gradient across an electronic display
US10827656B2 (en) 2008-12-18 2020-11-03 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
US8749749B2 (en) 2008-12-18 2014-06-10 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with manifolds and ambient gas
CN101526324B (zh) * 2009-04-13 2010-07-28 三花丹佛斯(杭州)微通道换热器有限公司 翅片、具有该翅片的换热器和换热器装置
CN101619950B (zh) * 2009-08-13 2011-05-04 三花丹佛斯(杭州)微通道换热器有限公司 翅片和具有该翅片的换热器
US20110048688A1 (en) * 2009-09-02 2011-03-03 Delphi Technologies, Inc. Heat Exchanger Assembly
CN101846465B (zh) * 2010-04-13 2011-11-09 三花丹佛斯(杭州)微通道换热器有限公司 换热器
CN101865574B (zh) 2010-06-21 2013-01-30 三花控股集团有限公司 换热器
CN101865625B (zh) * 2010-06-29 2012-09-05 三花丹佛斯(杭州)微通道换热器有限公司 翅片和具有该翅片的换热器
JP2012026407A (ja) * 2010-07-27 2012-02-09 Denso Corp インタークーラ
CN101936672B (zh) * 2010-09-15 2012-09-19 三花控股集团有限公司 具有改善的表面空气流场分布均匀性的换热器
CN102252558B (zh) 2011-05-06 2013-04-10 三花控股集团有限公司 换热装置
US10660245B2 (en) 2012-10-16 2020-05-19 Manufacturing Resources International, Inc. Back pan cooling assembly for electronic display
US9648790B2 (en) 2013-03-15 2017-05-09 Manufacturing Resources International, Inc. Heat exchanger assembly for an electronic display
US10524384B2 (en) 2013-03-15 2019-12-31 Manufacturing Resources International, Inc. Cooling assembly for an electronic display
WO2015006335A2 (en) 2013-07-08 2015-01-15 Manufacturing Resources International, Inc. Figure eight closed loop cooling system for electronic display
US9655289B2 (en) 2014-03-11 2017-05-16 Manufacturing Resources International, Inc. Hybrid rear cover and mounting bracket for electronic display
EP3138372B1 (de) 2014-04-30 2019-05-08 Manufacturing Resources International, INC. Elektronische back-to-back-anzeigevorrichtung
US9723765B2 (en) 2015-02-17 2017-08-01 Manufacturing Resources International, Inc. Perimeter ventilation system for electronic display
RU2717184C2 (ru) * 2015-10-08 2020-03-18 Линде Акциенгезельшафт Ламель для пластинчатого теплообменника и способ ее изготовления
US10820445B2 (en) 2016-03-04 2020-10-27 Manufacturing Resources International, Inc. Cooling system for double sided display assembly
DE102016213197A1 (de) 2016-07-19 2018-01-25 Mahle International Gmbh Wellrippe eines Wärmeübertragers und Wärmeübertrager
US10485113B2 (en) 2017-04-27 2019-11-19 Manufacturing Resources International, Inc. Field serviceable and replaceable display
AU2018258497B2 (en) 2017-04-27 2020-10-15 Manufacturing Resources International, Inc. System and method for preventing display bowing
US10559965B2 (en) 2017-09-21 2020-02-11 Manufacturing Resources International, Inc. Display assembly having multiple charging ports
US10602626B2 (en) 2018-07-30 2020-03-24 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
US11096317B2 (en) 2019-02-26 2021-08-17 Manufacturing Resources International, Inc. Display assembly with loopback cooling
US10795413B1 (en) 2019-04-03 2020-10-06 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
US11477923B2 (en) 2020-10-02 2022-10-18 Manufacturing Resources International, Inc. Field customizable airflow system for a communications box
US11470749B2 (en) 2020-10-23 2022-10-11 Manufacturing Resources International, Inc. Forced air cooling for display assemblies using centrifugal fans
US11778757B2 (en) 2020-10-23 2023-10-03 Manufacturing Resources International, Inc. Display assemblies incorporating electric vehicle charging equipment
US11966263B2 (en) 2021-07-28 2024-04-23 Manufacturing Resources International, Inc. Display assemblies for providing compressive forces at electronic display layers
US11744054B2 (en) 2021-08-23 2023-08-29 Manufacturing Resources International, Inc. Fan unit for providing improved airflow within display assemblies
US11919393B2 (en) 2021-08-23 2024-03-05 Manufacturing Resources International, Inc. Display assemblies inducing relatively turbulent flow and integrating electric vehicle charging equipment
US11762231B2 (en) 2021-08-23 2023-09-19 Manufacturing Resources International, Inc. Display assemblies inducing turbulent flow
US11968813B2 (en) 2021-11-23 2024-04-23 Manufacturing Resources International, Inc. Display assembly with divided interior space
US12072561B2 (en) 2022-07-22 2024-08-27 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12010813B2 (en) 2022-07-22 2024-06-11 Manufacturing Resources International, Inc. Self-contained electronic display assembly, mounting structure and methods for the same
US12035486B1 (en) 2022-07-25 2024-07-09 Manufacturing Resources International, Inc. Electronic display assembly with fabric panel communications box

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361892A (ja) * 1986-09-02 1988-03-18 Nippon Denso Co Ltd 自動車用熱交換器
JPH01305296A (ja) * 1988-06-03 1989-12-08 Diesel Kiki Co Ltd 熱交換器用コルゲートフィン
US5271458A (en) * 1991-10-18 1993-12-21 Nippondenso Co., Ltd. Corrugated louver fin type heat exchanging device
EP1111318A1 (de) * 1999-12-21 2001-06-27 Delphi Technologies, Inc. Verdampfer mit verbessertem Kondensatablauf
US6308527B1 (en) * 1998-12-10 2001-10-30 Denso Corporation Refrigerant evaporator with condensed water drain structure

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250325A (en) * 1963-02-19 1966-05-10 Ford Motor Co Heat exchange device
JPS5022751B1 (de) * 1970-12-27 1975-08-01
DE2817990C2 (de) * 1978-04-25 1982-04-01 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Kreuzstromwärmetauschereinheit in Leichtbauweise
JPS57127183A (en) 1981-01-28 1982-08-07 Yamatake Honeywell Co Ltd Servo type gas controlling valve
JPS58148485A (ja) 1982-02-27 1983-09-03 日本メクトロン株式会社 リリ−スシ−トを備えたフレキシブル回路板
JPS59107190A (ja) * 1982-12-10 1984-06-21 Nippon Radiator Co Ltd 熱交換器
KR940010978B1 (ko) * 1988-08-12 1994-11-21 갈소니꾸 가부시끼가이샤 멀티플로우형의 열교환기
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
JP3042861B2 (ja) 1990-06-18 2000-05-22 株式会社リコー 原稿めくり装置および原稿読み取り装置
DE4142019A1 (de) * 1991-12-19 1993-06-24 Behr Gmbh & Co Wellrippe fuer flachrohrwaermetauscher
JP3500666B2 (ja) * 1993-09-08 2004-02-23 株式会社デンソー コルゲートフィン用成形ローラ
JP3855346B2 (ja) * 1997-03-17 2006-12-06 株式会社デンソー 熱交換器
AU4359000A (en) * 1999-04-19 2000-11-02 Peerless Of America, Inc. An improved fin array for heat transfer assemblies and method of making same
US6598669B2 (en) * 1999-04-19 2003-07-29 Peerless Of America Fin array for heat transfer assemblies and method of making same
JP2001012883A (ja) * 1999-06-30 2001-01-19 Bosch Automotive Systems Corp 熱交換器
JP4207331B2 (ja) 1999-09-29 2009-01-14 株式会社デンソー 複式熱交換器
EP1103316B1 (de) * 1999-11-26 2006-05-17 Calsonic Kansei Corporation Verfahren zur Herstellung einer Wellrippe
JP2001208449A (ja) * 2000-01-31 2001-08-03 Mitsubishi Heavy Ind Ltd 蒸発器
JP2002090083A (ja) * 2000-09-19 2002-03-27 Japan Climate Systems Corp 熱交換器
US6805193B2 (en) * 2002-01-24 2004-10-19 Valeo, Inc. Fin louver design for heat exchanger
CN100354592C (zh) * 2002-03-09 2007-12-12 贝洱两合公司 热交换器
DE102004012796A1 (de) * 2003-03-19 2004-11-11 Denso Corp., Kariya Wärmetauscher und Wärmeübertragungselement mit symmetrischen Winkelabschnitten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361892A (ja) * 1986-09-02 1988-03-18 Nippon Denso Co Ltd 自動車用熱交換器
JPH01305296A (ja) * 1988-06-03 1989-12-08 Diesel Kiki Co Ltd 熱交換器用コルゲートフィン
US5271458A (en) * 1991-10-18 1993-12-21 Nippondenso Co., Ltd. Corrugated louver fin type heat exchanging device
US6308527B1 (en) * 1998-12-10 2001-10-30 Denso Corporation Refrigerant evaporator with condensed water drain structure
EP1111318A1 (de) * 1999-12-21 2001-06-27 Delphi Technologies, Inc. Verdampfer mit verbessertem Kondensatablauf

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 286 (M - 727) 5 August 1988 (1988-08-05) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 097 (M - 0940) 22 February 1990 (1990-02-22) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132920A (ja) * 2004-07-15 2006-05-25 Showa Denko Kk 熱交換器
JP2006138622A (ja) * 2004-10-13 2006-06-01 Showa Denko Kk コルゲートフィンおよびエバポレータ
EP2236971A3 (de) * 2009-03-25 2014-03-05 Sanhua Holding Group Co., Ltd. Lamelle für Wärmetauscher und Wärmetauscher mit einer solchen Lamelle
EP2253921A3 (de) * 2009-05-13 2014-04-09 Behr GmbH & Co. KG Rippe für einen Wärmeübertrager

Also Published As

Publication number Publication date
EP1527311B1 (de) 2016-05-04
CN100373121C (zh) 2008-03-05
DE10235038A1 (de) 2004-02-12
JP2005534888A (ja) 2005-11-17
AU2003255295A1 (en) 2004-02-23
US20050229630A1 (en) 2005-10-20
BR0305705A (pt) 2004-10-19
EP1527311A1 (de) 2005-05-04
CN1672006A (zh) 2005-09-21
US7882708B2 (en) 2011-02-08
ZA200409593B (en) 2005-09-08

Similar Documents

Publication Publication Date Title
EP1527311B1 (de) Flachrohr-wärmeübertrager
DE69031047T2 (de) Verdampfer für Kühler in Kraftwagen
DE60219538T2 (de) Wärmetauscher
DE2651609C2 (de) Wärmetauscher
DE3020424C2 (de) Wärmetauscher
DE69428219T2 (de) Plattenwärmetauscher
DE60005602T2 (de) Flüssigkeitsführendes Rohr und seine Verwendung in einem Kraftfahrzeugkühler
DE2305056A1 (de) Rippenrohr-waermeaustauscher
DE69911131T2 (de) Wärmetauscher
EP1488184B1 (de) Wärmetauscher
EP0547309B1 (de) Wellrippe für Flachrohrwärmetauscher
EP1203922A2 (de) Kondensator und Rohr dafür
DE10257767A1 (de) Wärmeübertrager
DE102019119551A1 (de) Wärmetauscher und entsprechendes Herstellungsverfahren
EP1357345B1 (de) Gewellter Wärmetauschkörper
DE68926202T3 (de) Kondensator
EP1664655B1 (de) Wärmetauscher
EP1597529B1 (de) Flachrohr mit umkehrbogenabschnitt und damit aufgebauter w r me bertrager
WO2004065882A1 (de) Wärmeübertrager, insbesondere gaskühler
DE6602685U (de) Waermaustauscher, insbesondere kuehler fuer kraftfahrzeug-verbrennungsmotore, mit zwischen kuehlmittelleitungen desselben angeordneten, als abstandshalter dienenden beitblechen zur fuehrung eines kuehlluftstromes und vorrichtung zur herstellung der
DE102020103714A1 (de) Wärmetauscher
EP1684032A2 (de) Kondensator für eine Klimaanlage, insbesondere eines Kraftfahrzeuges
EP0268831A1 (de) Lamelle
DE3050963C3 (de) Wärmetauscher
DE10242188A1 (de) Flachrohr-Wärmeübertrager

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003766307

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004525328

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200409593

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 20038182416

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10522920

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003766307

Country of ref document: EP