EP1357345B1 - Gewellter Wärmetauschkörper - Google Patents

Gewellter Wärmetauschkörper Download PDF

Info

Publication number
EP1357345B1
EP1357345B1 EP03004778A EP03004778A EP1357345B1 EP 1357345 B1 EP1357345 B1 EP 1357345B1 EP 03004778 A EP03004778 A EP 03004778A EP 03004778 A EP03004778 A EP 03004778A EP 1357345 B1 EP1357345 B1 EP 1357345B1
Authority
EP
European Patent Office
Prior art keywords
corrugations
arrangement
heat exchanger
edge
corrugated heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03004778A
Other languages
English (en)
French (fr)
Other versions
EP1357345A2 (de
EP1357345A3 (de
Inventor
Jens Dipl.-Ing. Nies
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Modine Manufacturing Co
Original Assignee
Modine Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Modine Manufacturing Co filed Critical Modine Manufacturing Co
Publication of EP1357345A2 publication Critical patent/EP1357345A2/de
Publication of EP1357345A3 publication Critical patent/EP1357345A3/de
Application granted granted Critical
Publication of EP1357345B1 publication Critical patent/EP1357345B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/08Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by varying the cross-section of the flow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements

Definitions

  • the invention relates to a corrugated heat exchange body according to the preamble of claim 1.
  • Corrugated heat exchange bodies in the present sense should be, for example, so-called corrugated fins, which are inserted in air-cooled coolers between the flat tubes arranged in series to ensure heat exchange between the medium in the flat tubes and the cooling air flowing through the corrugated fins.
  • the heat exchanger walls mentioned are in this case the broad sides of the flat tubes.
  • the vertices are arcuate.
  • corrugated heat exchange bodies are often referred to as fins or internal inserts and are located within tubes or plate-formed channels, for example plate heat exchangers found as oil coolers or the like.
  • the heat exchanger walls are the individual nested plates.
  • the vertices are usually bent in a U - shape.
  • corrugated fins are from the US Pat. No. 3,298,432 known.
  • the structures in the flanks are in the US script very fine ribs, which run obliquely in the manner of a herringbone pattern.
  • the pattern is impressed in the metal strip, and then the corrugation of the corrugated fin is made so that the arrangement direction of the structures in one flank intersects with the arrangement direction of the structures in the following flank. Since the structures in the US document are to be very fine, improved heat exchange efficiency is obtained in the region close to the wall, but the intersection of the same will barely produce a noticeable additional effect.
  • the pattern is embossed flat in the entire metal strip, it is also in the vertices of the corrugated fin, whereby the heat-conducting connection with the heat exchanger walls could be affected. In addition, this very fine structuring could lead to a poorer soldering result
  • the corrugated ribs have a similar herringbone structure, where there, because of the greater width of the metal strip, several herringbone structures are arranged one behind the other, so that there are parallel zig-zag lines.
  • the herringbone pattern is much coarser than that of the former document. An intersection of the arrangement direction from edge to edge is not provided in the DE document.
  • a plate radiator is known.
  • a Konvektorblech which is designed as a corrugated heat exchange body.
  • the heat exchange bodies described should be developed according to the task of the present invention such that they promise a further improvement in terms of their heat exchange efficiency.
  • the elements of the structures are waves of the flanks, which provide the flow channel with consequent constrictions and extensions.
  • the flanks can additionally have cuts, which harbors the same arrangement direction of the waves and connect the adjacent flow channels fluidly with each other. Such intersecting from edge to edge in their arrangement direction cuts can make a contribution to the improved heat transfer.
  • the cuts themselves are of a known nature and are bent out of the surface of the flank, resulting in openings in the flank which connect adjacent flow channels.
  • the cuts may be in the troughs or on the crests or anywhere within the waves.
  • the cuts are known to be provided with an angle of attack to the flank surface to create a turbulent flow.
  • the cuts of the invention have equal angles of attack within a flank and also in adjacent flanks.
  • the waves of the flanks and the cuts have the same arrangement direction, so that, seen in a cross section, the cuts and the waves are arranged in the flanks parallel to each other. The directions of arrangement of the cuts and waves in adjacent flanks intersect.
  • flanks are either without structure or, if necessary, can have stiffening elements.
  • the length of the elements of the structures is shorter at their beginning and at their end than in the adjoining main structure region in order to make optimum use of the surface of the flanks.
  • the length of the elements in the main structure region should preferably be the same size and amount to at least 70% of the wave height.
  • the angle of inclination of the oblique structures with respect to the vertical is preferably not greater than 45 °.
  • the illustrated heat exchange bodies have been made from an aluminum strip. However, they could also be made of another suitable metal.
  • the production takes place in such a way that first the structures 5 are embossed into the metal strip, wherein the structures 5 are spaced from each other in the strip longitudinal direction.
  • the size of the distance corresponds in the embodiment of the Fig. 1 to 6 about the later vertices 2 , which are subsequently created by bending the tape in the transverse direction. It has been shown in the embodiments, only a single wave, but it is absolutely clear that the heat exchange body 1 consists of any number of waves, so that a first and a second plane, formed from the vertices 2 , are present.
  • Fig. 1 to 6 shows a blade which is arranged as an inner liner in a channel of an oil cooler, which has not been shown in detail, however, because the arrangement of fins in plate-stacked heat exchangers is a well-known measure.
  • Fig. 1 also include frontal views on the image left and right end of the lamella.
  • On the right side of the picture Fig. 1 was only above and below each indicated a heat exchanger wall 3 , which belongs to the already mentioned plates and which are arranged in said first and second plane. Between the two heat exchanger walls 3 , said channel is formed, in which the oil flows in an oil cooler. In the not shown upwardly or downwardly adjacent channel, which may be identical, the coolant flows.
  • the oblique structures 5 in the flanks 4 of the heat exchange body 1 are in waves 6.
  • the waves 6 in a flank 4 have a length 16, wherein the length 16 in all flanks 4 should preferably be the same size. In terms of amount, the length 16 is in the range of about 10 mm and will be larger or smaller in other applications. Again, this is not a very fine ribbing, as in the US 3,298,432 which merely produces a surface roughness. From the Fig. 1 It can be seen that the shaft 6 are inclined in the front edge 4 to the vertical 14 to the left.
  • the waves 6 are inclined to the right, whereby the arrangement direction 15 of the waves 6 on the front edge 4 intersects with the arrangement direction 15 of the waves 6 on the trailing edge 4 .
  • the inclination angle ⁇ of the waves 6 to the vertical 14 in the front and in the trailing edge 4 are approximately equal.
  • an intersection of the arrangement direction 15 results, for example, even if the waves 6 are tilted in only one of the flanks 4 by the inclination angle ⁇ and are arranged in the other flank 4 in the direction of the vertical 14 . Also, therefore, this is only a preferred embodiment. How out Fig.
  • corrugated fin which is flowed through by cooling air and is arranged between the flat tubes of an air-cooled heat exchanger.
  • the distance between the structures 5 ( FIG. 7) in the strip longitudinal direction mentioned at the beginning, which is present in the prefabrication stage, is significantly greater than the radians of the vertices 2, which are approximately semicircular. Therefore, for example, in the Fig. 7 and 10 to see that the structures 5 (7) do not reach up to the top and bottom directly to the vertices 2 , but end clearly before.
  • Fig. 10 two heat exchanger walls 3 were indicated, which are each intended to represent a broad side of the flat tubes, not shown. Between adjacent flanks 4 is in each case a flow channel 20th
  • the corrugated rib is provided in its flanks 4 with cuts 7 , wherein the arrangement direction 15 of the cuts 7 intersects in an edge 4 with the arrangement direction 15 of the cuts 7 in the adjacent flank 4 .
  • two groups A , B of sections 7 were provided in this exemplary embodiment, without the number of groups being restricted to two.
  • the cuts 7 have an equal inclination angle ⁇ , but are inclined in opposite directions.
  • the sections 7 within the groups A and B in the flanks 4 are arranged parallel to each other, ie, they have been exposed in the same direction from the surface of the flanks 4 . Furthermore, all sections 7 have a same large angle ⁇ . However, the cuts 7 have been exposed in the group A to the right r and in the group B to the left I , so that an entering into the flow channel 20 air jet (arrow) in the group A to a substantial extent upwards in the not shown subsequent Flow channel 20 is passed and in the group B down in the local flow channel 20 , also not shown.
  • the length L of the cuts 7 at the beginning and at the end of the group A and B is shorter than in the main structure area 55 , which begins here with the third section 7 .
  • the cuts 7 should be before the area 21 before derseitlichen Edge 22 of the edge 4 ends to achieve sufficient rigidity of the corrugated fin.
  • a lamella in a second embodiment (see Fig. 11 a and 11 b) is a lamella as described in the first embodiment.
  • You can be traversed by cooling air or oil.
  • the lamella is inserted in a channel of a heat exchange body.
  • the special feature of these slats is that they also have cuts 7 in addition to the corrugations 6 . Due to the resulting turbulence, the heat exchange efficiency could be further improved.
  • These sections 7 are all issued at the same angle ⁇ from the lamella, so that the medium flowing through can pass from a flow channel 20 into the adjacent flow channels 20 .
  • the height h of the cuts 7 is smaller than the wave height h of the lamella in order to ensure sufficient stability of the lamella.
  • the distance 17 of the cuts 7 should preferably be the same size as half the wavelength 16 of the corrugation 6 .
  • the cuts 7 are in the individual shafts 6 , but they can also be located at other positions on the flank 4 . Which was omitted to show this in detail.
  • the cuts 7 should not extend in contrast to the waves 6 , so that the last cuts 7 are shorter than the cuts 7 in the main structure area 55 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft einen gewellten Wärmetauschkörper gemäß dem Oberbegriff des Anspruchs 1.
  • Gewellte Wärmetauschkörper im vorliegenden Sinn sollen beispielsweise sogenannte Wellrippen sein, die bei luftgekühlten Kühlern zwischen den in Reihe angeordneten Flachrohren eingefügt sind, um den Wärmeaustausch zwischen dem Medium in den Flachrohren und der durch die Wellrippen strömenden Kühlluft zu gewährleisten. Die erwähnten Wärmetauscherwände sind in dem Fall die Breitseiten der Flachrohre. Die Scheitelpunkte sind bogenförmig ausgebildet.
  • Andere gewellte Wärmetauschkörper werden oft als Lamellen oder auch als Inneneinsätze bezeichnet und befinden sich innerhalb von Rohren oder in mittels Platten gebildeten Kanälen, beispielsweise bei Plattenwärmetauschern, die als Ölkühler oder dergleichen anzutreffen sind. In solchen Fällen sind die Wärmetauscherwände die einzelnen ineinander gestapelten Platten. Die Scheitelpunkte sind meist u - förmig gebogen.
  • Die im Oberbegriff definierten Wärmetauschkörper (Wellrippen) sind aus der US - PS - 3 298 432 bekannt. Die Strukturen in den Flanken sind in der US - Schrift sehr feine Rippen, die in der Art eines Fischgrätenmusters schräg verlaufen. Das Muster wird in das Metallband eingeprägt und anschließend wird die Wellenform der Wellrippe hergestellt, so dass die Anordnungsrichtung der Strukturen in einer Flanke sich kreuzt mit der Anordnungsrichtung der Strukturen in der folgenden Flanke. Da die Strukturen in der US - Schrift sehr fein sein sollen, ergibt sich im wandnahen Bereich zwar eine verbesserte Effizienz des Wärmetausches, jedoch wird sich durch die Kreuzung derselben kaum eine spürbare zusätzliche Wirkung einstellen. Weil das Muster in das gesamte Metallband flächig eingeprägt wird, befindet es sich auch in den Scheitelpunkten der Wellrippe, wodurch die wärmeleitende Verbindung mit den Wärmetauscherwänden beeinträchtigt werden könnte. Zudem könnte diese sehr feine Strukturierung zu einem schlechteren Lötergebnis führen
  • In der DE 195 03 766 C2 besitzen die Wellrippen eine ähnliche Fischgrätenstruktur, wobei dort, wegen der größeren Breite des Metallbandes, mehrere Fischgrätenstrukturen hintereinander angeordnet sind, so dass sich parallele Zick - Zack - Linien ergeben. Das Fischgrätenmuster ist wesentlich gröber als das aus dem erstgenannten Dokument. Eine Kreuzung der Anordnungsrichtung von Flanke zu Flanke ist in der DE - Schrift nicht vorgesehen.
  • Aus AT 380 104 ist ein Plattenradiator bekannt. Dieser enthält ein Konvektorblech, das als gewellter Wärmetauschkörper ausgebildet ist. In den Flanken des gewellten Konvektorbleches sind Ausschnitte vorhanden, die benachbarte Strömungskanäle strömungstechnisch miteinander verbinden.
  • Die beschriebenen Wärmetauschkörper sollen gemäß der Aufgabenstellung der vorliegenden Erfindung derart fortgebildet werden, dass sie hinsichtlich ihrer Wärmetauscheffizienz eine weitere Verbesserung versprechen.
  • Diese Aufgabe wird erfindungsgemäß durch den kennzeichnenden Teil des Anspruchs 1 gelöst. Der Lösungsvorschlag erfüllt in Verbindung mit dem Oberbegriff die gestellte Aufgabe.
  • Gemäß dem Kennzeichen des Anspruchs 1 ist vorgesehen, dass die Elemente der Strukturen Wellen der Flanken sind, die den Strömungskanal mit im Wechsel folgenden Einschnürungen und Erweiterungen versehen.
  • Es wurde festgestellt, dass so ausgebildete Wärmetauschkörper einen besseren Wärmeübergang aufweisen. Dies könnte darauf zurückzuführen sein, dass die durch den Strömungskanal zwischen den Flanken hindurchgehende Strömung zumindest ansatzweise in Rotation versetzt wird, wodurch sich der Austausch mit der wandnahen Strömung verbessert.
  • Durch die Wellen der Flanken, die in den Strömungskanal hinein weisen, stellen sich, wie aus in verschiedenen Höhen vorgenommenen Querschnitten ersichtlich ist, durch den Strömungskanal, in Strömungsrichtung gesehen, im Wechsel Einschnürungen und Erweiterungen des Strömungskanals ein, denen ein günstiger Effekt zugeordnet werden kann.
  • Gemäß eines aus der US 6 073 686 bekannten Merkmals können die Flanken zusätzlich Schnitte aufweisen, die die gleiche Anordnungsrichtung der Wellen horben und die benachbarte Strömungskanäle strömungstechnisch miteinander verbinden. Solche von Flanke zu Flanke in ihrer Anordnungsrichtung sich kreuzenden Schnitte können einen Beitrag zum verbesserten Wärmeübergang leisten. Die Schnitte selbst sind an sich bekannter Natur und aus der Oberfläche der Flanke herausgebogen, wodurch sich Öffnungen in der Flanke ergeben, die benachbarte Strömungskanäle miteinander verbinden.
  • Die Schnitte können sich in den Wellentälern oder auf den Wellenbergen oder an beliebigen Stellen innerhalb der Wellen befinden.
  • Die Schnitte werden bekanntermaßen mit einem Anstellwinkel zur Flankenfläche versehen um eine turbulente Strömung zu erzeugen. Vorzugsweise besitzen die Schnitte der Erfindung innerhalb einer Flanke und auch in benachbarten Flanken gleiche Anstellwinkel. Die Wellen der Flanken und die Schnitte haben die gleiche Anordnungsrichtung, so dass, in einem Querschnitt gesehen, die Schnitte und die Wellen in den Flanken parallel zueinander angeordnet sind. Die Anordnungsrichtungen der Schnitte und Wellen in benachbarten Flanken kreuzen sich.
  • Als vorteilhaft wird ferner angesehen, dass bei mehreren Gruppen von schrägen Strukturen in einer Flanke entgegengesetzte Neigungswinkel der schrägen Strukturen von einer Gruppe zur nächsten Gruppe vorgesehen sind, wobei zwischen den Gruppen, die Flanken entweder ohne Struktur ausgebildet sind oder im Bedarfsfall Versteifungselemente aufweisen können.
  • Die Länge der Elemente der Strukturen ist an ihrem Anfang und an ihrem Ende kürzer als in dem daran anschließenden Hauptstrukturenbereich, um die Fläche der Flanken möglichst optimal auszunutzen.
  • Die Länge der Elemente im Hauptstrukturenbereich soll vorzugsweise gleich groß sein und mindestens 70% der Wellenhöhe betragen.
  • Der Neigungswinkel der schrägen Strukturen gegenüber der Vertikalen ist vorzugsweise nicht größer als 45°. Durch diese Merkmale wird ebenfalls auf die möglichst umfassende Ausnutzung der Fläche der Flanken zur Anordnung von Strukturen gezielt.
  • Die Erfindung wird nachfolgend in drei Ausführungsbeispielen beschrieben.
  • Die beiliegenden Figuren zeigen in
  • Fig.1
    Seitenansicht einer erfindungsgemäßen Lamelle;
    Fig. 2
    Draufsicht auf die Lamelle aus Fig. 1;
    Fig. 3
    Schnitt A-A aus Fig. 1;
    Fig. 4
    Schnitt C-C aus Fig. 1;
    Fig. 5
    Schnitt D-D aus Fig. 1;
    Fig. 6
    Perspektivischer Blick auf diese Lamelle;
    Fig. 7
    Seitenansicht einer nicht erfindungsgemäßen Wellrippe;
    Fig. 8
    Draufsicht;
    Fig. 9
    Schnitt A-A aus Fig. 7;
    Fig.10
    Perspektivischer Blick auf die Wellrippe;
    Fig.11
    Seitenansicht (a) und Draufsicht (b) auf eine erfindungsgemäße Lamelle mit Wellen und Schnitten.
  • Die abgebildeten Wärmetauschkörper sind aus einem Aluminiumband hergestellt worden. Sie könnten jedoch auch aus einem anderen geeigneten Metall bestehen.
  • Die Herstellung geschieht so, dass zunächst die Strukturen 5 in das Metallband eingeprägt werden, wobei die Strukturen 5 in Bandlängsrichtung einen Abstand voneinander haben. Die Größe des Abstandes entspricht im Ausführungsbeispiel aus den Fig. 1 bis 6 etwa den späteren Scheitelpunkten 2, die im Anschluß daran durch Biegung des Bandes in Querrichtung geschaffen werden. Es wurde in den Ausführungsbeispielen lediglich eine einzige Welle dargestellt, wobei jedoch absolut klar ist, dass der Wärmetauschkörper 1 aus einer beliebigen Anzahl von Wellen besteht, so dass eine erste und eine zweite Ebene, gebildet aus den Scheitelpunkten 2, vorhanden sind.
  • Das Ausführungsbeispiel aus den Fig. 1 bis 6 zeigt eine Lamelle, die als Inneneinsatz in einem Kanal eines Ölkühlers angeordnet ist, was jedoch nicht ausführlich gezeigt wurde, weil die Anordnung von Lamellen in aus Platten gestapelten Wärmetauschern eine gut bekannte Maßnahme darstellt. Zur Fig. 1 gehören auch stirnseitige Ansichten auf das im Bild linke und rechte Ende der Lamelle. Auf der im Bild rechten Ansicht der Fig. 1 wurde lediglich oben und unten je eine Wärmetauscherwand 3 angedeutet, die zu den bereits erwähnten Platten gehört und die in der erwähnten ersten und zweiten Ebene angeordnet sind. Zwischen den beiden Wärmetauscherwänden 3 ist der genannte Kanal ausgebildet, in dem bei einem Ölkühler das Öl fließt. Im nicht gezeigten nach oben oder nach unten benachbarten Kanal, der identisch sein kann, fließt das Kühlmittel. Die schrägen Strukturen 5 in den Flanken 4 des Wärmetauschkörpers 1 sind in Wellen 6. Die Wellen 6 in einer Flanke 4 besitzen eine Länge 16, wobei die Länge 16 in allen Flanken 4 vorzugsweise gleich groß sein sollte. Betragsmäßig liegt die Länge 16 im Bereich von etwa 10 mm und wird in anderen Einsatzfällen auch größer oder etwas kleiner sein. Jedenfalls handelt es sich hier nicht um eine sehr feine Rippung, wie die in der US 3 298 432 , die lediglich eine Oberflächenrauhigkeit erzeugt. Aus der Fig. 1 ist zu sehen, dass die Welle 6 in der vorderen Flanke 4 zur Vertikalen 14 nach links geneigt sind. In der hinteren Flanke 4, die nur teilweise sichtbar ist, sind die Wellen 6 nach rechts geneigt, wodurch die Anordnungsrichtung 15 der Wellen 6 auf der vorderen Flanke 4 sich mit der Anordnungsrichtung 15 der Wellen 6 auf der hinteren Flanke 4 kreuzt. Im Ausführungsbeispiel sind die Neigungswinkel α der Wellen 6 zur Vertikalen 14 in der vorderen und in der hinteren Flanke 4 etwa gleich groß. Eine Kreuzung der Anordnungsrichtung 15 ergibt sich jedoch beispielsweise auch dann, wenn die Wellen 6 in nur einer der Flanken 4 um den Neigungswinkel α gekippt sind und in der anderen Flanke 4 in Richtung der Vertikalen 14 angeordnet sind. Auch deshalb handelt es sich vorliegend lediglich um ein bevorzugtes Ausführungsbeispiel. Wie aus Fig. 3 zu sehen ist, ergeben sich durch die beschriebene Anordnung der Wellen 6 zwischen den beiden Flanken 4, die einen Strömungskanal 20 begrenzen, in Strömungsrichtung Erweiterungen 10 und Einschnürungen 11 des Strömungskanals 20. Dies kann auch durch Vergleich der linken mit der rechten stirnseitigen Ansicht auf die Enden der Lamelle in Fig. 1 erkannt werden. In der linken Ansicht ist eine Erweiterung 10 zu sehen, während in der rechten Ansicht eine Einschnürung 11 erkennbar ist. Der auffälligste größenmäßige Unterschied zwischen den Erweiterungen 10 und den Einschnürungen 11 stellt sich etwa in der halben Wellenhöhe h ein, in der sich der in Fig. 3 gezeigte Schnitt A-A befindet. Wie die Fig. 4 und 5 (Schnitte D-D und C-C) deutlich zeigen, ist oben und unten weniger Unterschied zwischen den Einschnürungen 11 und den weiterungen 10 festzustellen, so dass dort eher ein gewellter Strömungskanal 20 mit fast parallelen Flanken 4 zu sehen ist. Die Wellen 6 reichen über den gesamten Abstand zwischen der ersten und zweiten Ebene gebildet aus den Scheitelpunkten 2. Die Breite der Wellen 6 ist jedoch wegen ihrer Schräglage größer als die erwähnte Wellenhöhe h zwischen diesen Ebenen. Die Scheitelpunkte 2 haben etwa einen u - förmigen Querschnitt und sind nicht gesickt, wie aus der Draufsicht in Fig. 2 zu erkennen ist.
  • Ein zum Stand der Technik gehörendes Beispiel ist in den Fig. 7 bis 10 abgebildet.
  • Dabei handelt es sich um eine Wellrippe, die von Kühlluft durchströmt wird und zwischen den Flachrohren eines luftgekühlten Wärmetauschers angeordnet ist.
  • In diesem Beispiel ist der eingangs erwähnte, im Vorfertigungsstadium der Wellrippe vorhandene Abstand zwischen den Strukturen 5 (7) in Bandlängsrichtung deutlich größer als das Bogenmaß der Scheitelpunkte 2, die etwa halbkreisförmig ausgebildet sind. Deshalb ist beispielsweise in den Fig. 7 und 10 zu sehen, dass die Strukturen 5 (7) oben und unten nicht unmittelbar bis an die Scheitelpunkte 2 heranreichen, sondem deutlich vorher enden.
  • In Fig. 10 wurden zwei Wärmetauscherwände 3 angedeutet, die jeweils eine Breitseite der nicht gezeigten Flachrohre darstellen sollen. Zwischen benachbarten Flanken 4 befindet sich jeweils ein Strömungskanal 20. Die Wellrippe ist in ihren Flanken 4 mit Schnitten 7 versehen, wobei sich die Anordnungsrichtung 15 der Schnitte 7 in einer Flanke 4 mit der Anordnungsrichtung 15 der Schnitte 7 in der benachbarten Flanke 4 schneidet. Wie aus den genannten Figuren erkennbar ist, wurden in diesem Ausführungsbeispiel zwei Gruppen A, B von Schnitten 7 vorgesehen, ohne dass die Anzahl der Gruppen auf zwei beschränkt ist. In den beiden Gruppen A und B haben die Schnitte 7 einen gleich großen Neigungswinkel α, sind aber entgegengesetzt geneigt. Die vorstehende Beschreibung geht insbesondere aus der Fig. 7 hervor, die auf der rechten Seite in einem Ausschnitt auch die im Bild hintere Flanke 4 zeigt. In der A - Gruppe sind die Schnitte 7 nach rechts geneigt und in der B - Gruppe nach links. Zwischen den beiden Gruppen A, B ist ein Bereich 13 vorhanden, in dem die Flanken 4 ohne Struktur ausgebildet sind. In nicht gezeigten Ausführungsbeispielen befindet sich im Bereich 13 eine Versteifungssicke. In anderen nicht gezeigten Ausführungsbeispielen kann dieser Bereich 13 ausgeschnitten sein, um die beiden Gruppen A und B thermisch voneinander besser zu trennen. In solchen Fällen handelt es sich dann um zwei verschiedene Wärmetauscher, wobei die Gruppe A zum ersten Wärmetauscher und die Gruppe B zum zweiten Wärmetauscher gehört. Wie die Fig. 9 besonders deutlich macht, sind die Schnitte 7 innerhalb der Gruppen A und B in den Flanken 4 parallel zueinander angeordnet, d. h., sie sind in gleicher Richtung aus der Oberfläche der Flanken 4 herausgestellt worden. Ferner haben alle Schnitte 7 einen gleich großen Anstellwinkel β. Jedoch sind die Schnitte 7 in der Gruppe A nach rechts r herausgestellt worden und in der Gruppe B nach links I, so dass ein in den Strömungskanal 20 eintretender Luftstrahl (Pfeil) in der Gruppe A zu einem wesentlichen Teil nach oben in den nicht gezeigten anschließenden Strömungskanal 20 geleitet wird und in der Gruppe B nach unten in den dortigen ebenfalls nicht gezeigten Strömungskanal 20.
  • Wie insbesondere aus Fig. 7 erkennbar ist, ist die Länge L der Schnitte 7 am Anfang und am Ende der Gruppe A und B kürzer als im Hauptstrukturenbereich 55, der hier mit dem dritten Schnitt 7 beginnt. Die Schnitte 7 sollten vor dem Bereich 21 vor derseitlichen Kante 22 der Flanke 4 enden um eine ausreichende Steifigkeit der Wellrippe zu erreichen.
  • In einem zweiten Ausführungsbeispiel (siehe Fig. 11 a und 11 b) handelt es sich um eine Lamelle wie sie im ersten Ausführungsbeispiel beschrieben wurde. Sie kann von Kühlluft oder auch von Öl durchströmt werden. Die Lamelle ist in einem Kanal eines Wärmetauschkörpers eingesetzt. Das Besondere dieser Lamellen ist, dass sie zusätzlich zu den Wellungen 6 auch noch Schnitte 7 besitzen. Durch die dadurch entstehende Turbulenz konnte die Wärmetauscheffizienz weiter verbessert werden. Diese Schnitte 7 sind alle um den gleichen Winkel δ aus der Lamelle ausgestellt, so dass das sie durchströmende Medium von einem Strömungskanal 20 in die benachbarten Strömungskanäle 20 gelangen kann. Die Höhe h der Schnitte 7 ist kleiner als die Wellenhöhe h der Lamelle, um eine ausreichende Stabilität der Lamelle zu gewährleisten. Der Abstand 17 der Schnitte 7 sollte vorzugsweise gleich groß sein wie die halbe Wellenlänge 16 der Wellung 6. Die Schnitte 7 liegen in den einzelnen Wellen 6, sie können sich jedoch auch an anderen Positionen auf der Flanke 4 befinden. Wobei darauf verzichtet wurde dies im Einzelnen zu zeigen. In den Bereich 21 vor der Kante 22 sollten die Schnitte 7 im Gegensatz zu den Wellen 6 nicht hineinreichen, so dass die letzten Schnitte 7 kürzer als die Schnitte 7 im Hauptstrukturenbereich 55 sind.

Claims (7)

  1. Gewellter Wärmetauschkörper (1), der aus einem Metallband herstellbar ist und eine Wellenhöhe (h) aufweist, die zwischen den Scheitelpunkten (2) der Wellen liegt, wobei die Scheitelpunkte (2) eine erste und eine zweite Ebene bilden, die aus mehreren Scheitelpunkten (2) bestehen, wobei zumindest einige Scheitelpunkte (2) jeder Ebene mit Wärmetauscherwänden (3) zu verbinden sind und wobei jeder Scheitelpunkt (2) der ersten Ebene mit dem folgenden Scheitelpunkt (2) der zweiten Ebene mittels Flanken (4) verbunden ist und zwischen benachbarten Flanken (4) jeweils ein Strömungskanal (20) ausgebildet ist; in den Flanken (4) befinden sich Strukturen (5), deren Anordnungsrichtung (15) in einer Flanke (4) sich kreuzt mit der Anordnungsrichtung (15) in der folgenden Flanke (4),
    dadurch gekennzeichnet, dass die Strukturen (5) eine Wellung der Flanken (4) sind, die den Strömungskanal (20) mit im Wechsel folgenden Einschnürungen (11) und Erweiterungen (10) versehen, wobei die Anordnungsrichtung der Wellen (6) in der einen Flanke (4) sich kreuzt mit der Anordnungsrichtung der Wellen (6) in der benachbarten Flanke (4), wobei benachbarte Strömungskanäle (20) entweder strömungstechnisch voneinander getrennt sind oder die Flanken (4) Schnitte (7) aufweisen, die die gleiche Anordnungsrichtung wie die Wellen (6) haben, so dass die Schnitte (7) und die Wellen (6) parallel zueinander angeordnet sind und die Schnitte (7) benachbarte Strömungskanäle (20) strömunstechnisch miteinander verbinden.
  2. Gewellter Wärmetauschkörper nach Anspruch 1 dadurch gekennzeichnet, dass die Anordnungsrichtung (15) der Wellen (6) mit der Vertikalen (14) übereinstimmt und die Anordnungsrichtung (15) der Wellen (6) in der folgenden Flanke (4) einen Neigungswinkel (α) zur Vertikalen (14) hat.
  3. Gewellter Wärmetauschkörper nach Anspruch 1, dadurch gekennzeichnet, dass die Anordnungsrichtung (15) der Wellen (6) in einer Flanke (4) einen Neigungswinkel (α) zur Vertikalen (14) hat und die Anordnungsrichtung (15) der Wellen (6) in der folgenden Flanke (4) einen entgegengesetzten, aber vorzugsweise einen gleich großen Neigungswinkel (α) aufweist.
  4. Gewellter Wärmetauschkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Breite der Wellen an ihrem Anfang und an ihrem Ende kürzer ist als in dem daran anschließenden Hauptstrukturenbereich.
  5. Gewellter Wärmetauschkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Breite der Wellen im Hauptstrukturenbereich mindestens 70% der Wellenhöhe (h) beträgt.
  6. Gewellter Wärmetauschkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Neigungswinkel (α) der Wellen (6) gegenüber der Vertikalen (14) vorzugsweise nicht größer als 45° ist.
  7. Gewellter Wärmetauschkörper nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die mittels der Scheitelpunkte (2) gebildeten zwei Ebenen entweder parallel zueinander angeordnet sind oder abnehmenden bzw. ansteigenden Abstand (Wellenhöhe h) zueinander aufweisen.
EP03004778A 2002-04-27 2003-03-05 Gewellter Wärmetauschkörper Expired - Lifetime EP1357345B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10218912 2002-04-27
DE10218912A DE10218912A1 (de) 2002-04-27 2002-04-27 Gewellter Wärmetauschkörper

Publications (3)

Publication Number Publication Date
EP1357345A2 EP1357345A2 (de) 2003-10-29
EP1357345A3 EP1357345A3 (de) 2007-05-09
EP1357345B1 true EP1357345B1 (de) 2009-09-09

Family

ID=28685319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03004778A Expired - Lifetime EP1357345B1 (de) 2002-04-27 2003-03-05 Gewellter Wärmetauschkörper

Country Status (3)

Country Link
US (1) US6942024B2 (de)
EP (1) EP1357345B1 (de)
DE (2) DE10218912A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10342241A1 (de) * 2003-09-11 2005-04-07 Behr Gmbh & Co. Kg Wärmetauscher
US7862011B2 (en) * 2004-12-23 2011-01-04 Az Evap, Llc Non uniform water distribution system for an evaporative cooler
DE202005009948U1 (de) * 2005-06-23 2006-11-16 Autokühler GmbH & Co. KG Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
JP4881583B2 (ja) * 2005-06-27 2012-02-22 株式会社豊田自動織機 パワーモジュール用ヒートシンク
US7510174B2 (en) * 2006-04-14 2009-03-31 Kammerzell Larry L Dew point cooling tower, adhesive bonded heat exchanger, and other heat transfer apparatus
JP4958184B2 (ja) * 2007-01-25 2012-06-20 国立大学法人 東京大学 熱交換器
DE102007049116A1 (de) 2007-10-12 2009-04-16 Modine Manufacturing Co., Racine Verfahren zur Herstellung von gewelltem Streckmetall
DE102007049474B4 (de) 2007-10-16 2023-02-09 Innerio Heat Exchanger GmbH Verfahren zur Herstellung von gewellten Wärmetauscherelementen
US8376036B2 (en) 2007-11-02 2013-02-19 Az Evap, Llc Air to air heat exchanger
DE202008016603U1 (de) 2008-12-15 2010-04-29 Autokühler GmbH & Co. KG Wellrippe für Wärmeaustauscher
JP5156773B2 (ja) * 2010-02-25 2013-03-06 株式会社小松製作所 コルゲートフィンおよびそれを備える熱交換器
DE102011004306A1 (de) * 2011-02-17 2012-08-23 Behr Gmbh & Co. Kg Rippe für einen Wärmeübertrager
US9538693B2 (en) * 2013-03-15 2017-01-03 A.K. Stamping Company, Inc. Aluminum EMI / RF shield
CN103256850A (zh) * 2013-05-24 2013-08-21 南京北大工道软件技术有限公司 一种后掠型百叶窗翅片
CN116498885B (zh) * 2023-06-29 2023-09-12 中太海事技术(上海)有限公司 具有平滑顶表面和拉延筋的波纹板和储存容器

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298432A (en) 1964-05-22 1967-01-17 Przyborowski Stanislaus Radiators
FR2468404A1 (fr) * 1979-10-26 1981-05-08 Hamon Sobelco Sa Feuille de ruissellement pour dispositif de garnissage d'installation de mise en contact de liquide et de gaz
AT380104B (de) 1982-10-15 1986-04-10 Stelrad Radiatoren & Kessel Plattenradiator
DD245247A1 (de) * 1985-12-24 1987-04-29 Kyffhaeuserhuette Maschf Waermeuebertragungsplatten
CA1313183C (en) * 1989-02-24 1993-01-26 Allan K. So Embossed plate heat exchanger
FR2648220B1 (fr) * 1989-06-12 1991-12-20 Commissariat Energie Atomique Echangeur de chaleur forme de plaques ondulees et superposees
JP2786702B2 (ja) * 1989-12-07 1998-08-13 昭和アルミニウム株式会社 複式一体型熱交換器
US5029636A (en) * 1990-11-05 1991-07-09 General Motors Corporation Oil cooler with louvered center
FR2690503B1 (fr) * 1992-04-23 1994-06-03 Commissariat Energie Atomique Evaporateur a plaques a hautes performances thermiques fonctionnant en regime d'ebullition nucleee.
FR2704635B1 (fr) * 1993-04-28 1995-06-02 Commissariat Energie Atomique Radiateur d'automobile eet procédé de fabrication.
FR2714456B1 (fr) * 1993-12-29 1996-01-12 Commissariat Energie Atomique Echangeur de chaleur à plaques améliorées.
US5616289A (en) * 1994-01-12 1997-04-01 Mitsubishi Corporation Substance and/or heat exchanging tower
DE19503766C2 (de) 1994-03-03 1996-05-15 Gea Luftkuehler Happel Gmbh Rippenrohr-Wärmeaustauscher
US5476140A (en) * 1995-02-21 1995-12-19 Behr Heat Transfer Systems, Inc. Alternately staggered louvered heat exchanger fin
DE19652999C2 (de) * 1996-12-19 1999-06-24 Steag Ag Wärmespeicherblock für regenerative Wärmetauscher
DE19840912A1 (de) * 1998-09-08 2000-03-16 D.D.C. Planungs-, Entwicklungs- Und Management Ag Verfahren zur Herstellung eines durchströmbaren Hohlkörpers sowie ein durchströmbares Sandwichelement
KR100297189B1 (ko) 1998-11-20 2001-11-26 황해웅 열전달촉진효과를갖는고효율모듈형오엘에프열교환기
JP4482991B2 (ja) * 1999-12-14 2010-06-16 株式会社デンソー 複式熱交換器
DE19963373A1 (de) * 1999-12-28 2001-07-12 Abb Alstom Power Ch Ag Vorrichtung zur Kühlung einer, einen Strömungskanal umgebenden Strömungskanalwand mit wenigstens einem Rippenzug
DE10102088A1 (de) * 2000-01-28 2001-08-16 Behr Gmbh & Co Ladeluftkühler, insbesondere für Kraftfahrzeuge
DE10041919C1 (de) * 2000-08-25 2001-10-31 Wieland Werke Ag Innenberipptes Wärmeaustauschrohr mit versetzt angeordneten Rippen unterschiedlicher Höhe
JP4605925B2 (ja) * 2001-03-08 2011-01-05 サンデン株式会社 積層型熱交換器
US20030075307A1 (en) * 2001-10-22 2003-04-24 Heatcraft, Inc. Exchanger of thermal energy with multiple cores and a thermal barrier
FR2834783B1 (fr) * 2002-01-17 2004-06-11 Air Liquide Ailette d'echange thermique, son procede de fabrication et echangeur de chaleur correspondant

Also Published As

Publication number Publication date
EP1357345A2 (de) 2003-10-29
DE10218912A1 (de) 2003-11-06
US20030213588A1 (en) 2003-11-20
US6942024B2 (en) 2005-09-13
DE50311879D1 (de) 2009-10-22
EP1357345A3 (de) 2007-05-09

Similar Documents

Publication Publication Date Title
DE60219538T2 (de) Wärmetauscher
DE60022847T2 (de) Kombinierte endlose Rippe für Wärmetauscher
DE202005009948U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
DE102006048305B4 (de) Plattenwärmetauscher
DE102004033459B4 (de) Wärmetauscherrippe für eine Fahrzeug-Klimaanlage mit paralleler Schichtung von flachen Wärmeübertragerrohren
DE69428219T2 (de) Plattenwärmetauscher
DE69216389T2 (de) Versetzt angeordnete streifenförmige rippe für einen kompakten wärmetauscher
DE60021509T3 (de) Verdampfer mit verbessertem Kondensatablauf
EP1357345B1 (de) Gewellter Wärmetauschkörper
EP1445570B1 (de) Wärmetauscherrohr mit gewelltem Einsatz und sein Herstellungsverfahren
EP1910764B2 (de) Plattenelement für einen plattenkühler
DE60118029T2 (de) Wärmetauscher mit gelöteten platten
DE112006001071B4 (de) Wärmetauscher mit Turbulizern mit Windungen variierter Höhe
DE3536325A1 (de) Waermeaustauscher
DE112011100691T5 (de) Wellrippe und Wärmetauscher umfassend eine Wellrippe
DE112014003247T5 (de) Rippe für Wärmetauscher
DE102013204946A1 (de) Rippe und Wärmetauscher, welcher dieselbige verwendet
DE112018006027T5 (de) Verbesserte wärmeübertragungsfläche
DE3606253A1 (de) Waermeaustauscher
EP3491323B1 (de) Wärmetauscher mit mikrokanal-struktur oder flügelrohr-struktur
DE112009000983T5 (de) Wärmetauscher mit Streckgitterwirbelerzeuger
DE202008013351U1 (de) Wärmeaustauschernetz und damit ausgerüsteter Wärmeaustauscher
EP1640684A1 (de) Wärmeübertrager aus Flachrohren und Wellrippen
DE19531383A1 (de) Wärmeübertrager
DE10342241A1 (de) Wärmetauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20071109

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080116

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50311879

Country of ref document: DE

Date of ref document: 20091022

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140320

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140410

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150305

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160331

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50311879

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003