WO2018041124A1 - 轴承 - Google Patents

轴承 Download PDF

Info

Publication number
WO2018041124A1
WO2018041124A1 PCT/CN2017/099588 CN2017099588W WO2018041124A1 WO 2018041124 A1 WO2018041124 A1 WO 2018041124A1 CN 2017099588 W CN2017099588 W CN 2017099588W WO 2018041124 A1 WO2018041124 A1 WO 2018041124A1
Authority
WO
WIPO (PCT)
Prior art keywords
small
bearing
roller
ball
tapered roller
Prior art date
Application number
PCT/CN2017/099588
Other languages
English (en)
French (fr)
Inventor
许水电
李延福
许涛
Original Assignee
马鞍山支点传孚智能摩擦工业研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201610785970.6A external-priority patent/CN106545569A/zh
Priority claimed from CN201610786278.5A external-priority patent/CN106545568A/zh
Priority claimed from CN201610785447.3A external-priority patent/CN106555817A/zh
Priority claimed from CN201610785185.0A external-priority patent/CN106545570A/zh
Priority claimed from CN201610785734.4A external-priority patent/CN106545571A/zh
Priority claimed from CN201610788605.0A external-priority patent/CN106555818A/zh
Application filed by 马鞍山支点传孚智能摩擦工业研究院有限公司 filed Critical 马鞍山支点传孚智能摩擦工业研究院有限公司
Publication of WO2018041124A1 publication Critical patent/WO2018041124A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/3713Loose spacing bodies with other rolling elements serving as spacing bodies, e.g. the spacing bodies are in rolling contact with the load carrying rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/20Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows with loose spacing bodies, e.g. balls, between the bearing balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/40Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings with loose spacing bodies between the rollers

Definitions

  • Embodiments of the present invention relate to the technical field of mechanical component design, and in particular, to a bearing.
  • the bearing with the cage or the full rolling element can solve the problem of sliding friction between the rolling element and the channel
  • the bearing with the cage causes the sliding friction between the rolling element and the channel due to the friction between the rolling element and the cage.
  • the bearings of the full rolling element are loaded simultaneously by the two adjacent rolling elements. When the two rolling elements are in contact, the frictional resistance between the rolling elements and the channel increases sharply, and sliding friction occurs, especially at high speed and heavy load.
  • the rolling elements and bearing channels are extremely wear and burn, and have a short service life, which cannot meet the high-end requirements.
  • the present invention provides a bearing, the rolling element and the bearing channel realize pure rolling, high linear velocity, large bearing capacity, low noise, high reliability and long service life.
  • the embodiment of the invention provides a bearing, which comprises a bearing inner ring, a bearing outer ring, a plurality of large rolling bodies and small rolling bodies, a large rolling body and a small rolling body, a large rolling body and a small arrangement between the bearing inner ring and the bearing outer ring.
  • the rolling elements are spaced apart.
  • the embodiment provides the bearing, the rolling element and the bearing channel realize pure rolling, the friction coefficient is small, the line speed to withstand is high, the bearing capacity is large, the noise is small, and the reliability is high.
  • the application of the bearing of the invention not only promotes the development of industries such as metallurgy, electric power, construction machinery, building materials, energy, but also high-end applications such as automobiles, wind power, high-end machine tools, high-speed rail, aerospace and defense military.
  • FIG. 1 is a front elevational view of a bearing according to a first embodiment of the present invention
  • Figure 2 is a side elevational view of the bearing of the first embodiment of the present invention.
  • Figure 3 is a schematic view of a rolling element in a bearing according to a first embodiment of the present invention
  • Figure 4 is a front elevational view of the bearing of the second embodiment of the present invention.
  • Figure 5 is a side view of the bearing of the second embodiment of the present invention.
  • Figure 6 is a schematic view of a rolling element in a bearing according to a second embodiment of the present invention.
  • Figure 7 is a front elevational view of a bearing according to a third embodiment of the present invention.
  • Figure 8 is a side elevational view of the bearing of the third embodiment of the present invention.
  • Figure 9 is a front elevational view showing the bearing of the fourth embodiment of the present invention.
  • Figure 10 is a side elevational view of the bearing of the fourth embodiment of the present invention.
  • Figure 11 is a front elevational view of a bearing according to a fifth embodiment of the present invention.
  • Figure 12 is a side elevational view of the bearing of the fifth embodiment of the present invention.
  • Figure 13 is a front elevational view showing the bearing of the sixth embodiment of the present invention.
  • Figure 14 is a side elevational view of the bearing of the sixth embodiment of the present invention.
  • a component when referred to as being "fixed” to another component, it can be directly on the other component or the component can be present. When a component is considered to "connect” another component, it can be directly connected to another component or possibly a central component.
  • FIG. 1 is a front view of a bearing according to a first embodiment of the present invention
  • FIG. 2 is a schematic side view of a bearing according to a first embodiment of the present invention
  • FIG. 3 is a schematic view of a rolling element in a bearing according to a first embodiment of the present invention
  • the bearing provided in this embodiment is a rolling thrust tapered roller bearing, including a bearing inner ring 1 (which may be referred to as a bearing shaft ring), a bearing outer ring 2 (which may be referred to as a bearing race), and a plurality of large rolling bodies 3 and small.
  • the taper and the length of the large-tapered roller and the small-tapered roller are the same, and the diameter difference between the large-end diameter d1 of the large-tapered roller and the large-end diameter d2 of the small-tapered roller, that is, the value of d1-d2 is 0.01 ⁇ 0.1mm, the range of values of d1-d2 is much larger than the manufacturing error of the roller, and is scientifically designed.
  • d1-d2 The value of d1-d2 is too small, the adjacent two rollers are loaded at the same time, the frictional resistance of the roller and the channel increases sharply, and the sliding friction generated by the lock is easy to occur; the value of d1-d2 is too large, the small cone The roller 4 gap is too large, prone to turbulence, loud noise, and even affect normal work.
  • the small-sized tapered rollers are arranged at intervals of one big and one small, that is, small tapered rollers are arranged between two adjacent large tapered rollers.
  • each roller rotates and rotates. Due to the difference in diameter, the large tapered roller mainly bears the load. Due to the interval layout, the rotation direction of the large tapered roller is the same.
  • the large tapered roller is subjected to pure friction rolling. The friction coefficient is small, and the small tapered roller will rotate in reverse friction with the large tapered roller, but since it is not loaded, the friction coefficient is small and almost no frictional resistance is generated. Therefore, the problem of sliding friction caused by the frictional resistance of the roller and the channel is increased due to the simultaneous loading of the original full-roller tapered tapered roller bearing.
  • the gap is too small, the roller is easy to be stuck, and the burn is immediately worn at high speed and heavy load; the gap is too large, the roller is prone to turbulence, and the noise is large, which affects normal work.
  • the embodiment of the invention solves the problem that the roller and the channel cannot achieve pure rolling friction, and tests the bearing rotation by comparing the bearing with the same type of NSK bearing, that is, rotating the bearing with the same torque
  • the bearing of the embodiment of the invention rotates after 4.07 seconds
  • the NSK rotates after 2.03 seconds
  • the frictional resistance is greatly reduced. Under the condition of high speed and heavy load, the effect is more remarkable.
  • FIG. 4 is a front view of a bearing according to a second embodiment of the present invention
  • FIG. 5 is a schematic side view of a bearing according to a second embodiment of the present invention
  • FIG. 6 is a schematic view of a rolling element in a bearing according to a second embodiment of the present invention
  • the bearing provided in this embodiment is a rolling tapered roller bearing, including a bearing inner ring 1, a bearing outer ring 2, a plurality of large rolling bodies 3, and a small rolling body 4, wherein, in this embodiment, a large rolling
  • the body 3 is a large tapered roller
  • the small rolling element 4 is a small tapered roller
  • the bearing inner ring 1 is a tapered inner ring
  • a large tapered roller and a small tapered roller are arranged between the bearing inner ring 1 and the bearing outer ring 2
  • Sub-large tapered roller and small tapered roller are spaced apart, large tapered roller and small tapered roller without cage.
  • the taper and length of the large-tapered roller and the small-tapered roller are the same, and the diameter difference between the large-end diameter d1 of the large-tapered roller and the large-end diameter d2 of the small-tapered roller, that is, the value of d1-d2 0.01 to 0.1 mm, the value range of d1-d2 is much larger than the manufacturing error value of the roller, and is scientifically designed.
  • d1-d2 The value of d1-d2 is too small, the adjacent two rollers are loaded at the same time, the frictional resistance of the roller and the channel increases sharply, and the sliding friction generated by the lock is easy to occur; the value of d1-d2 is too large, the small cone The roller gap is too large, prone to turbulence, loud noise, and even affect normal work.
  • the large and small tapered rollers are arranged at intervals of one big and one small, that is, small tapered rollers are arranged between two adjacent large tapered rollers.
  • each roller rotates and rotates. Due to the difference in diameter, the large tapered roller mainly bears the load. Due to the interval layout, the rotation direction of the large tapered roller is the same.
  • the large tapered roller is subjected to pure friction rolling. The friction coefficient is small, and the small tapered roller will rotate in reverse friction with the large tapered roller, but since it is not loaded, the friction coefficient is small and almost no frictional resistance is generated. Therefore, the problem of sliding friction which occurs when the frictional resistance of the roller and the channel is sharply increased due to the simultaneous loading of the original full-roller tapered roller bearing is solved.
  • the embodiment of the invention solves the problem that the roller and the channel cannot achieve pure rolling friction.
  • the bearing rotation time is tested by the comparison test with the NSK bearing of the same type, that is, the same torque rotating bearing: the bearing rotation of the embodiment of the invention is 4.13 Stop after seconds, and NSK rotates after 2.01 seconds to stop.
  • the frictional resistance is greatly reduced, and the effect is more remarkable under the conditions of high speed and heavy load.
  • the bearing of this embodiment is not only suitable for single row tapered roller bearings, but also for multi-row tapered roller bearings.
  • FIG. 7 is a front view of a bearing according to a third embodiment of the present invention
  • FIG. 8 is a schematic side view of a bearing according to a third embodiment of the present invention
  • FIG. 8 is a schematic view of a rolling element in a bearing according to a third embodiment of the present invention
  • the bearing provided in this embodiment is a rolling cylindrical roller bearing, including a bearing inner ring 1, a bearing outer ring 2, a plurality of large rolling bodies 3, and a small rolling body 4.
  • the small rolling element 4 is a small roller, and the large roller and the small roller are arranged in a row between the bearing inner ring 1 and the bearing outer ring 2, the large roller and the small roller are arranged at intervals, the large roller and The small roller 4 does not have a cage.
  • the diameter d1 of the large roller and the diameter d2 of the small roller, the difference in diameter between the two, that is, the value of d1-d2 is 0.01 to 0.1 mm, and the value range of d1-d2 is much larger than the manufacturing error value of the roller. It is scientifically designed.
  • the value of d1-d2 is too small, the adjacent two rollers are loaded at the same time, the frictional resistance of the roller and the channel increases sharply, and the sliding friction generated by the locking is easy to occur; the value of d1-d2 is too large, small rolling
  • the sub-gap is too large, prone to turbulence, loud noise, and even affect normal work.
  • the large and small rollers are arranged at intervals of one big and one small, that is, small rollers are arranged between two adjacent large rollers 3.
  • each roller rotates and rotates. Due to the difference in diameter, the large roller mainly bears the load. Due to the interval layout, the rotation direction of the large roller is the same.
  • the large roller is subjected to pure friction rolling and the friction coefficient is small.
  • the small roller rotates in reverse friction with the large roller, since it is unloaded, the friction coefficient is small and almost no frictional resistance is generated. Therefore, the problem of sliding friction which occurs when the frictional resistance of the roller and the channel is sharply increased due to the simultaneous loading of the original full-roller cylindrical roller bearing is solved.
  • the roller is easy to be stuck, and the burn is burned immediately at high speed and heavy load; the gap is too large, the roller is prone to turbulence, and the noise is large, which affects normal work.
  • the embodiment of the invention solves the problem that the roller and the channel cannot achieve pure rolling friction.
  • the bearing rotation time is tested by the comparison test with the NSK bearing of the same type, that is, the same torque rotating bearing: the bearing rotation of the embodiment of the invention is 4.56 Stop after seconds, and NSK rotates after 2.18 seconds to stop.
  • the frictional resistance is greatly reduced, and the effect is more remarkable under the conditions of high speed and heavy load.
  • This embodiment is applicable not only to single row cylindrical roller bearings, but also to double row cylindrical roller bearings.
  • FIG. 9 is a front view of a bearing according to a fourth embodiment of the present invention
  • FIG. 10 is a side view of the bearing of the fourth embodiment of the present invention
  • the bearing provided by the embodiment is a rolling angular contact ball bearing.
  • Large balls and small balls are arranged in a row, large balls and small balls are spaced apart, and large balls and small balls do not have a cage.
  • the diameter d1 of the large ball and the diameter d2 of the small ball, the difference in diameter between the two, that is, the value of d1-d2 is 0.01 to 0.1 mm, and the value range of d1-d2 is much larger than the manufacturing error of the ball, which is scientifically designed. of.
  • the value of d1-d2 is too small, the adjacent two balls are simultaneously loaded, the frictional resistance of the ball and the channel is sharply increased, and the sliding friction generated by the lock is easily generated; the value of d1-d2 is too large, and the small ball 4 is The gap of the channel is too large, prone to turbulence, high noise, and even affect normal operation.
  • the large and small balls are arranged at intervals of one big and one small, that is, small balls are arranged between two adjacent large balls.
  • the balls are both revolved and rotated. Due to the difference in diameter, the large balls mainly bear the load. Due to the interval arrangement, the rotation direction of the large balls is the same. At this time, the large balls are subjected to pure friction rolling, and the friction coefficient is small. The reverse rotation is in contact with the large balls, but since it is not loaded, the friction coefficient is small and frictional resistance is hardly generated. Therefore, the problem of sliding friction which occurs when the original full-ball angular contact ball bearing is operated and the frictional resistance of the ball and the channel is sharply increased due to the simultaneous load is solved.
  • the embodiment of the invention solves the problem that the ball and the channel cannot achieve pure rolling friction.
  • the bearing rotation time is tested by the comparison test with the NSK bearing of the same type, that is, the same torque rotation bearing: the bearing rotation of the embodiment of the invention is 5.26 seconds. After the stop, the NSK stops after 2.45 seconds of rotation, and the frictional resistance is greatly reduced. Under the condition of high speed and heavy load, the effect is more remarkable.
  • This embodiment is applicable not only to single row angular contact ball bearings, but also to multi-row angular contact ball bearings. use.
  • FIG. 11 is a front view of a bearing according to a fifth embodiment of the present invention
  • FIG. 12 is a schematic side view of a bearing according to a fifth embodiment of the present invention; as shown in FIGS. 11 to 12, the bearing provided in the embodiment is a rolling thrust ball bearing.
  • the bearing inner ring 1 (which may be referred to as a bearing collar), the bearing outer ring 2 (which may be referred to as a bearing race), a plurality of large rolling bodies 3 and small rolling bodies 4, wherein, in the present embodiment, the large rolling bodies 3
  • the small rolling element 4 is a small ball, and the large ball and the small ball are arranged in a row between the bearing inner ring 1 and the bearing outer ring 2, and the large ball and the small ball are arranged at intervals.
  • the diameter d1 of the large ball and the diameter d2 of the small ball, the difference in diameter between the two, that is, the value of d1-d2 is 0.01 to 0.1 mm, and the value range of d1-d2 is much larger than the manufacturing error value of the ball.
  • the value of d1-d2 is too small, and the adjacent two balls are simultaneously loaded. Because the adjacent two balls rotate in opposite directions, the sliding friction caused by locking is easy to occur; the value of d1-d2 is too large, and the small ball gap is too large. It is prone to sway, noise, and even affect normal work.
  • the large and small balls are arranged at intervals of one big and one small, that is, small balls are arranged between two adjacent large balls.
  • each ball rotates and rotates. Due to the difference in diameter, the large balls mainly bear the load. Due to the interval arrangement, the rotation direction of the large balls 3 is the same.
  • the large balls are subjected to pure friction rolling, and the friction coefficient is small, and the small balls are small.
  • the friction coefficient is small and frictional resistance is hardly generated. Therefore, the problem of sliding friction which occurs when the original full-ball thrust ball bearing is loaded and the frictional resistance of the ball and the channel is sharply increased due to simultaneous loading is solved.
  • the invention solves the problem that the ball and the channel can not achieve pure rolling friction.
  • the bearing rotation time is tested by the comparison test with the NSK bearing of the same type, that is, the same torque rotating bearing: the bearing of the embodiment of the invention rotates after 4.02 seconds.
  • the NSK is stopped after 2.01 seconds of rotation, and the frictional resistance is greatly reduced. Under the condition of high speed and heavy load, the effect is more remarkable.
  • Figure 13 is a front elevational view of the bearing of the sixth embodiment of the present invention
  • Figure 14 is a side view of the bearing of the sixth embodiment of the present invention
  • the bearing provided by the embodiment is rolling
  • the deep groove ball bearing comprises a bearing inner ring 1, a bearing outer ring 2, a plurality of large rolling bodies 3 and a small rolling body 4, wherein the large rolling body 3 is a large ball, the small rolling body 4 is a small ball, the bearing inner ring 1 and Large balls and small balls are arranged between the outer ring 2 of the bearing, large balls and small balls are arranged at intervals, and large balls and small balls are not provided with cages.
  • the diameter d1 of the large ball and the diameter d2 of the small ball, the difference in diameter between the two, that is, the value of d1-d2 is 0.01 to 0.1 mm, and the value range of d1-d2 is much larger than the manufacturing error value of the ball.
  • the value of d1-d2 is too small, the adjacent two balls are loaded at the same time, the frictional resistance of the ball and the channel increases sharply, and the sliding friction generated by the lock is easy to occur; the value of d1-d2 is too large, the small ball and the groove
  • the gap between the roads is too large, prone to turbulence, loud noise, and even affect normal work.
  • the large and small balls are arranged at intervals of one big and one small, that is, small balls are arranged between two adjacent large balls.
  • the balls are both revolved and rotated. Due to the difference in diameter, the large balls mainly bear the load. Due to the interval arrangement, the rotation direction of the large balls is the same. At this time, the large balls are subjected to pure friction rolling, and the friction coefficient is small. The reverse rotation is in contact with the large balls, but since it is not loaded, the friction coefficient is small and frictional resistance is hardly generated. Therefore, the problem of sliding friction which occurs when the original full-ball deep groove ball bearing is operated and the frictional resistance of the ball and the channel is sharply increased due to the simultaneous loading is solved.
  • the embodiment of the invention solves the problem that the ball and the channel cannot achieve pure rolling friction.
  • the bearing rotation time is tested by the comparison test with the NSK bearing of the same type, that is, the same torque rotating bearing: the bearing rotation of the embodiment of the invention is 4.56 seconds. After stopping, the NSK is stopped after 2.18 seconds of rotation, and the frictional resistance is greatly reduced. Under the condition of high speed and heavy load, the effect is more remarkable.
  • This embodiment is applicable not only to single row deep groove ball bearings, but also to multi-row deep groove ball bearings.
  • the bearing provided by the invention not only promotes the development of industries such as metallurgy, electric power, construction machinery, building materials, energy, but also high-end applications such as automobiles, wind power, high-grade machine tools, high-speed rail, aerospace and defense military.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

一种轴承,包括轴承内圈(1)、轴承外圈(2)、若干大滚动体(3)和小滚动体(4),轴承内圈(1)和轴承外圈(2)之间布置大滚动体(3)和小滚动体(4),大滚动体(3)和小滚动体(4)间隔布设,所述轴承,滚动体与轴承沟道实现纯滚动,承受线速度高,承载力大,噪音小,可靠性高,寿命长。

Description

轴承 技术领域
本发明实施例涉及机械零部件设计技术领域,尤其涉及一种轴承。
背景技术
无论是带保持架还是满滚动体的轴承均无法解决滚动体与沟道滑动摩擦的问题,带保持架的轴承由于滚动体与保持架之间的摩擦导致滚动体与沟道的滑动摩擦,而满滚动体的轴承由于工作时相邻两个滚动体同时受载,当这两个滚动体接触时,滚动体与沟道的摩擦阻力急剧增大,出现滑动摩擦,特别是在高速重载,滚动体与轴承沟道极易磨损烧伤,使用寿命短,无法满足高端需求。
发明内容
针对现有技术的不足,本发明提供了一种轴承,滚动体与轴承沟道实现纯滚动,线速度高,承载力大,噪音小,可靠性高,寿命长。
本发明实施例提供一种轴承,包括轴承内圈、轴承外圈、若干大滚动体和小滚动体,轴承内圈和轴承外圈之间布置大滚动体和小滚动体,大滚动体和小滚动体间隔布设。
本实施例提供轴承,滚动体与轴承沟道实现纯滚动,摩擦系数小,承受的线速度高,承载力大,噪音小,可靠性高。
本发明的轴承的应用不仅推动冶金、电力、建筑机械、建筑材料、能源等行业的发展,还能满足汽车、风电、高档机床、高铁、航空航天和国防军事等高端领域的应用。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创 造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一的轴承的正面示意图;
图2是本发明实施例一的轴承的一侧面示意图;
图3是本发明实施例一的轴承中的滚动体的示意图;
图4为本发明实施例二的轴承的正面示意图;
图5是本发明实施例二的轴承的一侧面示意图;
图6是本发明实施例二的轴承中的滚动体的示意图;
图7为本发明实施例三的轴承的正面示意图;
图8是本发明实施例三的轴承的一侧面示意图;
图9为本发明实施例四的轴承的正面示意图;
图10是本发明实施例四的轴承的一侧面示意图;
图11为本发明实施例五的轴承的正面示意图;
图12是本发明实施例五的轴承的一侧面示意图;
图13为本发明实施例六的轴承的正面示意图;
图14是本发明实施例六的轴承的一侧面示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“固定于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
实施例一
图1为本发明实施例一的轴承的正面示意图;图2是本发明实施例一的轴承的一侧面示意图;图3是本发明实施例一的轴承中的滚动体的示意图;如图1-3,本实施例提供的轴承为滚动推力圆锥滚子轴承,包括轴承内圈1(可称为轴承轴圈)、轴承外圈2(可称为轴承座圈)、若干大滚动体3和小滚动体4,在本实施例中,大滚动体为大圆锥滚子,小滚动体为小圆锥滚子,轴承内圈1和轴承外圈2之间满排布置大圆锥滚子和小圆锥滚子,大圆锥滚子和小圆锥滚子间隔布设,大圆锥滚子和小圆锥滚子不带保持架。
如图1,大圆锥滚子和小圆锥滚子的锥度和长度一致,大圆锥滚子的大头端直径d1和小圆锥滚子的大头端直径d2的直径差即d1-d2的值为0.01~0.1mm,d1-d2的值范围远大于滚子的制造误差值,是经过科学设计的。d1-d2的值太小,相邻两滚子同时受载,滚子与沟道的摩擦阻力急剧增大,极易出现锁止而产生的滑动摩擦;d1-d2的值太大,小圆锥滚子4间隙太大,容易出现窜动,噪音大,甚至影响正常工作。
如图1,大小圆锥滚子按一大一小的间隔布设即相邻两个大圆锥滚子之间布设小圆锥滚子。工作时,各滚子既公转又自转,由于直径差的存在,大圆锥滚子主要承受载荷,由于间隔布设,大圆锥滚子的自转方向一致,此时大圆锥滚子受载纯摩擦滚动,摩擦系数小,小圆锥滚子虽然会与大圆锥滚子摩擦接触反向自转,但由于不受载,摩擦系数小,几乎不产生摩擦阻力。因此,解决了原有满滚子推力圆锥滚子轴承工作时由于同时受载导致滚子与沟道的摩擦阻力急剧增大而出现的滑动摩擦问题。
如图1,相邻大圆锥滚子和小圆锥滚子的间隙可以为s=0.01~0.15mm,在本实施例中优选的,相邻大圆锥滚子和小圆锥滚子的间隙s=0.03~0.15mm。间隙太小,滚子容易卡死,高速重载时即刻磨损烧伤;间隙太大,滚子容易出现窜动,噪音大,影响正常工作。
本发明实施例解决了滚子与沟道无法实现纯滚动摩擦的问题,通过与NSK同型号轴承的对比试验,即以同样的扭矩旋转轴承,测试轴承旋转时 间:本发明实施例的轴承旋转4.07秒后停止,而NSK旋转2.03秒后停止,其摩擦阻力大大降低,在高速重载的工况下,效果更加显著。
实施例二
图4为本发明实施例二的轴承的正面示意图;图5是本发明实施例二的轴承的一侧面示意图;图6是本发明实施例二的轴承中的滚动体的示意图;如图4-图6所示,本实施例提供的轴承为滚动圆锥滚子轴承,包括轴承内圈1、轴承外圈2、若干大滚动体3和小滚动体4,其中,在本实施例中,大滚动体3为大圆锥滚子,小滚动体4为小圆锥滚子,轴承内圈1为锥形内圈,轴承内圈1与轴承外圈2之间满排布置大圆锥滚子和小圆锥滚子,大圆锥滚子和小圆锥滚子间隔布设,大圆锥滚子和小圆锥滚子不带保持架。
如图4所示,大圆锥滚子和小圆锥滚子的锥度和长度一致,大圆锥滚子的大头端直径d1和小圆锥滚子的大头端直径d2的直径差即d1-d2的值为0.01~0.1mm,d1-d2的值范围远大于滚子的制造误差值,是经过科学设计的。d1-d2的值太小,相邻两滚子同时受载,滚子与沟道的摩擦阻力急剧增大,极易出现锁止而产生的滑动摩擦;d1-d2的值太大,小圆锥滚子间隙太大,容易出现窜动,噪音大,甚至影响正常工作。
如图4,大小圆锥滚子按一大一小的间隔布设即相邻两个大圆锥滚子之间布设小圆锥滚子。工作时,各滚子既公转又自转,由于直径差的存在,大圆锥滚子主要承受载荷,由于间隔布设,大圆锥滚子的自转方向一致,此时大圆锥滚子受载纯摩擦滚动,摩擦系数小,小圆锥滚子虽然会与大圆锥滚子摩擦接触反向自转,但由于不受载,摩擦系数小,几乎不产生摩擦阻力。因此,解决了原有满滚子圆锥滚子轴承工作时由于同时受载导致滚子与沟道的摩擦阻力急剧增大而出现的滑动摩擦问题。
如图4所示,大圆锥滚子和小圆锥滚子的间隙s=0.01~0.15mm,间隙太小,滚子容易卡死,高速重载时即刻磨损烧伤;间隙太大,滚子容易出现窜动,噪音大,影响正常工作。
本发明实施例解决了滚子与沟道无法实现纯滚动摩擦的问题,通过与NSK同型号轴承的对比试验,即以同样的扭矩旋转轴承,测试轴承旋转时间:本发明实施例的轴承旋转4.13秒后停止,而NSK旋转2.01秒后停止, 其摩擦阻力大大降低,在高速重载的工况下,效果更加显著。
本实施例的轴承不仅适用于单列圆锥滚子轴承,在多列圆锥滚子轴承上也适用。
实施例三
图7为本发明实施例三的轴承的正面示意图;图8是本发明实施例三的轴承的一侧面示意图;图8是本发明实施例三的轴承中的滚动体的示意图;如图7-图8所示,本实施例提供的轴承为滚动圆柱滚子轴承,包括轴承内圈1、轴承外圈2、若干大滚动体3和小滚动体4,在本实施例中,大滚动体3为大滚子,小滚动体4为小滚子,轴承内圈1和轴承外圈2之间满排布置大滚子和小滚子,大滚子和小滚子间隔布设,大滚子和小滚子4不带保持架。
如图7,大滚子的直径d1和小滚子的直径d2,两者的直径差即d1-d2的值为0.01~0.1mm,d1-d2的值范围远大于滚子的制造误差值,是经过科学设计的。d1-d2的值太小,相邻两滚子同时受载,滚子与沟道的摩擦阻力急剧增大,极易出现锁止而产生的滑动摩擦;d1-d2的值太大,小滚子间隙太大,容易出现窜动,噪音大,甚至影响正常工作。
如图7,大小滚子按一大一小的间隔布设即相邻两个大滚子3之间布设小滚子。工作时,各滚子既公转又自转,由于直径差的存在,大滚子主要承受载荷,由于间隔布设,大滚子的自转方向一致,此时大滚子受载纯摩擦滚动,摩擦系数小,小滚子虽然与大滚子摩擦接触反向自转,但由于不受载,摩擦系数小,几乎不产生摩擦阻力。因此,解决了原有满滚子圆柱滚子轴承工作时由于同时受载导致滚子与沟道的摩擦阻力急剧增大而出现的滑动摩擦问题。
如图7,大滚子和小滚子的间隙s=0.01~0.15mm,在本实施例中优选的,相邻大滚子和小滚子的间隙s=0.03~0.15mm,间隙太小,滚子容易卡死,高速重载时即刻磨损烧伤;间隙太大,滚子容易出现窜动,噪音大,影响正常工作。
本发明实施例解决了滚子与沟道无法实现纯滚动摩擦的问题,通过与NSK同型号轴承的对比试验,即以同样的扭矩旋转轴承,测试轴承旋转时间:本发明实施例的轴承旋转4.56秒后停止,而NSK旋转2.18秒后停止, 其摩擦阻力大大降低,在高速重载的工况下,效果更加显著。
本实施例不仅适用于单列圆柱滚子轴承,在双列圆柱滚子轴承上也适用。
实施例四
图9为本发明实施例四的轴承的正面示意图;图10是本发明实施例四的轴承的一侧面示意图;如图9-10所示,本实施例提供的轴承为滚动角接触球轴承,包括轴承内圈1、轴承外圈2、若干大滚动体3和小滚动体4,其中大滚动体3为大滚珠,小滚动体4为小滚珠,轴承内圈1和轴承外圈2之间满排布置大滚珠和小滚珠,大滚珠和小滚珠间隔布设,大滚珠和小滚珠不带保持架。
如图9,大滚珠的直径d1和小滚珠的直径d2,两者的直径差即d1-d2的值为0.01~0.1mm,d1-d2的值范围远大于滚珠的制造误差,是经过科学设计的。d1-d2的值太小,相邻两滚珠同时受载,滚珠与沟道的摩擦阻力急剧增大,极易出现锁止而产生的滑动摩擦;d1-d2的值太大,小滚珠4与沟道的间隙太大,容易出现窜动,噪音大,甚至影响正常工作。
如图9,大小滚珠按一大一小的间隔布设即相邻两个大滚珠之间布设小滚珠。工作时,各滚珠既公转又自转,由于直径差的存在,大滚珠主要承受载荷,由于间隔布设,大滚珠的自转方向一致,此时大滚珠受载纯摩擦滚动,摩擦系数小,小滚珠虽然与大滚珠摩擦接触反向自转,但由于不受载,摩擦系数小,几乎不产生摩擦阻力。因此,解决了原有满球角接触球轴承工作时由于同时受载导致滚珠与沟道的摩擦阻力急剧增大而出现的滑动摩擦问题。
如图9所示,大滚珠和小滚珠的间隙s=0.01~0.15mm,间隙太小,滚珠容易卡死,高速重载时即刻磨损烧伤;间隙太大,滚珠容易出现窜动,噪音大,影响正常工作。
本发明实施例解决了滚珠与沟道无法实现纯滚动摩擦的问题,通过与NSK同型号轴承的对比试验,即以同样的扭矩旋转轴承,测试轴承旋转时间:本发明实施例的轴承旋转5.26秒后停止,而NSK旋转2.45秒后停止,其摩擦阻力大大降低,在高速重载的工况下,效果更加显著。
本实施例不仅适用于单列角接触球轴承,在多列角接触球轴承上也适 用。
实施例五
图11为本发明实施例五的轴承的正面示意图;图12是本发明实施例五的轴承的一侧面示意图;如图11-图12所示,本实施例提供的轴承为滚动推力球轴承,包括轴承内圈1(可称为轴承轴圈)、轴承外圈2(可称为轴承座圈),若干大滚动体3和小滚动体4,其中,在本实施例中,大滚动体3为大滚珠,小滚动体4为小滚珠,轴承内圈1和轴承外圈2之间满排布置大滚珠和小滚珠,大滚珠和小滚珠间隔布设。
如图11,大滚珠的直径d1和小滚珠的直径d2,两者的直径差即d1-d2的值为0.01~0.1mm,d1-d2的值范围远大于滚珠的制造误差值,是经过科学设计的。d1-d2的值太小,相邻两滚珠同时受载,由于相邻两滚珠自转方向相反,极易出现锁止而产生的滑动摩擦;d1-d2的值太大,小滚珠间隙太大,容易出现窜动,噪音大,甚至影响正常工作。
如图11,大小滚珠按一大一小的间隔布设即相邻两个大滚珠之间布设小滚珠。工作时,各滚珠既公转又自转,由于直径差的存在,大滚珠主要承受载荷,由于间隔布设,大滚珠3的自转方向一致,此时大滚珠受载纯摩擦滚动,摩擦系数小,小滚珠虽然与大滚珠摩擦接触反向自转,但由于不受载,摩擦系数小,几乎不产生摩擦阻力。因此,解决了原有满滚珠推力球轴承受载时由于同时受载导致滚珠与沟道的摩擦阻力急剧增大而出现的滑动摩擦问题。
如图11,大滚珠3和小滚珠4的间隙s=0.01~0.15mm,间隙太小,滚珠容易卡死,高速重载时即刻磨损烧伤;间隙太大,滚珠容易出现窜动,噪音大,影响正常工作。
本发明解决了滚珠与沟道无法实现纯滚动摩擦的问题,通过与NSK同型号轴承的对比试验,即以同样的扭矩旋转轴承,测试轴承旋转时间:本发明实施例的轴承旋转4.02秒后停止,而NSK旋转2.01秒后停止,其摩擦阻力大大降低,在高速重载的工况下,效果更加显著。
实施例六
图13为本发明实施例六的轴承的正面示意图;图14是本发明实施例六的轴承的一侧面示意图;如图13-14所示,本实施例提供的轴承为滚动 深沟球轴承,包括轴承内圈1、轴承外圈2、若干大滚动体3和小滚动体4,其中,大滚动体3为大滚珠,小滚动体4为小滚珠,轴承内圈1和轴承哇外圈2之间布置大滚珠和小滚珠,大滚珠和小滚珠间隔布设,大滚珠和小滚珠不带保持架。
如图13,大滚珠的直径d1和小滚珠的直径d2,两者的直径差即d1-d2的值为0.01~0.1mm,d1-d2的值范围远大于滚珠的制造误差值,是经过科学设计的。d1-d2的值太小,相邻两滚珠同时受载,滚珠与沟道的摩擦阻力急剧增大,极易出现锁止而产生的滑动摩擦;d1-d2的值太大,小滚珠与沟道间隙太大,容易出现窜动,噪音大,甚至影响正常工作。
如图13,大小滚珠按一大一小的间隔布设即相邻两个大滚珠之间布设小滚珠。工作时,各滚珠既公转又自转,由于直径差的存在,大滚珠主要承受载荷,由于间隔布设,大滚珠的自转方向一致,此时大滚珠受载纯摩擦滚动,摩擦系数小,小滚珠虽然与大滚珠摩擦接触反向自转,但由于不受载,摩擦系数小,几乎不产生摩擦阻力。因此,解决了原有满球深沟球轴承工作时由于同时受载导致滚珠与沟道的摩擦阻力急剧增大而出现的滑动摩擦问题。
如图13,大滚珠和小滚珠的间隙s=0.01~0.15mm,间隙太小,滚珠容易卡死,高速重载时即刻磨损烧伤;间隙太大,滚珠容易出现窜动,噪音大,影响正常工作。
本发明实施例解决了滚珠与沟道无法实现纯滚动摩擦的问题,通过与NSK同型号轴承的对比试验,即以同样的扭矩旋转轴承,测试轴承旋转时间:本发明实施例的轴承旋转4.56秒后停止,而NSK旋转2.18秒后停止,其摩擦阻力大大降低,在高速重载的工况下,效果更加显著。
本实施例不仅适用于单列深沟球轴承,在多列深沟球轴承上也适用。
本发明提供的轴承不仅推动冶金、电力、建筑机械、建筑材料、能源等行业的发展,还能满足汽车、风电、高档机床、高铁、航空航天和国防军事等高端领域的应用。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术 方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (21)

  1. 一种轴承,其特征在于:包括轴承内圈、轴承外圈、若干大滚动体和小滚动体,轴承内圈和轴承外圈之间布置大滚动体和小滚动体,大滚动体和小滚动体间隔布设。
  2. 根据权利要求1所述的轴承,其特征在于:所述轴承为滚动推力圆锥滚子轴承,所述大滚动体为大圆锥滚子,所述小滚动体为小圆锥滚子,所述大圆锥滚子与所述小圆锥滚子不带保持架。
  3. 根据权利要求2所述的轴承,其特征在于,所述大圆锥滚子和小圆锥滚子的锥度和长度一样,小圆锥滚子的大头端直径d2小于大圆锥滚子的大头端直径d1,其中d1-d2的值为0.01~0.1mm。
  4. 根据权利要求2所述的轴承,其特征在于:所述相邻大圆锥滚子和小圆锥滚子的间隙s=0.01~0.15mm。
  5. 根据权利要求4所述的轴承,其特征在于:所述相邻大圆锥滚子和小圆锥滚子的间隙s=0.03~0.15mm。
  6. 根据权利要求1所述的轴承,其特征在于:所述轴承为滚动圆锥滚子轴承,所述轴承内圈为锥形内圈,所述大滚动体为大圆锥滚子,所述小滚动体为小圆锥滚子,所述大圆锥滚子与所述小圆锥滚子不带保持架。
  7. 根据权利要求6所述的轴承,其特征在于:所述大圆锥滚子和小圆锥滚子的锥度和长度一样,所述小圆锥滚子的大头端直径d2小于大圆锥滚子的大头端直径d1,其中d1-d2的值为0.01~0.1mm。
  8. 根据权利要求6所述的轴承,其特征在于:所述相邻大圆锥滚子和小圆锥滚子的间隙s=0.01~0.15mm。
  9. 根据权利要求1所述的轴承,其特征在于:所述轴承为滚动圆柱滚子轴承,所述大滚动体为大滚子,所述小滚动体为小滚子,所述大滚子和所述小滚子满排布置在轴承内圈和轴承外圈之间布置,所述大滚子与所述小滚子不带保持架。
  10. 根据权利要求9所述的轴承,其特征在于:所述小滚子的直径d2小于大滚子的直径d1,其中d1-d2的值为0.01~0.1mm。
  11. 根据权利要求9所述的轴承,其特征在于,所述相邻大滚子和小滚子的间隙s=0.01~0.15mm。
  12. 根据权利要求11所述的轴承,其特征在于:所述相邻大滚子和小滚子的间隙s=0.03~0.15mm。
  13. 根据权利要求1所述的轴承,其特征在于:所述轴承为滚动角接触球轴承,所述大滚动体为大滚珠,所述小滚动体为小滚珠,所述大滚珠与所述小滚珠不带保持架。
  14. 根据权利要求13所述的轴承,其特征在于:所述小滚珠的直径d2小于大滚珠的直径d1,其中d1-d2的值为0.01~0.1mm。
  15. 根据权利要求13所述的轴承,其特征在于:所述相邻大滚珠和小滚珠的间隙s=0.01~0.15mm。
  16. 根据权利要求1所述的轴承,其特征在于:所述轴承为滚动推力球轴承,所述大滚动体为大滚珠,所述小滚动体为小滚珠。
  17. 根据权利要求16所述的轴承,其特征在于,所述小滚珠的直径d2小于大滚珠的直径d1,其中d1-d2的值为0.01~0.1mm。
  18. 根据权利要求16所述的轴承,其特征在于:所述相邻大滚珠和小滚珠的间隙s=0.01~0.15mm。
  19. 根据权利要求1所述的轴承,其特征在于:所述轴承为滚动深沟球轴承,所述大滚动体为大滚珠,所述小滚动体为小滚珠,所述的大滚珠与小滚珠不带保持架。
  20. 根据权利要求19所述的轴承,其特征在于:所述小滚珠的直径d2小于大滚珠的直径d1,其中d1-d2的值为0.01~0.1mm。
  21. 根据权利要求19所述的轴承,其特征在于:所述相邻大滚珠和小滚珠的间隙s=0.01~0.15mm。
PCT/CN2017/099588 2016-08-31 2017-08-30 轴承 WO2018041124A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201610785970.6A CN106545569A (zh) 2016-08-31 2016-08-31 一种滚动角接触球轴承
CN201610786278.5A CN106545568A (zh) 2016-08-31 2016-08-31 一种滚动推力球轴承
CN201610785447.3A CN106555817A (zh) 2016-08-31 2016-08-31 一种滚动圆锥滚子轴承
CN201610786278.5 2016-08-31
CN201610785734.4 2016-08-31
CN201610788605.0 2016-08-31
CN201610785185.0 2016-08-31
CN201610785185.0A CN106545570A (zh) 2016-08-31 2016-08-31 一种滚动推力圆锥滚子轴承
CN201610785447.3 2016-08-31
CN201610785734.4A CN106545571A (zh) 2016-08-31 2016-08-31 一种滚动圆柱滚子轴承
CN201610785970.6 2016-08-31
CN201610788605.0A CN106555818A (zh) 2016-08-31 2016-08-31 一种滚动深沟球轴承

Publications (1)

Publication Number Publication Date
WO2018041124A1 true WO2018041124A1 (zh) 2018-03-08

Family

ID=61300038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/099588 WO2018041124A1 (zh) 2016-08-31 2017-08-30 轴承

Country Status (1)

Country Link
WO (1) WO2018041124A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180718A (ja) * 1987-01-20 1988-07-25 Koichi Hara 不等転動素子を有する転がり軸受
US20030138173A1 (en) * 2001-12-19 2003-07-24 Fag Kugelfischer Georg Schafer Ag Roller bearing in a deep-drilling apparatus
WO2004013503A1 (de) * 2002-07-25 2004-02-12 Lucas Automotive Gmbh Maschinenelement mit zwischen beweglichen bauteilen angeordneten wälzkörpern
JP2006200571A (ja) * 2005-01-18 2006-08-03 Nsk Ltd 総転動体軸受
DE102011006326A1 (de) * 2011-03-29 2012-10-18 Zf Friedrichshafen Ag Wälzlager
DE102014220792A1 (de) * 2014-10-14 2016-04-14 Schaeffler Technologies AG & Co. KG Lageranordnung für eine Tiefbohreinrichtung
CN106545571A (zh) * 2016-08-31 2017-03-29 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动圆柱滚子轴承
CN106545570A (zh) * 2016-08-31 2017-03-29 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动推力圆锥滚子轴承
CN106545569A (zh) * 2016-08-31 2017-03-29 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动角接触球轴承
CN106545568A (zh) * 2016-08-31 2017-03-29 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动推力球轴承
CN106555818A (zh) * 2016-08-31 2017-04-05 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动深沟球轴承
CN106555817A (zh) * 2016-08-31 2017-04-05 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动圆锥滚子轴承

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180718A (ja) * 1987-01-20 1988-07-25 Koichi Hara 不等転動素子を有する転がり軸受
US20030138173A1 (en) * 2001-12-19 2003-07-24 Fag Kugelfischer Georg Schafer Ag Roller bearing in a deep-drilling apparatus
DE10162473B4 (de) * 2001-12-19 2005-12-01 Fag Kugelfischer Ag & Co. Ohg Wälzlager in Tiefbohreinrichtung
WO2004013503A1 (de) * 2002-07-25 2004-02-12 Lucas Automotive Gmbh Maschinenelement mit zwischen beweglichen bauteilen angeordneten wälzkörpern
JP2006200571A (ja) * 2005-01-18 2006-08-03 Nsk Ltd 総転動体軸受
DE102011006326A1 (de) * 2011-03-29 2012-10-18 Zf Friedrichshafen Ag Wälzlager
DE102014220792A1 (de) * 2014-10-14 2016-04-14 Schaeffler Technologies AG & Co. KG Lageranordnung für eine Tiefbohreinrichtung
CN106545571A (zh) * 2016-08-31 2017-03-29 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动圆柱滚子轴承
CN106545570A (zh) * 2016-08-31 2017-03-29 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动推力圆锥滚子轴承
CN106545569A (zh) * 2016-08-31 2017-03-29 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动角接触球轴承
CN106545568A (zh) * 2016-08-31 2017-03-29 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动推力球轴承
CN106555818A (zh) * 2016-08-31 2017-04-05 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动深沟球轴承
CN106555817A (zh) * 2016-08-31 2017-04-05 马鞍山支点传孚智能摩擦工业研究院有限公司 一种滚动圆锥滚子轴承

Similar Documents

Publication Publication Date Title
US10704594B2 (en) Rolling deep groove ball bearing
JP2002286030A5 (zh)
CN111188832A (zh) 一种能效型圆锥滚子轴承
EP1144881A2 (en) Relieved tapered roller bearing with true rolling contacts
WO2018041124A1 (zh) 轴承
TWI545272B (zh) 兩段式十字滾子軸承
RU2385422C1 (ru) Подшипник гироскопа радиальный роликовый
US10612596B1 (en) Anti-creep deep groove ball bearing
CN116557417A (zh) 一种乘用车用双列角接触球一列调心滚子的轮毂轴承结构
CN106555818A (zh) 一种滚动深沟球轴承
CN106545570A (zh) 一种滚动推力圆锥滚子轴承
DE102010034797A1 (de) Reibungsarmes Rollenlager
CN106545569A (zh) 一种滚动角接触球轴承
CN106545571A (zh) 一种滚动圆柱滚子轴承
JP2006125604A (ja) スラストころ軸受
CN106555817A (zh) 一种滚动圆锥滚子轴承
CN108150526A (zh) 一种机床用高散热双向推力角接触球轴承
US20230366431A1 (en) Angular contact self-aligning roller bearing
CN106545568A (zh) 一种滚动推力球轴承
CN110966307A (zh) 一种新型高速重载高铁轴承
CN203348316U (zh) 一种紧凑式交叉滚子法兰轴承
WO2016138867A1 (zh) 一种满滚动体轴连轴承及其制造方法
CN211599275U (zh) 一种自润滑的圆锥滚子轴承
CN210153088U (zh) 一种设置球面滚子中置球的超重载高铁轴承
CN206290571U (zh) 一种新型滚轮

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17845426

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17845426

Country of ref document: EP

Kind code of ref document: A1