WO2004007818A1 - Verfahren zur herstellung cellulosischer formkörper - Google Patents

Verfahren zur herstellung cellulosischer formkörper Download PDF

Info

Publication number
WO2004007818A1
WO2004007818A1 PCT/AT2003/000186 AT0300186W WO2004007818A1 WO 2004007818 A1 WO2004007818 A1 WO 2004007818A1 AT 0300186 W AT0300186 W AT 0300186W WO 2004007818 A1 WO2004007818 A1 WO 2004007818A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
chitosonium
chitosan
cellulose
fibers
Prior art date
Application number
PCT/AT2003/000186
Other languages
English (en)
French (fr)
Inventor
Sigrid Redlinger
Gerhard Reiter
Heinrich Firgo
Original Assignee
Lenzing Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenzing Aktiengesellschaft filed Critical Lenzing Aktiengesellschaft
Priority to AU2003243797A priority Critical patent/AU2003243797A1/en
Priority to BRPI0312613A priority patent/BRPI0312613B8/pt
Priority to EP03763499A priority patent/EP1537261B1/de
Priority to DE50310584T priority patent/DE50310584D1/de
Priority to JP2004520161A priority patent/JP2005534818A/ja
Publication of WO2004007818A1 publication Critical patent/WO2004007818A1/de
Priority to US11/033,437 priority patent/US20050189675A1/en
Priority to US12/818,020 priority patent/US20100289177A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath
    • D01F2/18Addition to the spinning solution of substances to influence ripening
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/02Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from cellulose, cellulose derivatives, or proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose

Definitions

  • the invention relates to a process for producing cellulosic shaped articles by the amine oxide process.
  • a tertiary amine oxide in particular N-methylmorpholine-N-oxide (NMMO)
  • NMMO N-methylmorpholine-N-oxide
  • the process for the production of moldings from a solution of cellulose in an aqueous tertiary amine oxide is referred to as the “amine oxide process” or “lyocell process”.
  • the solution of the cellulose is usually extruded using a molding tool and shaped in the process.
  • the formed solution passes through an air gap into a precipitation bath, where the shaped body is obtained by precipitation of the solution.
  • the molded body is washed and, if necessary, dried after further treatment steps.
  • Cellulose fibers which are produced from such solutions are called “solvent-spun” fibers and have been given the generic name Lyocell by the BISFA (The International Bureau for the Standardization of Man Made Fibers).
  • a method for producing lyocell fibers is described, for example, in US Pat. No. 4,246,221
  • the amine oxide process provides fibers which are characterized by high strength, high wet modulus and high loop strength.
  • Chitin and chitosan are natural, biodegradable, non-toxic, non-allergenic, bioactive and biocompatible polymers and are similar in structure to cellulose. Chitin is extracted from the shells of crustaceans, a waste product of the crab and shrimp industry. Global interest in the uses of chitin has increased enormously in recent years because it is seen as the second largest resource for natural polysaccharides after cellulose. Chitosan consists of poly- (1,4) -2-amino-2-deoxy-beta-D-glucose and is deacetylated by chitin (poly- (1,4) -2-acetamide-2-deoxy-beta) D-Gmcose).
  • solubility - chitin is insoluble in water, organic solvents, dilute acids and alkalis - chitosan, which is soluble in dilute acids, aqueous methanol and glycerol, is of far greater importance.
  • chitin and chitosan are in biotechnology for the immobilization of cells and enzymes, in medicine for wound treatment, in the food sector as a food additive and preservative, in agriculture for seed preservation, in waste water systems as flocculants and chelating agents with heavy metals.
  • chitin / chitosan For most areas of application, however, the chitin / chitosan must be modified in order to improve the solubility in aqueous systems.
  • Chitosan fibers are used in the medical field e.g. as wound coverings and surgical sutures due to the antibacterial properties and the inhibition of growth on pathogenic germs. Chitin or chitosan can be broken down enzymatically or hydrolytically by the body's own enzymes and are therefore resorbable fibers. The effect of these natural polymers in wound healing is the gradual release of N-acetyl-glucosamine, the mucopolysaccharide organization of collagen and the positive influence on tissue growth during wound healing.
  • chitosan fibers made of 100% chitosan have a low dry strength (chitosan fibers from innovative Technology Ltd., Winsford, England: titer 0.25 tex; fiber strength conditioned 9 cN / tex, fiber elongation conditioned 12.4%; Chitosan fibers from Korea Chitosan Co. LTD: fiber strength conditioned 15 cN / tex; Fiber elongation conditions 26%), are extremely brittle and the wet strength is only 30% of the dry strength. Therefore, chitosan fibers are either added to other man-made fibers or chitosan is added to the spinning mass during the manufacturing process of eg viscose fibers.
  • Viscose fibers with incorporated chitin / chitosan are commercially available, for example under the trade names Crabyon (from Omikenshi Co) and Chitopoly (from Fuji Spinning Co). These fibers are produced, for example, by chitosan or acetylated chitosan is dispersed in water in powder form with a grain size of less than 10 ⁇ m in an amount of 0.5 to 2% by weight and is added to the viscose spinning solution (US Pat. No. 5,320,903). Fibers are then produced by the conventional viscose or polynosic process.
  • the chitosan-incorporated viscose fibers have an increased dye affinity, increased water retention, antifungal and odor-inhibiting properties, but also the low wet strength known for viscose fibers. Since chitosan prevents the growth of bacteria harmful to the skin and eliminates allergic effects, e.g. Chitopoly fabric particularly suitable for dermatitis patients.
  • DE 195 44 097 describes a process for the production of moldings from polysaccharide mixtures by dissolving cellulose and a second polysaccharide in an organic, water-miscible polysaccharide solvent (preferably NMMO), which may also contain a second solvent.
  • NMMO organic, water-miscible polysaccharide solvent
  • Cellulose and / or at least one water-insoluble cellulose derivative is used to form the solution, and at least one polysaccharide which differs from these in water solubility is used as the second polysaccharide.
  • Chitin, chitosan, N- or O-hydroxyalkylated or carboxyalkylated chitin or chitosan derivative can be used as the third polysaccharide.
  • the examples describe the preparation of two chitosan-incorporated cellulose fibers, in each case in addition to NMMO a second solvent is used and carboxymethylated chitosan is added.
  • the use of the fiber for moldings with bactericidal and fungicidal properties is claimed as a means for the formation of water and heavy metals.
  • KR-A 9614022 describes the production of chitin-cellulose fibers, called “chitulose”, by dissolving chitin and cellulose in a solvent from the group consisting of dimethylimidazoline / LiCl, dichloroacetate, chlorinated hydrocarbon, dimethylacetarnide / LiCl and N-methylpyrrolidone / LiCl and yarns are produced by the wet spinning process.
  • NMMO is not mentioned in the claims.
  • EP-A 0 883 645 i.a. claimed the addition of chitosan to the solution as a modified compound to increase the suppleness of food casings.
  • the modifying compounds must be miscible with the cellulose / NMMO / water solution.
  • DE-A 100 07 794 describes the production of polymer compositions comprising a biodegradable polymer and a material made from marine plants and / or shells of marine animals, and the production of molded articles therefrom.
  • the addition of material from sea plants, sea animals in powder form, powder suspension or liquid form to the cellulose solution produced by the lyocell process is also claimed.
  • the material can also be used after or during the Crushing the dry cellulose can be added, as well as at every stage of the manufacturing process.
  • the fibers show the same textile mechanical properties as without the additive.
  • Lyocell fibers are described which have incorporated brown algae powder, the brown algae flour, NMMO and cellulose and stabilizer being mixed and heated to 94 ° C. to produce the spinning mass.
  • the present invention is based on the object of providing methods for producing a lyocell fiber which incorporates chitosan or a chitosan salt in the cellulose matrix and / or has it on the surface of the fiber and in which the disadvantages of the prior art described are avoided.
  • Another aspect of the present invention relates to such lyocell fibers.
  • the object of the present invention is achieved by a process for the production of cellulosic moldings by the amine oxide process, comprising the steps:
  • a chitosonium polymer is added to the solution of the cellulose and / or a precursor of this solution and / or the shaped body is treated with a chitosonium polymer before drying, the chitosonium polymer being essentially completely soluble in a standard spinning solution.
  • chitin is intended to mean a ⁇ -1,4-bound polymer of 2-acetamido-2-deoxy-D-glucose with a degree of deacetylation of 0%.
  • chitosan is an at least partially deacetylated ⁇ -1,4-bonded polymer of 2-acetamido-2-deoxy-D-glucose.
  • chitosonium polymer means a salt of chitosan with an inorganic and / or organic acid.
  • polymer also includes low molecular weight oligomers of the deacetylated 2-acetamido-2-deoxy-D-glucose or their salts from an average degree of polymerization of 2.
  • the "precursor" of the cellulose solution is to be understood as starting or intermediate products for the production of the cellulose solution, such as the cellulose used, the tertiary amine oxide or a suspension of the cellulose in the aqueous tertiary amine oxide.
  • NMMO is understood to mean the N-methyl-morpholine-N-oxide.
  • a standard spinning solution is understood to be a spinning solution with the composition 13% by weight of cellulose, 77% by weight of NMMO, 10% by weight of water and 0.1% by weight (based on the total solution) of a conventional stabilizer, which is prepared according to the process described in the example section becomes.
  • essentially completely soluble is understood when in the standard spinning solution in the microscopic assessment described in the example section at a content of up to 10% by weight of chitosonium polymer based on cellulose, essentially no undissolved particles of the chitosonium polymer are visible.
  • gel-like particles of the chitosonium polymer are considered to be dissolved particles.
  • chitosonium polymers are soluble in the solution of cellulose in the tertiary amine oxide. If such chitosonium polymers are added to the cellulose solution or a precursor thereof, they are present in the NMMO / water / cellulose solution in a uniform, homogeneous distribution which can no longer be differentiated from the cellulose matrix under the microscope.
  • chitosan forms water-soluble chitosonium salts with many organic and inorganic acids - also called chitosonium polymers in the literature - Freeze drying or spray drying in powder form can be isolated.
  • the production and use of these chitosonium polymers is known from the literature and is described in numerous patents. Chitosonium polymers are also commercially available.
  • chitosonium polymers can be in a form in which an excess of acid is present as a solvate or complex. It is found that chitosonium polymers with a salt content of more than 0.4, preferably from 0.5 to 2.5, are good. ***" Have solubility in NMMO and are therefore particularly suitable for the process according to the invention, the salt content being defined as the ratio of moles of acid per mole of chitosan.
  • chitosonium polymers for example chitosan acetates, chitosan chlorides, chitosan citrate or chitosan lactate, are preferably used.
  • chitosonium are skin-friendly, promote wound healing and mildly antibacterial.
  • the use of a chitosan chloride is particularly preferred.
  • chitosonium polymers as fiber treatment agents is described in US 5,900,479, WO 00/49219 and WO 01/34897.
  • the chitosonium polymer is made water-insoluble therein by increasing the pH to at least pH> 5.5, preferably pH> 6.6, i.e. the cationically charged chitosonium salt is converted back into the corresponding chitosan / chitin (WO 92/09636).
  • Another method for converting the chitosonium polymer into the N-acyl-glucose-amine polymer is a mild heat treatment (100-130 ° C.), described in US Pat. No. 5,900,479.
  • the chitosonium polymer is preferably added to the cellulose solution in a concentration of 1% by weight to 50%, preferably 1% by weight - 10% by weight, based on cellulose.
  • the chitosonium polymer can be in solid form, e.g. as a powder, or in the form of a solution or suspension.
  • Microscope images (transmitted light - Olympus BH-2 microscope, image taken with a polarization filter in 100 and 400 times magnification) of the cellulose solution produced with chitosonium polymer show that the chitosonium polymer is present in a uniform, homogeneous distribution that can no longer be differentiated from the cellulose matrix.
  • Moldings such as e.g. Lyocell fibers made.
  • the shaped body (for example the fibers) obtained from the cellulose solution is treated with a solution or suspension of the chitosonium polymer before drying.
  • a solution or suspension of the chitosonium polymer before drying.
  • the chitosonium polymer is preferably contained in the treatment solution or suspension in a proportion of 0.1% by weight to 10% by weight, preferably 0.5% by weight to 3% by weight.
  • the pH of the spinning bath of> 7, which is customary for the production of moldings by the amine oxide process, and the subsequent drying of the moldings are sufficient to convert the chitosonium polymer contained in the molding or applied to the molding into the corresponding chitosan.
  • an alkali treatment preferably with 20 g / 1 soda, can be carried out on the shaped body which incorporates the chitosonium polymer or chitosan which has already been partially or completely regenerated therefrom and / or contains the surface. with subsequent neutral washing.
  • This treatment is preferably carried out during production on the molded article which has never dried, but can also be carried out subsequently on the dried molded article.
  • a treatment with superheated steam can be carried out for this purpose instead of or in addition to the alkali treatment.
  • the cut NMMO-free washed fibers are preferably washed with e.g. by pressing defined moisture of 50% to 500% in a loose bandage ("fleece") on a moving sieve belt brought into contact with a liquor containing the chitosonium polymer dissolved in water and soaked e.g. by spraying ("impregnation").
  • the fleece is pressed to a defined moisture content of 50% - 500%, and the pressed treatment liquor is returned to the impregnation circuit.
  • the fleece is then brought into contact with alkali (e.g. by spraying) and / or treated with superheated steam to fix the chitosonium polymer and then washed neutral.
  • the shaped body is subjected to a treatment with a crosslinking agent before or after drying. If the shaped body has been treated with a solution or suspension of the chitosonium polymer, it is advantageous to carry out the treatment with the crosslinking agent after the treatment with the chitosonium polymer.
  • an additional alkali treatment of the fiber can be omitted. Furthermore, it is advantageous to treat with superheated steam after both treatments, i.e. both after the treatment with the Solution or suspension of the chitosonium polymer as well as after treatment with the crosslinking agent.
  • Suitable crosslinking agents are e.g. described in WO 99/19555.
  • the present invention also relates to a solution of cellulose in a tertiary amine oxide containing a chitosonium polymer which is essentially completely soluble in a standard spinning solution.
  • Shaped articles which, as explained above, contain the chitosonium polymer or chitosan and have outstanding properties can be produced from solutions according to the invention in a manner known per se.
  • the present invention accordingly also relates to moldings which can be obtained by the process according to the invention, in particular in the form of fibers.
  • fibers according to the invention have excellent textile properties despite a chitosan content of up to 10% by weight.
  • the fibers show excellent spinning behavior - the production of fibers with low titers is also possible - as well as the high fiber mechanical properties that are typical for Lyocell, both in the dry and in the wet state and have a high smoothness without softening (spft hand).
  • the fibers have an increased water retention capacity, increased moisture absorption, increased staining behavior as well as mildly antimicrobial and wound healing, hemostatic properties.
  • the standard spinning solution is prepared in a manner known per se from a suspension which contains cellulose, stabilizer, NMMO (aqueous 60% solution) and the respective additive (chitosonium polymer).
  • the solutions are produced in a HKD-T 0.6 kneader from IKA Labortechnik by using this mixture of cellulose / water / NMMO / stabilizer and the additive by evaporating the excess amount of water under vacuum, the solution with the desired composition as described above is achieved with a dissolving time of 60-70 minutes and a dissolving temperature of 100-110 ° C.
  • the mixture of NMMO, water, pulp, stabilizer and the additive is kneaded for one hour at room temperature and an absolute pressure of 250 mbar (impregnation).
  • the thermostat temperature is set to 130 ° C. 5 minutes after the mixture has reached a temperature of 70 ° C., the absolute pressure is reduced by 25 mbar every further 5 minutes until 50 mbar is reached. After approx. 60-70 min at a temperature of the mixture of 100-110 ° C., the amount of water corresponding to the solution composition is distilled off, the vacuum is removed and the solution quality is assessed.
  • the quality of the solution is assessed using a microscope from Olympus, type BH-2, using a polarization filter at 100 ⁇ magnification.
  • Figure 1 shows the recording of a standard spinning solution which contains no additive. There are no undissolved particles.
  • FIG. 2 shows the uptake of a standard spinning solution which contains 5% by weight (based on cellulose) of a chitosonium polymer according to Example 5. Even with this picture, no undissolved particles are visible, only trapped air bubbles.
  • FIG. 3 shows the uptake of a standard spinning solution which contains 10% by weight (based on cellulose) of a chitosonium polymer according to Example 1. Small gel-like particles of the chitosonium polymer are visible. Such particles are considered to be dissolved particles for the purposes of the present invention.
  • FIG. 4 shows the absorption of a standard spinning solution which contains 20% by weight (based on pulp) of an undissolved additive.
  • the undissolved, non-gel-like particles of the additive can be clearly seen. Determination of the water retention capacity (WRV) of the fibers
  • Water retention is defined as the moisture absorption of a certain amount of fiber by swelling as a percentage of the dry weight.
  • 0.5 g of fiber are stuffed into a centrifuge tube.
  • the centrifuge vessel is filled with deionized water until the liquid runs out at the bottom, and then again filled to the brim with deionized water and 5 min. ditched.
  • the centrifuge tube is closed with a stopper and placed in a centrifuge holding vessel for centrifuging.
  • the fibers are then placed in a weighing glass and weighed, resulting in the wet weight Ml.
  • the fibers are then dried in a forced-air drying cabinet at 60 ° C. for 12 hours and, after cooling, weighed in a desiccator, which gives the dry weight M2.
  • the water retention capacity WRV (%) is calculated from (Ml - M2) x 100 / M2.
  • No.G000825-4K uses:
  • Spray dried powder chitosan oligosaccharide chloride
  • a melt index device from Davenport, which is common in plastics processing, was used for the spinning mass.
  • This device consists of a heated, temperature-controlled cylinder into which the spinning mass is poured.
  • the spinning mass is extruded through the spinneret attached to the underside of the cylinder by means of a piston which is loaded with a piston in the original device (in the converted version used, the piston is propelled via a stepper motor).
  • the spinning mass was extruded at a spinning temperature of 125 ° C and an output of 0.03 g / hole / min through a 1-hole 1 OO ⁇ spinneret and after passing through an air gap of 30 mm in a water bath (temperature 23 ° C, length 20 cm) the filament precipitated. After washing out the remaining NMMO for 15 minutes, the filament is dried at 60 ° C in a forced-air drying cabinet. It is easily possible to spin fibers with a titer of 0.9 dtex.
  • the spinning masses were extruded at a temperature of 120 ° C and an output of 0.03 g / hole / min through a 589 hole / 1 OO ⁇ spinneret, in an air gap of 15 mm in length while blowing with moist air (40% relative humidity , Temperature 26 ° C, 10 g water / m 3 air) and the cellulose precipitated in an aqueous spinning bath.
  • the fibers have a significantly increased colorability compared to the standard Lyocell fiber, as shown below:
  • 0.5 g dry fibers are dyed in a 1:20 liquor ratio with 0.5% (based on cellulose) Lanaset Marine R at 80 ° C., washed, dried and carded. The samples are measured against the white standard using a Cielab color measuring device.
  • Spray-dried powder chitosan chloride moisture 12.9% ash 4.44% Degree of deacteylation 55.3% Average molecular weight 3533 kDa N content: 6.02%
  • Spinning composition (wt.%): 76.5% NMMO, 13% pulp, 0.1% stabilizer, 1% chitosan chloride based on cellulose, 10.5% water.
  • the fibers were produced in accordance with Example 1.1.
  • FIG. 5 shows the microscopic image of the spinning mass 6. No undissolved particles can be found.
  • Lyocell fibers with 2% chitosan chloride based on cellulose were produced:
  • the chitosan oligomer from Primex Lot. G020418-1K uses:
  • Spray-dried powder chitosan chloride
  • Lyocell fibers were produced with 5% by weight chitosan chloride based on cellulose:
  • FIG. 6 shows the microscopic image of the spinning mass 8. No undissolved particles can be found. Fluorescence microscope images were taken of all chitosan-incorporated Lyocell fibers produced: The chitosan incorporated in the fibers can be made visible in all samples.
  • 0.05 g of fiber sample are mixed with 1 g of a solution of fluorescein isothiocynate, which is prepared as follows: A stock solution of 10 mg fluorescein isothiocynate in 1 ml of ethanol is diluted 1: 10,000 with an acetic acid / sodium acetate buffer. The fibers are mixed with this solution, treated for 1 h, washed 5 times with deionized water and 1 time with ethanol, dried at 60 ° C. and viewed at 40 ⁇ magnification in a fluorescence microscope (from Olympus, BX 51). The chitosan is recognizable by the green fluorescent color.
  • chitosan oligosaccharide chloride in water (content of chitosan oligosaccharide chloride 1, 2 or 3% by weight) were first prepared and a pH of 5.70 was established by adding 10% acetic acid.
  • Spray-dried powder chitosan chloride moisture 10% Ash 0.72% Deacetylation degree 77% Average molecular weight 4.06 kDa N content: 7.03%
  • Lyocell fiber was impregnated with a chitosanoligosaccharide chloride solution as described in Example 5 and pressed at 1 bar.
  • the fibers were then at a liquor ratio of 1:20 with a solution containing 20 g / 1 sodium salt of 2,4-dichloro-6-hydroxy 1,3.5-triazine (NHDT) and 16 g / 1 NaOH for 3 minutes at room temperature impregnated. After impregnation, the fibers were pressed at 3 bar, heat-treated with steam at 100 ° C. for 5 minutes, washed neutral and dried.
  • NHDT 2,4-dichloro-6-hydroxy 1,3.5-triazine
  • the fiber impregnated with the chitosanoligosaccharide chloride solution has a content of 2.15% chitosan in the fiber and a wet abrasion value of 60.
  • the wet abrasion value is determined according to e.g. method described in WO 99/19555.
  • the fiber treated with both the chitosanoligosaccharide chloride solution and NHDT has a wet abrasion value of 499.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Artificial Filaments (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung cellulosischer Formkörper nach dem Aminoxidverfahren, umfassend die Schritte: Ausformen einer Lösung der Cellulose in einem wässerigen tertiären Aminoxid; Ausfällen der ausgeformten Lösung; Waschen des so erhaltenen Formkörpers und Trocknen des Formkörpers. Das erfindungsgemässe Verfahren ist dadurch gekennzeichnet, dass der Lösung der Cellulose und/oder einem Vorläufer dieser Lösung ein Chitosoniumpolymer zugegeben wird und/oder der Formkörper vor dem Trocknen mit einem Chitosoniumpolymer behandelt wird, wobei das Chitosoniumpolymer in einer Standardspinnlösung im wesentlichen vollständig löslich ist.

Description

Verfahren zur Herstellung cellulosischer Formkörper
Die Erfindung betrifft ein Verfahren zur Herstellung cellulosischer Formkörper nach dem Aminoxidverfahren.
Als Alternative zum Viskoseverfahren wurden in den letzten Jahren eine Reihe von Verfahren beschrieben, bei denen Cellulose ohne Bildung eines Derivats in einem organischen Lösungsmittel, einer Kombination eines organischen Lösungsmittels mit einem anorganischen Salz oder in wäßriger Salzlösung gelöst wird.
Bis heute hat sich jedoch nur ein einziges Verfahren zur Herstellung solcher Formkörper bis zur industriellen Realisierung durchgesetzt. Bei diesem Verfahren wird als Lösungsmittel ein tertiäres Aminoxid, insbesondere N-Methylmorpholin-N-oxid (NMMO), verwendet. Das Verfahren zur Herstellung von Formkörpern aus einer Lösung der Cellulose in einem wässerigen tertiären Aminoxid wird als „Aminoxidverfahren" oder „Lyocellverfahren" bezeichnet.
Die Lösung der Cellulose wird in diesem Verfahren üblicherweise mittels eines Formwerkzeuges extrudiert und dabei ausgeformt. Die ausgeformte Lösung gelangt über einen Luftspalt in ein Fällbad, wo durch Ausfällen der Lösung der Formkörper erhalten wird. Der Formkörper wird gewaschen und ggf. nach weiteren Behandlungsschritten getrocknet.
Cellulosefasern, die aus solchen Lösungen hergestellt werden, heißen „lösungsmittelgesponnene" Fasern und erhielten von der BISFA (The International Bureau for the Standardisation of Man Made Fibres) den Gattungsnamen Lyocell. Ein Verfahren zur Herstellung von Lyocellfasern ist z.B. in der US-A 4,246,221 beschrieben. Das Aminoxidverfahren liefert Fasern, die sich durch eine hohe Festigkeit, einen hohen Naßmodul und durch eine hohe Schiingenfestigkeit auszeichnen.
Chitin und Chitosan sind natürliche, biologisch abbaubare, nicht toxische, nicht aliergene, bioaktive und biokompatible Polymere und in ihrer Struktur der Cellulose ähnlich. Chitin wird aus den Hüllen von Krustentieren gewonnen, einem Abfallprodukt der Krabben- und Shrimpsindustrie. Das weltweite Interesse bezüglich der Verwendungsmöglichkeiten von Chitin hat, da es neben Cellulose als zweitgrößte Ressourcenquelle für natürliche Polysaccharide gesehen wird, in den letzten Jahren enorm zugenommen. Chitosan besteht aus Poly-(l,4)-2-Amino-2-Deoxy-Beta-D-Glucose und wird durch Deacetylierang von Chitin- (Poly-(l,4)-2-Acetamid-2-Deoxy-Beta-D-Gmcose) hergestellt. Aus Löslichkeitsgründen - Chitin ist unlöslich in Wasser, organischen Lösungsmitteln, verdünnten Säuren und Laugen - hat Chitosan, welches in verdünnten Säuren, wässrigem Methanol und Glycerin löslich ist, die weitaus größere Bedeutung.
Anwendungsgebiete für Chitin und Chitosan sind in der Biotechnologie zur Immobilisierung von Zellen und Enzymen, in der Medizin zur Wundbehandlung, im Lebensmittelbereich als Nahrungsmittelzusatz- und Konservierungsstoff, in der Landwirtschaft zur Samenkonservierung, in Abwassersystemen als Flockungsmittel und Chelatbildner mit Schwermetallen.
Allerdings muss für die meisten Anwendungsgebiete eine Modifizierung des Chitins/Chitosans durchgeführt werden, um die Löslichkeit in wässrigen Systemen zu verbessern.
Der Einsatz von Chitosan in der Textilindustrie gliedert sich in drei Anwendungsgebiete:
Herstellung von 100 % Chitosanfasern bzw. Herstellung von „Man Made Fibres" mit Inkorporation von Chitosan
Finishing und Coating von Textilfasern
Prozesshilfsstoffe für die Textilindustrie
Chitosanfasern finden ihre Anwendung im medizinischen Bereich z.B. als Wundabdeckungen und chirurgische Nahtfäden aufgrund der antibakteriellen Eigenschaften und der Wachstumshemmung auf pathogene Keime. Chitin bzw. Chitosan können durch körpereigene Fermente enzymatisch bzw. hydrolytisch abgebaut werden und sind daher resorbierbare Fasern. Die Wirkung dieser Naturpolymere bei der Wundheilung besteht in der allmählichen Abgabe von N-Acetyl-Glukosamin, der mucopolysacchariden Organisation des Collagens sowie der positiven Beeinflussung des Gewebewachstums im Verlauf der Wundheilung.
Der Nachteil von Fasern aus 100 % Chitosan ist allerdings, dass sie eine geringe Trockenfestigkeit besitzen (Chitosanfasern der Fa. Innovative Technology Ltd., Winsford, England: Titer 0,25 tex; Faserfestigkeit konditioniert 9cN/tex, Faserdehnung konditioniert 12,4 %; Chitosanfasern der Fa. Korea Chitosan Co. LTD: Faserfestigkeit konditioniert 15 cN/tex; Faserdehnung konditioniert 26 %), ausgesprochen spröde sind und die Nassfestigkeit nur 30 % der Trockenfestigkeit beträgt. Daher werden entweder Chitosanfasern anderen Man-Made Fasern beigemischt bzw. bereits beim Herstellungsprozess von z.B. Viskosefasern Chitosan in die Spinnmasse beigegeben.
Kommerziell erhältlich sind Viskosefasern mit inkorporiertem Chitin/Chitosan (im folgenden: „chitosaninkorporierte Viskosefasern") z.B. unter dem Handelsnamen Crabyon (Fa. Omikenshi Co) und Chitopoly (Fa. Fuji Spinning Co). Hergestellt werden diese Fasern z.B., indem Chitosan oder acetyliertes Chitosan in Pulverform mit einer Korngröße kleiner lOμ in einer Menge von 0,5 bis 2 Gew. % in Wasser dispergiert wird und der Viskosespinnlösung zugegeben wird (US 5,320,903). Dann werden nach dem herkömmlichen Viskose- oder auch Polynosicverfahren Fasern hergestellt.
Weitere Herstellungsverfahren für chitosaninkorporierte Viskosefasern sind in der US-A 5,756,111 (aufwendige Vor- und Nachlöseprozesse bei Tieftemperatur, um alkalische Chitin-Chitosan Lösungen für die Zugabe zur Viskoselösung zu erhalten) und der US-A 5,622,666 (Zugabe von mikrokristallinem Chitosan und einem wasser- und/oder alkalilöslichen natürlichen Polymer, z.B. Natriumalginat, welches ionische Bindungen zum Chitosan bilden kann, als Dispersion zur Viskosespinnlösung) beschrieben.
Die chitosaninkorporierten Viskosefasern haben eine erhöhte Farbstoffaffinität, ein erhöhtes Wasserrückhaltevermögen, antifungizide und geruchshemmende Eigenschaften, allerdings auch die für Viskosefasern bekannte geringe Nassfestigkeit. Da Chitosan das Wachstum für die Haut schädlicher Bakterien verhindert und allergische Effekte eliminiert, sind z.B. Gewebe aus Chitopoly für Dermatitispatienten besonders geeignet.
Der Nachteil aller beschriebenen Verfahren besteht darin, daß die so erhaltenen Fasern feinste Chitosanpartikeln enthalten, da das Chitosan in der Spinnmasse nicht löslich ist.
Die Sekundäragglomeration des Chitosans in der Spinnmasse bzw. die inhomogene Verteilung führt zu einer Verschlechterung der Spinneigenschaften, das Spinnen von Fasem mit niedrigen Titern ist extrem schwierig. Aus diesem Grund kann auch die Menge an inkorporiertem Chitosan nicht erhöht werden, da damit sofort ein Verlust an textilen Daten eintritt bzw. es bereits beim Spinnen zu zahlreichen Fadenbrüchen kommt. Weiters kommt es, da Chitosan in Säuren löslich ist, im Spinnbad zu Chitosanverlusten. Zur Inkorporation von Chitosan sind zusätzliche aufwendige Schritte notwendig. In der Folge wurde auch versucht, in lösungsmittelgesponnene Cellulosefasern, die nach dem Aminoxidverfahren hergestellt werden, Chitosan zu inkorporieren, insbesonders wegen der hohen Nass- und Trockenfestigkeit der Lyocellfasern.
In der DE 195 44 097 wird ein Verfahren zur Herstellung von Formkörpern aus Polysaccharidmischungen durch Auflösen von Cellulose und einem Zweitpolysaccharid in einem organischen, mit Wasser mischbaren Polysaccharidlösungsmittel (bevorzugt NMMO), das auch ein Zweitlösungsmittel enthalten kann, beschrieben.
Zur Lösungsbildung verwendet man Cellulose und/oder wenigstens ein wasserunlösliches Cellulosederivat und als Zweitpolysaccharid wenigstens ein von diesen durch erhöhte Wasserlöslichkeit verschiedenes Polysaccharid. Als Drittpolysaccharid kann man Chitin, Chitosan, N-oder O-hydroxyalkyliertes oder carboxyalkyliertes Chitin- oder Chitosanderivat einsetzen. In den Beispielen beschrieben ist die Herstellung von zwei Chitosan- inkorporierten Cellulosefasern, wobei in jedem Fall zusätzlich zu NMMO ein Zweitlösungsmittel verwendet wird und carboxymethyliertes Chitosan zugesetzt wird. Beansprucht wird die Verwendung der Faser für Formkörper mit bakteriziden und fungiziden Eigenschaften, als Mittel für die Wasser-/ und Schwermetallbildung.
Weiters wird in der KR-A 9614022 die Herstellung von Chitin - Cellulose Fasern, genannt „Chitulose", beschrieben, indem Chitin und Cellulose in einem Lösungsmittel aus der Gruppe Dimethylimidazoline/LiCl, Dichloroacetat Chlorkohlenwasserstoff, Dimethylacetarnid/LiCl, N-methylpyrrolidone/LiCl gelöst werden und nach dem Nassspinnverfahren Garne hergestellt werden. In den Ansprüchen ist NMMO nicht erwähnt.
In der EP-A 0 883 645 wird u.a. die Zugabe von Chitosan zur Lösung als modifizierte Verbindung zur Erhöhung der Geschmeidigkeit von Nahrungsmittelhüllen beansprucht. Die modifizierenden Verbindungen müssen mit der Cellulose/NMMO/Wasser-Lösung mischbar sein.
In der DE-A 100 07 794 wird die Herstellung von Polymerzusammensetzungen beschrieben, umfassend ein biologisch abbaubares Polymer und ein Material aus Meerespflanzen und/oder Schalen von Meerestieren sowie die Herstellung von Formkörpern daraus. Beansprucht wird auch die Zugabe von Material aus Meerespflanzen, Meerestieren in Pulverform, Pulversuspension oder flüssiger Form zur nach dem Lyocellverfahren hergestellten Celluloselösung. Weiters kann das Material auch nach oder während der Zerkleinerung der trockenen Zellulose zugegeben werden, sowie in jeder Stufe des Herstellungsprozesses. Trotz Zugabe des Additives zeigen die Fasern dieselben textilmechanischen Eigenschaften wie ohne Additiv. In den Beispielen werden nur Lyocell- Fasern beschrieben, welche Braunalgenpulver inkorporiert haben, wobei zur Herstellung der Spinnmasse das Braunalgenmehl, NMMO und Zellstoff und Stabilisator gemischt und auf 94°C erwärmt werden.
Weiters wird im Schlussbericht „Erzeugnisse aus Polysaccharidverbunden" (Taeger, E.; Kramer, H.; Meister, F.; Vorwerg, W.; Radosta, S; TITK - Thüringisches Institut für Textil- und Kunststoff-Forschung, 1997, S.l-47, Report-Nr. FKZ 95/NR 036 F) beschrieben, dass Chitosan in verdünnten organischen oder anorganischen Säuren gelöst wird und danach in wässriger NMMO Lösung gefällt wird. Man erhält so eine Suspension feiner Chitosankristalle in der Celluloselösung, die dann versponnen wird. Gemäß diesem Dokument verbleibt das Chitosan auch nach dem Auflösen der Cellulose als feine Kristallenen in der Lösung. Dadurch kommt es zu einem mikroheterogenen Zweitphasensystem in der Faser. Die Festigkeit der Faser ist gering (bei 10 % Chitosan Faserfestigkeit konditioniert 19,4 c/N/tex, Faserdehnung konditioniert 11,5 %).
Herkömmliche kommerziell erhältliche Standardchitosan-Qualitäten sind in der Wasser/NMMO/Cellulose-Lösung nicht löslich, und nach den beschriebenen Verfahren erhält man Spinnmassen, bei welchen die Chitosanpartikel in der Celluloselösung als zweite Phase vorliegen. Außerdem quellen feinste Chitosanpartikel im Spinnmedium,, was zu Spinnproblemen/Düsenverstopfungen führt.
Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, Verfahren zur Herstellung einer Lyocellfaser zur Verfügung zu stellen, welche Chitosan oder ein Chitosansalz in der Cellulosematrix inkorporiert und/oder an der Oberfläche der Faser aufweist und bei welchem die geschilderten Nachteile des Standes der Technik vermieden werden. Ein weiterer Aspekt der vorliegenden Erfindung betrifft solche Lyocellfasern.
Die Aufgabe der vorliegenden Erfindung wird durch ein Verfahren zur Herstellung cellulosischer Formkörper nach dem Aminoxidverfahren, umfassend die Schritte:
- Ausformen einer Lösung der Cellulose in einem wässerigen tertiären Aminoxid
- Ausfällen der ausgeformten Lösung
- Waschen des so erhaltenen Formkörpers und
- Trocknen des Formkörpers, gelöst, welches dadurch gekennzeichnet ist, daß
der Lösung der Cellulose und/oder einem Vorläufer dieser Lösung ein Chitosoniumpolymer zugegeben wird und/oder der Formkörper vor dem Trocknen mit einem Chitosoniumpolymer behandelt wird, wobei das Chitosoniumpolymer in einer Standardspinnlösung im wesentlichen vollständig löslich ist.
In der Literatur gibt es keine einheitliche Definition für die Abgrenzung zwischen Chitin und Chitosan.
Für die Zwecke der vorliegenden Erfindung soll der Begriff „Chitin" ein ß-l,4-gebundenes Polymer der 2-acetamido-2-deoxy-D-glucose mit einem Deacetylierungsgrad von 0% bedeuten. Weiters bedeutet für die Zwecke der vorliegenden Erfindung der Begriff „Chitosan" ein zumindest teilweise deacetyliertes ß-l,4-gebundenes Polymer der 2- acetamido-2-deoxy-D-glucose.
Der Begriff „Chitosoniumpolymer" bedeutet ein Salz des Chitosans mit einer anorganischen und/oder organischen Säure.
Der Begriff „Polymer" umfaßt für die Zwecke der vorliegenden Erfindung auch niedermolekulare Oligomere der deacetylierten 2-acetamido-2-deoxy-D-glucose bzw. deren Salze ab einem durchschnittlichen Polymerisationsgrad von 2.
Als „Vorläufer" der Celluloselösung sind Ausgangs- bzw. Zwischenprodukte der Herstellung der Celluloselösung wie z.B. der eingesetzte Zellstoff, das tertiäre Aminoxid oder eine Suspension der Cellulose im wässerigen tertiären Aminoxid zu verstehen.
Unter „NMMO" ist das N-methyl-morpholin-N-oxid zu verstehen.
Als Standardspinnlösung wird eine Spinnlösung der Zusammensetzung 13 Gew.% Zellstoff, 77 Gew.% NMMO, 10 Gew. % Wasser und 0,1 Gew.% (bezogen auf die Gesamtlösung) eines üblichen Stabilisators verstanden, welche gemäß dem im Beispielsteil beschriebenen Verfahren hergestellt wird.
Unter dem Begriff „im wesentlichen vollständig löslich" wird verstanden, wenn in der Standardspinnlösung bei der im Beispielsteil beschriebenen mikroskopischen Beurteilung bei einem Gehalt von bis zu 10 Gew.% Chitosoniumpolymer bezogen auf Zellstoff im wesentlichen keine ungelösten Teilchen des Chitosoniumpolymers sichtbar sind. Für die Zwecke der vorliegenden Erfindung werden gelartige Teilchen des Chitosoniumpolymers als gelöste Teilchen angesehen.
Es hat sich überraschenderweise gezeigt, daß bestimmte Chitosoniumpolymere in der Lösung der Cellulose im tertiären Aminoxid löslich sind. Werden solche Chitosoniumpolymere der Celluloselösung oder einem Vorläufer davon zugegeben, so liegen sie in der NMMO/Wasser/Cellulose-Lösung in gleichmäßiger, unter dem Mikroskop nicht mehr von der Cellulosematrix differenzierbarer, homogener Verteilung vor.
Es ist bekannt, dass Chitosan mit vielen organischen und anorganischen Säuren wasserlösliche Chitosonium-Salze - in der Literatur auch Chitosoniumpolymere genannt - bildet, die durch z.B. Gefriertrocknung oder Sprühtrocknung in Pulverform isoliert werden. Die Herstellung und Anwendung dieser Chitosoniumpolymere ist literaturbekannt und in zahlreichen Patenten beschrieben. Weiters sind Chitosoniumpolymere kommerziell erhältlich.
Es hat sich gezeigt, daß als Chitosoniumpolymere insbesondere solche mit einem Deacetylierungsgrad von 10 bis 100%, bevorzugt von 50 bis 90% und mit einem Molekulargewicht von 1 bis 10000 kDa, bevorzugt 1 bis 1500 kDa geeignet sind.
Aus „Dry Chitosan Salts and Complexes of Aliphatic Carboxylic Acids", P.R. Austin und S. Sennett, Chitin inNature and Technology, edited by R. Muzzarelli, C. Jeuniaux; G.W. Gooday, Plenum Press New York, Seiten 279-286, ist bekannt, daß weiters Chitosoniumpolymere in einer Form vorliegen können, in welcher ein Überschuß an Säure als Solvat oder Komplex vorhanden ist. Es zeigt sich, daß Chitosoniumpolymere mit einem Salzgehalt von mehr als 0,4, bevorzugt von 0,5 bis 2,5 eine gute Löslichkeit in NMMO besitzen und daher besonders gut für das erfindungsgemäße Verfahren geeignet sind. Der Salzgehalt wird dabei als das Verhältnis von Mol Säure pro Mol Chitosan definiert.
Die Herstellung von Chitosoniumpolymeren wird weiters z.B. beschrieben in der US-A 4,929,722, der US-A 4,946,870 sowie der US-A 5,900,479.
Bevorzugt eingesetzt werden kommerziell erhältliche Chitosoniumpolymere, z.B. Chitosanacetate, Chitosanchloride, Chitosancitrat oder Chitosanlactat. Chitosoniumpolymere sind hautverträglich, wundheilungsfördemd und mild antibakteriell. Besonders bevorzugt ist der Einsatz eines Chitosanchlorides.
Chitosanacetatlösungen bilden, auf Brandwunden gesprüht, einen wundheilenden Schutzfilm (US-A 4,929,722).
Die Verwendung von Chitosoniumpolymeren als Faserbehandlungsmittel wird in der US 5,900,479, WO 00/49219 und WO 01/34897beschrieben.
Das Chitosoniumpolymer wird darin durch Erhöhung des pH- Wertes auf mindestens pH > 5,5, bevorzugt pH > 6,6 wasserunlöslich gemacht, d.h. das kationisch geladene Chitosonium Salz wird wieder in das entsprechende Chitosan/Chitin überführt (WO 92/09636). Eine weitere Methode, um das Chitosoniumpolymer in das N-acyl-glucose-amin-Polymer umzuwandeln, ist eine milde Wärmbehandlung (100 - 130°C), beschrieben in US 5,900,479.
Bevorzugt wird das Chitosoniumpolymer in einer Konzentration von 1 Gew.% bis 50 %, bevorzugt 1 Gew.% - 10 Gew.%, bezogen auf Cellulose, der Celluloselösung beigegeben. Das Chitosoniumpolymer kann in fester Form, z.B. als Pulver, oder in Form einer Lösung oder Suspension zugegeben werden.
Mikroskopaufhahmen (Durchlicht - Mikroskop Olympus BH-2, Aufhahme mit Polarisationsfilter in 100 und 400facher Vergrößerung) der mit Chitosoniumpolymer hergestellten Celluloselösung zeigen, dass das Chitosoniumpolymer in gleichmäßiger, nicht mehr von der Cellulosematrix differenzierbarer, homogener Verteilung vorliegt.
Aus der Lösung werden in an sich bekannter Weise Formkörper, wie z.B. Lyocell-Fasern hergestellt.
In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird der aus der Celluloselösung erhaltene Formkörper (z.B. die Fasern) vor dem Trocknen mit einer Lösung oder Suspension des Chitosoniumpolymers behandelt. Im Fall von Lyocell- Fasern spricht man in diesem Zusammenhang von niemals getrockneten (never-dried) Fasern.
Das Chitosoniumpolymer ist in der Behandlungslösung oder -Suspension bevorzugt in einem Anteil von 0,1 Gew.% bis 10 Gew.%, bevorzugt von 0,5 Gew.% bis 3 Gew.% enthalten. Der für die Herstellung von Formkörpern nach dem Aminoxidverfahren übliche pH- Wert des Spinnbades von > 7 und die nachfolgende Trocknung der Formkörper reichen zwar aus, um das im Formkörper enthaltene bzw. das auf den Formkörper aufgebrachte Chitosoniumpolymer wieder in das entsprechende Chitosan überzuführen.
Um aber sicherzustellen, dass alle kationisch geladenen Gruppen wieder als Amingruppen vorliegen, kann am Formkörper, welche das Chitosoniumpolymer bzw. bereits daraus teilweise oder ganz regeneriertes Chitosan inkorporiert und/oder auf der Oberfläche enthält, eine Alkalibehandlung, bevorzugt mit 20 g/1 Soda, mit nachfolgender Neutralwäsche durchgeführt werden. Diese Behandlung erfolgt vorzugsweise während der Herstellung am niemals getrockneten Formkörper, kann aber auch am getrockneten Formkörper im nachhinein erfolgen.
Weiters kann zu diesem Zweck anstelle der oder zusätzlich zur Alkalibehandlung eine Behandlung mit Heißdampf durchgeführt werden.
Zur kontinuierlichen Behandlung von niemals getrockneten Lyocell-Fasern werden bevorzugt die geschnittenen, NMMO frei gewaschenen Fasern mit einer z.B. durch Abpressen eingestellten definierten Feuchte von 50 % bis 500 % in einem losen Verband („Vlies") auf einem bewegten Siebband mit einer Flotte, die das in Wasser gelöste Chitosoniumpolymer enthält, in Kontakt gebracht und z.B. durch Besprühen durchtränkt („Imprägnierung"). Nach der Imprägnierung wird das Vlies auf eine definierte Feuchte von 50 % - 500 % abgepreßt, und die abgepresste Behandlungsflotte wird in den Imprägnierkreislauf zuriickführt. Danach wird das Vlies zur Fixierung des Chitosoniumpolymers mit Alkali in Kontakt gebracht (z.B. durch Besprühen) und/oder mit Heißdampf behandelt und anschließend neutral gewaschen.
In einer weiteren bevorzugten Ausführungsform wird der Formkörper vor oder nach dem Trocknen einer Behandlung mit einem Vernetzungsmittel unterzogen. Wenn der Formkörper mit einer Lösung oder Suspension des Chitosoniumpolymers behandelt wurde, ist es vorteilhaft, die Behandlung mit dem Vernetzungsmittel nach der Behandlung mit dem Chitosoniumpolymer durchzuführen.
Bei der Behandlung der Faser mit einem Vernetzungsmittel im alkalischen Milieu kann eine zusätzliche Alkalibehandlung der Faser entfallen. Weiters ist es vorteilhaft, eine Behandlung mit Heißdampf nach beiden Behandlungen, also sowohl nach der Behandlung mit der Lösung oder Suspension des Chitosoniumpolymers als auch nach der Behandlung mit dem Vernetzungsmittel durchzuführen.
Geeignete Vernetzungsmittel sind z.B. in der WO 99/19555 beschrieben.
Die vorliegende Erfindung betrifft auch eine Lösung der Cellulose in einem tertiären Aminoxid, enthaltend ein Chitosoniumpolymer, welches in einer Standardspinnlösung im wesentlichen vollständig löslich ist.
Aus erfindungsgemäßen Lösungen lassen sich in an sich bekannter Weise Formkörper herstellen, welche, wie oben erläutert, das Chitosoniumpolymer bzw. Chitosan enthalten und hervorragende Eigenschaften aufweisen.
Die vorliegende Erfindung betrifft demgemäß auch Formkörper, die durch das erfindungsgemäße Verfahren erhältlich sind, insbesondere in Form von Fasern.
Erfmdungsgemäße Fasern weisen im Unterschied zum Stand der Technik (siehe insbesondere Schlußbericht FKZ 95 NR 036 F) trotz eines Chitosangehaltes von bis zu 10 Gew.% hervorragende textile Eigenschaften auf. Die Fasern zeigen ein ausgezeichnetes Spinnverhalten - auch die Herstellung von Fasern mit niedrigen Titern ist möglich - sowie die für Lyocell typischen hohen fasermechanischen Eigenschaften sowohl im trockenen wie im nassen Zustand und haben bereits ohne Avivage eine hohe Geschmeidigkeit (spft hand).
Weiters haben die Fasern ein erhöhtes Wasserrückhaltevermögen, erhöhte Feuchtigkeitsaufnahme, erhöhte Anfärbeverhalten sowie mild antimikrobielle und wundheilende, blutstillende Eigenschaften.
BEISPIELE
Herstellung einer Standardspinnlösung
Die Standardspinnlösung wird in an sich bekannter Weise aus einer Suspension hergestellt, welche Zellstoff, Stabilisator, NMMO (wässerige 60%-ige Lösung) sowie das jeweilige Additiv (Chitosoniumpolymer) enthält.
Die Lösungen werden in einem Kneter HKD-T 0,6 der Fa. IKA Labortechnik hergestellt, indem aus diesem Gemisch aus Zellstoff/Wasser/NMMO/Stabilisator sowie dem Additiv mittels Abdampfen der überschüssigen Wassermenge unter Vakuum die Lösung mit der gewünschten Zusammensetzung wie oben beschrieben bei einer Lösezeit von 60 - 70 Minuten und einer Lösetemperatur von 100 - 110°C erreicht wird.
Zunächst wird die Mischung aus NMMO, Wasser, Zellstoff, Stabilisator und dem Additiv eine Stunde bei Raumtemperatur und einem Absolutdruck von 250 mbar im Kneter geknetet (Imprägnierung) .
Danach wird die Thermostat-Temperatur auf 130°C eingestellt. 5 Minuten nach Erreichen einer Temperatur der Mischung von 70°C wird der Absolutdruck alle weiteren 5 Minuten um 25 mbar gesenkt, bis 50 mbar erreicht sind. Nach ca. 60-70 min bei einer Temperatur der Mischung von 100-110°C ist die der Lösungszusammensetzung entsprechende Menge Wasser abdestilliert, das Vakuum wird entfernt und die Lösungsqualität wird beurteilt.
Mikroskopische Beurteilung der Standardspinnlösung
Die Beurteilung der Qualität der Lösung erfolgt mit Hilfe eines Mikroskopes der Fa. Olympus, Typ BH-2, unter Verwendung eines Polarisationsfilters bei 100-facher Vergrößerung.
Figur 1 zeigt die Aufnahme einer Standardspinnlösung, welche kein Additiv enthält. Es sind keine ungelösten Teilchen erkennbar.
Figur 2 zeigt die Aufnahme einer Standardspinnlösung, welche 5 Gew.% (bezogen auf Zellstoff) eines Chitosoniumpolymers gemäß Beispiel 5 enthält. Auch bei dieser Aufnahme sind keine ungelösten Teilchen, sondern lediglich eingeschlossene Luftblasen sichtbar.
Figur 3 zeigt die Aufnahme einer Standardspinnlösung, welche 10 Gew.% (bezogen auf Zellstoff) eines Chitosoniumpolymers gemäß Beispiel 1 enthält. Es sind kleine gelartige Teilchen des Chitosoniumpolymers sichtbar. Solche Teilchen werden für die Zwecke der vorliegenden Erfindung als gelöste Teilchen angesehen.
Figur 4 zeigt die Aufnahme einer Standardspinnlösung, welche 20 Gew.% (bezogen auf Zellstoff) eines ungelösten Additives enthält. Deutlich sind die ungelösten, nicht gelartigen Teilchen des Additives zu sehen. Bestimmung des Wasserrückhaltevermögens (WRV) der Fasern
Das Wasserrückhaltevermögen wird als Feuchtigkeitsaufnahme einer bestimmten Menge Faser durch Quellung in Prozenten des Trockengewichtes definiert.
0,5 g Faser werden in ein Schleudergefäß gestopft. Das Schleudergef ß wird mit deionisiertem Wassser gefüllt, bis die Flüssigkeit unten ausläuft, und dann nochmals bis zum Rand mit de-ionisiertem Wasser aufgefüllt und 5 min. stehen gelassen. Das Schleudergefäß wird mit einem Stopfen verschlossen und zum Abschleudern in ein Zentrifugenhaltegefaß gegeben.
Anschließend wird mit einer Zentrifuge (Type Universal, Fa. Hettich) 15 min. lang bei 3000 U/min geschleudert. Die Fasern werden anschließend in ein Wägeglas gegeben und gewogen, woraus sich das Naßgewicht Ml ergibt. Danach werden die Fasern 12 h bei 60°C im Umlufttrockenschrank getrocknet und nach dem Abkühlen im Exsikkator gewogen, woraus sich das Trockengewicht M2 ergibt.
Das Wasserrückhaltevermögen WRV (%) errechnet sich aus (Ml - M2) x 100 / M2.
Beispiel 1) Chitosan-Oligosaccharidchlorid
Für die nachfolgenden Beispiele wurde das Chitosan-Oligosaccharid Typ 2 Fa. Primex Lot.
Nr. G000825-4K verwendet:
Form: Sprühgetrocknetes Pulver = Chitosan-Oligosaccharidchlorid
Chitosan-Oligosaccharid-Gehalt: 70,1 %
Feuchtigkeit 8,4 %
Asche 21 ,6 %
Deacetylierungsgrad 69 %
Mittleres Molekulargewicht 2,5 kDa
Polymerisationsgrad DP 12,7
N-Gehalt: 6,2 %
Beispiel 1.1
Die Celluloselösungen (Spinnmassen) werden wie im Abschnitt „Herstellung einer Standardlösung" beschrieben hergestellt. Spinnmassenzusammensetzung:
Figure imgf000014_0001
Zur Faserherstellung wurde für die Spinnmasse ein in der Kunststoffverarbeitung gebräuchliches Schmelzindexgerät der Fa. Davenport verwendet. Dieses Gerät besteht aus einem beheizten temperaturgeregelten Zylinder, in den die Spinnmasse eingefüllt wird. Mittels eines Kolbens, der im Originalgerät mit einem Kolben belastet wird (in der eingesetzten umgebauten Version erfolgt der Kolbenvortrieb über einen Schrittmotor) wird die Spinnmasse durch die an der Unterseite des Zylinders angebrachten Spinndüse extrudiert. Die Spinnmasse wurde bei einer Spinntemperatur von 125°C und einer Ausstoßmenge von 0,03 g/Loch/min durch eine 1 -Loch 1 OOμ Spinndüse extrudiert und nach Passieren eines Luftspaltes von 30 mm in einem Wasserbad (Temperatur 23°C, Länge 20 cm) das Filament ausgefällt. Nach 15 Minuten Auswaschen der NMMO-Restmenge .wird das Filament bei 60°C im Umlufttrockenschrank getrocknet. Es ist problemlos möglich, Fasern mit einem Titer von 0,9 dtex zu spinnen.
Es wurden folgende Fasern erhalten:
Figure imgf000014_0002
Beispiel 1.2
In einem Rührkessel wurde aus 3433 g 78 %igemNMMO, 455 g Zellstoff, 0,05 % Stabilisator (bezogen auf Cellulose) und 1 Gew.%, 3 Gew.% bzw. 10 Gew.% Chitosan- Oligosaccharidchlorid (bezogen auf Cellulose) mittels Abdampfen der überschüssigen Wassermenge Spinnmassen der folgenden Zusammensetzungen:
76.3 % NMMO/10,5 % Wasser/ 13 % Zellstoff/0, 13 % Chitosan-Oligosaccharidchlorid 76,1 % NMMO/10,4 % Wasser/12,9 % Zellstoff/0,39 % Chitosan-Oligosaccharidchlorid und
75.4 % NMMO/10,3 % Wasser/12,8 % Zellstoff/ 1,29 % Chitosan-Oligosaccharidchlorid
hergestellt.
Die Spinnmassen wurden jeweils mit einer Temperatur von 120°C und einer Ausstoßmenge von 0,03g/Loch/min durch eine 589 Loch/1 OOμ Spinndüse extrudiert, in einem Luftspalt von 15 mm Länge unter Beblasung mit feuchter Luft (40 % rel. Luftfeuchtigkeit, Temperatur 26°C, 10 g Wasser/m3 Luft) verstreckt und in einem wässrigen Spinnbad die Cellulose ausgefällt.
Nach 30 min. Auswaschen der Restmenge an NMMO im Filament wurde auf 40 mm Stapellänge geschnitten und bei 60°C getrocknet. Ein Teil der geschnittenen Faser wird vor , dpr Trocknung bei RT 15 Minuten lang mit einer Lösung, enthaltend .20 g/1 Soda, Flottenverhältnis 1 : 20 behandelt, neutral gewaschen und danach bei 60 °C getrocknet.
Es wurden folgende Fasern erhalten:
Figure imgf000015_0001
Figure imgf000016_0001
Die Fasern weisen verglichen mit der Standard-Lyocell Faser eine wesentlich erhöhte Anfarbbarkeit auf, wie im Folgenden gezeigt wird:
Anfärbetest:
0,5 g trockene Fasern werden im Flottenverhältnis 1 : 20 mit 0,5 % (bezogen auf Cellulose) Lanaset Marine R 1 Stunde bei 80°C gefärbt, gewaschen, getrocknet und kardiert. Die Proben werden mittels Cielab Farbmessgerät gegen den Weißstandard vermessen.
Figure imgf000016_0002
Bezogen auf den Helligkeitswert L* (Weißstandard L*=100, d.h. desto niedriger L*, desto dunkler ist die Probe) zeigen die Chitosanfasern eine um 30 % erhöhte Anfarbbarkeit. Rein optisch ist dieser Unterschied mit freiem Auge schon deutlich erkennbar, die Lyocell Standardprobe ist himmelblau, die chitosaninkorporierten Fasern sind mittelblau gefärbt.
Beispiel 2) Chitosanchlorid
Für die nachfolgenden Beispiele wurde das Chitosan Fa. Primex Lot. Nr. G 0111121-1 verwendet:
Form: Sprühgetrocknetes Pulver = Chitosanchlorid Feuchtigkeit 12,9 % Asche 4,44 % Deacteylierungsgrad 55,3 % Mittleres Molekulargewicht 3533 kDa N-Gehalt: 6,02 %
Beispiel 2.1
Die Spinnmassen werden wie im Abschnitt „Herstellung einer Standardlösung" beschrieben hergestellt.
Spinnmassezusammensetzung (Gew. %): 76,5 % NMMO, 13 % Zellstoff, 0,1 % Stabilisator, 1 % Chitosanchlorid bezogen auf Cellulose, 10,5 % Wässer.
Die Faserherstellung erfolgte gemäß Beispiel 1.1.
Es wurden folgende Fasern erhalten:
Figure imgf000017_0001
Figur 5 zeigt die mikroskopische Aufnahme der Spinnmasse 6. Es sind keine ungelösten Teilchen festzustellen.
Beispiel 2.2
Wie in Beispiel 1.2 beschrieben, wurden Lyocellfasem mit 2 % Chitosanchlorid bezogen auf Cellulose hergestellt:
Figure imgf000017_0002
Figure imgf000018_0001
Beispiel 3 - Chitosanchlorid
Für das nachfolgende Beispiel wurde das Chitosan-Oligomer der Fa. Primex Lot. Nr. G020418-1K verwendet:
Form: Sprühgetrocknetes Pulver = Chitosanchlorid
Feuchtigkeit 8,3 %
Asche 6 %
Deacetylierungsgrad 40 %
Mittleres Molekulargewicht 1,133 kDa
Polymerisationsgrad DP 12,7
•N-Gehalt: 6,46 % - • . .■ ■ -.- -. .. . . •
Wie in Beispiel 1.1 beschrieben, wurden Lyocell-Fasem mit 5 Gew.% Chitosanchlorid bezogen auf Cellulose hergestellt:
Figure imgf000018_0002
Figur 6 zeigt die mikroskopische Aufnahme der Spinnmasse 8. Es sind keine ungelösten Teilchen festzustellen. Von allen hergestellten chitosaninkorporierten Lyocell Fasern wurden Fluoreszenzmikroskopaufnahmen gemacht: Das in der Faser inkorporierte Chitosan kann dabei bei allen Proben sichtbar gemacht werden.
Methode
0,05 g Faserprobe werden mit 1 g einer Lösung von Fluorescein-Isothiocynat, die wie folgt hergestellt wird: Eine Stammlösung von 10 mg Fluorescein-Isothiocynat in 1 ml Ethanol wird im Verhältnis 1 : 10000 mit einem Essigsäure/Natriumacetatpuffer verdünnt. Die Fasem werden mit dieser Lösung versetzt, 1 h behandelt, 5 mal mit de-ionisiertem Wasser und 1 mal mit Ethanol ausgewaschen, bei 60°C getrocknet und bei 40facher Vergrößerung im Fluoreszenzmikroskop (Fa. Olympus, BX 51) betrachtet. Das Chitosan ist an der grünfluoreszierenden Färbung erkennbar.
Beispiel 4 — Behandlung der niemals getrockneten Faser
Für die nachfolgenden Beispiele wurde das Chitosan-Oligosaccharidchlorid Typ 2 Fa. Primex Lot. Nr. G000825-4K, N-Gehalt 6,183% verwendet.
Es wurden zunächst Lösungen des Chitosan-Oligosaccharidchlorides in Wasser (Gehalt an Chitosan-Oligosaccharidchlorid 1, 2 bzw. 3 Gew.%) hergestellt und durch Zugabe von 10%iger Essigsäure ein pH- Wert von 5,70 eingestellt.
10 g niemals getrocknete Lyocell-Faser mit einem Titer von 1,3 dtex werden bei einem Flottenverhältnis von 1:20 5 Minuten bei Raumtemperatur mit der Chitosan- Oligosaccharidchloridlösung imprägniert und danach mit 1 bar abgepreßt. Zur Fixierung des Chitosans wird die Faserprobe anschließend entweder
• 5 Minuten bei 100°C gedämpft und ausgewaschen oder
• alkalibehandelt (Flottenverhältnis 1 :20, 15 Minuten bei Raumtemperatur, 20 g/1 Soda) und ausgewaschen oder
• gedämpft, alkalibehandelt und ausgewaschen
Die Ergebnisse der Versuche sind in der folgenden Tabelle zusammengefaßt:
Figure imgf000020_0001
Einige Faserdaten der hergestellten Fasern sind in der folgenden Tabelle zusammengefaßt:
Figure imgf000020_0002
Beispiel 5
Für die nachfolgenden Beispiele wurde das Chitosan-Oligomer Typ 2 Fa. Primex Lot. Nr. G020304-2K verwendet.
Form: Sprühgetrocknetes Pulver = Chitosanchlorid Feuchtigkeit 10 % Asche 0,72 % Deacetylierungsgrad 77 % Mittleres Molekulargewicht 4,06 kDa N-Gehalt: 7,03 %
Es wurden zunächst Lösungen des Chitosan-Oligosaccharidchlorides in Wasser (3 Gew.%) hergestellt. Der pH- Wert der Lösungen betrug 4,6.
10 g niemals getrocknete Lyocell-Faser mit einem Titer von 1,3 dtex werden bei einem Flottenverhältnis von 1:10 5 Minuten bei Raumtemperatur mit der Chitosan- Oligosaccharidchloridlösung imprägniert und danach mit 1 bar abgepreßt. Zur Fixierung des Chitosans wird die Faserprobe anschließend analog zu Beispiel 4 entweder gedämpft oder alkalibehandelt.
Die Ergebnisse der Versuche sind in der folgenden Tabelle zusammengefaßt:
Figure imgf000021_0001
Einige Faserdaten der hergestellten Fasern sind in der folgenden Tabelle zusammengefaßt:
Figure imgf000021_0002
Beispiel 6 - Behandlung mit Vernetzungsmittel
Niemals getrocknete Lyocell-Faser wurde wie in Beispiel 5 beschrieben mit einer Chitosanoligosaccharidchloridlösung imprägniert und mit 1 bar abgepreßt. Anschließend wurden die Fasem bei einem Flottenverhältnis von 1 :20 mit einer Lösung, enthaltend 20 g/1 Natriumsalz des 2,4-Dichlor-6-hydroxy 1.3.5-triazins (NHDT) und 16 g/1 NaOH für 3 Minuten bei Raumtemperatur imprägniert. Nach der Imprägnierung wurden die Fasem mit 3 bar abgepreßt, 5 Minuten bei 100°C mit Wasserdampf wärmebehandelt, neutral gewaschen und getrocknet.
Die mit der Chitosanoligosaccharidchloridlösung imprägnierte Faser weist ohne Behandlung mit dem Vemetzungmittel einen Gehalt von 2,15 % Chitosan in der Faser und einen Naßscheuerwert von 60 auf. Der Naßscheuerwert wird gemäß dem z.B. in der WO 99/19555 beschriebenen Verfahren ermittelt.
Die mit sowohl mit der Chitosanoligosaccharidchloridlösung als auch mit NHDT behandelte Faser weist einen Naßscheuerwert von 499 auf.

Claims

Ansprüche:
1. Verfahren zur Herstellung cellulosischer Formköφer nach dem Aminoxidverfahren, umfassend die Schritte:
- Ausformen einer Lösung der Cellulose in einem wässerigen tertiären Aminoxid
- Ausfällen der ausgeformten Lösung
- Waschen des so erhaltenen Formkörpers und
- Trocknen des Formkörpers,
dadurch gekennzeichnet, daß
der Lösung der Cellulose und/oder einem Vorläufer dieser Lösung ein Chitosoniumpolymer zugegeben wird und/oder der Formköφer vor dem Trocknen mit einem Chitosoniumpolymer behandelt wird, wobei das Chitosoniumpolymer in einer Standardspinnlösung im wesentlichen vollständig löslich ist.
2. Verfahren nach Ansprach 1, dadurch gekennzeichnet, daß das Chitosoniumpolymer der Celluloselösung bzw. dem Vorläufer der Lösung in einem Anteil von 1 Gew.% bis 50 Gew.%, bevorzugt 1 Gew.% bis 10 Gew.%, bezogen auf Cellulose zugegeben wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Chitosoniumpolymer in Form eines Pulvers zugegeben wird.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Chitosoniumpolymer in Form einer Lösung oder einer Suspension zugegeben wird.
5. Verfahren nach Ansprach 1 , daß der Formköφer mit einer Lösung oder Suspension des Chitosoniumpolymers behandelt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Lösung oder Suspension das Chitosoniumpolymer in einem Anteil von 0,1 Gew.% bis 10 Gew.%, bevorzugt von 0,5 Gew.% bis 3 Gew.%, enthält.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Formköφer vor oder nach dem Trocknen einer Alkalibehandlung unterzogen wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Formköφer vor oder nach dem Trocknen einer Behandlung mit Heißdampf unterzogen wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Formköφer vor oder nach dem Trocknen einer Behandlung mit einem Vemetzungsmittel unterzogen wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Chitosoniumpolymer aus der Gruppe bestehend aus Chitosoniumacetat, Chitosoniumchlorid, Chitosoniumcitrat und Chitosoniumlactat ausgewählt ist.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der cellulosische Formköφer in Form von Fasem vorliegt.
12. Lösung der Cellulose in einem tertiären Aminoxid, enthaltend ein Chitosoniumpolymer, welches in einer Standardspinnlösung im wesentlichen vollständig löslich ist.
13. Formköφer, erhältlich durch ein Verfahren gemäß einem der Ansprüche 1 bis 11.
14. Formköφer nach Anspruch 13 in Form von Fasem.
PCT/AT2003/000186 2002-07-12 2003-07-04 Verfahren zur herstellung cellulosischer formkörper WO2004007818A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2003243797A AU2003243797A1 (en) 2002-07-12 2003-07-04 Method for the production of shaped cellulose bodies
BRPI0312613A BRPI0312613B8 (pt) 2002-07-12 2003-07-04 processo para a produção de corpos moldados celulósicos de acordo com o processo de óxido de amina e corpo moldado assim obtido
EP03763499A EP1537261B1 (de) 2002-07-12 2003-07-04 Verfahren zur herstellung cellulosischer formkorper
DE50310584T DE50310584D1 (de) 2002-07-12 2003-07-04 Verfahren zur herstellung cellulosischer formkorper
JP2004520161A JP2005534818A (ja) 2002-07-12 2003-07-04 セルロース成型体の製造方法
US11/033,437 US20050189675A1 (en) 2002-07-12 2005-01-11 Process for the production of cellulosic moulded bodies
US12/818,020 US20100289177A1 (en) 2002-07-12 2010-06-17 Method for the production of shaped cellulose bodies

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0105102A AT411769B (de) 2002-07-12 2002-07-12 Verfahren zur herstellung cellulosischer formkörper
ATA1051/2002 2002-07-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/033,437 Continuation US20050189675A1 (en) 2002-07-12 2005-01-11 Process for the production of cellulosic moulded bodies

Publications (1)

Publication Number Publication Date
WO2004007818A1 true WO2004007818A1 (de) 2004-01-22

Family

ID=28679389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2003/000186 WO2004007818A1 (de) 2002-07-12 2003-07-04 Verfahren zur herstellung cellulosischer formkörper

Country Status (13)

Country Link
US (2) US20050189675A1 (de)
EP (1) EP1537261B1 (de)
JP (2) JP2005534818A (de)
KR (2) KR20110116069A (de)
CN (1) CN100338273C (de)
AT (2) AT411769B (de)
AU (1) AU2003243797A1 (de)
BR (1) BRPI0312613B8 (de)
DE (1) DE50310584D1 (de)
RU (1) RU2318084C2 (de)
TW (1) TWI316978B (de)
WO (1) WO2004007818A1 (de)
ZA (1) ZA200500204B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060835A1 (en) * 2004-12-10 2006-06-15 Lenzing Aktiengesellschaft Cellulosic staple fiber and its use as a filling material
EP2368532A1 (de) 2010-03-25 2011-09-28 Ganzoni & Cie AG Kompressionstextil mit Chitosan bescichtete Fasern
WO2011117111A1 (de) 2010-03-25 2011-09-29 Lenzing Aktiengesellschaft Verwendung einer cellulosefaser
WO2012127033A1 (en) 2011-03-23 2012-09-27 SIGVARIS Inc. Graduated compression garments
US8524326B2 (en) 2008-01-22 2013-09-03 Lenzing Aktiengesellschaft Process for the treatment of cellulosic molded bodies
EP2519665B1 (de) * 2009-12-28 2019-04-17 Lenzing AG Funktionalisierter cellulosischer formkörper und verfahren zu seiner herstellung
EP3771755A1 (de) * 2019-08-02 2021-02-03 Lenzing Aktiengesellschaft Verfahren zur herstellung von lyocell-stapelfasern

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT410319B (de) * 2001-07-25 2003-03-25 Chemiefaser Lenzing Ag Celluloseschwamm und verfahren zu dessen herstellung
WO2009031868A2 (en) * 2007-09-07 2009-03-12 Kolon Industries, Inc. Lyocell filament fiber and cellulose based tire cord
AT506241B1 (de) * 2007-12-20 2011-01-15 Chemiefaser Lenzing Ag Garne, flächengebilde mit hoher abnutzungsbeständigkeit und daraus hergestellte artikel
AT507386A1 (de) * 2008-09-22 2010-04-15 Chemiefaser Lenzing Ag Verfahren zur behandlung cellulosischer formkörper
AT507387A1 (de) * 2008-09-22 2010-04-15 Chemiefaser Lenzing Ag Verwendung von lyocellfasern sowie lyocellfasern enthaltenden artikeln
TWI667378B (zh) 2014-01-03 2019-08-01 奧地利商蘭精股份有限公司 纖維素纖維
EA029929B1 (ru) * 2016-12-21 2018-05-31 Учреждение Белорусского государственного университета "Научно-исследовательский институт физико-химических проблем" (НИИ ФХП БГУ) Способ получения формованных изделий из растворов целлюлозы и ее смесей с хитозаном
CN112760978A (zh) * 2021-02-01 2021-05-07 浙江松井纺织有限公司 一种莱赛尔纤维的改进加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997007266A1 (de) * 1995-08-11 1997-02-27 Lenzing Aktiengesellschaft Cellulosefaser
US5900479A (en) * 1995-05-05 1999-05-04 Virginia Tech Intellectual Properties, Inc. Chitin-based coatings
TW464700B (en) * 2000-07-28 2001-11-21 Yau-Guo Tu Method for producing fiber with anti-mould, antibacterial and de-odoring effects
KR20020036398A (ko) * 2000-11-09 2002-05-16 김영호 항미생물성 재생 셀룰로오스 섬유의 제조 방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4246221A (en) * 1979-03-02 1981-01-20 Akzona Incorporated Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent
US4946870A (en) * 1986-06-06 1990-08-07 Union Carbide Chemicals And Plastics Company Inc. Delivery systems for pharmaceutical or therapeutic actives
US4929722A (en) * 1986-06-06 1990-05-29 Union Carbide Chemicals And Plastics Company Inc. Acid decrystallization of aminopolysaccharides and derivatives thereof
JPH0768648B2 (ja) * 1991-02-20 1995-07-26 富士紡績株式会社 改質セルロース再生繊維
FI924408A0 (fi) * 1992-09-30 1992-09-30 Novasso Oy Modifierade viskosfibrer och foerfarande foer dess framstaellning.
DE19604180C2 (de) * 1996-02-06 1997-12-18 Henkel Kgaa Verfahren zur Herstellung von Biopolymeren mit verbesserter Tensidlöslichkeit
JP2822174B2 (ja) * 1996-03-01 1998-11-11 オーミケンシ株式会社 キチンキトサン繊維及び構造体の製造法
DE19607953A1 (de) * 1996-03-01 1997-09-04 Kalle Nalo Gmbh Nach dem Aminoxidverfahren hergestellte Nahrungsmittelhüllen auf Cellulosebasis
ATE190098T1 (de) * 1996-05-30 2000-03-15 Akzo Nobel Nv Verfahren zur herstellung eines cellulosischen garns
EP0853146A3 (de) * 1997-01-09 1999-03-24 Akzo Nobel N.V. Verfahren zur Herstellung von cellulosischen Fasern und cellulosische Fasern
JP4063913B2 (ja) * 1997-04-01 2008-03-19 日本曹達株式会社 キトサンとアニオン性多糖類水溶液とからなる紡糸用組成物およびその繊維
JPH11100713A (ja) * 1997-09-24 1999-04-13 Mitsubishi Rayon Co Ltd キトサン含有抗菌性セルロースアセテート繊維およびその製造方法
JP2001164419A (ja) * 1999-12-13 2001-06-19 Fuji Spinning Co Ltd 改質セルロース再生繊維の製造方法
DE10007794A1 (de) * 2000-02-21 2001-06-28 Zimmer Ag Polymerzusammensetzung und daraus hergestellter Formkörper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900479A (en) * 1995-05-05 1999-05-04 Virginia Tech Intellectual Properties, Inc. Chitin-based coatings
WO1997007266A1 (de) * 1995-08-11 1997-02-27 Lenzing Aktiengesellschaft Cellulosefaser
TW464700B (en) * 2000-07-28 2001-11-21 Yau-Guo Tu Method for producing fiber with anti-mould, antibacterial and de-odoring effects
KR20020036398A (ko) * 2000-11-09 2002-05-16 김영호 항미생물성 재생 셀룰로오스 섬유의 제조 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200260, Derwent World Patents Index; Class A11, AN 2002-565009, XP002254753 *
DATABASE WPI Section Ch Week 200277, Derwent World Patents Index; Class A11, AN 2002-711120, XP002254752 *
ROGOVINA S Z ET AL: "CHITOSAN-CELLULOSE FILMS FABRICATED FROM MIXTURES OF POLYSACCHARIDES IN N-METHYLMORPHOLINE N-OXIDE", FIBRE CHEMISTRY, vol. 34, no. 1, 2002, XP002254751 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006060835A1 (en) * 2004-12-10 2006-06-15 Lenzing Aktiengesellschaft Cellulosic staple fiber and its use as a filling material
JP2013256748A (ja) * 2004-12-10 2013-12-26 Lenzing Ag セルロースステープルファイバーおよび充填材としてのその利用
TWI425125B (zh) * 2004-12-10 2014-02-01 Chemiefaser Lenzing Ag 纖維素短纖維與其用途,以及填充材料
US8524326B2 (en) 2008-01-22 2013-09-03 Lenzing Aktiengesellschaft Process for the treatment of cellulosic molded bodies
EP2519665B1 (de) * 2009-12-28 2019-04-17 Lenzing AG Funktionalisierter cellulosischer formkörper und verfahren zu seiner herstellung
US10149799B2 (en) 2010-03-25 2018-12-11 Sigvaris Ag Compression textiles
EP2368532A1 (de) 2010-03-25 2011-09-28 Ganzoni & Cie AG Kompressionstextil mit Chitosan bescichtete Fasern
WO2011117310A1 (en) 2010-03-25 2011-09-29 Sigvaris Ag Compression textile comprising chitosan coated fibres
WO2011117111A1 (de) 2010-03-25 2011-09-29 Lenzing Aktiengesellschaft Verwendung einer cellulosefaser
CN102803587A (zh) * 2010-03-25 2012-11-28 连津格股份公司 纤维素纤维的用途
CN102803587B (zh) * 2010-03-25 2015-09-30 连津格股份公司 纤维素纤维的用途
TWI561694B (en) * 2010-03-25 2016-12-11 Chemiefaser Lenzing Ag Use of a cellulose fibre
WO2012127033A1 (en) 2011-03-23 2012-09-27 SIGVARIS Inc. Graduated compression garments
US9566206B2 (en) 2011-03-23 2017-02-14 SIGVARIS Inc. Graduated compression garments
EP2540263A1 (de) 2011-06-29 2013-01-02 Sigvaris Inc. Abgestufte Kompressionskleidung
EP3771755A1 (de) * 2019-08-02 2021-02-03 Lenzing Aktiengesellschaft Verfahren zur herstellung von lyocell-stapelfasern
WO2021023594A1 (de) 2019-08-02 2021-02-11 Lenzing Aktiengesellschaft Verfahren zur herstellung von lyocell-stapelfasern

Also Published As

Publication number Publication date
RU2005102815A (ru) 2005-08-20
CN1681978A (zh) 2005-10-12
AU2003243797A1 (en) 2004-02-02
CN100338273C (zh) 2007-09-19
EP1537261A1 (de) 2005-06-08
ATE409760T1 (de) 2008-10-15
US20100289177A1 (en) 2010-11-18
JP2005534818A (ja) 2005-11-17
ZA200500204B (en) 2006-07-26
ATA10512002A (de) 2003-10-15
BR0312613A (pt) 2005-04-19
JP5372707B2 (ja) 2013-12-18
KR20110116069A (ko) 2011-10-24
JP2010059598A (ja) 2010-03-18
TWI316978B (en) 2009-11-11
TW200401853A (en) 2004-02-01
AT411769B (de) 2004-05-25
BRPI0312613B8 (pt) 2015-12-22
US20050189675A1 (en) 2005-09-01
DE50310584D1 (de) 2008-11-13
KR20050035244A (ko) 2005-04-15
BR0312613B1 (pt) 2013-11-12
EP1537261B1 (de) 2008-10-01
RU2318084C2 (ru) 2008-02-27

Similar Documents

Publication Publication Date Title
EP2519665B1 (de) Funktionalisierter cellulosischer formkörper und verfahren zu seiner herstellung
US20100289177A1 (en) Method for the production of shaped cellulose bodies
DE69326809T2 (de) Alginatgel
EP2329074B1 (de) Verfahren zur behandlung cellulosischer formkörper
WO2019002095A1 (de) Hydrogel-bildende mehrkomponentenfaser
DD142898A5 (de) Geformter zelluloseartikel,hergestellt aus einer zellulosehaltigen loesung
AT514468A1 (de) Hochsaugfähige Polysaccharidfaser und ihre Verwendung
EP2235253B1 (de) Verfahren zur behandlung cellulosischer formkörper
EP0683827B1 (de) Verfahren zur herstellung cellulosischer formkörper
AT413988B (de) Verfahren zur behandlung von cellulosischen formkörpern
DE10216273A1 (de) Polymerzusammensetzung mit einem biologisch abbaubaren Polymer und einem Material aus Kräutern der Familia Asteraceae und/oder dessen Extrakten und/oder einem oder mehrerer Inhaltsstoffe davon
RU2392972C2 (ru) Способ получения полисахаридных материалов
EP2470695A1 (de) Carboxyethylcellulosefasern, ihre verwendung in wundverbänden und hygieneartikeln sowie verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005/00204

Country of ref document: ZA

Ref document number: 200500204

Country of ref document: ZA

Ref document number: 1020057000445

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 99/DELNP/2005

Country of ref document: IN

Ref document number: 11033437

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2003763499

Country of ref document: EP

Ref document number: 2004520161

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 91632003

Country of ref document: AT

ENP Entry into the national phase

Ref document number: 2005102815

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20038215772

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057000445

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003763499

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003763499

Country of ref document: EP