WO2004008128A1 - Röntgenfluoreszenzanalyse mittels einem an die quelle und an den detektor angeschlossenen hohlleiter - Google Patents

Röntgenfluoreszenzanalyse mittels einem an die quelle und an den detektor angeschlossenen hohlleiter Download PDF

Info

Publication number
WO2004008128A1
WO2004008128A1 PCT/DE2003/002224 DE0302224W WO2004008128A1 WO 2004008128 A1 WO2004008128 A1 WO 2004008128A1 DE 0302224 W DE0302224 W DE 0302224W WO 2004008128 A1 WO2004008128 A1 WO 2004008128A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
substance
conductor
radiation
source
Prior art date
Application number
PCT/DE2003/002224
Other languages
English (en)
French (fr)
Inventor
Elisabeth Katz
Original Assignee
Elisabeth Katz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elisabeth Katz filed Critical Elisabeth Katz
Priority to EP03763588A priority Critical patent/EP1530714A1/de
Priority to US10/519,383 priority patent/US7313220B2/en
Priority to DE10393419T priority patent/DE10393419D2/de
Priority to AU2003257381A priority patent/AU2003257381B2/en
Priority to CA002491140A priority patent/CA2491140A1/en
Publication of WO2004008128A1 publication Critical patent/WO2004008128A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence

Definitions

  • the invention relates to a device for performing an online element analysis according to the preamble of claim 1.
  • X-ray fluorescence is a measurement method frequently used in science and industry by means of which the proportion of certain elements in a sample can be measured.
  • the sample is irradiated with X-rays in order to excite certain electronic transitions of the elements of interest.
  • 0 is mostly the K ⁇ transition.
  • the recombination of the excited transitions takes place in some cases with radiation, the energy quanta emitted here having a characteristic value for this element.
  • the energy of the emitted photon is generally between 1 and 30 keV. At the lower end of this energy range in particular, the emitted soft X-rays have only a very short range in solids or air, so that there are considerable measurement problems, particularly in industrial applications.
  • the present invention relates to a device in which X-ray fluorescence measurement is used in an online method.
  • a substance flow belonging to a running process is guided past a measuring station, this measuring station being at least one X-ray source and at least one X-ray fluorescence detector.
  • Such devices have numerous industrial applications, for example in online analysis with regard to coal used in an industrial process, for example to measure the proportion of ash or sulfur or also proportions of other special elements. Other applications include the steel industry. Here, for example, the proportion of certain elements in a still hot slag stream is measured.
  • a central problem of the present measurement technology is that especially the ⁇ -quanta at the low-energy end of the energy spectrum of interest are difficult to detect due to their short range in air.
  • offline laboratory measurements in which there is sufficient time to prepare the sample accordingly, and in which the samples are introduced into corresponding measuring devices with precisely adjustable geometries, the measurement problems can be solved comparatively easily.
  • applications of interest in which, in a "factory situation", a substance stream flowing past is measured, the surface geometry of which, at least in some applications, changes at least slightly over time, the situation is much more difficult.
  • PCT / US99 / 20867 deals with the problem of arranging an X-ray source and an X-ray fluorescence detector in relation to a transport device for an online element analysis. It is proposed there to arrange the X-ray fluorescence detector as close as possible to the substance to be measured flowing past, in particular at a distance of less than 5 cm. Since the X-ray emission is essentially isotropic, the intensity of the X-ray fluorescence radiation naturally decreases proportionally 1 / r 2 . The absorption in the air is not even taken into account here. Accordingly, it is of course fundamentally correct that the arrangement of the detector close to the sample maximizes the measurable signal. In the However, there are considerable difficulties in implementing the proposal made in PCT / US99 / 20867, at least in some applications:
  • the X-ray source and the X-ray fluorescence detector are arranged on the same side of the sample.
  • This solution is also generally preferred in terms of the power required and the wavelength of the X-ray source. Since both the X-ray source and the X-ray fluorescence detector naturally have a certain spatial dimension, the close arrangement of the X-ray fluorescence detector to the substance to be measured generally makes it necessary to radiate the radiation coming from the X-ray source relatively flat onto the substance being conveyed past or the substance flowing past, as is the case with this is shown, for example, in FIG.
  • Another major problem with the arrangement of the X-ray fluorescence detector close to the substance to be measured is that no substance can be measured at temperatures above about 100 degrees.
  • Special, cooled semiconductor elements are used as X-ray fluorescence detectors, which become blind in the vicinity of strong heat sources.
  • the fluorescent radiation emitted by the substance is no longer fed directly to the X-ray fluorescence detector, but is first coupled into at least one first X-ray conductor and fed via it to the X-ray fluorescence detector.
  • Suitable X-ray conductors are known in the art and consist, for example, of at least one hollow tube, usually in the form of a thin, hollow glass capillary, in the interior of which the X-rays propagate through total reflection. Due to the fact that the X-ray conductors can be made correspondingly thin, completely different geometries are possible compared to the prior art, in particular it is possible to arrange the end of the X-ray conductor close to the surface of the substance to be measured and yet the exciting X-ray radiation almost perpendicular to the substance to shine on.
  • the X-ray fluorescence detector itself can be arranged relatively far away from the substance flowing past, which is particularly advantageous when relatively hot substances are to be measured whose heat radiation must be protected by the X-ray fluorescence detector. Since the known light guides can also be made curved, it is in particular also possible to arrange a heat shield between the conveyor belt and the X-ray fluorescence detector. According to claim 2, the stimulating X-ray radiation is guided over an X-ray conductor, which further facilitates the adjustment of the device and increases the tolerance to changing conditions.
  • the X-ray conductors used consist of the glass capillaries already mentioned. These are known in the art. So far, such X-ray conductors have been used for spatially resolving X-ray emission measurements. For the use proposed here, these glass capillaries have the particular advantage that they have a heat resistance of several hundred degrees Celsius and can therefore be guided very close to the substance to be measured even if it has high temperatures.
  • the hollow tubes / glass capillaries are preferably filled with hydrogen or helium, helium being preferred from a handling point of view.
  • helium being preferred from a handling point of view.
  • the X-ray conductors are preferably combined into a bundle, which has considerable advantages with regard to handling and adjustment and also with regard to overall sensitivity.
  • Laser distance sensors are particularly suitable for this and such a laser distance sensor is preferably coupled to an optical fiber. According to claim 18, this light guide is coupled to at least one of the existing X-ray guides, so that the distance measurements have no location or time offset compared to the X-ray measurement. The overall accuracy of the measurement can thus be increased considerably.
  • an X-ray half lens in the beam path of the X-ray source before the X-ray light occurs on the substance to be measured for parallelizing the X-radiation.
  • FIG. 1 shows a schematic representation of a first embodiment of the invention
  • Converging lens is arranged
  • FIG. 3 shows a schematic illustration of a second embodiment of the invention
  • FIG. 4 shows an X-ray fluorescence detector with connected X-ray conductor in a schematic illustration
  • FIG. 5 shows an alternative embodiment to that shown in FIG.
  • FIG. 6 shows a schematic illustration of an X-ray fluorescence detector and an X-ray source to which an X-ray conductor is connected, which unite to form a bundle
  • FIG. 7 is a partial view from FIG.
  • Figure 8 A bundle of X-ray conductors in cross section in a schematic
  • FIG. 9 shows a further embodiment of a bundle of X-ray conductors in cross section
  • FIG. 10 shows an alternative embodiment to that shown in FIG. 7,
  • FIG. 11 shows an embodiment as shown in FIG. 6, which furthermore has a light guide connected to a laser distance measuring device
  • FIG. 12 shows a schematic illustration of a measuring device according to the prior art
  • FIG. 13 an X-ray source with an X-ray conductor and a wavelength filter
  • FIG. 14a a device with flat X-ray radiation
  • 14b shows a plan view of the device shown in FIG. 14a along the line of sight AA
  • FIG. 15 A device in which polarized X-rays are irradiated onto the substance.
  • Figure 16 A movable measuring arrangement
  • a first embodiment of the invention is shown schematically in FIG.
  • a stream of the substance S to be examined is conveyed past a measuring station on a conveyor belt 51.
  • a leveling edge 53 is arranged upstream of the measuring station in order to obtain as flat a surface as possible of the substance to be measured at the measuring station.
  • the measuring station of this exemplary embodiment consists of an X-ray tube 10, an X-ray fluorescence detector 20 and a first X-ray conductor connected to the radiation inlet of the X-ray fluorescence detector, which is designed in the form of a first glass capillary 30.
  • Such x-ray conducting glass capillaries are available on the market.
  • the exciting X-ray radiation ( ⁇ A ) coming from the X-ray tube 10 is radiated onto the substance surface and generates characteristic excitation states of the elements present in it.
  • the recombination of the excited states takes place partly radiant, whereby in the applications of interest here the K ⁇ -, with heavy elements the L ⁇ - transition is often observed.
  • the radiation emission ( ⁇ E ) is usually isotropic, which means that the radiation intensity decreases with 1 / r 2 without taking air absorption into account.
  • the front end 30a of the first glass capillary is arranged as close as possible to the surface of the substance flow.
  • corresponding glass capillaries 30 can be made relatively thin, this is also possible without colliding with the x-ray tube 10 or its beam path.
  • the X-ray that has entered it spreads out gene radiation from total reflection on the walls, so that only an absorption-related loss of intensity occurs.
  • the X-ray fluorescence detector 20 can be arranged relatively far away from the surface of the substance S to be measured. The problem of minimizing absorption within the glass capillary will be discussed in more detail later.
  • Figure 2 shows an improved embodiment of the embodiment shown in Figure 1.
  • an X-ray half lens 12 is arranged between the X-ray tube 10 and the surface of the substance S to be measured, which leads to a parallelization of the incident X-rays.
  • this has the advantage that the intensity on the area of interest of the substance can be increased while the power of the X-ray tube remains the same.
  • the parallelization of the radiation means that the intensity on the surface of the substance remains constant even if the substance has a has an uneven surface. This improves the reproducibility of the measurement results.
  • FIG. 3 shows a second embodiment of the invention.
  • a substance stream here in particular hot slag, slides down on a chute 55. Part of the slag is continuously removed via an opening in this chute 55 and the turntable 56 and fed to the measuring station.
  • the substance lying on the turntable is leveled over a leveling edge, but the corresponding leveling edge is not here in the plane of the drawing and is therefore not shown.
  • the corresponding substance is returned to the main flow in the chute 55 via a scraper, also not shown.
  • the turntable is located within a shielding housing 58, in which, in the present exemplary embodiment, relatively high temperatures also prevail due to the high temperatures of the slag to be measured. For this reason, both the X-ray tube 10 and the X-ray fluorescence detector 20 as well as all components of the evaluation electronics are arranged outside the shielding housing 58.
  • the coupling and decoupling of the X-ray radiation occurs here in each case via X-ray conductors, namely here through the first glass capillary 30 and the second glass capillary 40. It should be emphasized here that instead of a first glass capillary it is generally also possible to use bundles of first glass capillaries. The same applies to the second glass capillaries.
  • a part of the X-ray radiation generated by the X-ray tube 10 reaches the second glass capillary 40, in which it spreads essentially without loss.
  • a portion of the fluorescence radiation generated by the substance to be measured reaches the first glass capillary 30 and from there into the X-ray fluorescence detector 20, where it is measured.
  • the X-ray fluorescence detectors used generally contain a semiconductor element, here for example an Si pin semiconductor element 25. Such semiconductor elements can generally only work at relatively low temperatures and become blind when the heat is too great.
  • a heat shield 59 is arranged between the shielding housing 58 and the X-ray fluorescence detector 20.
  • This heat shield 59 can work reflectively and / or absorptively and, for example, consist of a heat-insulating material, or can also be actively, for example cooled by water cooling. Because the glass capillaries used here as X-ray conductors can also be curved without losing their X-ray conductivity, it is possible to completely remove the X-ray fluorescence detector 20 from the line of sight of the substance to be measured.
  • FIG. 4 shows the structure of an X-ray fluorescence detector with a connected first glass capillary in somewhat larger detail, albeit schematically.
  • the measurement of low-energy X-ray fluorescence radiation in particular less than 2 keV, is problematic since a very strong absorption occurs in air.
  • the first glass capillary 30 with a light gas, in particular Helium to fill.
  • a semiconductor element for example an Si pin semiconductor element 25 is seated inside the housing 22 and is preferably cooled via a Peltier cooler 26.
  • a power supply and signal line 27 connects the semiconductor element to the control and evaluation electronics.
  • the first glass capillary 30 has a thin window 30b at its front end 30a, for example in the form of a berillium foil.
  • This window also serves to prevent the ingress of dirt particles that could reduce or destroy the X-ray conductivity of the first glass capillary 30.
  • the berillium foil used as a window must be relatively thin.
  • FIG. 5 shows an alternative embodiment to FIG. 4.
  • the interior of the glass capillary 30 and the interior of the housing 22 form a common gas space.
  • a window that closes the first glass capillary 30 has been dispensed with, and the entire arrangement is constantly flushed with helium.
  • the housing 22 is connected to a helium source 28.
  • This arrangement has the advantage that there is no need for a relatively sensitive window.
  • the helium flowing through the arrangement also prevents dirt particles from entering the glass capillary.
  • the glass capillaries used here as X-ray conductors can be bent to a certain degree without losing their X-ray conductivity.
  • the glass capillaries used can be combined into bundles, as shown in FIG. 6.
  • X-ray tube 10 and X-ray fluorescence detector 20 can be spatially separated, however, the end sections of the two glass capillaries 30 and 40 can lie close to one another and extend parallel, see also FIG. 7. This enables a very precisely defined geometry to be generated and, in particular, the measurement is compared to a changing height of the flowing substance, which The presence of coarse-grained substances is in principle unavoidable, relatively insensitive, since both the direction of radiation and the emission of the X-rays are almost perpendicular.
  • FIG. 8 shows a cross section through such a bundle in which the glass capillaries are arranged in a matrix.
  • FIG. 9 shows an exemplary embodiment in which a second glass capillary 40 is surrounded by a plurality of first glass capillaries 30. This arrangement also serves to collect as many of the emitted gamma quanta as possible and to feed them to the X-ray fluorescence detector.
  • Transport belts and turntables occur as transport devices in the illustrated exemplary embodiments. However, it is clear that other transport devices are also possible, for example channels or tubes when measuring liquid substances.
  • FIG. 13 shows a first possibility for reducing the background.
  • a wavelength filter 42 is arranged in the beam path of the exciting X-rays. This wavelength filter 42 is selected such that it essentially only transmits X-rays whose energy is greater than or equal to the lowest desired excitation energy.
  • the wavelength filter 42 also serves as the termination of the second glass capillary 40, the other end of which is connected to the X-ray tube 10.
  • one or more monochromators can also be used.
  • FIGS. 14a and 14b show an alternative or additional possibility of how the measurement background can be reduced.
  • the exciting X-ray radiation is radiated onto the substance at a flat angle ⁇
  • the first glass capillary 30, which captures part of the fluorescence radiation is essentially at the same angle ⁇ to the sample surface and extends parallel to the radiation axis of the exciting X-rays, here parallel to the second glass capillary 40.
  • This arrangement also makes this arrangement relatively insensitive to fluctuations in the height of the substance surface.
  • the scattering of non-absorbed X-rays occurs essentially in the forward direction, so that only a very small part of these can reach the first glass capillary 30. Since the fluorescence is essentially isotropic, the signal to be measured is not reduced, but the background is considerably reduced.
  • the exciting X-ray radiation is polarized by means of a polarizer 44 before it hits the substance surface and is irradiated onto the substance to be examined at the Brewster angle ⁇ B.
  • the proportion of scattered X-rays can be significantly reduced again, see Figure 15.
  • FIG. 16 shows one possibility of how the device according to the invention can be designed very flexibly while maintaining high precision.
  • the X-ray tube 10, the X-ray fluorescence detector 20 and corresponding X-ray conductors, here first glass capillary 30 and second glass capillary 40 are arranged on a carriage 70 which can be moved at least one dimension, so that the ideal position in relation to the substance surface can be set as required without having to a complex adjustment of the X-ray conductors to each other is necessary.
  • pivotability in a vertical plane can also be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Eine Vorrichtung zur Durchführung einer Online-Elementanalyse an einer an einer Messstation vorbeigeförderten oder vorbeifliessenden Substanz (S) weist eine Transporteinrichtung für die zu messende Substanz, eine Messstation mit einer Röntgenquelle (10) und einen Röntgenfluoreszenzdetektor (20) auf. Die von der Substanz emittierte Fluoreszenzstrahlung wird dabei nicht direkt dem Detektor zugeführt, sondern über einen Röntgenleiter, vorzugsweise eine Glaskapillare, diesem zugeführt. Die von der Quelle emittierte Strahlung wird ebenfalls über einen Röntgenleiter auf die Substanz gerichtet. Durch die Verwendung von dünnen Glaskapillaren gelingt es, die Strahlung parallel und ortsnah einzustrahlen bzw. auszukoppeln.

Description

RONTGENFLUORESZENZANALYSE MITTELS EINEM AN DIE QUELLE UND AN DEN DETEKTOR ANGESCHLOSSENEN HOHLLEITER
5
Beschreibung
Technisches Gebiet der Erfindung
0 Die Erfindung betrifft eine Vorrichtung zur Durchführung einer Online- Elementanalyse nach den Oberbegriff des Anspruchs 1.
Stand der Technik
5 Röntgenfluoreszenz ist eine in Wissenschaft und Industrie häufig angewandte Messmethode mittels derer der Anteil bestimmter Elemente in einer Probe gemessen werden kann. Hierbei wird die Probe mit Röntgenstrahlung bestrahlt, um bestimmte elektronische Übergänge der interessierenden Elemente anzuregen. Bei leichten und mittelleichten Elementen handelt es sich 0 hierbei meistens um den Kα-Übergang. Die Rekombination der angeregten Übergänge erfolgt teilweise strahlend, wobei die hierbei abgegebenen Energiequanten einen für dieses Element charakteristischen Wert aufweisen. Für die hier interessierenden Anwendungen liegt die Energie des abgestrahlten Photons in der Regel zwischen 1 und 30 keV. Insbesondere am unteren En- 5 de dieses Energiebereiches hat die emittierte weiche Röntgenstrahlung nur eine sehr geringe Reichweite in Feststoffen oder Luft, so dass sich hier insbesondere bei industriellen Anwendungen erhebliche messtechnische Probleme ergeben.
Die vorliegende Erfindung beschäftigt sich mit einer Vorrichtung, bei der Röntgenfluoreszenzmessung in einem Online-Verfahren angewendet wird. Hierbei wird ein zu einem laufenden Prozess gehörender Substanzstrom an einer Meßstation vorbeigeführt, wobei diese Meßstation wenigstens eine Röntgenquelle und wenigstens einen Röntgenfluoreszenzdetektor aufweist. Solche Vorrichtung haben zahlreiche industrielle Anwendungen, bspw. bei der Online-Analyse hinsichtlich von in einem industriellen Prozess eingesetzter Kohle, um z.B. den Asche- oder Schwefelanteil oder auch Anteile an- derer spezieller Elemente zu messen. Andere Anwendungen sind unter anderem in der Stahlindustrie. Hier wird bspw. der Anteil bestimmter Elemente in einem noch heißen Schlackenstrom gemessen.
Wie oben bereits angedeutet, ist ein zentrales Problem der vorliegenden Messtechnik darin zu sehen, dass insbesondere die γ-Quanten am energiearmen Ende des interessierenden Energiespektrums aufgrund ihrer geringen Reichweite in Luft schwer zu detektieren sind. Bei Offline-Labormessungen, bei denen ausreichend viel Zeit zur Verfügung steht, die Probe entsprechend zu präparieren, und bei denen die Proben in entsprechende Messapparatu- ren mit genau einstellbaren Geometrien eingeführt werden, können die messtechnischen Probleme vergleichsweise einfach gelöst werden. Bei den hier interessierenden Anwendungen, bei denen in einer "Fabriksituation" an einem vorbeifließenden Substanzstrom gemessen wird, dessen Oberflächengeometrie sich zumindest bei einigen Anwendungen wenigstens ge- ringfügig über die Zeit verändert, liegen die Verhältnisse wesentlich schwieriger.
Die PCT/US99/20867 beschäftigt sich mit dem Problem der Anordnung einer Röntgenquelle und eines Röntgenfluoreszenzdetektors in Bezug zu einer Transporteinrichtung für eine Online-Elementanalyse. Dort wird vorgeschlagen, den Röntgenfluoreszenzdetektor möglichst nahe bezüglich der zu messenden vorbeifließenden Substanz, insbesondere mit einem Abstand kleiner 5 cm anzuordnen. Da die Röntgenemission im Wesentlichen isotrop erfolgt, nimmt natürlich die Intensität der Röntgenfluoreszenzstrahlung proportional 1/r2 ab. Hierbei ist die Absorption in der Luft noch nicht einmal berücksichtigt. Demnach ist natürlich grundsätzlich richtig, dass durch die Anordnung des Detektors nahe an der Probe das messbare Signal maximiert wird. Bei der Durchführung des in der PCT/US99/20867 gemachten Vorschlags gibt es jedoch zumindest in manchen Anwendungsfällen erhebliche Schwierigkeiten:
Um die in den Röntgenfluoreszenzdetektor einstrahlende Hintergrundstrah- lung möglichst gering zu halten, ist es im Allgemeinen zu bevorzugen, Röntgenquelle und Röntgenfluoreszenzdetektor auf der selben Seite der Probe anzuordnen. Diese Lösung ist auch bezüglich der benötigten Leistung und Wellenlänge der Röntgenquelle im Allgemeinem zu bevorzugen. Da sowohl Röntgenquelle als auch Röntgenfluoreszenzdetektor natürlich eine gewisse räumliche Abmessung aufweisen, macht es die nahe Anordnung des Rönt- genfluoreszenzdetektors an der zu messenden Substanz im Allgemeinen notwendig, die von der Röntgenquelle kommende Strahlung relativ flach auf die vorbeigeförderte oder die vorbeifließende Substanz aufzustrahlen, wie dies bspw. in Figur 12 dargestellt ist. Dies hat zur Folge, dass bei geringfügi- ger Fehljustierung oder bei einer sich auch nur geringfügigen Änderung der Höhe der Substanzoberfläche der von der Röntgenquelle beleuchtete Punkt seine horizontale Position relativ stark verändert, und nicht mehr ideal in Sichtlinie des Röntgenfluoreszenzdetektors liegt. Hierdurch können erhebliche Intensitätsverluste und vor allem auch erhebliche Intensitätsschwankun- gen auftreten.
Ein weiteres großes Problem der Anordnung des Röntgenfluoreszenzdetektors nahe an der zu messenden Substanz besteht darin, dass keine Substanz mit Temperaturen über ca. 100 Grad gemessen werden können. Als Röntgenfluoreszenzdetektoren werden häufig spezielle, gekühlte Halbleiterelemente eingesetzt, die in die Nähe von starken Wärmequellen blind werden.
Gegenstand der Erfindung
Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung eine gattungsgemässe Erfindung dahingehend zu verbessern, dass die Toleranz gegenüber Fehljustierungen und sich veränderten Höhen der Oberfläche der Substanz verbessert wird.
Diese Aufgabe wird mit einer Vorrichtung mit den Merkmalen des Anspruchs 1 gelöst.
Erfindungsgemäß wird die von der Substanz emittierte Fluoreszensstrahlung nicht mehr direkt dem Röntgenfluoreszenzdetektor zugeführt, sondern zunächst in wenigstens einen ersten Rontgenleiter eingekoppelt und über die- sen dem Röntgenfluoreszenzdetektor zugeführt.
Geeignete Rontgenleiter sind in der Technik bekannt und bestehen bspw. aus wenigstens einem Hohlrohr, meist in Form einer dünnen, hohlen Glaskapillare, in deren Inneren sich die Röntgenstrahlung über Totalreflexion aus- breitet. Dadurch, dass die Rontgenleiter entsprechend dünn ausgebildet sein können, werden gegenüber dem Stand der Technik ganz andere Geometrien möglich, insbesondere ist es möglich, das Ende des Röntgenleiters nahe an der Oberfläche der zu messenden Substanz anzuordnen und dennoch die anregende Röntgenstrahlung nahezu senkrecht auf die Substanz aufzu- strahlen.
Da innerhalb des Röntgenleiters die Intensität der eingefangenen Röntgenstrahlung nur durch die Absorption des Füllgases abnimmt, kann der Röntgenfluoreszenzdetektor selbst relativ weit weg von der vorbeifließenden Sub- stanz angeordnet werden, was insbesondere dann von erheblichen Vorteil ist, wenn relativ heiße Substanzen gemessen werden sollen, vor deren Wärmestrahlung der Röntgenfluoreszenzdetektor geschützt werden muss. Da die bekannten Lichtleiter auch gebogen ausgeführt werden können, ist es insbesondere auch möglich, zwischen Förderband und Röntgenfluoreszenz- detektor ein Hitzeschild anzuordnen, Anspruch 14. Nach Anspruch 2 wird auch die anregende Röntgenstrahlung über einen Rontgenleiter geführt, was die Justierung der Vorrichtung nochmals erleichtert und die Toleranz gegenüber sich ändernden Bedingungen erhöht.
Nach Anspruch 5 bestehen die verwendeten Rontgenleiter aus den bereits oben erwähnten Glaskapillaren. Diese sind in der Technik bekannt. Bisher werden solche Rontgenleiter für ortsauflösende Röntgenemissionsmessun- gen verwendet. Diese Glaskapillaren haben für die hier vorgeschlagene Verwendung den besonderen Vorteil, dass sie eine Wärmebeständigkeit von mehren hundert Grad Celsius aufweisen und somit sehr nahe auch dann an die zu messende Substanz geführt werden können, wenn diese hohe Temperaturen aufweist.
Es ist jedoch auch denkbar nichtkapillare Hohlrohre als Rontgenleiter einzu- setzen.
Da weiche Röntgenstrahlen mit einer Energie unter 2 keV sehr stark von Luft absorbiert werden, sind die Hohlrohre/Glaskapillaren vorzugsweise gemäß Anspruch 7 mit Wasserstoff oder Helium gefüllt, wobei Helium aus handha- bungstechnischer Sicht zu bevorzugen ist. Dadurch können auch bei Messung niedriger Photonenenergien relativ große Strecken zwischen Substanz und Detektor überwunden werden, bspw. 20 bis 30 cm.
Eine Alternative zu der Vorrichtung nach Anspruch 7 ist in Anspruch 8 ange- geben. Die permanente Füllung der Glaskapillare mit einem leichten Gas erfordert, dass die Glaskapillare auch an ihrem der Substanz zugewandten Ende verschlossen ist. Geeignete Fenster, bestehen in der Regel aus dünnen Kunststoff- oder Berylliumfolien, die eine geringe Temperatur- und/oder mechanische Beständigkeit aufweisen. In bestimmten Fällen können diese deswegen nicht verwendet werden. Für solche Anwendungsfälle wird vorgeschlagen, die Hohlrohre/Glaskapillaren an ihren Enden offenzulassen und sie permanent während des Betriebes mit Helium zu spülen. Eine solche Spü- lung kann auch das Absetzen von Fremdpartikeln innerhalb der Glaskapillare verhindern.
Nach den Ansprüchen 9 bis 13 werden die Rontgenleiter vorzugsweise zu einem Bündel zusammengefasst, was hinsichtlich der Handhabung und der Justierung und auch bezüglich der Gesamtempfindlichkeit erhebliche Vorteile aufweist.
Um die Messergebnisse leichter interpretierbar und reproduzierbarer zu ma- chen, ist es i. d. R. notwendig oder zumindest hilfreich, die genaue Vertikallage der Oberfläche der Probe zu kennen. Es wird deshalb vorgeschlagen, einen Abstandsensor vorzusehen. Hierfür sind insbesondere Laser- Abstandssensoren geeignet und ein solcher Laser-Abstandssensor ist vorzugsweise mit einem Lichtleiter gekoppelt. Nach Anspruch 18 ist dieser Lichtleiter mit wenigstens einem der vorhandenen Rontgenleiter gekoppelt, so dass die Abstandmessungen keinen Orts- oder Zeitversatz gegenüber der Röntgenmessung aufweist. Somit kann die Gesamtgenauigkeit der Messung erheblich erhöht werden.
Nach Anspruch 19 wird vorgeschlagen, in den Strahlengang der Röntgenquelle, bevor das Röntgenlicht auf die zu messende Substanz auftritt, eine Röntgen-Halblinse zur Parallelisierung der Röntgenstrahlung anzuordnen. Dies hat zwei Vorteile: Zum Einen kann somit die auf den Messbereich aufgestrahlte Intensität erhöht werden, da nach der Parallelisierung das Rönt- genlicht nicht mehr proportional 1/r2 in der Intensität abnimmt. Dies hat weiterhin den Vorteil, dass bei einer sich ändernden Höhe der Probenoberfläche, was insbesondere bei grobkörnigen Proben grundsätzlich nicht zu vermeiden ist, keine, oder nur geringe Schwankungen der eingestrahlten Intensität auftreten, was wiederum zu einer leichteren Interpretierbarkeit der Mes- sergebnissse führt. Kurzbeschreibung der Zeichnungen
Weitere vorteilhafte Ausführungsformen ergeben sich aus den weiteren Unteransprüchen und aus den nun näher beschriebenen Ausführungsbeispie- len, die mit Bezug auf die Figuren näher beschrieben werden. Die Figuren zeigen:
Figur 1 Eine schematische Darstellung einer ersten Ausführungsform der Erfindung, Figur 2 Eine Röntgenquelle in deren Strahlengang eine Röntgen-
Sammellinse angeordnet ist,
Figur 3 Eine schematische Darstellung einer zweiten Ausführungsform der Erfindung,
Figur 4 Einen Röntgenfluoreszenzdetektor mit angeschlossenem Rönt- genleiter in schematischer Darstellung,
Figur 5 Eine alternative Ausführungsform zum in Figur 4 Gezeigten,
Figur 6 Eine schematische Darstellung eines Röntgenfluoreszenzde- tektors und einer Röntgenquelle an die jeweils ein Rontgenleiter angeschlossen ist, die sich zu einem Bündel vereinigen, Figur 7 Eine Teilansicht aus Figur 6,
Figur 8 Ein Bündel von Röntgenleitem im Querschnitt in schematischer
Darstellung,
Figur 9 Eine weitere Ausführungsform eines Bündels von Röntgenleitem im Querschnitt, Figur 10 Eine alternative Ausführungsform zum in Figur 7 Gezeigten,
Figur 1 1 Eine Ausführungsform wie in Figur 6 gezeigt, die weiterhin einen mit einem Laserabstandsmessgerät verbundenen Lichtleiter aufweist,
Figur 12 Eine schematische Darstellung einer Messvorrichtung nach dem Stand der Technik,
Figur 13 Eine Röntgenquelle mit einem Rontgenleiter und einem Wellenlängenfilter,
Figur 14a Eine Vorrichtung mit flacher Röntgeneinstrahlung, Figur 14b Eine Draufsicht auf die in Figur 14a gezeigte Vorrichtung entlang der Sichtlinie A-A,
Figur 15 Eine Vorrichtung, bei der polarisierte Röntgenstrahlung auf die Substanz aufgestrahlt wird. Figur 16 Eine verfahrbare Messanordnung
Beschreibung bevorzugter Ausführungsformen
In Figur 1 ist schematisch eine erste Ausführungsform der Erfindung dargestellt. Auf einem Förderband 51 wird ein Strom der zu untersuchenden Substanz S an einer Messstation vorbeigefördert. Stromauf der Messstation ist eine Nivillierkante 53 angeordnet, um eine möglichst ebene Oberfläche der zu messenden Substanz an der Messstation zu erhalten. Die Messstation dieses Ausführungsbeispiels besteht aus einer Röntgenröhre 10, einem Röntgenfluoreszenzdetektor 20 und einem mit dem Strahlungseinlass des Röntgenfluoreszenzdetektors verbundenen ersten Rontgenleiter, der in Form einer ersten Glaskapillare 30 ausgebildet ist. Solche röntgenleitenden Glaskapillaren sind auf dem Markt erhältlich.
Die von der Röntgenröhre 10 kommende anregende Röntgenstrahlung (γA) wird auf die Substanzoberfläche aufgestrahlt und erzeugt in dieser charakteristischen Anregungszustände der vorhandenen Elemente. Die Rekombination der angeregten Zustände erfolgt teilweise strahlend, wobei in den hier interessierenden Anwendungsfällen häufig der Kα-, bei schweren Elementen der Lα- Übergang beobachtet wird. Die Strahlungsemission (γE) erfolgt i. d. R. isotrop, wodurch die Strahlungsintensität ohne Berücksichtigung der Luftabsorption mit 1/r2 abnimmt. Um also ein möglichst großes Signal zu erhalten, wird das vordere Ende 30a der ersten Glaskapillare möglichst nahe an der Oberfläche des Substanzstromes angeordnet. Da entsprechende Glaskapillaren 30 relativ dünn ausgebildet werden können, ist dies auch möglich, ohne in Kollision mit der Röntgenröhre 10 oder deren Strahlengang zu kommen. Innerhalb der ersten Glaskapillare 30 breitet sich die in sie gelangte Rönt- genstrahlung über Totalreflexion an den Wänden aus, so dass nur ein absorptionsbedingter Intensitätsverlust auftritt. Dadurch kann der Röntgenfluoreszenzdetektor 20 relativ weit weg von der Oberfläche der zu messenden Substanz S angeordnet werden. Auf das Problem der Minimierung der Ab- sorption innerhalb der Glaskapillare wird später näher eingegangen.
Figur 2 zeigt eine verbesserte Ausführungsform des in Figur 1 gezeigten Ausführungsbeispiels. Hier ist zwischen der Röntgenröhre 10 und der Oberfläche der zu messenden Substanz S eine Röntgenhalblinse 12 angeordnet, die zu einer Parallelisierung der einfallenden Röntgenstrahlung führt. Dies hat zum einen den Vorteil, dass die Intensität auf dem interessierenden Bereich der Substanz bei gleichbleibender Leistung der Röntgenröhre erhöht werden kann, weiterhin führt die Parallelisierung der Strahlung dazu, dass die Intensität auf der Oberfläche der Substanz auch dann konstant bleibt, wenn die Substanz eine unebene Oberfläche hat. Hierdurch wird die Reproduzierbarkeit der Messergebnisse verbessert.
Figur 3 zeigt ein zweites Ausführungsbeispiel der Erfindung. Auf einer Rutsche 55 rutscht ein Substanzstrom, hier insbesondere heiße Schlacke, nach unten. Über eine Öffnung in dieser Rutsche 55 und den Drehteller 56 wird laufend ein Teil der Schlacke entnommen und der Messstation zugeführt. Auch hier wird die auf dem Drehteller liegende Substanz über eine Nivellierkante eingeebnet, die entsprechende Nivellierkante befindet sich hier jedoch nicht in der Zeichenebene und ist deshalb nicht dargestellt. Nach Passieren der Messstation wird die entsprechende Substanz über einen ebenfalls nicht dargestellten Abstreifer wieder dem Hauptstrom in der Rutsche 55 zugeführt.
Der Drehteller befindet sich innerhalb eines Abschirmgehäuses 58, in dem im vorliegenden Ausführungsbeispiel aufgrund der hohen Temperaturen der zu messenden Schlacke ebenfalls relativ hohe Temperaturen herrschen. Aus diesem Grund sind sowohl die Röntgenröhre 10 als auch der Röntenfluores- zenzdetektor 20 sowie sämtliche Bestandteile der Auswerteelektronik außerhalb des Abschirmgehäuses 58 angeordnet. Die Ein- und Auskopplung der Röntgenstrahlung erfolgt hier jeweils über Rontgenleiter, hier nämlich durch die erste Glaskapillare 30 und die zweite Glaskapillare 40. Es soll hier betont werden, dass anstelle einer ersten Glaskapillare in der Regel auch in Bündel von ersten Glaskapillaren eingesetzt werden kann. Selbiges gilt für die zwei- ten Glaskapillaren.
Ein Teil der von der Röntgenröhre 10 erzeugten Röntgenstrahlung gelangt in die zweite Glaskapillare 40, in der sie sich im wesentlichen verlustfrei ausbreitet. Ein Teil der von der zu messenden Substanz erzeugten Fluoreszenz- Strahlung gelangt in die erste Glaskapillare 30 und von dort in den Röntgenfluoreszenzdetektor 20, wo sie gemessen wird. Die verwendeten Röntgenfluoreszenzdetektoren beinhalten in der Regel ein Halbleiterelement, hier beispielsweise ein Si-Pin-Halbleiterelement 25. Solche Halbleiterelemente können in der Regel nur bei relativ niedrigen Temperaturen arbeiten und werden bei zu großer Wärme blind. Da, wie bereits oben erwähnt, in der hier dargestellten Anwendung innerhalb des Abschirmgehäuses 58 relativ hohe Temperaturen herrschen und damit auch das zumeist aus Metall bestehende Abschirmgehäuse 58 heiß wird, ist zwischen dem Abschirmgehäuse 58 und dem Röntgenfluoreszenzdetektor 20 ein Hitzeschild 59 angeordnet. Dieses Hitzeschild 59 kann reflektiv und/oder absorptiv arbeiten und beispielsweise aus einem Wärme-isolierenden Material bestehen, oder auch aktiv, beispielsweise über eine Wasserkühlung gekühlt werden. Dadurch, dass die hier als Rontgenleiter verwendeten Glaskapillaren auch gekrümmt ausgeführt werden können, ohne ihre Röntgenleitfähigkeit zu verlieren, ist es möglich, den Röntgenfluoreszenzdetektor 20 vollständig aus der Sichtlinie der zu messenden Substanz heraus zu nehmen.
Figur 4 zeigt in etwas größerem Detail, wenn auch schematisch, den Aufbau eines Röntgenfluoreszenzdetektors mit angeschlossener erster Glaskapilla- re. Wie oben bereits erwähnt, ist die Messung von Röntgenfluoreszenz- strahlung geringer Energie, insbesondere kleiner 2 keV, problematisch, da hier in Luft eine sehr starke Absorption auftritt. Es wird deswegen vorgeschlagen, die erste Glaskapillare 30 mit einem leichten Gas, insbesondere Helium, zu füllen. Hierzu wird vorgeschlagen, die erste Glaskapillare 30 über einen Anschlussflansch 29 mit dem Gehäuse 22 des Röntgenfluoreszenz- detektors 20 derart zu verbinden, dass die erste Glaskapillare 30 und das Innere des Gehäuses 22 einen gemeinsamen Gasraum bilden, der mit Helium gefüllt ist. In Verlängerung der Achse der ersten Glaskapillare 30 sitzt innerhalb des Gehäuses 22 ein Halbleiterelement, beispielsweise ein Si-Pin- Halbleiterelement 25, das vorzugsweise über einen Peltier-Kühler 26 gekühlt wird. Eine Stromversorgungs- und Signalleitung 27 verbindet das Halbleiter- lement mit der Ansteuer- und Auswerteelektronik.
Um zu verhindern, dass die Helium-Füllung entweicht, trägt die erste Glaskapillare 30 an ihrem vorderen Ende 30a ein dünnes Fenster 30b, beispielsweise in Form einer Berilliumfolie. Dieses Fenster dient weiterhin der Verhinderung des Eindringens von Schmutzpartikeln, die die Röntgen-Leitfähigkeit der ersten Glaskapillare 30 vermindern oder zerstören könnten. Um die Absorption gering zu halten, muss die als Fenster dienende Berilliumfolie relativ dünn sein.
Figur 5 zeigt eine alternative Ausführungsform zur Figur 4. Auch hier bildet das Innere der Glaskapillare 30 und das Innere des Gehäuses 22 einen gemeinsamen Gasraum. Hier wurde jedoch auf ein die erste Glaskapillare 30 abschließendes Fenster verzichtet, und die gesamte Anordnung wird ständig mit Helium gespült. Hierzu ist das Gehäuse 22 mit einer Heliumquelle 28 verbunden. Diese Anordnung hat den Vorteil, dass auf ein relativ empfindli- ches Fenster verzichtet werden kann. Das durch die Anordnung strömende Helium verhindert auch das Eindringen von Schmutzpartikeln in die Glaskapillare.
Wie bereits erwähnt, können die hier als Rontgenleiter eingesetzten Glaska- pillaren bis zu einem gewissen Grad gebogen werden, ohne dass ihre Rönt- genleitfähigkeit verloren geht. Dadurch können die verwendeten Glaskapillaren zu Bündeln vereinigt werden, wie dies in Figur 6 dargestellt ist. Röntgenröhre 10 und Röntgenfluoreszenzdetektor 20 können räumlich getrennt sein, die Endabschnitte der beiden Glaskapillaren 30 und 40 können jedoch dicht beieinander liegen und sich parallel erstrecken, siehe auch Figur 7. Dadurch kann eine sehr genau definierte Geometrie erzeugt werden und insbesondere wird die Messung gegenüber einer sich ändernden Höhe der vorbeiflie- ßenden Substanz, was bei Vorliegen grobkörniger Substanzen grundsätzlich nicht vermeidbar ist, relativ unempfindlich, da sowohl die Einstrahl- als auch die Emissionsrichtung der Röntgenstrahlung nahezu senkrecht ist.
Es können nicht nur zwei Glaskapillaren, sondern im Prinzip beliebig viele Glaskapillaren gebündelt werden. In Figur 8 ist ein Querschnitt durch ein solches Bündel dargestellt, in dem die Glaskapillaren matrixartig angeordnet sind. Erste Glaskapillaren 30, die die emittierte Röntgenfluoreszenzstrahlung zum Röntgenfluoreszenzdetektor 20 führen und zweite Glaskapillaren 40, die die anregende Röntgenstrahlung von der Röntgenröhre 10 zur zu messen- den Substanz führen, wechseln einander ab. Hierdurch kann eine relativ große Ausbeute der emittierten Strahlung erzielt werden.
Figur 9 zeigt ein Ausführungsbeispiel, in der eine zweite Glaskapillare 40 von mehreren ersten Glaskapillaren 30 umgeben wird. Auch diese Anordnung dient dazu, möglichst viele der emittierten Gamma-Quanten aufzufangen und dem Röntgenfluoreszenzdetektor zuzuführen.
Wie in Figur 10 dargestellt ist, ist es auch möglich, als Alternative zum in Figur 9 dargestellten Ausführungsbeispiel, die ersten Glaskapillaren 30 gegen- über der zweiten Glaskapillare 40 leicht abzuwinkein, so dass sich die Achsen sämtlicher Glaskapillaren in einem Punkt, nämlich der Oberfläche der zu messenden Substanz schneiden. Hierdurch kann, wenn die Lage der Oberfläche der zu messenden Substanz sehr genau definiert werden kann, eine nochmalige Erhöhung der Strahlungsausbeute erzielt werden.
Zur Auswertung der Messergebnisse ist es wichtig, die genaue Lage der Oberfläche der Substanz zu kennen. Es wird deswegen weiterhin vorgeschlagen, in die vorhandene Messvorrichtung ein Laserabstandsmessgerät 60 zu integrieren, dessen Ein- und Auskopplung der Laserstrahlung vorzugsweise über einen Lichtleiter 61 geschieht, der mit den vorhandenen Glaskapillaren ein Bündel bildet. Dadurch ist die relative Lage sämtlicher Teile zueinander vollständig definiert, und es tritt kein Zeit- oder Ortsversatz der Abstandsmessung gegenüber der Röntgenfluoreszenzmessung auf, s. Figur 1 1.
Als Transporteinrichtungen treten in den dargestellten Ausführungsbeispielen Transportbänder und Drehteller auf. Es ist jedoch klar, dass auch andere Transporteinrichtungen möglich sind, zum Beispiel Rinnen oder Röhren bei der Messung an flüssigen Substanzen.
Im weiteren werden Möglichkeiten dargestellt, wie der Untergrund des gemessenen Signals reduziert werden kann. Dies kann insbesondere bei De- tektierung von leichten Elementen von großer Bedeutung sein, da die Intensität der hier gemessenen Kα -Strahlung häufig relativ gering ist und vom Hintergrund nahezu überdeckt werden kann.
In Figur 13 ist eine erste Möglichkeit zur Reduzierung des Hintergrundes dargestellt. Im Strahlengang der anregenden Röntgenstrahlung ist ein Wellenlängenfilter 42 angeordnet. Dieses Wellenlängenfilter 42 ist so gewählt, dass es im wesentlichen nur Röntgenstrahlung durchläset, deren Energie größer oder gleich der niedrigsten gewünschten Anregungsenergie ist. In dem hier gezeigten Ausführungsbeispiel dient das Wellenlängenfilter 42 gleichzeitig als Abschluss der zweiten Glaskapillare 40, deren anderes Ende mit der Röntgenröhre 10 verbunden ist. Alternativ zu einem Wellenlängenfilter können auch ein oder mehrere Monochromatoren eingesetzt werden.
In den Figuren 14a und 14b ist eine alternative oder zusätzliche Möglichkeit gezeigt, wie der Messhintergrund reduziert werden kann. Hier wird die anregende Röntgenstrahlung in einem flachen Winkel Θ auf die Substanz aufgestrahlt, und die erste Glaskapillare 30, die ein Teil der Fluoreszenzstrahlung einfängt, steht im wesentlichen im selben Winkel Θ zur Probenoberfläche und erstreckt sich parallel zur Strahlungsachse der anregenden Röntgenstrahlung, hier parallel zur zweiten Glaskapillare 40. Durch diese Parallelführung ist auch diese Anordnung relativ unempfindlich gegenüber Schwankungen der Höhe der Substanzoberfläche.
Die Streuung nicht absorbierter Röntgenstrahlen geschieht im wesentlichen in Vorwärtsrichtung, so dass diese nur zu einem sehr geringen Teil in die erste Glaskapillare 30 gelangen können. Da die Fluoreszenz im wesentlichen isotrop erfolgt, erfolgt also keine Verkleinerung des zu messenden Signals, jedoch eine erhebliche Reduzierung des Untergrundes.
Der eben beschriebene Effekt kann noch dadurch verbessert werden, dass die anregende Röntgenstrahlung vor Auftreffen auf die Substanzoberfläche mittels eines Polarisators 44 polarisiert und unter dem Brewster-Winkel ΘB auf die zu untersuchende Substanz aufgestrahlt wird. Dadurch kann der Anteil der gestreuten Röntgenstrahlung nochmals erheblich gemindert werden, s. Figur 15.
Figur 16 zeigt eine Möglichkeit, wie unter Beibehaltung hoher Präzision die erfindungsgemäße Vorrichtung sehr flexibel ausgestaltet werden kann. Hierzu sind die Röntgenröhre 10, der Röntgenfluoreszenzdetektor 20 und entsprechende Rontgenleiter, hier erste Glaskapillare 30 und zweite Glaskapillare 40, auf einem wenigstens eindimensional verfahrbaren Schlitten 70 angeordnet, so dass die ideale Position im Verhältnis zur Substanzober läche be- darfsweise eingestellt werden kann, ohne dass eine aufwendige Justierung der Rontgenleiter zueinander notwendig wird. Zusätzlich oder alternativ zu einer vertikalen Beweglichkeit kann auch eine Verschwenkbarkeit in einer Vertikalebene vorgesehen werden.

Claims

Patentansprüche
1. Vorrichtung zur Durchführung einer Online-Elementanalyse an einer an einer Meßstation vorbeigeförderten oder vorbeifließenden Sub- stanz (S) mit: einer Transporteinrichtung (51 ) für die zu messende Substanz einer Meßstation mit einer Röntgenquelle (10) und einem Röntgenfluoreszenzdetektor (20) mit einem Strahlungseinlass, dadurch gekennzeichnet, dass sich vom Strahlungseinlass des Rönt- genfluoreszenzdetektors (20) wenigstens ein erster Rontgenleiter in
Richtung der Transporteinrichtung (51) erstreckt.
2. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich von der Röntgenquelle (10) wenigstens ein zweiter Rontgenleiter in Richtung der Transporteinrichtung erstreckt.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der erste und/oder der zweite Rontgenleiter aus jeweils wenigstens einem Hohlrohr bestehen.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das Hohlrohr zumindest teilweise aus Glas besteht.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Hohlrohr eine Glaskapillare (30,40) ist.
6. Vorrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass wenigstens ein Teil der Hohlrohre an ihrem der Transporteinrichtung zugewandten Ende ein Fenster (30b) tragen.
Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass zumindest ein Teil der Hohlrohre mit Wasserstoff oder Helium gefüllt ist.
8. Vorrichtung nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass zumindest ein Teil der Hohlrohre mit einer Heliumquelle (28) verbunden sind und während des Betriebes mit Helium gespült wer- den.
9. Vorrichtung nach Anspruch 2 oder einem der Ansprüche 3 bis 8, soweit sie auf Anspruch 2 rückbezogen sind, dadurch gekennzeichnet, dass der erste und der zweite Rontgenleiter derart zusammengeführt sind, dass am der Transporteinrichtung zugewandten Ende der Rontgenleiter ein Bündel von wenigstens zwei Röntgenleitem vorliegt.
10. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass mehrere erste und mehrere zweite Rontgenleiter vorhanden sind und dass die- se so zusammengeführt sind, dass eine matrixartige Struktur entsteht.
11. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Achsen der Rontgenleiter an dem der Transporteinrichtung zugewandten Ende parallel zueinander sind.
12. Vorrichtung Nach Anspruch 7, dadurch gekennzeichnet, dass wenigstens ein zweiter Rontgenleiter und mehrere erste Rontgenleiter vorhanden sind, die zumindest am der Transporteinrichtung (51) zugewandten Ende um den zweiten Rontgenleiter herum angeordnet sind.
13. Vorrichtung nach Anspruch 7 oder Anspruch 10, dadurch gekennzeichnet, dass die Achse wenigstens eines zweiten Röntgenleiters mit der Achse wenigstens eines ersten Röntgenleiters in Richtung der Transporteinrichtung einen spitzen Winkel einschließt.
14. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zwischen Röntgenfluoreszenzdetektor (20) und Transporteinrichtung (51) wenigstens ein Hitzeschild (59) angeordnet ist.
15. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch ge- kennzeichnet, dass sie einen Abstandssensor zur Messung der Höhe der Probenoberfläche aufweist.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass der Abstandssensor ein Laser-Abstandssensor (60) ist.
17. Vorrichtung nach Anspruch 16, dadurch gekennzeichnet, dass an den Laserabstandssensor (60) ein Lichtleiter (61) angeschlossen ist, so dass eine Femabstandsmessung möglich wird.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass der Lichtleiter (61) mit dem wenigstens einen ersten Rontgenleiter ein Bündel bildet.
19. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch ge- kennzeichnet, dass sich im Strahlengang der Röntgenquelle (10) eine
Röntgen-Halblinse (12) zur Parallelisierung der Röntgenstrahlung befindet.
20. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch ge- kennzeichnet, dass im Strahlengang der Röntgenquelle ein Filter (42) oder ein Monochromator angeordnet ist.
21 . Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass im Strahlengang der Röntgenquelle ein Polarisator (44) angeordnet ist.
22. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der erste Rontgenleiter und die von der Röntgen- quelle kommende anregende Strahlung im im Wesentlichen gleichen Winkel zur Oberfläche der Probe stehen.
23. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, dass der Winkel ein flacher Winkel ist.
24. Vorrichtung nach Anspruch Anspruch 21 und Anspruch 23, dadurch gekennzeichnet, dass der flache Winkel dem Brewster-Winkel der polarisierten Strahlung entspricht.
25. Vorrichtung nach Anspruch 6 und Anspruch 21 , dadurch gekennzeichnet, dass das Filter als Fenster dient.
26. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch ge- kennzeichnet, dass die Meßstation auf einem verfahrbaren und/oder verschwenkbaren Schlitten angeordnet ist.
PCT/DE2003/002224 2002-07-10 2003-07-03 Röntgenfluoreszenzanalyse mittels einem an die quelle und an den detektor angeschlossenen hohlleiter WO2004008128A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP03763588A EP1530714A1 (de) 2002-07-10 2003-07-03 Röntgenfluoreszenzanalyse mittels einem an die quelle und an den detektor angeschlossenen hohlleiter
US10/519,383 US7313220B2 (en) 2002-07-10 2003-07-03 Design for realizing an online element analysis
DE10393419T DE10393419D2 (de) 2002-07-10 2003-07-03 Röntgenfluoreszenzanalyse mittels einem an die Quelle und an den Detektor angeschlossenen Hohlleiter
AU2003257381A AU2003257381B2 (en) 2002-07-10 2003-07-03 X-ray fluorescence analysis using a waveguide connected to the source and and to the detector
CA002491140A CA2491140A1 (en) 2002-07-10 2003-07-03 X-ray fluorescence analysis using a waveguide connected to the source and to the detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10230990.6 2002-07-10
DE10230990A DE10230990A1 (de) 2002-07-10 2002-07-10 Vorrichtung zur Durchführung einer Online-Elementanalyse

Publications (1)

Publication Number Publication Date
WO2004008128A1 true WO2004008128A1 (de) 2004-01-22

Family

ID=27798312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002224 WO2004008128A1 (de) 2002-07-10 2003-07-03 Röntgenfluoreszenzanalyse mittels einem an die quelle und an den detektor angeschlossenen hohlleiter

Country Status (7)

Country Link
US (1) US7313220B2 (de)
EP (1) EP1530714A1 (de)
AU (1) AU2003257381B2 (de)
CA (1) CA2491140A1 (de)
DE (3) DE10230990A1 (de)
WO (1) WO2004008128A1 (de)
ZA (1) ZA200410294B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100963A1 (de) * 2004-04-17 2005-10-27 Katz, Elisabeth Vorrichtung für die elementanalyse
EP1686369A1 (de) 2005-01-31 2006-08-02 Oxford Instruments Analytical Oy Adapter und Röntgenfluoreszenzanalysegerät für die Untersuchung von heissen Oberflächen
NL1029645C2 (nl) * 2005-07-29 2007-01-30 Panalytical Bv Inrichting en werkwijze voor het uitvoeren van röntgenanalyse.

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564943B2 (en) 2004-03-01 2009-07-21 Spectramet, Llc Method and apparatus for sorting materials according to relative composition
DE102005020567A1 (de) * 2005-04-30 2006-11-09 Katz, Elisabeth Verfahren und Vorrichtung zur Online-Bestimmung des Aschegehalts einer auf einem Födermittel geförderten Substanz und Vorrichtung zur Durchführung einer Online-Analyse
JP5307504B2 (ja) * 2008-08-22 2013-10-02 株式会社日立ハイテクサイエンス X線分析装置及びx線分析方法
US8610019B2 (en) 2009-02-27 2013-12-17 Mineral Separation Technologies Inc. Methods for sorting materials
CN102519993B (zh) * 2011-12-31 2014-05-21 清华大学 一种反射式x射线煤炭灰分与发热量检测装置及检测方法
US9114433B2 (en) 2012-01-17 2015-08-25 Mineral Separation Technologies, Inc. Multi-fractional coal sorter and method of use thereof
JP6081260B2 (ja) * 2013-03-28 2017-02-15 株式会社日立ハイテクサイエンス 蛍光x線分析装置
FR3052259B1 (fr) * 2016-06-02 2023-08-25 Avenisense Capteur, procede de calibration d'un capteur et methode automatisee de suivi en ligne de l'evolution d'un corps liquide
CN113878537B (zh) * 2021-10-13 2022-04-22 哈尔滨工业大学 多层嵌套x射线聚焦镜主动力控制装调装置
CN114686836B (zh) * 2022-03-28 2023-08-22 尚越光电科技股份有限公司 一种卷对卷铜铟镓硒蒸镀的xrf检测结构

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497008A (en) * 1990-10-31 1996-03-05 X-Ray Optical Systems, Inc. Use of a Kumakhov lens in analytic instruments
US5778039A (en) * 1996-02-21 1998-07-07 Advanced Micro Devices, Inc. Method and apparatus for the detection of light elements on the surface of a semiconductor substrate using x-ray fluorescence (XRF)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE291420C (de) *
US2763784A (en) * 1951-10-19 1956-09-18 Jones & Laughlin Steel Corp Method and apparatus for continuously measuring tin thickness of tinned strip
US2837656A (en) * 1956-01-31 1958-06-03 Philips Corp X-ray analysis system and radiation detector for use in such system
US3327584A (en) * 1963-09-09 1967-06-27 Mechanical Tech Inc Fiber optic proximity probe
US3655964A (en) * 1968-05-06 1972-04-11 David Laurie Slight Ionizing radiation apparatus and method for distinguishing between materials in a mixture
US5192869A (en) * 1990-10-31 1993-03-09 X-Ray Optical Systems, Inc. Device for controlling beams of particles, X-ray and gamma quanta
JPH04270953A (ja) * 1991-01-09 1992-09-28 Mitsubishi Electric Corp 元素分析方法および元素分析装置ならびに薄膜形成装置
DE4408057B4 (de) * 1994-03-07 2008-12-24 Ifg-Institute For Scientific Instruments Gmbh Vorrichtung zur Röntgenfluoreszenzspektroskopie und deren Verwendung
FI97647C (fi) * 1994-11-14 1997-01-27 Ima Engineering Ltd Oy Menetelmä ja laitteisto alkuaineen pitoisuuden määrittämiseksi
US5754620A (en) * 1996-09-13 1998-05-19 Advanced Micro Devices, Inc. Apparatus and method for characterizing particles embedded within a thin film configured upon a semiconductor wafer
US5974111A (en) * 1996-09-24 1999-10-26 Vivid Technologies, Inc. Identifying explosives or other contraband by employing transmitted or scattered X-rays
DE19843229A1 (de) * 1998-09-10 2000-04-20 Ifg Inst Fuer Geraetebau Gmbh Verfahren und Gerät zum Analysieren von Proben mittels Röntgenfluoreszenz-Spektroskopie
US6130931A (en) 1998-09-17 2000-10-10 Process Control, Inc. X-ray fluorescence elemental analyzer
WO2000024029A1 (en) * 1998-10-21 2000-04-27 Koninklijke Philips Electronics N.V. X-ray irradiation apparatus including an x-ray source provided with a capillary optical system
RU2180439C2 (ru) * 2000-02-11 2002-03-10 Кумахов Мурадин Абубекирович Способ получения изображения внутренней структуры объекта с использованием рентгеновского излучения и устройство для его осуществления
JP2001249090A (ja) * 2000-03-07 2001-09-14 Rigaku Industrial Co 試料表面の観察機構を持つx線分析装置
JP3996821B2 (ja) * 2002-03-27 2007-10-24 株式会社堀場製作所 X線分析装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497008A (en) * 1990-10-31 1996-03-05 X-Ray Optical Systems, Inc. Use of a Kumakhov lens in analytic instruments
US5778039A (en) * 1996-02-21 1998-07-07 Advanced Micro Devices, Inc. Method and apparatus for the detection of light elements on the surface of a semiconductor substrate using x-ray fluorescence (XRF)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FIORINI C ET AL: "A new detection system with polycapillary conic collimator for high-localized analysis of X-ray fluorescence emission", NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, 2000 IEEE LYON, FRANCE 15-20 OCT. 2000, PISCATAWAY, NJ, USA,IEEE, US, 15 October 2000 (2000-10-15), pages 8 - 28-8-31, XP010556610, ISBN: 0-7803-6503-8 *
NIKITINA S V ET AL: "X-RAY FLUORESCENCE ANALYSIS ON THE BASE OF POLYCAPILLARY KUMAKHOV OPTICS", REVIEW OF SCIENTIFIC INSTRUMENTS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 70, no. 7, July 1999 (1999-07-01), pages 2950 - 2956, XP000875412, ISSN: 0034-6748 *
PETUKHOV V P ET AL: "X-RAY POLARIZER ON THE BASE OF KUMAKHOV OPTICS", PROCEEDINGS OF THE SPIE, SPIE, BELLINGHAM, VA, US, vol. 3115, 31 July 1997 (1997-07-31), pages 147 - 152, XP009017366, ISSN: 0277-786X *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100963A1 (de) * 2004-04-17 2005-10-27 Katz, Elisabeth Vorrichtung für die elementanalyse
AU2005233722B2 (en) * 2004-04-17 2011-03-17 Katz, Elisabeth Device for the analysis of elements
EP1686369A1 (de) 2005-01-31 2006-08-02 Oxford Instruments Analytical Oy Adapter und Röntgenfluoreszenzanalysegerät für die Untersuchung von heissen Oberflächen
NL1029645C2 (nl) * 2005-07-29 2007-01-30 Panalytical Bv Inrichting en werkwijze voor het uitvoeren van röntgenanalyse.
EP1750118A1 (de) * 2005-07-29 2007-02-07 Panalytical B.V. Vorrichtung und Verfahren zur Durchführung von Röntgenuntersuchungen

Also Published As

Publication number Publication date
US20050232391A1 (en) 2005-10-20
CA2491140A1 (en) 2004-01-22
AU2003257381A1 (en) 2004-02-02
DE10393419D2 (de) 2005-06-09
DE20309010U1 (de) 2003-08-28
US7313220B2 (en) 2007-12-25
EP1530714A1 (de) 2005-05-18
AU2003257381B2 (en) 2009-01-22
ZA200410294B (en) 2005-10-17
DE10230990A1 (de) 2004-02-05

Similar Documents

Publication Publication Date Title
DE3531891C2 (de)
EP2003441B1 (de) ATR-Sensor
DE102012100794B3 (de) Vorrichtung und Verfahren zum Erfassen von Kontaminationen in einem Hydrauliksystem
WO2004008128A1 (de) Röntgenfluoreszenzanalyse mittels einem an die quelle und an den detektor angeschlossenen hohlleiter
DE19544501A1 (de) Vorrichtung für Lichtreflexionsmessungen
DE19963331A1 (de) Röntgenfluoreszenzanalysator zur Verwendung als wellenlängendispergierender Analysator und energiedispergierender Analysator
DE2047952C3 (de) Verfahren zur photometrischen Auswertung der sich bei der Auftrennung von Substanz gemischen in dünnen Schichten aus licht streuendem Material ergebenden Zonen
DE2351922A1 (de) Vorrichtung zum nachweis von makroteilchen in einem gasstrom
DE112009000004B4 (de) Vorrichtung zur Röntgenfluoreszenzanalyse und deren Verwendung
DE2423827A1 (de) Verfahren und vorrichtung zur analyse einer fliessfaehigen substanz
EP1494007A1 (de) Vorrichtung und Verfahren zum Analysieren von Proben
DE10033457A1 (de) Transmissionsspektroskopische Vorrichtung für Behälter
WO2008122622A1 (de) Vorrichtung und verfahren zur untersuchung eines heterogenen materials mittels laserinduzierter plasmaspektroskopie
DE3938142A1 (de) Verfahren und vorrichtung zur qualitativen und quantitativen bestimmung von inhaltsstoffen
EP3136083B1 (de) Verfahren und vorrichtung zur bestimmung einer stoffkonzentration oder eines stoffes in einem flüssigen medium
EP0997726A2 (de) Nephelometrische Detektionseinheit mit optischer In-Prozess-Kontrolle
DE202019104338U1 (de) Vielwinkellichtstreudetektor auf Basis eines Fotodiodenarray
DE102021100321B4 (de) SPR-Sensoreinheit und Verfahren zur Bestimmung des Brechungsindex eines Proben-mediums sowie Messeinrichtung zur Erfassung der Dichte eines Messmediums
DE69403129T2 (de) Röntgenstrahlen-Analysegerät
DE4425462A1 (de) Spektralphotometer-Zelle
DE2214557A1 (de) Verfahren und Vorrichtung für die kontinuierliche Analyse der Zusammensetzung von strömenden Aufschlämmungen oder anderen Flüssigkeiten
DE4243418C2 (de) Vorrichtung zum Anregen und Empfangen der Photolumineszenz von Stoffen in Rohrleitungen, insbesondere zur Qualitätskontrolle industrieller Prozesse sowie zur Gewässer- und Abwässerkontrolle
DE102022207531A1 (de) RF-Bohrlochsondensystem und Verfahren zum Betrieb einer RF-Bohrlochsonde
DE19644936C2 (de) Anordnung zur Elementanalyse von Proben mittels einer Röntgenstrahlungsquelle
DE2927432A1 (de) Photoakustisches spektrometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200410294

Country of ref document: ZA

Ref document number: 2004/10294

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2491140

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10519383

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003763588

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003257381

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2003763588

Country of ref document: EP

REF Corresponds to

Ref document number: 10393419

Country of ref document: DE

Date of ref document: 20050609

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10393419

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: 8629

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP