WO2004013503A1 - Maschinenelement mit zwischen beweglichen bauteilen angeordneten wälzkörpern - Google Patents

Maschinenelement mit zwischen beweglichen bauteilen angeordneten wälzkörpern Download PDF

Info

Publication number
WO2004013503A1
WO2004013503A1 PCT/EP2003/007780 EP0307780W WO2004013503A1 WO 2004013503 A1 WO2004013503 A1 WO 2004013503A1 EP 0307780 W EP0307780 W EP 0307780W WO 2004013503 A1 WO2004013503 A1 WO 2004013503A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling elements
machine element
diameter
rolling
element according
Prior art date
Application number
PCT/EP2003/007780
Other languages
English (en)
French (fr)
Inventor
Heinrich Plewnia
Ulrich Danne
Original Assignee
Lucas Automotive Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucas Automotive Gmbh filed Critical Lucas Automotive Gmbh
Priority to EP03766206A priority Critical patent/EP1525404A1/de
Priority to AU2003250091A priority patent/AU2003250091A1/en
Publication of WO2004013503A1 publication Critical patent/WO2004013503A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/3713Loose spacing bodies with other rolling elements serving as spacing bodies, e.g. the spacing bodies are in rolling contact with the load carrying rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/20Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows with loose spacing bodies, e.g. balls, between the bearing balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/40Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings with loose spacing bodies between the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C39/00Relieving load on bearings
    • F16C39/02Relieving load on bearings using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H25/00Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms
    • F16H25/18Gearings comprising primarily only cams, cam-followers and screw-and-nut mechanisms for conveying or interconverting oscillating or reciprocating motions
    • F16H25/20Screw mechanisms
    • F16H25/22Screw mechanisms with balls, rollers, or similar members between the co-operating parts; Elements essential to the use of such members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/50Rotating members in mutual engagement with parallel non-stationary axes, e.g. planetary gearing

Definitions

  • the invention relates to a machine element with rolling bodies of different diameters arranged between components that are movable relative to one another.
  • a ball screw which comprises rolling elements of different diameters to reduce wear. More precisely, balls of two different diameters are alternately arranged in this ball screw drive in such a way that a ball of smaller diameter is located between two balls of larger diameter.
  • the balls of larger diameter act as supporting balls and the balls of smaller diameter as separating balls.
  • the separating balls ensure that two successive balls do not touch, which reduces wear and increases the life of the balls.
  • a particularly advantageous wear behavior could obviously be achieved if the supporting balls are made of ceramic and the separating balls are made of a material with a lower modulus of elasticity, for example steel.
  • the invention is based on the object of specifying a machine element with rolling bodies of different diameters arranged between components which are movable relative to one another and which has an improved functionality.
  • a machine element in which the difference in diameter between rolling elements arranged relative to one another is selected such that a rolling element of smaller nominal diameter fulfills a supporting function when the machine element is loaded.
  • the nominal diameter of a rolling element denotes the diameter which the rolling element has when the machine element is not loaded.
  • the rolling elements with the largest nominal diameter have a supporting function. With increasing load on the machine element, the constraining forces acting on these load-bearing rolling elements increase and the load-bearing rolling elements are gradually elastically compressed.
  • the diameter of the rolling elements with the largest nominal diameter approaches the smaller nominal diameter of the next smaller rolling element, so that finally the next smaller rolling element also fulfills a supporting function with regard to the components that are movable relative to one another. If rolling elements with three or more different nominal diameters are provided, this process continues as desired, ie rolling elements fulfill their supporting function one after the other in the order of decreasing nominal diameters.
  • the process described takes place in reverse order when the load on the machine element decreases. In accordance with the increase or decrease in the load on the machine element, the load is consequently transmitted by a larger or smaller number of rolling elements.
  • the load threshold from which one or more rolling elements of smaller nominal diameter fulfill a supporting function and thus the force transmission characteristic of the entirety of the rolling elements can be set in a targeted manner.
  • the relevant parameters are, for example, the number of rolling elements of a certain nominal diameter used, the diameter differences, the number of different nominal diameters used, the sequence of the nominal diameters, i.e. the distances between rolling elements of the same nominal diameter and the materials used for the different rolling elements are available.
  • At least one rolling element of smaller nominal diameter is arranged between two rolling elements of larger nominal diameter.
  • the rolling element of smaller nominal diameter in the unloaded or lightly loaded state of the machine element then initially fulfills the separating function known from DE 42 35 842 C2, that is to say reduces friction and wear. This separation function is only canceled in favor of a supporting function when the machine element is subjected to greater loads.
  • rolling elements of different nominal diameters have different moduli of elasticity.
  • Rolling elements with a larger nominal diameter can be made from materials with a lower modulus of elasticity and rolling elements smaller nominal diameter can be made of materials with a higher modulus of elasticity. It is conceivable to manufacture rolling elements with a larger nominal diameter from steel and rolling elements with a smaller nominal diameter from a ceramic material.
  • the difference in diameter between rolling elements of successive nominal diameters can be in the micrometer range.
  • a diameter difference between approximately 1 and 200 ⁇ m is preferred, particularly preferably between approximately 5 and 50 ⁇ m.
  • the rolling elements can have a wide variety of shapes. For example, it is conceivable to design the rolling elements as cones, balls, rollers, etc.
  • the machine element equipped with these rolling elements can serve various purposes. Examples include machine elements in the form of ball bearings, roller bearings, ball screws, linear guides, etc.
  • the rolling elements can be arranged directly or at a short distance in succession between the components of the machine element which are movable relative to one another.
  • the machine element expediently comprises one or more rows of rolling elements. A row arrangement of the rolling elements in the loaded state of the machine element is particularly preferred.
  • the machine element according to the invention has many areas of application.
  • a preferred area of application of the machine element according to the invention is an electromechanical brake system. In such braking systems, the invention
  • Machine elements in the form of, for example, ball screw drives are used to convert the rotational movement of an electric motor / gear unit of the brake system into a translational movement for actuating the actual brake actuator.
  • FIGS. 1A and 1B a machine element according to the invention in an unloaded and loaded state; 2 shows an electromechanical motor vehicle brake with a ball screw drive according to the invention;
  • FIG. 3 shows the mechanical functional curve of an actuator of the brake system according to FIG. 2 when using a conventional ball screw drive
  • FIG. 4 shows the mechanical functional curve of an actuator of the brake system according to FIG. 2 when using a ball screw drive according to the invention.
  • 1A shows an exemplary embodiment of a machine element 10 according to the invention in the unloaded state.
  • 1A is a section perpendicular to the longitudinal axis e.g. a ball bearing, roller bearing or ball screw drive.
  • the machine element 10 comprises, for example, an annular or cylindrical outer component 12 and an inner component 14 arranged coaxially with the outer component 12 and movable relative to the outer component.
  • the inner component 14 can have the shape of a ring, a cylinder or a rod, for example.
  • a plurality of rolling elements 16, 18 is arranged in a free space 15, for example in the form of a groove or cylinder, between the outer component 12 and the inner component 14.
  • the rolling elements 16, 18 are balls, rollers or cones with a circular cross section.
  • the rolling elements 16, 18 have a different nominal diameter when the machine element 10 is unloaded. More precisely, a rolling element 18 with a smaller nominal diameter is arranged between each two rolling elements 16 with a larger nominal diameter. It should be noted in FIG. 1A that the difference in diameter between the rolling elements 16 of larger diameter and the rolling elements 18 of smaller diameter is shown exaggerated. With typical diameters in the millimeter range
  • the difference in diameter is only in the micrometer range. With rolling element diameters in the centimeter range, however, the diameter difference could also be in the millimeter range. It is essential in any case that the difference in diameter between the rolling elements with the largest diameter and the rolling elements with the next smaller diameter is selected such that the rolling elements with the next smaller diameter can also perform a supporting function when the machine element is in a maximally loaded condition , As can be seen in FIG. 1A, only the rolling elements 16 with the largest diameter have a supporting function in the unloaded or slightly loaded state of the machine element 10. The rolling elements 18 of smaller diameter, on the other hand, have no supporting function in the unloaded or lightly loaded state, but only a separating function.
  • the rolling elements 18 of smaller diameter consequently effectively reduce the friction between the rolling elements 16 of larger diameter which are under load.
  • the reason for this is, among other things, the fact that the rolling elements 18 of smaller diameter roll on respectively adjacent rolling elements 16 of larger diameter and thereby keep adjacent rolling elements 16 of larger diameter at a distance.
  • the difference in diameter between the rolling elements 16 of larger diameter and the rolling elements 18 of smaller diameter as well as the ratio of the number of rolling elements 16 of larger diameter to the number of rolling elements 18 of smaller diameter are chosen such that, with a predefined load on the machine element 10, the one shown in FIG. 1B Situation.
  • the rolling elements 16 of larger diameter are elastically compressed to such an extent that the rolling elements 18 are smaller due to the constraining forces acting on them and due to the load on the machine element 10
  • Diameter just start to perform a supporting function in addition to the rolling elements 16 of larger diameter. This is due to the fact that, due to the load on the machine element 10, the free space 15 between the outer component 12 and the inner component 14 has decreased to such an extent that the radial distance between the outer component 12 and the inner component 14 is precisely the diameter of the rolling elements 18 corresponds to a smaller diameter.
  • the rolling elements 16 of larger diameter which have a supporting effect in the lower load range, are made of steel and have an elastic modulus of approximately 2 ⁇ 10 5 MPa.
  • the rolling elements 18 of smaller diameter which, in addition to the rolling elements 16 of larger diameter, perform a supporting function in an upper load range, consist of a ceramic material and have an elastic modulus of approximately 3 ⁇ 10 5 MPa. This combination of materials results in an extremely smooth transition from the lower load range to the upper load range on the one hand and an extremely high total load range on the other.
  • a rolling element type could also be used that fulfills a separating function in the entire load range.
  • Such a rolling element type corresponds functionally to the separating balls known from DE 42 35 842 C2.
  • FIGS. 1A and 1B The use of the machine element 10 according to the invention according to FIGS. 1A and 1B in an electromechanical brake system, more specifically described in a floating caliper disc brake.
  • the floating caliper disc brake 20 shown in FIG. 2 has a brake carrier 22 and a floating caliper 24 which is displaceable with respect to the brake carrier 22.
  • the disc brake 10 further comprises two brake shoes which can be pressed on both sides against a brake disc, not shown in FIG. 2.
  • Each of the two brake shoes has a friction lining 30, 32 arranged on a respective support plate 34, 36.
  • each of the two brake shoes interacts with the brake disk, not shown in FIG. 2. During the interaction, a clamping force acting in the axial direction A along the arrows B, B 'is generated.
  • an electric motor 38 which comprises a motor winding 40 and a rotor 44 rigidly coupled to a motor shaft 42.
  • the motor shaft 42 is connected to the input side of a reduction gear 45, the output side of which is coupled to a ball screw drive 10 according to the invention for converting a rotational movement of the electric motor 38 into a translational movement.
  • the ball screw drive 10 is designed as a spindle-nut arrangement and comprises a two-part spindle unit 14, 46 and a nut 12 arranged coaxially to the spindle unit 14, 6 and radially on the outside with respect to the latter.
  • the two-part spindle unit consists of a rod-shaped spindle element 46 and a non-rotatable one the cup-shaped spindle element 14 coupled to the rod-shaped spindle element 46.
  • the ball screw drive 10 is designed such that a rotation of the spindle unit 14, 46 about the longitudinal axis A of the disc brake 10 is converted into a translational movement of the nut 12 along this longitudinal axis A.
  • the cup-shaped spindle element 14 is provided with an external thread which interacts with a complementary internal thread of the nut 12 by means of a plurality of spherical rolling bodies 16, 18.
  • the reduction thread 45 transmits a rotational movement of the motor shaft 42 to the spindle unit 14, 46.
  • the direction of rotation of the spindle unit 14, 46 is chosen such that the nut 12 interacting by means of the spherical rolling elements 16, 18 is moved to the right in FIG. 2.
  • one end face of the nut 12 facing the friction linings 30, 32 comes into contact with the surface of the carrier plate 34 facing away from the friction lining 30.
  • the carrier plate 34 is then gripped by the translational movement of the nut 50 and in the direction of arrow B to the surface shown in FIG 2 pressed brake disc, not shown.
  • the friction pad 30 lying opposite is also pressed onto the brake disk in the direction of arrow B 'as a result of the friction lining 30 being pressed against the brake disk. In this way, the clamping force acting in the direction of arrows B, B 'is generated.
  • the electric motor 38 is controlled in such a way that the motor shaft 42 and therefore also the spindle unit 14, 46 change their direction of rotation.
  • the nut 12 is moved to the left in FIG. 2 and the clamping force acting in the direction of the arrows B, B 'is reduced.
  • the hysteresis curve shown in FIG. 3 is obtained when using a conventional ball screw drive with rolling elements of the same size. It is desirable that the hysteresis curve during the reduction of the clamping force down to very low clamping forces always be in the range of a positive input torque, i.e. self-releasing, remains.
  • FIGS. 1A and 1B This problem is eliminated by means of a ball screw drive 10 according to the invention with a structure and a functionality as shown in FIGS. 1A and 1B.
  • all of the rolling elements 16, 18, as shown in FIG. At a comparatively lower force level of below 10 kN, however, the situation shown in FIG. 1A results, namely that the rolling elements 18 of smaller diameter have a separating function and minimize the friction between the rolling elements 16 of larger diameter fulfilling a supporting function.
  • the hysteresis curve when using the ball screw drive 10 according to the invention is shown in FIG. 4.
  • the residual clamping force in the event of a power supply failure for the electric motor / threaded unit 38, 45, for example, is less than 1 kN.
  • the ball screw 10 according to the invention therefore combines the advantages of a short design, low frictional forces in a lightly loaded state and a high overall load capacity.
  • Another advantage of the ball screw drive 10 according to the invention is the fact that due to the reduced friction Losses in the lower load range that can be achieved in the case of an electromechanical brake system to achieve a large ratio desirable low gradients without having to accept significant losses in terms of efficiency or self-releasing behavior.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)
  • Braking Arrangements (AREA)

Abstract

Es wird ein Maschinenelement (10) mit zwei relativ zueinander beweglichen Bauteilen (12, 14) und zwischen diesen Bauteilen (12, 14) angeordneten Wälzkörpern (16, 18) unterschiedlichen Nominaldurchmessers beschrieben. Der Durchmesserunterschied zwischen den Wälzkörpern (16, 18) unterschiedlichen Nominaldurchmessers ist derart gewählt, dass ein Wälzkörper (18) geringeren Nominaldurchmessers erst in belastetem Zustand des Maschinenelements (10) eine Tragfunktion erfüllt.

Description

Maschinenelement mit zwischen beweglichen Bauteilen angeordneten Wälzkörpern
Die Erfindung betrifft ein Maschinenelement mit zwischen relativ zueinander bewegli- chen Bauteilen angeordneten Wälzkörpern unterschiedlichen Durchmessers.
Bedingt durch die kinematischen Verhältnisse in herkömmlichen gattungsgemäßen Maschinenelementen wie Rollenlagern oder Kugelgewindetrieben mit gleich großen Wälzkörpern treten zwischen diesen Wälzkörpern in belastetem Zustand der Maschi- nenelemente hohe Zwangskräfte auf. Diese Zwangskräfte bewirken ein hohes Reibmoment und führen zu einem erhöhten Verschleiß der Wälzkörper.
Aus der DE 42 35 842 ist ein Kugelgewindetrieb bekannt, der zur Verschleißreduzierung Wälzkörper unterschiedlichen Durchmessers umfasst. Genauer gesagt sind bei diesem Kugelgewindetrieb wechselweise Kugeln zweier unterschiedlicher Durchmesser derart angeordnet, dass sich jeweils eine Kugel geringeren Durchmessers zwischen zwei Kugeln größeren Durchmessers befindet. Die Kugeln größeren Durchmessers fungieren als Tragkugeln und die Kugeln geringeren Durchmessers als Trennkugeln. Die Trennkugeln gewährleisten, dass sich zwei aufeinanderfolgende Tragkugeln nicht berühren, wodurch sich der Verschleiß verringert und die Lebensdauer der Tragkugeln erhöht. Ein besonders vorteilhaftes Verschleißverhalten konnte offensichtlich dann erzielt werden, wenn die Tragkugeln aus Keramik und die Trennkugeln aus einem Werkstoff mit niedrigerem Elastizitätsmodul, beispielsweise Stahl, bestehen.
Der Erfindung liegt die Aufgabe zugrunde, ein Maschinenelement mit zwischen relativ zueinander beweglichen Bauteilen angeordneten Wälzkörpern unterschiedlichen Durchmessers anzugeben, welches eine verbesserte Funktionalität besitzt.
Diese Aufgabe wird erfindungsgemäß durch ein Maschinenelement gelöst, bei dem der Durchmesserunterschied zwischen relativ zueinander beweglichen Bauteilen angeordneter Wälzkörper derart gewählt ist, dass ein Wälzkörper geringeren Nominaldurchmessers in belastetem Zustand des Maschinenelements eine Tragfunktion erfüllt. Der Nominaldurchmesser eines Wälzkörpers bezeichnet denjenigen Durch- messer, welchen der Wälzkörper in unbelastetem Zustand des Maschinenelements besitzt. In unbelastetem oder gering belastetem Zustand des Maschinenelements besitzen die Wälzkörper mit dem größten Nominaldurchmesser eine Tragfunktion. Mit zunehmender Belastung des Maschinenelements nehmen die auf diese tragenden Wälzkörper wirkenden Zwangskräfte zu und die tragenden Wälzkörper werden allmählich elastisch komprimiert. Im Zuge dieser Kompression nähert sich der Durchmesser der Wälzkörper mit größtem Nominaldurchmesser dem geringeren Nominaldurchmesser des nächst kleineren Wälzkörpers an, so dass schließlich auch der nächst kleinere Wälzkörper eine Tragfunktion bezüglich der relativ zueinander beweglichen Bauteile erfüllt. Sofern Wälzkörper mit drei oder mehr unterschiedlichen Nominaldurchmes- sern vorgesehen sind, setzt sich dieser Vorgang beliebig fort, d.h. Wälzkörper erfüllen ihre Tragfunktion nacheinander in der Reihenfolge sinkenden Nominaldurchmessers. Der beschriebene Vorgang findet bei abnehmender Belastung des Maschinenelements in umgekehrter Reihenfolge statt. Entsprechend der Zu- bzw. Abnahme der Belastung des Maschinenelements wird die Last folglich von einer größeren bzw. kleineren Anzahl von Wälzkörpern übertragen.
Erfindungsgemäß kann die Belastungsschwelle, ab welcher ein oder mehrere Wälzkörper geringeren Nominaldurchmessers eine Tragfunktion erfüllen, und damit die Kraftübertragungscharakteristik der Gesamtheit der Wälzkörper gezielt eingestellt werden. Als diesbezügliche Parameter stehen beispielsweise die Anzahl der verwendeten Wälzkörper eines bestimmten Nominaldurchmessers, die Durchmesserunterschiede, die Anzahl der verwendeten unterschiedlichen Nominaldurchmesser, die Wechselfolge der Nominaldurchmesser, d.h. die Abstände zwischen Wälzkörpern gleichen Nominaldurchmessers, und die für die verschiedenen Wälzkörper verwende- ten Werkstoffe zur Verfügung.
Vorzugsweise ist zwischen zwei Wälzkörpern größeren Nominaldurchmessers jeweils mindestens ein Wälzkörper geringeren Nominaldurchmessers angeordnet. Eine derartige Ausgestaltung ist vorteilhaft, da der Wälzkörper geringeren Nominaldurch- messers in unbelastetem oder gering belastetem Zustand des Maschinenelements dann zunächst die aus der DE 42 35 842 C2 bekannte Trennfunktion erfüllt, also reibungs- und verschleißmindernd wirkt. Erst bei stärkerer Belastung des Maschinenelements wird diese Trennfunktion zugunsten einer Tragfunktion aufgehoben.
Zweckmäßigerweise besitzen zumindest einige Wälzkörper unterschiedlichen Nominaldurchmessers unterschiedliche Elastizitätsmoduln. Wälzkörper größeren Nominaldurchmessers können aus Werkstoffen geringeren Elastizitätsmoduls und Wälzkörper geringeren Nominaldurchmessers aus Werkstoffen höheren Elastizitätsmoduls gefertigt sein. So ist es denkbar, Wälzkörper größeren Nominaldurchmessers aus Stahl und Wälzkörper geringeren Nominaldurchmessers aus einem keramischen Material zu fertigen.
Der Durchmesserunterschied zwischen Wälzkörpern aufeinanderfolgenden Nominaldurchmessers kann im Mikrometerbereich liegen. Bevorzugt ist ein Durchmesserunterschied zwischen ungefähr 1 und 200 μm, besonders bevorzugt zwischen ungefähr 5 und 50 μm.
Die Wälzkörper können unterschiedlichste Gestalt aufweisen. So ist es beispielweise denkbar, die Wälzkörper als Kegel, Kugeln, Rollen, usw. auszugestalten. Das mit diesen Wälzkörpern bestückte Maschinenelement kann verschiedenen Zwecken dienen. Beispielhaft genannt seien Maschinenelemente in Gestalt von Kugellagern, Rollenlagern, Kugelgewindetrieben, Linearführungen, usw.
Die Wälzkörper können unmittelbar oder mit geringem Abstand aufeinanderfolgend zwischen den relativ zueinander beweglichen Bauteilen des Maschinenelements angeordnet sein. Zweckmäßigerweise umfasst das Maschinenelement eine oder mehrere Reihen von Wälzkörpern. Eine in belastetem Zustand des Maschinenelements vollreihige Anordnung der Wälzkörper ist besonders bevorzugt.
Das erfindungsgemäße Maschinenelement besitzt viele Einsatzgebiete. Ein bevorzugtes Einsatzgebiet des erfindungsgemäßen Maschinenelements ist eine elektromecha- nische Bremsanlage. Bei derartigen Bremsanlagen können erfindungsgemäße
Maschinenelemente in Gestalt von beispielsweise Kugelgewindetrieben eingesetzt werden, um die Rotationsbewegung einer Elektromotor/Getriebeeinheit der Bremsanlage in eine Translationsbewegung für das Betätigen des eigentlichen Bremsaktuators umzusetzen.
Weitere Vorteile und Ausgestaltungen der Erfindung ergeben sich aus den Zeichnungen und der nachfolgenden Beschreibung bevorzugter Ausführungsformen. Es zeigen:
Fign. 1A und 1B ein erfindungsgemäßes Maschinenelement in unbelastetem und belastetem Zustand; Fig. 2 eine elektromechanische Kraftfahrzeugbremse mit einem erfindungsgemäßen Kugelgewindetrieb;
Fig. 3 die mechanische Funktionskurve eines Aktuators der Bremsanlage gemäß Fig. 2 bei Verwendung eines herkömmlichen Kugelgewindetriebs; und
Fig. 4 die mechanische Funktionskurve eines Aktuators der Bremsanlage gemäß Fig. 2 bei Verwendung eines erfindungsgemäßen Kugelgewindetriebs.
In Fig. 1A ist ein Ausführungsbeispiel eines erfindungsgemäßen Maschinenelements 10 in unbelastetem Zustand dargestellt. Bei der Ansicht gemäß Fig. 1A handelt es sich um einen Schnitt senkrecht zur Längsachse z.B. eines Kugellagers, Rollenlagers oder Kugelgewindetriebs.
Das Maschinenelement 10 umfasst ein beispielsweise ringförmiges oder zylindrisches äußeres Bauteil 12 sowie ein koaxial zum äußeren Bauteil 12 angeordnetes und relativ zum äußeren Bauteil bewegliches inneres Bauteil 14. Das innere Bauteil 14 kann beispielsweise die Form eines Rings, eines Zylinders oder einer Stange besitzen. In einem beispielsweise nut- oder zyiinderförmigen Freiraum 15 zwischen dem äußeren Bauteil 12 und dem inneren Bauteil 14 ist eine Mehrzahl von Wälzkörpern 16, 18 angeordnet. Bei den Wälzkörpern 16, 18 handelt es sich um Kugeln, Rollen oder Kegel mit kreisförmigem Querschnitt.
Wie Fig. 1A entnommen werden kann, besitzen die Wälzkörper 16, 18 im unbelaste- ten Zustand des Maschinenelements 10 einen unterschiedlichen Nominaldurchmesser. Genauer gesagt ist zwischen je zwei Wälzkörpern 16 größeren Nominaldurchmessers je ein Wälzkörper 18 geringeren Nominaldurchmessers angeordnet. In Fig. 1A ist zu beachten, dass der Durchmesserunterschied zwischen den Wälzkörpern 16 größeren Durchmessers und den Wälzkörpern 18 kleineren Durchmessers übertrie- ben dargestellt ist. Bei typischen Durchmessern im Millimeterbereich liegt der
Durchmesserunterschied nämlich nur im Mikrometerbereich. Bei Wälzkörperdurchmessern im Zentimeterbereich könnte der Durchmesserunterschied jedoch auch im Millimeterbereich liegen. Wesentlich ist in jedem Fall, dass der Durchmesserunterschied zwischen den Wälzkörpern mit dem größten Durchmesser und den Wälzkör- pern mit dem nächst kleineren Durchmesser derart gewählt ist, dass zumindest in maximal belastetem Zustand des Maschinenelements auch die Wälzkörper mit dem nächst kleineren Durchmesser eine Tragfunktion erfüllen können. Wie Fig. 1A entnommen werden kann, besitzen im unbelasteten bzw. gering belasteten Zustand des Maschinenelements 10 ausschließlich die Wälzkörper 16 mit dem größten Durchmesser eine Tragfunktion. Die Wälzkörper 18 geringeren Durchmes- sers hingegen besitzen in unbelastetem bzw. gering belastetem Zustand keine Trag-, sondern ausschließlich eine Trennfunktion. Mittels der Wälzkörper 18 geringeren Durchmessers wird folglich die Reibung zwischen den unter Last stehenden Wälzkörpern 16 größeren Durchmessers wirkungsvoll reduziert. Ursache hierfür ist u.a. die Tatsache, dass die Wälzkörper 18 geringeren Durchmessers auf jeweils benachbarten Wälzkörpern 16 größeren Durchmessers abrollen und benachbarte Wälzkörper 16 größeren Durchmessers dadurch auf Abstand halten.
Der Durchmesserunterschied zwischen den Wälzkörpern 16 größeren Durchmessers und den Wälzkörpern 18 geringeren Durchmessers sowie das Verhältnis der Anzahl der Wälzkörper 16 größeren Durchmessers zur Anzahl der Wälzkörper 18 geringeren Durchmessers sind derart gewählt, dass sich bei einer vordefinierten Belastung des Maschinenelements 10 die in Fig. 1B dargestellte Situation ergibt. In der in Fig. 1B dargestellten Situation sind die Wälzkörper 16 größeren Durchmessers aufgrund der auf sie wirkenden und auf die Belastung des Maschinenelements 10 zurückgehenden Zwangskräfte soweit elastisch komprimiert, dass die Wälzkörper 18 geringeren
Durchmessers gerade beginnen, zusätzlich zu den Wälzkörpern 16 größeren Durchmessers eine Tragfunktion zu erfüllen. Dies ist darauf zurückzuführen, dass sich aufgrund der Belastung des Maschinenelements 10 der Freiraum 15 zwischen dem äußeren Bauteil 12 und dem inneren Bauteil 14 soweit verringert hat, dass der radiale Abstand zwischen dem äußeren Bauteil 12 und dem inneren Bauteil 14 gerade dem Durchmesser der Wälzkörper 18 geringeren Durchmessers entspricht.
Die Wälzkörper 16 größeren Durchmessers, die im unteren Lastbereich tragend wirken, bestehen aus Stahl und besitzen einen Elastizitätsmodul von ungefähr 2 x 105 MPa. Die Wälzkörper 18 geringeren Durchmessers, welche zusätzlich zu den Wälzkörpern 16 größeren Durchmessers in einem oberen Lastbereich eine Tragfunktion erfüllen, bestehen aus einem keramischen Werkstoff und besitzen einen Elastizitätsmodul von ungefähr 3 x 105 MPa. Aufgrund dieser Materialkombination ergibt sich einerseits ein äußerst weicher Übergang vom unteren Lastbereich zum oberen Lastbereich und andererseits ein äußerst hoher Gesamtlastbereich. Obwohl bei dem Ausführungsbeispiel gemäß den Fign. 1A und 1B nur zwei Typen von Wälzkörpern 16, 18 unterschiedlichen Durchmessers Verwendung finden, könnten auch drei oder mehr Wälzkörpertypen mit drei oder mehr unterschiedlichen Durchmessern zum Einsatz gelangen. In diesem Fall könnte auch ein Wälzkörpertyp verwendet werden, der im gesamten Lastbereich eine Trennfunktion erfüllt. Ein derartiger Wälzkörpertyp entspricht funktionell den aus der DE 42 35 842 C2 bekannten Trennkugeln.
Nachfolgend wird die Verwendung des erfindungsgemäßen Maschinenelements 10 gemäß den Fign. 1A und 1B in einer elektromechanischen Bremsanlage, genauer gesagt in einer Schwimmsattel-Scheibenbremse beschrieben.
Die in Fig. 2 dargestellte Schwimmsattel-Scheibenbremse 20 besitzt einen Bremsträger 22 sowie einen bezüglich des Bremsträgers 22 verschieblichen Schwimmsattel 24. Die Scheibenbremse 10 umfasst weiterhin zwei Bremsbacken, welche beidseits an eine in Fig. 2 nicht dargestellte Bremsscheibe anpressbar sind.
Jeder der beiden Bremsbacken besitzt einen auf jeweils einer Trägerplatte 34, 36 angeordneten Reibbelag 30, 32. Mittels des jeweiligen Reibbelags 30, 32 wirkt jeder der beiden Bremsbacken mit der in Fig. 2 nicht dargestellten Bremsscheibe zusammen. Während des Zusammenwirkens wird eine in axialer Richtung A entlang der Pfeile B, B' wirkende Klemmkraft erzeugt.
Zur Erzeugung der Klemmkraft ist ein Elektromotor 38 vorgesehen, der eine Motor- Wicklung 40 und einen mit einer Motorwelle 42 starr gekoppelten Rotor 44 umfasst. Die Motorwelle 42 ist mit der Eingangsseite eines Untersetzungsgetriebes 45 verbunden, dessen Ausgangsseite mit einem erfindungsgemäßen Kugelgewindetrieb 10 zum Umsetzen einer Rotationsbewegung des Elektromotors 38 in eine Translationsbewegung gekoppelt ist.
Der Kugelgewindetrieb 10 ist als Spindel-Mutter-Anordnung ausgestaltet und umfasst eine zweiteilige Spindeleinheit 14, 46 sowie eine koaxial zur Spindeleinheit 14, 6 und radial außen bezüglich dieser angeordnete Mutter 12. Die zweiteilige Spindeleinheit setzt sich aus einem stangenförmigen Spindelelement 46 und einem drehfest mit dem stangenförmigen Spindelelement 46 gekoppelten becherförmigen Spindelelement 14 zusammen. Der Kugelgewindetrieb 10 ist derart ausgebildet, dass eine Rotation der Spindeleinheit 14, 46 um die Längsachse A der Scheibenbremse 10 in eine Translationsbewegung der Mutter 12 entlang dieser Längsachse A umgesetzt wird. Zu diesem Zweck ist das becherförmige Spindelelement 14 mit einem Außengewinde versehen, wel- ches mittels einer Vielzahl kugelförmiger Wälzkörper 16, 18 mit einem komplementären Innengewinde der Mutter 12 zusammenwirkt.
Wird ausgehend von der in Fig. 2 dargestellten Ruhestellung der Scheibenbremse 20 zur Erzeugung einer Klemmkraft der Elektromotor 38 in Betrieb genommen, über- trägt das Untersetzungsgewinde 45 eine Rotationsbewegung der Motorwelle 42 auf die Spindeleinheit 14, 46. Die Rotationsrichtung der Spindeleinheit 14, 46 ist derart gewählt, dass die mittels der kugelförmigen Wälzkörper 16, 18 zusammenwirkende Mutter 12 in Fig. 2 nach rechts bewegt wird. Dabei gelangt eine den Reibbelägen 30, 32 zugewandte Stirnseite der Mutter 12 in Anlage an die dem Reibbelag 30 abge- wandte Oberfläche der Trägerplatte 34. Die Trägerplatte 34 wird daraufhin von der Translationsbewegung der Mutter 50 erfasst und in Richtung des Pfeils B an die in Fig. 2 nicht dargestellte Bremsscheibe angepresst. Aufgrund der konstruktiven Ausgestaltung der Scheibenbremse 10 als Schwimmsattelscheibenbremse wird in Folge des Anpressens des Reibbelags 30 an die Bremsscheibe auch der gegenüber- liegende Reibbelag 32 in Richtung des Pfeils B' an die Bremsscheibe angepresst. Auf diese Weise wird die in Richtung der Pfeile B, B' wirkende Klemmkraft erzeugt.
Zum Abschalten oder Reduzieren der Klemmkraft wird der Elektromotor 38 derart angesteuert, dass die Motorwelle 42 und daher auch die Spindeleinheit 14, 46 ihre Rotationsrichtung ändert. In Folge der Umkehr der Rotationsrichtung wird die Mutter 12 in Fig. 2 nach links bewegt und die in Richtung der Pfeile B, B' wirkende Klemmkraft reduziert.
Wird nun die Klemmkraft über dem Eingangsmoment bzw. dem dazu proportionalen Motorstrom des Elektromotors 38 aufgetragen, so erhält man bei Verwendung eines herkömmlichen Kugelgewindetriebs mit gleich großen Wälzkörpern die in Fig. 3 dargestellte Hysteresekurve. Wünschenswert ist, dass die Hysteresekurve während des Klemmkraftabbaus bis hinunter zu ganz geringen Klemmkräften stets im Bereich eines positiven Eingangsmoments, d.h. selbstlösend, bleibt.
In der Praxis hat sich jedoch gezeigt, dass z.B. bei einem Ausfall der Stromversorgung für die Elektromotor/Getriebeeinheit 38, 45 eine verhältnismäßig hohe Rest- klemmkraft in der Größenordnung von 5 kN und darüber aufrechterhalten wird. Dieser in Fig. 3 dargestellte Sachverhalt ist aus Sicherheitsgründen unerwünscht, da die Elektromotor/Getriebeeinheit 38, 45 bei einem Ausfall der Stromversorgung die Bremse 20 nicht mehr lösen kann. Sollte eine derartige Situation eine Hinterradbrem- se eines Kraftfahrzeugs betreffen und/oder die Fahrbahnoberfläche einen niedrigen Haftreibwert besitzen, kann der Ausfall der Stromversorgung für die Elektromotor/Getriebeeinheit 38, 45 zum Blockieren des betroffenen Fahrzeugrads und zu einem instabilen Fahrverhalten führen.
Es hat sich nun herausgestellt, dass die bei herkömmlichen Bremsanlagen auftretende, vergleichsweise hohe Restklemmkraft in der Größenordnung von 5 kN und darüber in erster Linie auf Unzulänglichkeiten der verwendeten Kugelgewindetriebe zurückzuführen ist. Eine gewisse Reduzierung der Restklemmkraft lässt sich zwar durch den aus der DE 42 35 842 C2 bekannten Ansatz der zusätzlichen Verwendung von Trennkugeln erzielen. Die bei einer elektromechanischen Bremsanlage auftretenden Klemmkräfte in der Größenordnung von 30 kN und darüber erfordern jedoch eine vergleichsweise hohe Anzahl von Tragkugeln, was wiederum eine hohe Anzahl von Trennkugeln voraussetzt und damit die Baulänge des Kugelgewindetriebs in unerwünschtem Maß vergrößert.
Dieses Problem wird mittels eines erfindungsgemäßen Kugelgewindetriebs 10 mit einem Aufbau und einer Funktionalität wie in den Fig. 1A und 1B dargestellt behoben. Bei hohen Klemmkräften und einer entsprechend hohen axialen Belastung des erfindungsgemäßen Kugelgewindetriebs 10 besitzen nämlich sämtliche Wälzkörper 16, 18, wie in Fig. 1B dargestellt, vollreihig eine Tragfunktion. Bei einem vergleichsweise niedrigeren Kraftniveau von unterhalb 10 kN hingegen ergibt sich die in Fig. 1A dargestellte Situation, dass nämlich die Wälzkörper 18 geringeren Durchmessers eine Trennfunktion besitzen und die Reibung zwischen den eine Tragfunktion erfüllenden Wälzkörpern 16 größeren Durchmessers minimieren.
Die Hysteresekurve bei Verwendung des erfindungsgemäßen Kugelgewindetriebs 10 ist in Fig. 4 dargestellt. Wie Fig. 4 entnommen werden kann, beträgt die Restklemmkraft bei z.B einem Ausfall der Stromversorgung für die Elektromotor/Gewindeeinheit 38, 45 weniger als 1 kN. Der erfindungsgemäße Kugelgewindetrieb 10 vereint daher die Vorzüge einer kurzen Bauform, geringer Reibkräfte in gering belastetem Zustand und einer hohen Gesamtbelastbarkeit. Ein weiterer Vorteil des erfindungsgemäßen Kugelgewindetriebs 10 ist die Tatsache, dass aufgrund der reduzierten Reibungsver- luste im unteren Lastbereich die im Fall einer elektromechanischen Bremsanlage zum Erreichen einer großen Übersetzung wünschenswerten geringen Steigungen realisierbar sind, ohne dass nennenswerte Einbußen hinsichtlich des Wirkungsgrads oder des Selbstlöseverhaltens in Kauf genommen werden müssten.
Bei dem der Hysteresekurve von Fig. 4 zugrunde liegenden Kugelgewindetrieb fanden Wälzkörper in Gestalt von Kugeln mit einem Nominaldurchmesser von ungefähr 2,8 mm einerseits und Kugeln mit einem Nominaldurchmesser von ungefähr 2,6 mm andererseits Verwendung. Der Durchmesserunterschied betrug daher ungefähr 20 μm.

Claims

Ansprüche
1. Maschinenelement (10) mit zwischen relativ zueinander beweglichen Bauteilen (12, 14) angeordneten Wälzkörpern (16, 18) unterschiedlichen Nominaldurchmessers, wobei der Durchmesserunterschied derart gewählt ist, dass ein Wälzkörper (18) geringeren Nominaldurchmessers in belastetem Zustand des Maschinenelements (10) eine Tragfunktion erfüllt.
2. Maschinenelement nach Anspruch 1, dadurch gekennzeichnet, dass zwischen zwei Wälzkörpern (16) größeren Nominaldurchmessers mindestens ein Wälzkörper (18) geringeren Nominaldurchmessers angeordnet ist.
3. Maschinenelement nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Wälzkörper mit drei oder mehr unterschiedlichen Nominaldurchmessern vorgesehen sind.
4. Maschinenelement nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Wälzkörper (16, 18) unterschiedlichen Nominaldurchmessers einen unterschiedlichen Elastizitätsmodul besitzen.
5. Maschinenelement nach einem der Ansprüche 1 bis 4, dadurch gekennzeich- net, dass Wälzkörper (16) größeren Nominaldurchmessers aus einem Werkstoff mit geringerem Elastizitätsmodul, vorzugsweise aus Stahl, und Wälzkörper (18) geringeren Nominaldurchmessers aus einem Werkstoff mit höherem Elastizitätsmodul, vorzugsweise aus Keramik, gefertigt sind.
6. Maschinenelement nach eine der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Durchmesserunterschied im Mikrometerbereich, vorzugsweise zwischen 1 und 200 μm liegt.
7. Maschinenelement nach einem der Ansprüche 1 bis 6, dadurch gekennzeich- net, dass die Wälzkörper (16, 18) in belastetem Zustand des Maschinenelements (10) vollreihig zwischen den relativ zueinander beweglichen Bauteilen (12, 14) angeordnet sind.
8. Maschinenelement nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Maschinenelement als Kugellager, Rollenlager, Linearführung oder Kugelgewindetrieb ausgestaltet ist.
9. Elektromechanische Bremsanlage (20) mit einem Maschinenelement (10) nach einem der Ansprüche 1 bis 8.
PCT/EP2003/007780 2002-07-25 2003-07-17 Maschinenelement mit zwischen beweglichen bauteilen angeordneten wälzkörpern WO2004013503A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03766206A EP1525404A1 (de) 2002-07-25 2003-07-17 Maschinenelement mit zwischen beweglichen bauteilen angeordneten wälzkörpern
AU2003250091A AU2003250091A1 (en) 2002-07-25 2003-07-17 Machine element with roller bearings arranged between movable components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002133938 DE10233938B4 (de) 2002-07-25 2002-07-25 Elektromechanische Bremsanlage mit einem Maschinenelement mit zwischen beweglichen Bauteilen angeordneten Wälzkörpern
DE10233938.4 2002-07-25

Publications (1)

Publication Number Publication Date
WO2004013503A1 true WO2004013503A1 (de) 2004-02-12

Family

ID=30128401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/007780 WO2004013503A1 (de) 2002-07-25 2003-07-17 Maschinenelement mit zwischen beweglichen bauteilen angeordneten wälzkörpern

Country Status (4)

Country Link
EP (1) EP1525404A1 (de)
AU (1) AU2003250091A1 (de)
DE (1) DE10233938B4 (de)
WO (1) WO2004013503A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050706A1 (de) * 2004-10-19 2006-04-20 Bosch Rexroth Mechatronics Gmbh Wälzlager mit Überlastschutz
DE102010001580A1 (de) * 2009-09-14 2011-03-17 Precision Machinery Research & Development Center Lager und Spindelmechanismus unter Verwendung desselben
US20110194799A1 (en) * 2010-02-09 2011-08-11 Rolls-Royce Plc bearing
CN106545570A (zh) * 2016-08-31 2017-03-29 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动推力圆锥滚子轴承
EP3216676A1 (de) * 2016-03-09 2017-09-13 Jtekt Corporation Lenkvorrichtung
WO2018041124A1 (zh) * 2016-08-31 2018-03-08 马鞍山支点传孚智能摩擦工业研究院有限公司 轴承
WO2022007988A1 (de) * 2020-07-10 2022-01-13 Schaeffler Technologies AG & Co. KG Kugelgewindetrieb und verfahren zum betrieb eines kugelgewindetriebs

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004055422A1 (de) * 2004-11-17 2006-05-24 Schaeffler Kg Baueinheit mit lastabhängiger Schmiegung
DE102006057451A1 (de) * 2006-12-06 2008-06-12 Schaeffler Kg Schwingungsdämpfende Lageranordnung
DE102007046953A1 (de) * 2007-10-01 2009-04-02 Lucas Automotive Gmbh Kugelgewindetrieb für eine Kraftfahrzeugbremse und Kraftfahrzeugbremse
DE102008028431A1 (de) * 2008-06-17 2010-02-18 Ebert, Steffen, Dipl.-Ing. (FH) Schneckengetriebe
WO2010067586A1 (ja) * 2008-12-09 2010-06-17 Ntn株式会社 車輪用軸受装置
EP2327894B1 (de) 2009-11-24 2012-05-23 Schaeffler Technologies AG & Co. KG Wälzlager mit beschichteten Wälzkörpern unterschiedlicher Durchmesser
DE102013201326A1 (de) * 2013-01-28 2014-07-31 Aktiebolaget Skf Wälzlager mit verbesserten Lasteigenschaften
DE102014205409B4 (de) * 2014-02-20 2017-11-30 Schaeffler Technologies AG & Co. KG Wälzlageranordnung und Radlager
US9605723B2 (en) * 2015-07-21 2017-03-28 Goodrich Corporation Aircraft brake actuator assemblies
DE102016203702B3 (de) * 2016-03-08 2017-05-18 Schaeffler Technologies AG & Co. KG Arretierelement zur Sicherung von Verstellpositionen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2004600A (en) * 1977-09-13 1979-04-04 Zahnradfabrik Friedrichshafen Bearing assembly
US4505523A (en) * 1980-04-21 1985-03-19 Nadella Prestressed rolling bearing device
JPS61153051A (ja) * 1984-12-26 1986-07-11 Nippon Seiko Kk 機械的制振装置
US5377552A (en) * 1991-04-05 1995-01-03 Kley; Victor B. Linear bearing assembly with load compensating ball bearing array
DE19539251A1 (de) * 1995-10-21 1997-04-24 Schaeffler Waelzlager Kg Wälzlagereinheit für Dreh- und Längsbewegungen
DE10064901A1 (de) * 2000-03-27 2001-10-04 Continental Teves Ag & Co Ohg Betätigungseinheit mit einem Gewindetrieb, einem Planetengetriebe und einem von diesen beeinflußten Betätigungselement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3022124A (en) * 1959-12-18 1962-02-20 Perkin Elmer Corp Bearing
DE1842145U (de) * 1961-09-26 1961-11-23 Skf Kugellagerfabriken Gmbh Waelzlager, insbesondere fuer den vertikalen einbau.
DE1911236C3 (de) * 1968-03-05 1974-03-07 Tatra, N.P., Nesseldorf (Tschechoslowakei) Wälzlagerung für eine auf Biegung beanspruchte angetriebene Welle in einem Hohlraum einer Antriebswelle
BE756373A (fr) * 1969-09-20 1971-03-01 Maschf Augsburg Nuernberg Ag Roulement pour arbres tournant a grande vitesse, en particulierpour arbres de turbines a gaz
JPS52156254A (en) * 1976-06-21 1977-12-26 Suehiro Seikou Kk Multiplex bearing
DE2918601A1 (de) * 1979-05-09 1980-11-20 Schaeffler Ohg Industriewerk Waelzlagerkaefig fuer ein pilotlager in einem kraftfahrzeug-wechselgetriebe
JPS5614622A (en) * 1979-07-17 1981-02-12 Nachi Fujikoshi Corp Cylindrical roller bearing
JPH01172624A (ja) * 1987-12-26 1989-07-07 Shin Meiwa Ind Co Ltd 回転支持機構
JPH06115305A (ja) * 1992-10-06 1994-04-26 Kayaba Ind Co Ltd 締め付けトルク解除機構
DE4235842C2 (de) * 1992-10-23 1999-08-19 Kugelfischer G Schaefer & Co Kugelgewindetrieb
JP3062675B2 (ja) * 1994-08-01 2000-07-12 光洋精工株式会社 グリース封入転がり軸受
DE19734980A1 (de) * 1997-08-13 1999-02-18 Schaeffler Waelzlager Ohg Zahnräderwechselgetriebe
JP2001041232A (ja) * 1999-07-30 2001-02-13 Koyo Seiko Co Ltd 揺動部用総玉軸受
JP2001065557A (ja) * 1999-08-26 2001-03-16 Koyo Seiko Co Ltd ころ軸受
JP2002098148A (ja) * 2000-09-20 2002-04-05 Toshiba Corp 転がり軸受及びそれを用いたスピンドルモータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2004600A (en) * 1977-09-13 1979-04-04 Zahnradfabrik Friedrichshafen Bearing assembly
US4505523A (en) * 1980-04-21 1985-03-19 Nadella Prestressed rolling bearing device
JPS61153051A (ja) * 1984-12-26 1986-07-11 Nippon Seiko Kk 機械的制振装置
US5377552A (en) * 1991-04-05 1995-01-03 Kley; Victor B. Linear bearing assembly with load compensating ball bearing array
DE19539251A1 (de) * 1995-10-21 1997-04-24 Schaeffler Waelzlager Kg Wälzlagereinheit für Dreh- und Längsbewegungen
DE10064901A1 (de) * 2000-03-27 2001-10-04 Continental Teves Ag & Co Ohg Betätigungseinheit mit einem Gewindetrieb, einem Planetengetriebe und einem von diesen beeinflußten Betätigungselement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 357 (M - 540) 2 December 1986 (1986-12-02) *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004050706A1 (de) * 2004-10-19 2006-04-20 Bosch Rexroth Mechatronics Gmbh Wälzlager mit Überlastschutz
DE102010001580A1 (de) * 2009-09-14 2011-03-17 Precision Machinery Research & Development Center Lager und Spindelmechanismus unter Verwendung desselben
US20110194799A1 (en) * 2010-02-09 2011-08-11 Rolls-Royce Plc bearing
EP2357372B1 (de) * 2010-02-09 2014-01-01 Rolls-Royce plc Wälzlager mit Wälzkörper mit unterschiedlichen Durchmessern
EP3216676A1 (de) * 2016-03-09 2017-09-13 Jtekt Corporation Lenkvorrichtung
CN107176202A (zh) * 2016-03-09 2017-09-19 株式会社捷太格特 转向装置
US10507865B2 (en) 2016-03-09 2019-12-17 Jtekt Corporation Steering apparatus
CN106545570A (zh) * 2016-08-31 2017-03-29 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动推力圆锥滚子轴承
WO2018041124A1 (zh) * 2016-08-31 2018-03-08 马鞍山支点传孚智能摩擦工业研究院有限公司 轴承
WO2022007988A1 (de) * 2020-07-10 2022-01-13 Schaeffler Technologies AG & Co. KG Kugelgewindetrieb und verfahren zum betrieb eines kugelgewindetriebs
US12104679B2 (en) 2020-07-10 2024-10-01 Schaeffler Technologies AG & Co. KG Ball screw drive and method for operating a ball screw drive

Also Published As

Publication number Publication date
DE10233938B4 (de) 2007-09-13
EP1525404A1 (de) 2005-04-27
DE10233938A1 (de) 2004-02-12
AU2003250091A1 (en) 2004-02-23

Similar Documents

Publication Publication Date Title
DE10233938B4 (de) Elektromechanische Bremsanlage mit einem Maschinenelement mit zwischen beweglichen Bauteilen angeordneten Wälzkörpern
EP2317178B1 (de) Kugelgewindetrieb für eine Feststellbremse eines Kraftfahrzeuges
EP3086987B1 (de) Elektromechanisch und hydraulisch betätigbare kraftfahrzeugbremse mit wahlweiser selbsthemmung
EP1979644B1 (de) Selbstverstärkende scheibenbremse mit keilelementen
DE102006029942A1 (de) Selbstverstärkende Scheibenbremse mit elektromechanischem Aktuator
DE19621533A1 (de) Elektromotorische Bremsvorrichtung
WO2015071071A2 (de) Elektromechanisch und hydraulisch betätigbare kraftfahrzeugbremse mit wahlweiser selbsthemmung
DE19654729A1 (de) Elektromotorische Bremsvorrichtung
EP1337764B1 (de) Scheibenbremse mit selbstverstärkender wirkung
WO2014121768A1 (de) Kugelgewindetrieb
DE102011121765B4 (de) Fahrzeugbremse mit Spindel/Mutter-Anordnung und verbesserter Schmierung
EP1957334A1 (de) Scheibenbremse in selbstverstärkender bauart mit belagstabilisierung
WO2007080057A1 (de) Elektromechanische reibungsbremse
DE102014223021A1 (de) Kugelgewindetrieb und kombinierte Fahrzeugbremse mit diesem Kugelgewindetrieb
EP2989344A2 (de) SCHEIBENBREMSE MIT EINER BIDIREKTIONALEN VERSCHLEIßNACHSTELLVORRICHTUNG, UND BIDIREKTIONALE VERSCHLEIßNACHSTELLVORRICHTUNG
EP2106509B1 (de) Scheibenbremse für ein kraftfahrzeug und gehäuse hierfür
DE102008032819A1 (de) Kombinierte Fahrzeugbremse mit elektromechanisch betätigbarer Feststellbremse und Verfahren zur Montage
WO2022007988A1 (de) Kugelgewindetrieb und verfahren zum betrieb eines kugelgewindetriebs
DE102008017225B4 (de) Notlösevorrichtung für elektromechanische Bremsen
DE102018215979A1 (de) Spreizeinrichtung für Trommelbremse mit Kompensationseinrichtung und die Trommelbremse
DE102008023101B4 (de) Scheibenbremsanordnung für eine Kraftfahrzeugbremsanlage
DE102016214711A1 (de) Doppelschlingfeder, Rotationseinrichtung und zu aktuierendes System
EP1982089B1 (de) Scheibenbremse in selbstverstärkender bauart
WO2007112881A1 (de) Selbstverstärkende scheibenbremse und verfahren zu deren ansteuerung
EP2222976B1 (de) Scheibenbremse mit mechanischer selbstverstärkung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003766206

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003766206

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP