WO2004004607A1 - Mitral valve annuloplasty ring having a posterior bow - Google Patents
Mitral valve annuloplasty ring having a posterior bow Download PDFInfo
- Publication number
- WO2004004607A1 WO2004004607A1 PCT/US2003/021208 US0321208W WO2004004607A1 WO 2004004607 A1 WO2004004607 A1 WO 2004004607A1 US 0321208 W US0321208 W US 0321208W WO 2004004607 A1 WO2004004607 A1 WO 2004004607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ring
- posterior
- section
- ring body
- annuloplasty ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2445—Annuloplasty rings in direct contact with the valve annulus
- A61F2/2448—D-shaped rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0014—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
- A61F2250/0018—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
Definitions
- the present invention relates generally to medical devices, specifically to an annuloplasty ring and related procedure for surgically reconstructing the mitral valve annulus of a patient's heart. More specifically, this invention relates to a mitral valve repair device and corresponding technique that conforms to an abnormal annulus in the pathology encountered with functional mitral regurgitation having a posterior aspect depressed below the anterior aspect.
- the left atrium receives oxygenated blood from the lungs through the pulmonary vein.
- the mitral valve separates the left atrium from the left ventricle.
- oxygenated blood passes through the mitral valve into the left ventricle.
- the aortic valve leading into the ascending aorta closes, allowing the left ventricle to fill with blood.
- a similar flow of venous blood occurs from the right atrium through the pulmonary valve to the right ventricle. Once the ventricles are full, they contract during the systolic phase and pump blood out of the heart.
- the mitral valve closes and the aortic valve opens, thus preventing blood from regurgitating into the left atrium and forcing blood into the aorta, and from there throughout the body. Because of the high pressures associated with the left ventricle during systole, proper functioning of the mitral valve to prevent blood from flowing back through the system is extremely important.
- the various anatomical components of the left ventricle LV and mitral valve MV are depicted in Fig. 1 as seen in vertical cross-section along an anterior-posterior plane.
- the mitral annulus MA comprises a fibrous ring encircling the orifice between the left atrium LA and the left ventricle LV.
- the average human mitral annular cross-sectional area is 5-1 1 cm 2 .
- the anterior aspect of the mitral annulus MA forms a part of the "cardiac skeleton" and includes left and right fibrous trigones, LT and RT.
- Fig. 3 illustrates the mitral valve from the left atrium as exposed during surgery.
- the mitral valve is a bicuspid valve having a posterior leaflet PL that cooperates with an anterior leaflet AL.
- chordae tendineae CT extend between and link the papillary muscles Pi and P 2 and free edges of the anterior and posterior leaflets AL and PL.
- the chordae tendineae are string-like in appearance and are sometimes referred to as "heart strings.”
- chordae tendoneae CT extend between each of the papillary muscles Pi and P 2 and both leaflets.
- dilation of the left ventricle LV generally increases the distance between the papillary muscles Pi and P 2 and the mitral annulus MA. This in turn increases the tension in the chordae tendonae CT.
- the droop or depression of the posterior aspect of the annulus below the datum plane 20 by the distance h in combination with the increased tension in the chordae reduces the ability of the leaflets to come together during systole.
- Annuloplasty rings have been developed in various shapes and configurations over the years to correct mitral regurgitation and other conditions which reduce the functioning of the valve.
- Carpentier, et al. in U.S. Patent No. 4,055,861 disclosed two semi-rigid supports for heart valves, one of which being closed (or D-shaped) and the other being open (or C- shaped). In the closed configuration, the ring is generally symmetric about an anterior-posterior plane, and has a convex posterior side and a generally straight anterior side.
- 5,104,407, 5,201 ,880, and 5,607,471 all disclose closed annuloplasty rings that are bowed slightly upward on their anterior side. Because the anterior aspect of the mitral annulus MA is fibrous and thus relatively inflexible (at least in comparison to the posterior aspect), the upward curve in the anterior side of each ring conforms that ring more closely to the anatomical contour of the mitral annulus, and thus reduces undue deformation of the annulus.
- 5,258,021 and 6,231,602 disclose sinusoidal or so-called "scalloped" annuloplasty rings that follow the up-and-down shape of the three cusp aortic annulus. Such rings would not be suitable for correcting a mitral valve deficiency.
- the present invention provides an annuloplasty ring for implantation in a mitral valve annulus that has a pathologic condition such that the posterior aspect thereof droops downward abnormally.
- the annuloplasty ring includes a rounded ring body having an anterior section and a posterior section.
- the ring body is oriented about a central flow axis that defines an upward direction and a downward direction, the downward direction corresponding to the direction of blood flow through the mitral valve annulus.
- the posterior section the ring body bows downward out of a plane perpendicular to the central flow axis.
- the ring body may bow downward between about 2- 15 mm from one end thereof to a lowest point, and desirably bows downward between about 4-8 mm from one end thereof to a lowest point.
- the bow in the ring body may or may not be centered in the posterior section.
- the ring body is made of a malleable material such that the bow in the ring body may be manually reshaped.
- the ring body is made of a semi-rigid material that will retain its posterior bow in opposition to the stresses that will be imparted by muscles of the heart throughout each beating cycle.
- the ring body may be substantially planar except in the posterior section, or an anterior section of the ring body may bow upward from one end thereof to a lowest point.
- the ring body In plan view, as seen along the flow axis, the ring body preferably defines an oval shape with a major axis perpendicular to a minor axis, the minor axis bisecting both the anterior and posterior sections. Further, the bow in the posterior section may begin at symmetric locations across the minor axis that are spaced from the major axis around the ring body by an angle ⁇ of between about 0-45°, more preferably about 30°.
- the ring body may further include two upward bows on either side of the downward bow on the posterior section, and wherein downward bow may be between about 2-15 mm.
- the ring body comprises a plurality of ring elements concentrically disposed. A polymer strip in between each ring element may be provided.
- the ring elements comprise bands that have a substantially larger height in the flow axis dimension than in the dimension perpendicular to the flow axis. Further, the ring elements may have varying heights so that the ring body is more flexible in the posterior section than around the remainder of the ring body.
- Another aspect of the present invention is a method of repairing a mitral heart valve annulus that has a posterior aspect that is depressed downward along the blood flow axis relative to an anterior aspect.
- the method includes implanting an annuloplasty ring having an anterior section sized to fit the anterior aspect of the annulus and a posterior section sized to the posterior aspect, wherein the ring posterior section bows downward parallel to the central axis relative to the anterior section.
- the annuloplasty ring may be malleable and the surgeon adjusts the bow in the posterior section manually.
- Fig. 1 is a cross-section of a healthy left ventricle through the mitral valve between the anterior and posterior leaflets
- Fig. 2 is a cross-section of a dilated left ventricle through the mitral valve between the anterior and posterior leaflets
- Fig. 3 is an atrial view of the mitral valve of Fig. 2 exposed during a surgical procedure;
- Fig. 4 is a plan view of annuloplasty ring of the present invention implanted so as to restore competency to the mitral valve;
- Fig. 5 is a perspective view of an annuloplasty ring of the present invention over an abnormal mitral valve as viewed from the posterior side;
- Fig. 6 is a perspective view of the annuloplasty ring of Fig. 5 over the abnormal mitral valve as seen from the side;
- Figs. 7A-7C are plan, front, and side views of an exemplary annuloplasty ring of the present invention having a posterior bow;
- Figs. 8A-8C are plan, front, and side views of an alternative annuloplasty ring of the present invention having a posterior bow between two raised portions;
- Fig. 10 is a top plan view of an inner ring body of an annuloplasty ring of the present invention showing details of a composite band construction.
- FIG. 4 An exemplary annuloplasty ring 30 of the present invention is shown in Fig. 4 implanted around a mitral annulus MA. As described above, the mitral annulus has an anterior leaflet AL and a posterior leaflet PL. When the ring 30 is implanted, the leaflets are brought closer together and supported so that they meet at a coaptation surface 32. The ring 30 thus corrects the problem of functional mitral regurgitation.
- the ring 30 has an oval or somewhat D-shaped configuration with a relatively straight anterior section 34 opposite a curved posterior section 36.
- a pair of trigone or commissure markers 38a, 38b generally delimit the anterior side 34, while a pair of opposed side sections 40a, 40b extend between each of these markers and the posterior section 36.
- a plurality of knotted suture loops 42 are typically used to secure the ring 30 to the mitral annulus MA, although other fasteners such as staples, fibrin glue, or the like may be used.
- the posterior aspect of the mitral annulus is depressed relative to the anterior aspect, as is illustrated in Fig. 2.
- the posterior aspect will be depressed into the page relative to the anterior aspect.
- the annuloplasty ring 30 of the present invention has a shaped posterior section 36 that generally follows the modified shape of the mitral annulus MA. In other words, the posterior section 36 is bowed into the page relative to the anterior section 34.
- the ring 30 supports the mitral annulus MA in its modified shape, rather than trying to revert the annulus back to the original substantially planar configuration.
- the ring 30 desirably constricts the orifice circumference defined by the annulus so as to bring the anterior leaflet AL and posterior leaflet PL closer together. Because the ring 30 does not pull the posterior aspect of the mitral annulus MA upward from its modified position, high stresses are not set up in the attachment sutures 42 and thus there is less potential for the dehiscence.
- FIG. 7A illustrates orthogonal axes wherein the X- and Y-axes generally define the datum plane 20 as mentioned above with respect to Figs. 1 and 2.
- the X-axis extends across the ring 30 from one side 40a to the opposite side 40b at the point of maximum dimension.
- the X-axis thus defines a major axis of the ring 30.
- the Y-axis defines a plane of symmetry for the ring 30 extending between a midpoint of the anterior side 34 to a midpoint of the posterior section 36.
- the Y-axis also defines a minor axis for the ring 30.
- Several points are noted around the ring 30 to help describe the posterior bow. These points, and the ones shown in Figs. 8A-8B, are imaginary center points through the cross-section of the ring 30. Two points A are symmetrically located on either side of the Y-axis at an angular distance ⁇ from the X-axis. The midpoint of the posterior section 36 is denoted B. The ring 30 has a posterior bow such that the point B is at the lowest elevation along the Z-axis. The magnitude of this posterior bow is indicated by the dimension Z
- the downward bow or posterior bow preferably extends along a majority of the posterior section 36 between the points A, which points are between 0 and 45° from the X-axis ( ⁇ ). More preferably, the points A are between 20-40°, and more particularly about 30° from the X-axis.
- the magnitude of bow Zj may be between about 2-15 mm (0.08-0.59 inches), and more typically is between about 4-8 mm (0.16-0.31 inches), depending on the size of the ring.
- the ring 30 is shown in Figs. 7A-7C as symmetric about the Y- axis, it does not necessarily have to be so.
- the point B may be displaced from the Y-axis such that the downward bow is not centered in the posterior section 36.
- An asymmetric ring is shown and described below with reference to Figs. 9A and 9B.
- Figs. 8A-8C illustrate an alternative annuloplasty ring 50 of the present invention that has both upward and downward bows. Again, the ring 50 is shown complete with a fabric covering.
- the ring 50 includes an anterior section 52, a posterior section 54, and a pair of side sections (not numbered) therebetween.
- the ring 50 is generally planar on the anterior section 52 and shaped on the posterior section 54.
- the points A symmetrically disposed across the Y-axis again denote the locations on each side where the ring 50 begins to curve out of a plane.
- the ring curves upward in the Z- direction from the points A, as best seen in Fig. 8B, to high points C, and then dips downward to the midpoint B of the posterior section 54.
- the downward bow of the ring between points A and B is shown in Fig. 8C as the dimension Z 2 , which has a magnitude similar to that given for Zi in Fig. 7C.
- the upward curve may be selected so as to better match the patient's annulus shape.
- the anterior section 52 may be upwardly bowed by a distance of between about 2-4 mm (0.08-0.16 inches).
- the points A are desirably disposed an angular distance ⁇ from the X-axis of between about 0-15°, and more desirably between about 5-10°.
- the points C of maximum height of the ring 50 are preferably spaced an angular distance ⁇ from the X-axis of between about 15-45°, and more preferably between about 25-35°.
- the lowest point B of the ring 50 may be bowed along the Z-axis as in the embodiment of Figs. 7A-7C, so that, as indicated Fig.
- Z2 is desirably between about 2-15 mm (0.08-0.59 inches), and more typically is between about 4-8 mm (0.16-0.31 inches), depending on the size of the ring. Therefore, the total height of the ring 50 is at least 2 mm, and may be greater than 15 mm.
- Figs. 9A and 9B show an inner ring body 60 for use in an annuloplasty ring of the present invention.
- the ring body 60 has a posterior bow 62 that is offset from the center of a posterior section 64.
- the bow 62 is offset toward the posterio-medial side (to the right) by about 20% of the entire major axis width of the ring body 60.
- Another way to state the offset is that, in plan view, the bow 62 is centered at a clock position, with 12:00 being centered in the anterior side. In that sense, the bow 62 is centered between 3:00 and 6:00, and more preferably is centered at about 5:00.
- the axial bow Z 3 is shown and may vary from about 2.0 mm (0.08 inches) to about 4.0 mm (0.16 inches), and more preferably from about 3.0 mm (0.12 inches) to about 3.8 mm (0.15 inches), depending on ring size.
- the ring body 60 has an anterior section 66 that is upwardly bowed by a distance of between about 2-4 mm (0.08-0.16 inches).
- the inner ring body 60 demonstrates an asymmetric ring that conforms to patients that have a posterior annular bow that is displaced from the midline. It is believed that most patients have such a malformed anatomy resulting from the pathologic conditions described herein. However, posterior bows that are centered or even offset to the left have been observed. Therefore, one configuration of ring that is embodied in the present invention is one that is pre- shaped with a posterior bow in the middle or to the right, and that is malleable so that the bow can be exaggerated or diminished by the surgeon after examination of the precise shape of the patient's annulus. Further, in such a convertible ring the bow can even be displaced, from the right to the left, for example. Although the material of the ring permits manual deformation, it would be stiff enough to withstand further deformation once implanted and subjected to normal physiologic stresses.
- the ring preferably includes an inner ring body and an outer sewing sheath that pemiits the ring body to be sutured into the mitral annulus.
- the sewing sheath should be sufficiently porous and/or flexible to permit sutures to be passed therethrough.
- One exemplary construction is to enclose the inner ring body in a tubular sheath of suture-permeable material, such as silicone, which is then covered with a fabric ntbe, such as polyethyl terapthalate.
- the annuloplasty ring of the present invention must be semi-rigid. It must retain its posterior bow in opposition to the stresses that will be imparted by muscles of the heart throughout each beating cycle.
- the ring body may be made from materials such as Elgiloy (a cobalt-nickel alloy), titanium, or Nitinol (a nickel- titanium alloy).
- Fig. 10 illustrates one exemplary construction of the inner body of the annuloplasty rings of the present invention that utilizes multiple flat bands of Elgiloy in a composite structure.
- the four bands are concentrically disposed in the shape of the ring.
- Each band is a flat strip of material having a width of between about 1.4-2.0 mm (0.056-0.078 inches).
- the bands 70 overlap in the anterior section 72 of the ring body and are fastened together by, for example, spot welding at multiple points.
- the width of each strip may also be greater in the anterior section 72 than in a posterior section 74, which means that the ring body is more flexible in the posterior section than in any other section.
- a plurality of strips of protective film is used in between each band 70, and on the outer face of the outer band 70a.
- the strips may be a polymer such as Mylar. The strips help reduce rubbing between the bands 70 and also deflect suture needles from the outer band 70a and thus prevent scratching thereto.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Priority Applications (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| BRPI0312502-5A BR0312502B1 (pt) | 2002-07-08 | 2003-07-03 | anel de anuloplastia para implantaÇço em um anel tubular de vÁlvula mitral. |
| JP2004519963A JP4384978B2 (ja) | 2002-07-08 | 2003-07-03 | 後部湾曲を有する僧帽弁の環状形成リング |
| AU2003248833A AU2003248833B2 (en) | 2002-07-08 | 2003-07-03 | Mitral valve annuloplasty ring having a posterior bow |
| EP03763288A EP1519695B1 (en) | 2002-07-08 | 2003-07-03 | Mitral valve annuloplasty ring having a posterior bow |
| DE60308523T DE60308523T2 (de) | 2002-07-08 | 2003-07-03 | Annuloplastiering für mitralklappe mit einem hinterliegenden bogen |
| CA2489368A CA2489368C (en) | 2002-07-08 | 2003-07-03 | Mitral valve annuloplasty ring having a posterior bow |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US10/192,516 US6858039B2 (en) | 2002-07-08 | 2002-07-08 | Mitral valve annuloplasty ring having a posterior bow |
| US10/192,516 | 2002-07-08 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2004004607A1 true WO2004004607A1 (en) | 2004-01-15 |
Family
ID=30000029
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2003/021208 Ceased WO2004004607A1 (en) | 2002-07-08 | 2003-07-03 | Mitral valve annuloplasty ring having a posterior bow |
Country Status (9)
| Country | Link |
|---|---|
| US (1) | US6858039B2 (enExample) |
| EP (1) | EP1519695B1 (enExample) |
| JP (1) | JP4384978B2 (enExample) |
| AT (1) | ATE339934T1 (enExample) |
| AU (1) | AU2003248833B2 (enExample) |
| BR (1) | BR0312502B1 (enExample) |
| CA (1) | CA2489368C (enExample) |
| DE (1) | DE60308523T2 (enExample) |
| WO (1) | WO2004004607A1 (enExample) |
Cited By (55)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006083529A1 (en) * | 2005-01-31 | 2006-08-10 | Edwards Lifesciences Corporation | Mitral valve annuloplasty ring having a posterior bow |
| US7288097B2 (en) | 1997-09-12 | 2007-10-30 | Evalve, Inc. | Surgical device for connecting soft tissue |
| JP2007535371A (ja) * | 2004-04-29 | 2007-12-06 | エドワーズ ライフサイエンシーズ コーポレイション | 僧帽弁逸脱のための弁輪形成リング |
| US7464712B2 (en) | 1997-06-27 | 2008-12-16 | The Trustees Of Columbia University In The City Of New York | Method and apparatus for circulatory valve repair |
| US7563267B2 (en) | 1999-04-09 | 2009-07-21 | Evalve, Inc. | Fixation device and methods for engaging tissue |
| US7563273B2 (en) | 1999-04-09 | 2009-07-21 | Evalve, Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
| US7575595B2 (en) | 2005-03-23 | 2009-08-18 | Edwards Lifesciences Corporation | Annuloplasty ring and holder combination |
| US7604646B2 (en) | 1999-04-09 | 2009-10-20 | Evalve, Inc. | Locking mechanisms for fixation devices and methods of engaging tissue |
| US7608091B2 (en) | 1999-04-09 | 2009-10-27 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
| US7635329B2 (en) | 2004-09-27 | 2009-12-22 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
| US7879087B2 (en) | 2006-10-06 | 2011-02-01 | Edwards Lifesciences Corporation | Mitral and tricuspid annuloplasty rings |
| US8114155B2 (en) | 2001-08-28 | 2012-02-14 | Edwards Lifesciences Corporation | Annuloplasty ring with offset free ends |
| US8142495B2 (en) | 2006-05-15 | 2012-03-27 | Edwards Lifesciences Ag | System and a method for altering the geometry of the heart |
| US8216230B2 (en) | 2001-11-15 | 2012-07-10 | Evalve, Inc. | Cardiac valve leaflet attachment device and methods thereof |
| US8216304B2 (en) | 2005-03-23 | 2012-07-10 | Edwards Lifesciences Corporation | Annuloplasty ring and holder combination |
| US8470028B2 (en) | 2005-02-07 | 2013-06-25 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
| US8529621B2 (en) | 2001-05-17 | 2013-09-10 | Edwards Lifesciences Corporation | Methods of repairing an abnormal mitral valve |
| US8568473B2 (en) | 2005-12-15 | 2013-10-29 | Georgia Tech Research Corporation | Systems and methods for enabling heart valve replacement |
| US8764821B2 (en) | 2007-02-09 | 2014-07-01 | Edwards Lifesciences Corporation | Degenerative vavlular disease specific annuloplasty ring sets |
| US8915960B2 (en) | 2010-08-31 | 2014-12-23 | Edwards Lifesciences Corporation | Physiologic tricuspid annuloplasty ring |
| US8932350B2 (en) | 2010-11-30 | 2015-01-13 | Edwards Lifesciences Corporation | Reduced dehiscence annuloplasty ring |
| US9060858B2 (en) | 2009-09-15 | 2015-06-23 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
| US9101472B2 (en) | 2007-09-07 | 2015-08-11 | Edwards Lifesciences Corporation | Active holder for annuloplasty ring delivery |
| US9125742B2 (en) | 2005-12-15 | 2015-09-08 | Georgia Tech Research Foundation | Papillary muscle position control devices, systems, and methods |
| US9149359B2 (en) | 2001-08-28 | 2015-10-06 | Edwards Lifesciences Corporation | Three-dimensional annuloplasty ring |
| US9937041B2 (en) | 2008-05-13 | 2018-04-10 | Edwards Lifesciences Corporation | Physiologically harmonized tricuspid annuloplasty ring |
| US10039531B2 (en) | 2005-12-15 | 2018-08-07 | Georgia Tech Research Corporation | Systems and methods to control the dimension of a heart valve |
| US10166101B2 (en) | 2001-05-17 | 2019-01-01 | Edwards Lifesciences Corporation | Methods for repairing mitral valves |
| US10188392B2 (en) | 2014-12-19 | 2019-01-29 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
| US10238494B2 (en) | 2015-06-29 | 2019-03-26 | Evalve, Inc. | Self-aligning radiopaque ring |
| US10238495B2 (en) | 2015-10-09 | 2019-03-26 | Evalve, Inc. | Delivery catheter handle and methods of use |
| US10314586B2 (en) | 2016-12-13 | 2019-06-11 | Evalve, Inc. | Rotatable device and method for fixing tricuspid valve tissue |
| US10327743B2 (en) | 1999-04-09 | 2019-06-25 | Evalve, Inc. | Device and methods for endoscopic annuloplasty |
| US10363138B2 (en) | 2016-11-09 | 2019-07-30 | Evalve, Inc. | Devices for adjusting the curvature of cardiac valve structures |
| US10376673B2 (en) | 2015-06-19 | 2019-08-13 | Evalve, Inc. | Catheter guiding system and methods |
| US10390943B2 (en) | 2014-03-17 | 2019-08-27 | Evalve, Inc. | Double orifice device for transcatheter mitral valve replacement |
| US10398553B2 (en) | 2016-11-11 | 2019-09-03 | Evalve, Inc. | Opposing disk device for grasping cardiac valve tissue |
| US10413408B2 (en) | 2015-08-06 | 2019-09-17 | Evalve, Inc. | Delivery catheter systems, methods, and devices |
| US10426616B2 (en) | 2016-11-17 | 2019-10-01 | Evalve, Inc. | Cardiac implant delivery system |
| US10524912B2 (en) | 2015-04-02 | 2020-01-07 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
| US10631871B2 (en) | 2003-05-19 | 2020-04-28 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
| US10667911B2 (en) | 2005-02-07 | 2020-06-02 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
| US10667815B2 (en) | 2015-07-21 | 2020-06-02 | Evalve, Inc. | Tissue grasping devices and related methods |
| US10736632B2 (en) | 2016-07-06 | 2020-08-11 | Evalve, Inc. | Methods and devices for valve clip excision |
| US10743876B2 (en) | 2011-09-13 | 2020-08-18 | Abbott Cardiovascular Systems Inc. | System for fixation of leaflets of a heart valve |
| US10779837B2 (en) | 2016-12-08 | 2020-09-22 | Evalve, Inc. | Adjustable arm device for grasping tissues |
| US11065119B2 (en) | 2017-05-12 | 2021-07-20 | Evalve, Inc. | Long arm valve repair clip |
| US11484331B2 (en) | 2004-09-27 | 2022-11-01 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
| US11653947B2 (en) | 2016-10-05 | 2023-05-23 | Evalve, Inc. | Cardiac valve cutting device |
| US12048448B2 (en) | 2020-05-06 | 2024-07-30 | Evalve, Inc. | Leaflet grasping and cutting device |
| US12048624B2 (en) | 2019-07-15 | 2024-07-30 | Evalve, Inc. | Independent proximal element actuation methods |
| US12171485B2 (en) | 2020-05-06 | 2024-12-24 | Evalve, Inc. | Systems and methods for leaflet cutting using a hook catheter |
| US12171486B2 (en) | 2020-05-06 | 2024-12-24 | Evalve, Inc. | Devices and methods for clip separation |
| US12178444B2 (en) | 2020-05-06 | 2024-12-31 | Evalve, Inc. | Clip removal systems and methods |
| US12414811B2 (en) | 2020-05-06 | 2025-09-16 | Evalve, Inc. | Devices and methods for leaflet cutting |
Families Citing this family (214)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6406420B1 (en) * | 1997-01-02 | 2002-06-18 | Myocor, Inc. | Methods and devices for improving cardiac function in hearts |
| US6332893B1 (en) * | 1997-12-17 | 2001-12-25 | Myocor, Inc. | Valve to myocardium tension members device and method |
| US6736845B2 (en) * | 1999-01-26 | 2004-05-18 | Edwards Lifesciences Corporation | Holder for flexible heart valve |
| US6440164B1 (en) * | 1999-10-21 | 2002-08-27 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
| US7507252B2 (en) * | 2000-01-31 | 2009-03-24 | Edwards Lifesciences Ag | Adjustable transluminal annuloplasty system |
| US6537198B1 (en) * | 2000-03-21 | 2003-03-25 | Myocor, Inc. | Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly |
| US7510572B2 (en) * | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
| US6723038B1 (en) * | 2000-10-06 | 2004-04-20 | Myocor, Inc. | Methods and devices for improving mitral valve function |
| US6616684B1 (en) * | 2000-10-06 | 2003-09-09 | Myocor, Inc. | Endovascular splinting devices and methods |
| US6602286B1 (en) * | 2000-10-26 | 2003-08-05 | Ernst Peter Strecker | Implantable valve system |
| US6955689B2 (en) * | 2001-03-15 | 2005-10-18 | Medtronic, Inc. | Annuloplasty band and method |
| US6786924B2 (en) * | 2001-03-15 | 2004-09-07 | Medtronic, Inc. | Annuloplasty band and method |
| US20080154359A1 (en) * | 2001-11-01 | 2008-06-26 | Salgo Ivan S | Non-planar cardiac vascular support prosthesis |
| US6805710B2 (en) * | 2001-11-13 | 2004-10-19 | Edwards Lifesciences Corporation | Mitral valve annuloplasty ring for molding left ventricle geometry |
| US6764510B2 (en) * | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
| US6719786B2 (en) * | 2002-03-18 | 2004-04-13 | Medtronic, Inc. | Flexible annuloplasty prosthesis and holder |
| US7118595B2 (en) * | 2002-03-18 | 2006-10-10 | Medtronic, Inc. | Flexible annuloplasty prosthesis and holder |
| US7007698B2 (en) * | 2002-04-03 | 2006-03-07 | Boston Scientific Corporation | Body lumen closure |
| US6752828B2 (en) | 2002-04-03 | 2004-06-22 | Scimed Life Systems, Inc. | Artificial valve |
| US20030233022A1 (en) * | 2002-06-12 | 2003-12-18 | Vidlund Robert M. | Devices and methods for heart valve treatment |
| WO2004037128A1 (en) * | 2002-10-24 | 2004-05-06 | Boston Scientific Limited | Venous valve apparatus and method |
| US7247134B2 (en) * | 2002-11-12 | 2007-07-24 | Myocor, Inc. | Devices and methods for heart valve treatment |
| US7112219B2 (en) * | 2002-11-12 | 2006-09-26 | Myocor, Inc. | Devices and methods for heart valve treatment |
| US6945957B2 (en) * | 2002-12-30 | 2005-09-20 | Scimed Life Systems, Inc. | Valve treatment catheter and methods |
| DE10301023A1 (de) * | 2003-01-13 | 2004-07-22 | Medos Medizintechnik Ag | Implantat mit einem ringförmigen Grundkörper |
| KR100466839B1 (ko) * | 2003-03-28 | 2005-01-17 | 주식회사 사이언씨티 | 대동맥판막 성형기구 세트 및 이를 이용한 치료방법 |
| US8128681B2 (en) | 2003-12-19 | 2012-03-06 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
| US7854761B2 (en) * | 2003-12-19 | 2010-12-21 | Boston Scientific Scimed, Inc. | Methods for venous valve replacement with a catheter |
| US7871435B2 (en) | 2004-01-23 | 2011-01-18 | Edwards Lifesciences Corporation | Anatomically approximate prosthetic mitral heart valve |
| EP1943982A1 (en) * | 2004-02-23 | 2008-07-16 | International Heart Institute of Montana Foundation | Papilloplasty band and sizing device |
| US8206439B2 (en) | 2004-02-23 | 2012-06-26 | International Heart Institute Of Montana Foundation | Internal prosthesis for reconstruction of cardiac geometry |
| US20090132035A1 (en) * | 2004-02-27 | 2009-05-21 | Roth Alex T | Prosthetic Heart Valves, Support Structures and Systems and Methods for Implanting the Same |
| US20070073387A1 (en) * | 2004-02-27 | 2007-03-29 | Forster David C | Prosthetic Heart Valves, Support Structures And Systems And Methods For Implanting The Same |
| EP1722711A4 (en) * | 2004-02-27 | 2009-12-02 | Aortx Inc | SYSTEMS AND METHOD FOR STORING ARTIFICIAL HEART FLAPS |
| US7951196B2 (en) | 2004-04-29 | 2011-05-31 | Edwards Lifesciences Corporation | Annuloplasty ring for mitral valve prolapse |
| WO2005112832A1 (en) * | 2004-05-14 | 2005-12-01 | St. Jude Medical, Inc. | Systems and methods for holding annuloplasty rings |
| US7452376B2 (en) * | 2004-05-14 | 2008-11-18 | St. Jude Medical, Inc. | Flexible, non-planar annuloplasty rings |
| US7938856B2 (en) * | 2004-05-14 | 2011-05-10 | St. Jude Medical, Inc. | Heart valve annuloplasty prosthesis sewing cuffs and methods of making same |
| US20050278022A1 (en) * | 2004-06-14 | 2005-12-15 | St. Jude Medical, Inc. | Annuloplasty prostheses with improved anchoring structures, and related methods |
| DE502004005968D1 (de) * | 2004-06-29 | 2008-03-06 | Sievers Hans Hinrich | Ringprothese für Anuloplastie |
| US7758638B2 (en) * | 2004-07-13 | 2010-07-20 | Ats Medical, Inc. | Implant with an annular base |
| US7566343B2 (en) * | 2004-09-02 | 2009-07-28 | Boston Scientific Scimed, Inc. | Cardiac valve, system, and method |
| BRPI0404380C1 (pt) * | 2004-10-14 | 2008-07-15 | Malavazi Vedacoes Ind Ltda | aperfeiçoamentos em selo mecánico mancalizado para bombas de cavidade progressiva |
| US7854755B2 (en) * | 2005-02-01 | 2010-12-21 | Boston Scientific Scimed, Inc. | Vascular catheter, system, and method |
| US20060173490A1 (en) | 2005-02-01 | 2006-08-03 | Boston Scientific Scimed, Inc. | Filter system and method |
| US7878966B2 (en) | 2005-02-04 | 2011-02-01 | Boston Scientific Scimed, Inc. | Ventricular assist and support device |
| US7670368B2 (en) * | 2005-02-07 | 2010-03-02 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
| US7780722B2 (en) | 2005-02-07 | 2010-08-24 | Boston Scientific Scimed, Inc. | Venous valve apparatus, system, and method |
| US7867274B2 (en) * | 2005-02-23 | 2011-01-11 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
| US8608797B2 (en) | 2005-03-17 | 2013-12-17 | Valtech Cardio Ltd. | Mitral valve treatment techniques |
| US7722666B2 (en) * | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
| US8333777B2 (en) | 2005-04-22 | 2012-12-18 | Benvenue Medical, Inc. | Catheter-based tissue remodeling devices and methods |
| US20060247491A1 (en) * | 2005-04-27 | 2006-11-02 | Vidlund Robert M | Devices and methods for heart valve treatment |
| US8012198B2 (en) | 2005-06-10 | 2011-09-06 | Boston Scientific Scimed, Inc. | Venous valve, system, and method |
| US8685083B2 (en) * | 2005-06-27 | 2014-04-01 | Edwards Lifesciences Corporation | Apparatus, system, and method for treatment of posterior leaflet prolapse |
| US8236051B2 (en) * | 2005-06-27 | 2012-08-07 | The Cleveland Clinic Foundation | Apparatus for placement in the annulus of a tricuspid valve |
| US8951285B2 (en) | 2005-07-05 | 2015-02-10 | Mitralign, Inc. | Tissue anchor, anchoring system and methods of using the same |
| US7776084B2 (en) * | 2005-07-13 | 2010-08-17 | Edwards Lifesciences Corporation | Prosthetic mitral heart valve having a contoured sewing ring |
| US7455689B2 (en) * | 2005-08-25 | 2008-11-25 | Edwards Lifesciences Corporation | Four-leaflet stented mitral heart valve |
| US7569071B2 (en) | 2005-09-21 | 2009-08-04 | Boston Scientific Scimed, Inc. | Venous valve, system, and method with sinus pocket |
| US8048152B2 (en) * | 2005-09-30 | 2011-11-01 | Medtronic, Inc. | Method of implanting an annuloplasty prosthesis |
| US9011528B2 (en) * | 2005-09-30 | 2015-04-21 | Medtronic, Inc. | Flexible annuloplasty prosthesis |
| EP1951154B1 (en) * | 2005-10-26 | 2018-01-24 | St. Jude Medical, Inc. | Saddle-shaped mitral valve annuloplasty prostheses |
| US8764820B2 (en) | 2005-11-16 | 2014-07-01 | Edwards Lifesciences Corporation | Transapical heart valve delivery system and method |
| US7799038B2 (en) * | 2006-01-20 | 2010-09-21 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
| US8147541B2 (en) * | 2006-02-27 | 2012-04-03 | Aortx, Inc. | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
| US8403981B2 (en) * | 2006-02-27 | 2013-03-26 | CardiacMC, Inc. | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
| US8585594B2 (en) * | 2006-05-24 | 2013-11-19 | Phoenix Biomedical, Inc. | Methods of assessing inner surfaces of body lumens or organs |
| AU2007254929A1 (en) | 2006-06-02 | 2007-12-13 | Medtronic, Inc. | Annuloplasty ring and method |
| EP2032079B1 (en) * | 2006-06-02 | 2015-08-12 | Medtronic, Inc. | Annuloplasty prosthesis with in vivo shape identification |
| JP2009540954A (ja) * | 2006-06-20 | 2009-11-26 | エーオーテックス, インコーポレイテッド | 補綴弁移植部位の調製技術 |
| CN101505686A (zh) * | 2006-06-20 | 2009-08-12 | 奥尔特克斯公司 | 人造心脏瓣膜、支撑结构以及用于植入该人造心脏瓣膜及支撑结构的系统和方法 |
| AU2007261046A1 (en) | 2006-06-20 | 2007-12-27 | Aortx, Inc. | Torque shaft and torque drive |
| AU2007260951A1 (en) * | 2006-06-21 | 2007-12-27 | Aortx, Inc. | Prosthetic valve implantation systems |
| US20080058924A1 (en) * | 2006-09-01 | 2008-03-06 | Aaron Ingle | Saddle-shaped annuloplasty ring |
| EP2063807A4 (en) * | 2006-09-06 | 2010-03-31 | Aortx Inc | PROSTHETIC CARDIAC VALVES, SUPPORT STRUCTURES, AND SYSTEMS AND METHODS FOR IMPLANTATION THEREOF |
| US8163011B2 (en) | 2006-10-06 | 2012-04-24 | BioStable Science & Engineering, Inc. | Intra-annular mounting frame for aortic valve repair |
| US11259924B2 (en) | 2006-12-05 | 2022-03-01 | Valtech Cardio Ltd. | Implantation of repair devices in the heart |
| US9883943B2 (en) | 2006-12-05 | 2018-02-06 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
| JP2010511469A (ja) | 2006-12-05 | 2010-04-15 | バルテック カーディオ,リミティド | セグメント化リング配置 |
| US8133270B2 (en) | 2007-01-08 | 2012-03-13 | California Institute Of Technology | In-situ formation of a valve |
| CA2676541C (en) * | 2007-01-26 | 2015-08-11 | Medtronic, Inc. | Annuloplasty device for tricuspid valve repair |
| US9381084B2 (en) | 2007-01-26 | 2016-07-05 | Medtronic, Inc. | Annuloplasty device for tricuspid valve repair |
| JP5604110B2 (ja) * | 2007-02-05 | 2014-10-08 | ボストン サイエンティフィック リミテッド | 弁を送達するためのシステム |
| JP5313928B2 (ja) | 2007-02-05 | 2013-10-09 | ボストン サイエンティフィック リミテッド | 経皮的な弁およびシステム |
| US11660190B2 (en) | 2007-03-13 | 2023-05-30 | Edwards Lifesciences Corporation | Tissue anchors, systems and methods, and devices |
| US8529620B2 (en) * | 2007-05-01 | 2013-09-10 | Ottavio Alfieri | Inwardly-bowed tricuspid annuloplasty ring |
| US8828079B2 (en) * | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
| WO2009067519A2 (en) * | 2007-11-19 | 2009-05-28 | The Cleveland Clinic Foundation | Apparatus and method for treating a regurgitant heart valve |
| US7892276B2 (en) * | 2007-12-21 | 2011-02-22 | Boston Scientific Scimed, Inc. | Valve with delayed leaflet deployment |
| US20090171456A1 (en) * | 2007-12-28 | 2009-07-02 | Kveen Graig L | Percutaneous heart valve, system, and method |
| US7993395B2 (en) | 2008-01-25 | 2011-08-09 | Medtronic, Inc. | Set of annuloplasty devices with varying anterior-posterior ratios and related methods |
| US8382829B1 (en) | 2008-03-10 | 2013-02-26 | Mitralign, Inc. | Method to reduce mitral regurgitation by cinching the commissure of the mitral valve |
| US8152844B2 (en) | 2008-05-09 | 2012-04-10 | Edwards Lifesciences Corporation | Quick-release annuloplasty ring holder |
| US9192472B2 (en) | 2008-06-16 | 2015-11-24 | Valtec Cardio, Ltd. | Annuloplasty devices and methods of delivery therefor |
| US8287591B2 (en) * | 2008-09-19 | 2012-10-16 | Edwards Lifesciences Corporation | Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation |
| US9314335B2 (en) | 2008-09-19 | 2016-04-19 | Edwards Lifesciences Corporation | Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation |
| US8940044B2 (en) | 2011-06-23 | 2015-01-27 | Valtech Cardio, Ltd. | Closure element for use with an annuloplasty structure |
| US8147542B2 (en) | 2008-12-22 | 2012-04-03 | Valtech Cardio, Ltd. | Adjustable repair chords and spool mechanism therefor |
| US8545553B2 (en) | 2009-05-04 | 2013-10-01 | Valtech Cardio, Ltd. | Over-wire rotation tool |
| WO2010073246A2 (en) | 2008-12-22 | 2010-07-01 | Valtech Cardio, Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
| US10517719B2 (en) | 2008-12-22 | 2019-12-31 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
| US8241351B2 (en) | 2008-12-22 | 2012-08-14 | Valtech Cardio, Ltd. | Adjustable partial annuloplasty ring and mechanism therefor |
| US9011530B2 (en) | 2008-12-22 | 2015-04-21 | Valtech Cardio, Ltd. | Partially-adjustable annuloplasty structure |
| US8926697B2 (en) | 2011-06-23 | 2015-01-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
| US8808368B2 (en) * | 2008-12-22 | 2014-08-19 | Valtech Cardio, Ltd. | Implantation of repair chords in the heart |
| US8715342B2 (en) | 2009-05-07 | 2014-05-06 | Valtech Cardio, Ltd. | Annuloplasty ring with intra-ring anchoring |
| US8353956B2 (en) | 2009-02-17 | 2013-01-15 | Valtech Cardio, Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
| US9968452B2 (en) | 2009-05-04 | 2018-05-15 | Valtech Cardio, Ltd. | Annuloplasty ring delivery cathethers |
| US12485010B2 (en) | 2009-05-07 | 2025-12-02 | Edwards Lifesciences Innovation (Israel) Ltd. | Multiple anchor delivery tool |
| US8523881B2 (en) | 2010-07-26 | 2013-09-03 | Valtech Cardio, Ltd. | Multiple anchor delivery tool |
| US8439970B2 (en) | 2009-07-14 | 2013-05-14 | Edwards Lifesciences Corporation | Transapical delivery system for heart valves |
| US9011520B2 (en) | 2009-10-29 | 2015-04-21 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
| US10098737B2 (en) | 2009-10-29 | 2018-10-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
| US8940042B2 (en) | 2009-10-29 | 2015-01-27 | Valtech Cardio, Ltd. | Apparatus for guide-wire based advancement of a rotation assembly |
| US9180007B2 (en) | 2009-10-29 | 2015-11-10 | Valtech Cardio, Ltd. | Apparatus and method for guide-wire based advancement of an adjustable implant |
| US8277502B2 (en) * | 2009-10-29 | 2012-10-02 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
| EP2506777B1 (en) | 2009-12-02 | 2020-11-25 | Valtech Cardio, Ltd. | Combination of spool assembly coupled to a helical anchor and delivery tool for implantation thereof |
| US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
| US20110160849A1 (en) * | 2009-12-22 | 2011-06-30 | Edwards Lifesciences Corporation | Bimodal tricuspid annuloplasty ring |
| US8449608B2 (en) * | 2010-01-22 | 2013-05-28 | Edwards Lifesciences Corporation | Tricuspid ring |
| US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
| US8790394B2 (en) | 2010-05-24 | 2014-07-29 | Valtech Cardio, Ltd. | Adjustable artificial chordeae tendineae with suture loops |
| US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
| BR112013004115B1 (pt) | 2010-08-24 | 2021-01-05 | Edwards Lifesciences Corporation | anel de anuloplastia |
| US9161835B2 (en) | 2010-09-30 | 2015-10-20 | BioStable Science & Engineering, Inc. | Non-axisymmetric aortic valve devices |
| CA2813246A1 (en) * | 2010-09-30 | 2012-04-05 | BioStable Science & Engineering, Inc. | Intra-annular mounting frame for aortic valve repair |
| WO2012094406A1 (en) | 2011-01-04 | 2012-07-12 | The Cleveland Clinic Foundation | Apparatus and method for treating a regurgitant heart valve |
| US9381082B2 (en) | 2011-04-22 | 2016-07-05 | Edwards Lifesciences Corporation | Devices, systems and methods for accurate positioning of a prosthetic valve |
| US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
| US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
| EP2723274B1 (en) | 2011-06-23 | 2017-12-27 | Valtech Cardio, Ltd. | Closure element for use with annuloplasty structure |
| US9918840B2 (en) | 2011-06-23 | 2018-03-20 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
| US10792152B2 (en) | 2011-06-23 | 2020-10-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
| US9668859B2 (en) | 2011-08-05 | 2017-06-06 | California Institute Of Technology | Percutaneous heart valve delivery systems |
| US8920493B2 (en) | 2011-09-16 | 2014-12-30 | St. Jude Medical, Cardiology Division, Inc. | Systems and methods for holding annuloplasty rings |
| US8858623B2 (en) | 2011-11-04 | 2014-10-14 | Valtech Cardio, Ltd. | Implant having multiple rotational assemblies |
| US9724192B2 (en) | 2011-11-08 | 2017-08-08 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
| US10143553B2 (en) | 2011-12-12 | 2018-12-04 | Cardiac Implants, Llc | Heart valve repair device |
| US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
| CN102824231B (zh) * | 2012-09-19 | 2015-03-11 | 马增山 | 一种机械缝合式人造心脏瓣膜及其缝合方法 |
| EP2900150B1 (en) | 2012-09-29 | 2018-04-18 | Mitralign, Inc. | Plication lock delivery system |
| EP3517052A1 (en) | 2012-10-23 | 2019-07-31 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
| US10376266B2 (en) | 2012-10-23 | 2019-08-13 | Valtech Cardio, Ltd. | Percutaneous tissue anchor techniques |
| US9730793B2 (en) | 2012-12-06 | 2017-08-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of a tool |
| WO2014105741A1 (en) | 2012-12-31 | 2014-07-03 | Edwards Lifesciences Corporation | Surgical heart valves adapted for post implant expansion |
| US10543085B2 (en) | 2012-12-31 | 2020-01-28 | Edwards Lifesciences Corporation | One-piece heart valve stents adapted for post-implant expansion |
| EP2948103B1 (en) | 2013-01-24 | 2022-12-07 | Cardiovalve Ltd | Ventricularly-anchored prosthetic valves |
| US9724084B2 (en) | 2013-02-26 | 2017-08-08 | Mitralign, Inc. | Devices and methods for percutaneous tricuspid valve repair |
| US10450480B2 (en) * | 2013-03-13 | 2019-10-22 | Hentzen Coatings, Inc. | Water-reducible single-component moisture-curing polyurethane coatings |
| US9687346B2 (en) | 2013-03-14 | 2017-06-27 | Edwards Lifesciences Corporation | Multi-stranded heat set annuloplasty rings |
| US10449333B2 (en) | 2013-03-14 | 2019-10-22 | Valtech Cardio, Ltd. | Guidewire feeder |
| US10149757B2 (en) | 2013-03-15 | 2018-12-11 | Edwards Lifesciences Corporation | System and method for transaortic delivery of a prosthetic heart valve |
| US9724195B2 (en) | 2013-03-15 | 2017-08-08 | Mitralign, Inc. | Translation catheters and systems |
| US9744037B2 (en) | 2013-03-15 | 2017-08-29 | California Institute Of Technology | Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves |
| US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
| US10070857B2 (en) | 2013-08-31 | 2018-09-11 | Mitralign, Inc. | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
| WO2015059699A2 (en) | 2013-10-23 | 2015-04-30 | Valtech Cardio, Ltd. | Anchor magazine |
| US9610162B2 (en) | 2013-12-26 | 2017-04-04 | Valtech Cardio, Ltd. | Implantation of flexible implant |
| EP3134033B1 (en) | 2014-05-29 | 2018-04-04 | Edwards Lifesciences CardiAQ LLC | Prosthesis and delivery device |
| WO2016016899A1 (en) | 2014-07-30 | 2016-02-04 | Mitraltech Ltd. | Articulatable prosthetic valve |
| US10195030B2 (en) | 2014-10-14 | 2019-02-05 | Valtech Cardio, Ltd. | Leaflet-restraining techniques |
| WO2016125160A1 (en) | 2015-02-05 | 2016-08-11 | Mitraltech Ltd. | Prosthetic valve with axially-sliding frames |
| US20160256269A1 (en) | 2015-03-05 | 2016-09-08 | Mitralign, Inc. | Devices for treating paravalvular leakage and methods use thereof |
| EP4450000A3 (en) | 2015-04-30 | 2024-12-25 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty technologies |
| US10314707B2 (en) * | 2015-06-09 | 2019-06-11 | Edwards Lifesciences, Llc | Asymmetric mitral annuloplasty band |
| EP3316823B1 (en) | 2015-07-02 | 2020-04-08 | Edwards Lifesciences Corporation | Integrated hybrid heart valves |
| CR20170577A (es) | 2015-07-02 | 2019-05-03 | Edwards Lifesciences Corp | Válvulas cardíacas híbridas adaptadas para expansión post implante |
| US10631984B2 (en) | 2015-12-15 | 2020-04-28 | Neovasc Tiara Inc. | Transseptal delivery system |
| WO2017117370A2 (en) | 2015-12-30 | 2017-07-06 | Mitralign, Inc. | System and method for reducing tricuspid regurgitation |
| US10751182B2 (en) | 2015-12-30 | 2020-08-25 | Edwards Lifesciences Corporation | System and method for reshaping right heart |
| CA3007670C (en) | 2016-01-29 | 2024-09-17 | Neovasc Tiara Inc. | PROSTHETIC VALVE PREVENTING OBSTRUCTION THAT WOULD PREVENT FLOW |
| US10531866B2 (en) | 2016-02-16 | 2020-01-14 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
| US10702274B2 (en) | 2016-05-26 | 2020-07-07 | Edwards Lifesciences Corporation | Method and system for closing left atrial appendage |
| GB201611910D0 (en) | 2016-07-08 | 2016-08-24 | Valtech Cardio Ltd | Adjustable annuloplasty device with alternating peaks and troughs |
| US20190231525A1 (en) | 2016-08-01 | 2019-08-01 | Mitraltech Ltd. | Minimally-invasive delivery systems |
| ES3018641T3 (es) | 2016-08-10 | 2025-05-16 | Cardiovalve Ltd | Válvula protésica con marcos concéntricos |
| US10722356B2 (en) | 2016-11-03 | 2020-07-28 | Edwards Lifesciences Corporation | Prosthetic mitral valve holders |
| AU2017361296B2 (en) | 2016-11-21 | 2022-09-29 | Neovasc Tiara Inc. | Methods and systems for rapid retraction of a transcatheter heart valve delivery system |
| DE102017002976B4 (de) | 2017-03-28 | 2021-08-26 | Immanuel Albertinen Diakonie Ggmbh | Minimal-invasiv implantierbare Vorrichtung zur Beseitigung einer Mitralklappeninsuffizienz am schlagenden Herzen und Mitralklappen-Implantat-System |
| US11045627B2 (en) | 2017-04-18 | 2021-06-29 | Edwards Lifesciences Corporation | Catheter system with linear actuation control mechanism |
| US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
| US12064347B2 (en) | 2017-08-03 | 2024-08-20 | Cardiovalve Ltd. | Prosthetic heart valve |
| WO2019036810A1 (en) | 2017-08-25 | 2019-02-28 | Neovasc Tiara Inc. | TRANSCATHETER MITRAL VALVULE PROSTHESIS WITH SEQUENTIAL DEPLOYMENT |
| US12458493B2 (en) | 2017-09-19 | 2025-11-04 | Cardiovalve Ltd. | Prosthetic heart valve and delivery systems and methods |
| US10835221B2 (en) | 2017-11-02 | 2020-11-17 | Valtech Cardio, Ltd. | Implant-cinching devices and systems |
| US11135062B2 (en) | 2017-11-20 | 2021-10-05 | Valtech Cardio Ltd. | Cinching of dilated heart muscle |
| EP3743015A1 (en) | 2018-01-24 | 2020-12-02 | Valtech Cardio, Ltd. | Contraction of an annuloplasty structure |
| EP3743014B1 (en) | 2018-01-26 | 2023-07-19 | Edwards Lifesciences Innovation (Israel) Ltd. | Techniques for facilitating heart valve tethering and chord replacement |
| USD944398S1 (en) | 2018-06-13 | 2022-02-22 | Edwards Lifesciences Corporation | Expanded heart valve stent |
| MX2020013973A (es) | 2018-07-12 | 2021-06-15 | Valtech Cardio Ltd | Sistemas de anuloplastia y herramientas de bloqueo para ello. |
| EP3829490A1 (en) | 2018-07-30 | 2021-06-09 | Edwards Lifesciences Corporation | Minimally-invasive low strain annuloplasty ring |
| AU2019374743B2 (en) | 2018-11-08 | 2022-03-03 | Neovasc Tiara Inc. | Ventricular deployment of a transcatheter mitral valve prosthesis |
| EP3934591A4 (en) | 2019-03-08 | 2022-11-23 | Neovasc Tiara Inc. | RETRIEVABLE PROSTHETIC RELEASE SYSTEM |
| EP3946163B1 (en) | 2019-04-01 | 2025-08-20 | Neovasc Tiara Inc. | Controllably deployable prosthetic valve |
| AU2020271896B2 (en) | 2019-04-10 | 2022-10-13 | Neovasc Tiara Inc. | Prosthetic valve with natural blood flow |
| CN114025813B (zh) | 2019-05-20 | 2024-05-14 | 内奥瓦斯克迪亚拉公司 | 具有止血机构的引入器 |
| BR112021023706A2 (pt) | 2019-05-29 | 2022-03-22 | Valtech Cardio Ltd | Sistemas e métodos de manuseio de ancoragem de tecido |
| AU2020295566B2 (en) | 2019-06-20 | 2023-07-20 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
| CA3146859A1 (en) | 2019-07-16 | 2021-01-21 | Heartchord Medical, Inc. | Tissue remodeling systems and methods |
| US12364606B2 (en) | 2019-07-23 | 2025-07-22 | Edwards Lifesciences Innovation (Israel) Ltd. | Fluoroscopic visualization of heart valve anatomy |
| CA3143177A1 (en) | 2019-08-28 | 2021-03-04 | Valtech Cardio, Ltd. | Low-profile steerable catheter |
| JP2022546160A (ja) | 2019-08-30 | 2022-11-04 | エドワーズ ライフサイエンシーズ イノベーション (イスラエル) リミテッド | アンカーチャネル先端 |
| KR20220066398A (ko) | 2019-09-25 | 2022-05-24 | 카디악 임플란츠 엘엘씨 | 심장 판막 고리 감소 시스템 |
| AU2020375903B2 (en) | 2019-10-29 | 2025-10-30 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty and tissue anchor technologies |
| CN114641263A (zh) | 2019-12-16 | 2022-06-17 | 爱德华兹生命科学公司 | 具有缝合线成环保护的瓣膜保持器组件 |
| CN115297811A (zh) | 2020-02-06 | 2022-11-04 | 爱德华兹生命科学公司 | 增强挠性的瓣环成形术带 |
| CA3183115A1 (en) | 2020-05-20 | 2021-11-25 | Cardiac Implants Llc | Reducing the diameter of a cardiac valve annulus with independent control over each of the anchors that are launched into the annulus |
| CA3182316A1 (en) | 2020-06-19 | 2021-12-23 | Edwards Lifesciences Innovation (Israel) Ltd. | Self-stopping tissue anchors |
| WO2022026219A1 (en) | 2020-07-30 | 2022-02-03 | Edwards Lifesciences Corporation | Adjustable annuloplasty ring and delivery system |
| US12357459B2 (en) | 2020-12-03 | 2025-07-15 | Cardiovalve Ltd. | Transluminal delivery system |
| EP4304529A1 (en) | 2021-03-09 | 2024-01-17 | Edwards Lifesciences Corporation | Annuloplasty ring and tether adjustment system |
| WO2024039643A1 (en) | 2022-08-16 | 2024-02-22 | Boston Scientific Scimed, Inc. | Medical device for occluding a left atrial appendage |
| CN117752464A (zh) * | 2022-09-19 | 2024-03-26 | 江苏臻亿医疗科技有限公司 | 用于心脏瓣环修复的植入物和植入物的输送装置 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0595791A2 (en) * | 1989-02-13 | 1994-05-04 | Baxter International Inc. | Annuloplasty ring prosthesis |
| US5607471A (en) * | 1993-08-03 | 1997-03-04 | Jacques Seguin | Prosthetic ring for heart surgery |
| WO2002003892A1 (en) * | 2000-07-06 | 2002-01-17 | Medtentia Ab | Annuloplasty devices |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2306671A1 (fr) | 1975-04-11 | 1976-11-05 | Rhone Poulenc Ind | Implant valvulaire |
| US5306296A (en) | 1992-08-21 | 1994-04-26 | Medtronic, Inc. | Annuloplasty and suture rings |
| US5258021A (en) | 1992-01-27 | 1993-11-02 | Duran Carlos G | Sigmoid valve annuloplasty ring |
| US5450860A (en) | 1993-08-31 | 1995-09-19 | W. L. Gore & Associates, Inc. | Device for tissue repair and method for employing same |
| EP0869751A1 (en) | 1995-11-01 | 1998-10-14 | St. Jude Medical, Inc. | Bioresorbable annuloplasty prosthesis |
| EP0860151A1 (en) | 1997-02-25 | 1998-08-26 | Naqeeb Khalid | Cardiac valvular support prosthesis |
| US6250308B1 (en) | 1998-06-16 | 2001-06-26 | Cardiac Concepts, Inc. | Mitral valve annuloplasty ring and method of implanting |
| DE19910233A1 (de) | 1999-03-09 | 2000-09-21 | Jostra Medizintechnik Ag | Anuloplastieprothese |
| US6183512B1 (en) | 1999-04-16 | 2001-02-06 | Edwards Lifesciences Corporation | Flexible annuloplasty system |
| US6231602B1 (en) | 1999-04-16 | 2001-05-15 | Edwards Lifesciences Corporation | Aortic annuloplasty ring |
| US6187040B1 (en) | 1999-05-03 | 2001-02-13 | John T. M. Wright | Mitral and tricuspid annuloplasty rings |
| US6797002B2 (en) * | 2000-02-02 | 2004-09-28 | Paul A. Spence | Heart valve repair apparatus and methods |
| US6368348B1 (en) | 2000-05-15 | 2002-04-09 | Shlomo Gabbay | Annuloplasty prosthesis for supporting an annulus of a heart valve |
| ITMI20011012A1 (it) | 2001-05-17 | 2002-11-17 | Ottavio Alfieri | Protesi anulare per valvola mitrale |
-
2002
- 2002-07-08 US US10/192,516 patent/US6858039B2/en not_active Expired - Lifetime
-
2003
- 2003-07-03 DE DE60308523T patent/DE60308523T2/de not_active Expired - Lifetime
- 2003-07-03 AU AU2003248833A patent/AU2003248833B2/en not_active Expired
- 2003-07-03 AT AT03763288T patent/ATE339934T1/de not_active IP Right Cessation
- 2003-07-03 JP JP2004519963A patent/JP4384978B2/ja not_active Expired - Lifetime
- 2003-07-03 WO PCT/US2003/021208 patent/WO2004004607A1/en not_active Ceased
- 2003-07-03 BR BRPI0312502-5A patent/BR0312502B1/pt active IP Right Grant
- 2003-07-03 EP EP03763288A patent/EP1519695B1/en not_active Expired - Lifetime
- 2003-07-03 CA CA2489368A patent/CA2489368C/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0595791A2 (en) * | 1989-02-13 | 1994-05-04 | Baxter International Inc. | Annuloplasty ring prosthesis |
| US5607471A (en) * | 1993-08-03 | 1997-03-04 | Jacques Seguin | Prosthetic ring for heart surgery |
| WO2002003892A1 (en) * | 2000-07-06 | 2002-01-17 | Medtentia Ab | Annuloplasty devices |
Cited By (100)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7464712B2 (en) | 1997-06-27 | 2008-12-16 | The Trustees Of Columbia University In The City Of New York | Method and apparatus for circulatory valve repair |
| US7288097B2 (en) | 1997-09-12 | 2007-10-30 | Evalve, Inc. | Surgical device for connecting soft tissue |
| US8740918B2 (en) | 1997-09-12 | 2014-06-03 | Evalve, Inc. | Surgical device for connecting soft tissue |
| US9510837B2 (en) | 1997-09-12 | 2016-12-06 | Evalve, Inc. | Surgical device for connecting soft tissue |
| US7608091B2 (en) | 1999-04-09 | 2009-10-27 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
| US9510829B2 (en) | 1999-04-09 | 2016-12-06 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
| US7563273B2 (en) | 1999-04-09 | 2009-07-21 | Evalve, Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
| US10327743B2 (en) | 1999-04-09 | 2019-06-25 | Evalve, Inc. | Device and methods for endoscopic annuloplasty |
| US7604646B2 (en) | 1999-04-09 | 2009-10-20 | Evalve, Inc. | Locking mechanisms for fixation devices and methods of engaging tissue |
| US7563267B2 (en) | 1999-04-09 | 2009-07-21 | Evalve, Inc. | Fixation device and methods for engaging tissue |
| US8740920B2 (en) | 1999-04-09 | 2014-06-03 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
| US8323334B2 (en) | 1999-04-09 | 2012-12-04 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
| US7704269B2 (en) | 1999-04-09 | 2010-04-27 | Evalve, Inc. | Methods and apparatus for cardiac valve repair |
| US9044246B2 (en) | 1999-04-09 | 2015-06-02 | Abbott Vascular Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
| US10166101B2 (en) | 2001-05-17 | 2019-01-01 | Edwards Lifesciences Corporation | Methods for repairing mitral valves |
| US8529621B2 (en) | 2001-05-17 | 2013-09-10 | Edwards Lifesciences Corporation | Methods of repairing an abnormal mitral valve |
| US10653427B2 (en) | 2001-06-27 | 2020-05-19 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
| US10624618B2 (en) | 2001-06-27 | 2020-04-21 | Evalve, Inc. | Methods and devices for capturing and fixing leaflets in valve repair |
| US10188518B2 (en) | 2001-08-28 | 2019-01-29 | Edwards Lifesciences Corporation | Annuloplasty ring with variable cross-section |
| US9149359B2 (en) | 2001-08-28 | 2015-10-06 | Edwards Lifesciences Corporation | Three-dimensional annuloplasty ring |
| US9414922B2 (en) | 2001-08-28 | 2016-08-16 | Edwards Lifesciences Corporation | Three-dimensional annuloplasty ring |
| US8114155B2 (en) | 2001-08-28 | 2012-02-14 | Edwards Lifesciences Corporation | Annuloplasty ring with offset free ends |
| US8216230B2 (en) | 2001-11-15 | 2012-07-10 | Evalve, Inc. | Cardiac valve leaflet attachment device and methods thereof |
| US7608103B2 (en) | 2002-07-08 | 2009-10-27 | Edwards Lifesciences Corporation | Mitral valve annuloplasty ring having a posterior bow |
| US10631871B2 (en) | 2003-05-19 | 2020-04-28 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
| US10667823B2 (en) | 2003-05-19 | 2020-06-02 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
| US10646229B2 (en) | 2003-05-19 | 2020-05-12 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
| US10828042B2 (en) | 2003-05-19 | 2020-11-10 | Evalve, Inc. | Fixation devices, systems and methods for engaging tissue |
| JP2007535371A (ja) * | 2004-04-29 | 2007-12-06 | エドワーズ ライフサイエンシーズ コーポレイション | 僧帽弁逸脱のための弁輪形成リング |
| US11304715B2 (en) | 2004-09-27 | 2022-04-19 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
| US11484331B2 (en) | 2004-09-27 | 2022-11-01 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
| US7635329B2 (en) | 2004-09-27 | 2009-12-22 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
| US12121231B2 (en) | 2004-09-27 | 2024-10-22 | Evalve, Inc. | Methods and devices for tissue grasping and assessment |
| JP2008528179A (ja) * | 2005-01-31 | 2008-07-31 | エドワーズ ライフサイエンシーズ コーポレイション | 後方弓形部を有する僧帽弁輪形成術リング |
| WO2006083529A1 (en) * | 2005-01-31 | 2006-08-10 | Edwards Lifesciences Corporation | Mitral valve annuloplasty ring having a posterior bow |
| US8470028B2 (en) | 2005-02-07 | 2013-06-25 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
| US10667911B2 (en) | 2005-02-07 | 2020-06-02 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
| US8216304B2 (en) | 2005-03-23 | 2012-07-10 | Edwards Lifesciences Corporation | Annuloplasty ring and holder combination |
| US7575595B2 (en) | 2005-03-23 | 2009-08-18 | Edwards Lifesciences Corporation | Annuloplasty ring and holder combination |
| US10010419B2 (en) | 2005-12-15 | 2018-07-03 | Georgia Tech Research Corporation | Papillary muscle position control devices, systems, and methods |
| US10039531B2 (en) | 2005-12-15 | 2018-08-07 | Georgia Tech Research Corporation | Systems and methods to control the dimension of a heart valve |
| US8568473B2 (en) | 2005-12-15 | 2013-10-29 | Georgia Tech Research Corporation | Systems and methods for enabling heart valve replacement |
| US9125742B2 (en) | 2005-12-15 | 2015-09-08 | Georgia Tech Research Foundation | Papillary muscle position control devices, systems, and methods |
| US8591576B2 (en) | 2006-05-15 | 2013-11-26 | Edwards Lifesciences Ag | Method for altering the geometry of the heart |
| US8142495B2 (en) | 2006-05-15 | 2012-03-27 | Edwards Lifesciences Ag | System and a method for altering the geometry of the heart |
| US7879087B2 (en) | 2006-10-06 | 2011-02-01 | Edwards Lifesciences Corporation | Mitral and tricuspid annuloplasty rings |
| US8382828B2 (en) | 2006-10-06 | 2013-02-26 | Edwards Lifesciences Corporation | Mitral annuloplasty rings |
| US9011529B2 (en) | 2007-02-09 | 2015-04-21 | Edwards Lifesciences Corporation | Mitral annuloplasty rings with sewing cuff |
| US8764821B2 (en) | 2007-02-09 | 2014-07-01 | Edwards Lifesciences Corporation | Degenerative vavlular disease specific annuloplasty ring sets |
| US9101472B2 (en) | 2007-09-07 | 2015-08-11 | Edwards Lifesciences Corporation | Active holder for annuloplasty ring delivery |
| US11576784B2 (en) | 2007-09-07 | 2023-02-14 | Edwards Lifesciences Corporation | Active holder for annuloplasty ring delivery |
| US10842629B2 (en) | 2007-09-07 | 2020-11-24 | Edwards Lifesciences Corporation | Active holder for annuloplasty ring delivery |
| US11903830B2 (en) | 2008-05-13 | 2024-02-20 | Edwards Lifesciences Corporation | Physiologically harmonized repair of tricuspid valve |
| US9937041B2 (en) | 2008-05-13 | 2018-04-10 | Edwards Lifesciences Corporation | Physiologically harmonized tricuspid annuloplasty ring |
| US9060858B2 (en) | 2009-09-15 | 2015-06-23 | Evalve, Inc. | Methods, systems and devices for cardiac valve repair |
| US8915960B2 (en) | 2010-08-31 | 2014-12-23 | Edwards Lifesciences Corporation | Physiologic tricuspid annuloplasty ring |
| US8932350B2 (en) | 2010-11-30 | 2015-01-13 | Edwards Lifesciences Corporation | Reduced dehiscence annuloplasty ring |
| US10743876B2 (en) | 2011-09-13 | 2020-08-18 | Abbott Cardiovascular Systems Inc. | System for fixation of leaflets of a heart valve |
| US12016561B2 (en) | 2011-09-13 | 2024-06-25 | Abbott Cardiovascular Systems Inc. | System for fixation of leaflets of a heart valve |
| US10792039B2 (en) | 2011-09-13 | 2020-10-06 | Abbott Cardiovascular Systems Inc. | Gripper pusher mechanism for tissue apposition systems |
| US10390943B2 (en) | 2014-03-17 | 2019-08-27 | Evalve, Inc. | Double orifice device for transcatheter mitral valve replacement |
| US11666433B2 (en) | 2014-03-17 | 2023-06-06 | Evalve, Inc. | Double orifice device for transcatheter mitral valve replacement |
| US11006956B2 (en) | 2014-12-19 | 2021-05-18 | Abbott Cardiovascular Systems Inc. | Grasping for tissue repair |
| US11229435B2 (en) | 2014-12-19 | 2022-01-25 | Abbott Cardiovascular Systems Inc. | Grasping for tissue repair |
| US12137909B2 (en) | 2014-12-19 | 2024-11-12 | Abbott Cardiovascular Systems Inc. | Grasping for tissue repair |
| US10188392B2 (en) | 2014-12-19 | 2019-01-29 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
| US11109863B2 (en) | 2014-12-19 | 2021-09-07 | Abbott Cardiovascular Systems, Inc. | Grasping for tissue repair |
| US10524912B2 (en) | 2015-04-02 | 2020-01-07 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
| US12178443B2 (en) | 2015-04-02 | 2024-12-31 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
| US10893941B2 (en) | 2015-04-02 | 2021-01-19 | Abbott Cardiovascular Systems, Inc. | Tissue fixation devices and methods |
| US10376673B2 (en) | 2015-06-19 | 2019-08-13 | Evalve, Inc. | Catheter guiding system and methods |
| US10856988B2 (en) | 2015-06-29 | 2020-12-08 | Evalve, Inc. | Self-aligning radiopaque ring |
| US10238494B2 (en) | 2015-06-29 | 2019-03-26 | Evalve, Inc. | Self-aligning radiopaque ring |
| US10667815B2 (en) | 2015-07-21 | 2020-06-02 | Evalve, Inc. | Tissue grasping devices and related methods |
| US11096691B2 (en) | 2015-07-21 | 2021-08-24 | Evalve, Inc. | Tissue grasping devices and related methods |
| US12137910B2 (en) | 2015-07-21 | 2024-11-12 | Evalve, Inc. | Tissue grasping devices and related methods |
| US11759209B2 (en) | 2015-07-21 | 2023-09-19 | Evalve, Inc. | Tissue grasping devices and related methods |
| US10413408B2 (en) | 2015-08-06 | 2019-09-17 | Evalve, Inc. | Delivery catheter systems, methods, and devices |
| US11931263B2 (en) | 2015-10-09 | 2024-03-19 | Evalve, Inc. | Delivery catheter handle and methods of use |
| US11109972B2 (en) | 2015-10-09 | 2021-09-07 | Evalve, Inc. | Delivery catheter handle and methods of use |
| US10238495B2 (en) | 2015-10-09 | 2019-03-26 | Evalve, Inc. | Delivery catheter handle and methods of use |
| US12408917B2 (en) | 2016-07-06 | 2025-09-09 | Evalve, Inc. | Methods and devices for valve clip excision |
| US10736632B2 (en) | 2016-07-06 | 2020-08-11 | Evalve, Inc. | Methods and devices for valve clip excision |
| US11653947B2 (en) | 2016-10-05 | 2023-05-23 | Evalve, Inc. | Cardiac valve cutting device |
| US10363138B2 (en) | 2016-11-09 | 2019-07-30 | Evalve, Inc. | Devices for adjusting the curvature of cardiac valve structures |
| US11166818B2 (en) | 2016-11-09 | 2021-11-09 | Evalve, Inc. | Devices for adjusting the curvature of cardiac valve structures |
| US10398553B2 (en) | 2016-11-11 | 2019-09-03 | Evalve, Inc. | Opposing disk device for grasping cardiac valve tissue |
| US10426616B2 (en) | 2016-11-17 | 2019-10-01 | Evalve, Inc. | Cardiac implant delivery system |
| US10779837B2 (en) | 2016-12-08 | 2020-09-22 | Evalve, Inc. | Adjustable arm device for grasping tissues |
| US11957358B2 (en) | 2016-12-08 | 2024-04-16 | Evalve, Inc. | Adjustable arm device for grasping tissues |
| US11406388B2 (en) | 2016-12-13 | 2022-08-09 | Evalve, Inc. | Rotatable device and method for fixing tricuspid valve tissue |
| US10314586B2 (en) | 2016-12-13 | 2019-06-11 | Evalve, Inc. | Rotatable device and method for fixing tricuspid valve tissue |
| US11065119B2 (en) | 2017-05-12 | 2021-07-20 | Evalve, Inc. | Long arm valve repair clip |
| US12295846B2 (en) | 2017-05-12 | 2025-05-13 | Evalve, Inc | Long arm valve repair clip |
| US12048624B2 (en) | 2019-07-15 | 2024-07-30 | Evalve, Inc. | Independent proximal element actuation methods |
| US12171486B2 (en) | 2020-05-06 | 2024-12-24 | Evalve, Inc. | Devices and methods for clip separation |
| US12178444B2 (en) | 2020-05-06 | 2024-12-31 | Evalve, Inc. | Clip removal systems and methods |
| US12171485B2 (en) | 2020-05-06 | 2024-12-24 | Evalve, Inc. | Systems and methods for leaflet cutting using a hook catheter |
| US12048448B2 (en) | 2020-05-06 | 2024-07-30 | Evalve, Inc. | Leaflet grasping and cutting device |
| US12414811B2 (en) | 2020-05-06 | 2025-09-16 | Evalve, Inc. | Devices and methods for leaflet cutting |
Also Published As
| Publication number | Publication date |
|---|---|
| ATE339934T1 (de) | 2006-10-15 |
| BR0312502B1 (pt) | 2013-04-30 |
| BR0312502A (pt) | 2005-04-12 |
| EP1519695A1 (en) | 2005-04-06 |
| US20040006384A1 (en) | 2004-01-08 |
| AU2003248833A1 (en) | 2004-01-23 |
| EP1519695B1 (en) | 2006-09-20 |
| DE60308523T2 (de) | 2007-02-01 |
| US6858039B2 (en) | 2005-02-22 |
| CA2489368A1 (en) | 2004-01-15 |
| DE60308523D1 (de) | 2006-11-02 |
| CA2489368C (en) | 2011-08-23 |
| JP2005532119A (ja) | 2005-10-27 |
| AU2003248833B2 (en) | 2008-12-04 |
| JP4384978B2 (ja) | 2009-12-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US6858039B2 (en) | Mitral valve annuloplasty ring having a posterior bow | |
| US7993396B2 (en) | Mitral valve annuloplasty ring having an offset posterior bow | |
| US10166101B2 (en) | Methods for repairing mitral valves | |
| CA2539459C (en) | Annuloplasty rings for repair of abnormal mitral valves | |
| JP7765424B2 (ja) | 非対称な僧帽弁形成バンド | |
| CA2685227C (en) | Inwardly-bowed tricuspid annuloplasty ring | |
| US20210401577A1 (en) | Physiologically harmonized repair of tricuspid valve |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
| AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2489368 Country of ref document: CA |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003248833 Country of ref document: AU |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2003763288 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2004519963 Country of ref document: JP |
|
| WWP | Wipo information: published in national office |
Ref document number: 2003763288 Country of ref document: EP |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2003763288 Country of ref document: EP |