WO2004004425A1 - 電球形無電極蛍光ランプおよび無電極放電ランプ点灯装置 - Google Patents

電球形無電極蛍光ランプおよび無電極放電ランプ点灯装置 Download PDF

Info

Publication number
WO2004004425A1
WO2004004425A1 PCT/JP2003/008062 JP0308062W WO2004004425A1 WO 2004004425 A1 WO2004004425 A1 WO 2004004425A1 JP 0308062 W JP0308062 W JP 0308062W WO 2004004425 A1 WO2004004425 A1 WO 2004004425A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
lighting
bulb
fluorescent lamp
Prior art date
Application number
PCT/JP2003/008062
Other languages
English (en)
French (fr)
Inventor
Satoshi Kominami
Masayoshi Gyoten
Akira Takahashi
Kouji Miyazaki
Original Assignee
Matsushita Electric Industrial Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co.,Ltd. filed Critical Matsushita Electric Industrial Co.,Ltd.
Priority to AU2003244066A priority Critical patent/AU2003244066A1/en
Publication of WO2004004425A1 publication Critical patent/WO2004004425A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/2806Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps without electrodes in the vessel, e.g. surface discharge lamps, electrodeless discharge lamps
    • H05B41/2813Arrangements for protecting lamps or circuits against abnormal operating conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to an electrodeless discharge lamp lighting device, and more particularly to a bulb-type electrodeless fluorescent lamp.
  • electrodeless discharge lamps using inductive coupling have been increasingly used, especially due to their long life characteristics.
  • electrodeless discharge lamps do not suffer from the problem of electrode depletion, and therefore have superior long-life characteristics compared to electrodeed discharge lamps.
  • the use of lamps is expanding.
  • inductive coupling in electrodeless discharge lamps has a different problem from electrodeed discharge lamps, namely, electromagnetic interference.
  • electromagnetic interference if a metal, particularly a metal having magnetic properties such as iron, comes close to the electrodeless discharge lamp, flickering or no lighting may occur. Also, if two electrodeless discharge lamps are brought close to each other, flickering may occur. Such a phenomenon is due to the fact that an AC magnetic field generated by the induction coil of the electrodeless discharge lamp causes electromagnetic interference. Many attempts have been made to reduce the magnetic flux coming out of the electrodeless discharge lamp in order to prevent electromagnetic interference in the electrodeless discharge lamp.
  • Japanese Patent Publication No. 6-144466 discloses either the inside or outside of the arc tube.
  • an electrodeless discharge lamp is disclosed in which electromagnetic interference is reduced by forming a transparent conductive film on both sides.
  • Japanese Patent Publication No. 6_144466 discloses an electrodeless discharge lamp having a plurality of closed rings made of copper wire outside the arc tube and reducing the magnetic field outside the lamp.
  • Japanese Patent Application Laid-Open No. 6-144446 discloses an electrodeless discharge lamp having a plurality of closed rings made of copper wire outside the arc tube and reducing the magnetic field outside the lamp.
  • a short-circuited metal ring is provided between a lamp housing made of a dielectric and an arc tube to form a conductive outer shell structure to which an electrodeless discharge lamp is attached.
  • Techniques for minimizing electromagnetic interference with an induction coil have been disclosed.
  • Japanese Patent Application Laid-Open No. Hei 9-75551 in order to suppress electromagnetic interference more effectively, an electrodeless discharge lamp in which an induction coil is wound with a shielding conductive loop and this loop is terminated with a capacitor is disclosed. It has been disclosed.
  • Electrodeless discharge lamps have been mainly used for public lighting applications, but in recent years, electrodeless discharge lamps have been used as substitutes for light bulbs in hotels and the like. In addition, bulb-type electrodeless fluorescent lamps that can be directly substituted for white light bulbs have been developed, and the use of electrodeless discharge lamps as an alternative to bulbs has been increasing.
  • the operating frequency of the lighting circuit of the electrodeless discharge lamp is changed from the frequency of the conventional 2.65 MHz and 13.56 MHz in the MHz band.
  • the operating frequency is reduced, the effect of suppressing radiation noise and line noise is easily obtained, but the impedance of the plasma is increased, so that the coupling between the induction coil and the plasma is deteriorated and electromagnetic interference is easily generated. Therefore, in an electrodeless discharge lamp having a low operating frequency, it is difficult to prevent electromagnetic interference by the metal ring.
  • the present invention has been made in view of the above points, and a main object of the present invention is to provide an electrodeless discharge lamp lighting device and a bulb-type electrodeless fluorescent lamp in which flicker is prevented from occurring due to electromagnetic interference. Is to do. Disclosure of the invention
  • the bulb-type electrodeless fluorescent lamp of the present invention is electrically connected to a high-frequency lighting circuit including an arc tube filled with a luminous gas, an induction coil for supplying high-frequency power to the arc tube, and the high-frequency lighting circuit.
  • a base wherein the arc tube, the high-frequency lighting circuit, and the base are integrally formed, and the high-frequency lighting circuit is provided between the induction coil and a conductive member existing outside the arc tube.
  • a detection circuit that detects that the high-frequency lighting circuit is in an abnormal state due to electromagnetic interference, and a stop circuit that stops the high-frequency lighting circuit in response to a detection signal from the detection circuit.
  • the high-frequency lighting circuit includes a load resonance circuit including an impedance element
  • the detection circuit includes a unit configured to detect a voltage change of the impedance element included in the load resonance circuit.
  • the high-frequency lighting circuit includes a load resonance circuit including an impedance element
  • the detection circuit includes a unit configured to detect a change in current of the impedance element included in the load resonance circuit.
  • the detection circuit may include a unit that detects a change in a light emission output from the arc tube.
  • the high-frequency lighting circuit is preferably configured so that the stop circuit does not operate for one second immediately after the lamp is turned on. -It is preferable that the display device further includes a display element for displaying that the stop circuit has operated.
  • Another bulb-type electrodeless fluorescent lamp includes an electrodeless fluorescent lamp filled with a luminescent gas and having a concave portion, an induction coil inserted into the concave portion, and electrically connected to the induction coil.
  • the light emitting tube, the lighting circuit, and the base are integrally formed, and the lighting circuit converts an AC voltage into a DC voltage.
  • a resonance load circuit including: a detection circuit that detects a voltage or a current in the resonance load circuit; and a detection signal from the detection circuit. And a stop circuit for stopping the operation of the CZA C conversion circuit.
  • the detection circuit is configured so that the detection signal is not transmitted to the stop circuit for one second immediately after the lamp is turned on.
  • the detection circuit includes a capacitor and a Zener diode that is brought into a conductive state by a voltage of the capacitor, the Zener diode is connected to the stop circuit, and The capacitor has a capacitance value such that it takes one second or more for the voltage of the capacitor to reach the Zener voltage of the Zener diode.
  • the stop circuit includes a thyristor-configured portion that is configured by two transistors and that functions as a thyristor.
  • the induction coil includes a core made of ferrite and a winding wound on the core, and a frequency generated by the DC / AC conversion circuit in the lighting circuit is 40 to 500 kHz.
  • An electrodeless discharge lamp includes an arc tube in which a luminous gas is sealed, and a high-frequency lighting circuit including an induction coil for supplying high-frequency power to the arc tube.
  • a detection circuit for detecting that the high-frequency lighting circuit is in an abnormal state by electromagnetic interference between the high-frequency lighting circuit and a conductive member existing outside the arc tube; and a high-frequency lighting circuit based on a detection signal from the detection circuit.
  • a stop circuit for stopping the operation.
  • an electrodeless discharge lamp in which a luminous gas is sealed, a luminous tube having a concave portion, an induction coil inserted into the concave portion, and a lighting circuit electrically connected to the induction coil.
  • the lighting circuit comprises: an AC / DC conversion circuit that converts an AC voltage into a DC voltage; a DC / AC conversion circuit that converts the DC voltage converted by the AC / DC conversion circuit into an AC voltage; A resonance load circuit that is connected to the D CZA C conversion circuit and includes the induction coil; a detection circuit that detects a voltage or a current in the resonance load circuit; and the D CZA C conversion according to a detection signal from the detection circuit.
  • a stop circuit for stopping the operation of the circuit.
  • FIG. 1 is a lighting circuit diagram of an electrodeless discharge lamp lighting device according to Embodiment 1 of the present invention. You.
  • FIG. 2 is a block diagram of the electrodeless discharge lamp lighting device according to the first embodiment of the present invention.
  • FIG. 3 is a schematic sectional view of a bulb-type electrodeless fluorescent lamp according to Embodiment 1 of the present invention.
  • FIG. 4 is a lighting circuit diagram of a modified example of the electrodeless discharge lamp lighting device according to the first embodiment of the present invention.
  • FIG. 5 is a lighting circuit diagram of the electrodeless discharge lamp lighting device according to the second embodiment of the present invention.
  • FIG. 6 is a lighting circuit diagram of a modification of the electrodeless discharge lamp lighting device according to the second embodiment of the present invention.
  • FIG. 7 is a lighting circuit diagram of the electrodeless discharge lamp lighting device according to the third embodiment of the present invention.
  • FIG. 8 is a lighting circuit diagram of a modified example of the electrodeless discharge lamp lighting device according to the first embodiment of the present invention.
  • the inventors of the present invention have described in advance what they have studied before completing the invention, and then described the bulb-shaped electrodeless fluorescent lamp or the electrodeless lamp according to the embodiments of the present invention.
  • the discharge lamp lighting device will be described.
  • the inventor of the present application conducted an experimental study on the effect of using a metal ring to prevent flicker due to electromagnetic interference in a bulb-type electrodeless fluorescent lamp.
  • a metal ring to prevent flicker due to electromagnetic interference in a bulb-type electrodeless fluorescent lamp.
  • the number of required metal rings has increased. Specifically, six metal rings were required to prevent flickering in a bulb-shaped electrodeless fluorescent lamp with an operating frequency of 400 kHz and an input power of 11 W.
  • a metal ring as disclosed in, for example, Japanese Patent Publication No. 6-144466 is used. It has been found that the method of reducing the electromagnetic interference by placing it around the electric lamp is not suitable. Increasing the number of metal rings not only makes the design unsightly, but also reduces the number of metal rings. In addition, the power loss during switching cannot be ignored. In addition, there is a new problem of extra manufacturing costs.
  • the lamp may have a short life.
  • the occurrence of electromagnetic interference can be prevented by detecting the occurrence of electromagnetic interference by detecting means provided in the lighting circuit and stopping the operation of the lighting circuit based on this detection signal. In addition, shortening of lamp life can be suppressed.
  • FIG. 1 is a circuit diagram of an electrodeless discharge lamp lighting device (bulb-shaped electrodeless fluorescent lamp) according to the first embodiment.
  • FIG. 2 is a block diagram of a lighting circuit 200 of the electrodeless discharge lamp device. Is shown.
  • FIG. 3 shows that the electrodeless discharge lamp lighting device of the present embodiment has It is sectional drawing in the case of comprising as an electrode fluorescent lamp.
  • the electrodeless discharge lamp device of the present embodiment includes an arc tube (bulb) 170 filled with a luminous gas, and an induction coil 165 supplying high-frequency power to the arc tube 170.
  • (High-frequency lighting circuit) 200 The lighting circuit 200 includes a detection circuit 180 and a stop circuit 190.
  • the detection circuit 180 detects that the lighting circuit 200 is in an abnormal state due to electromagnetic interference between the induction coil 165 and a conductive member existing outside the arc tube 170.
  • the stop circuit 190 is a circuit for stopping the lighting circuit 200 by a detection signal from the detection circuit 180.
  • the lighting circuit 200 of the present embodiment includes a rectifier circuit 120, a smoothing capacitor 130, and an inverter circuit (DC ZA) that converts a smoothed direct current to an alternating current.
  • C conversion circuit a circuit for supplying electric power for exciting the luminescent gas in the arc tube 170.
  • the rectifier circuit 120 and the smoothing capacitor 130 may be called an AC / DC converter circuit that converts an AC voltage into a DC voltage.
  • This rectifier circuit 120 is electrically connected to an AC power supply (for example, commercial power supply) 110.
  • the detection circuit 180 is configured such that a voltage applied to at least one impedance element included in the load resonance circuit 160 is a voltage applied to the impedance element during normal lighting, that is, a reference voltage. It is configured to detect whether they are different (high) by comparison, and to generate a detection signal for activating the stop circuit 190 when the different (high) is detected.
  • the lamp device according to the present embodiment is an electrodeless lamp device that emits a light-emitting tube by causing a high-frequency current to flow through an induction coil as described later, and therefore cannot directly detect a lamp voltage. Therefore, the detection circuit 180 detects the voltage applied to the impedance element included in the load resonance circuit 160.
  • the stop circuit 190 is configured to be activated by a detection signal from the detection circuit 180 and stop the operation of the inverter circuit 140.
  • the configuration is as shown in FIG.
  • the bulb-type electrodeless fluorescent lamp shown in Fig. 3 is inserted into an arc tube (electrodeless fluorescent lamp) 170 having a recess 170a and a recess 170a.
  • Induction coil 16 5 (165 a, 165 b), lighting circuit 200 electrically connected to induction coil 165, and lighting circuit 200 electrically connected to lighting circuit 200
  • the light emitting tube 100, the lighting circuit 200, and the base 300 are integrally formed.
  • the arc tube 170 is filled with mercury and a rare gas (eg, argon), and a phosphor film (not shown) is formed inside the arc tube 170.
  • the induction coil 16 5 is composed of a core (magnetic core) 16 5 b made of ferrite and a winding 16 5 a wound on the core 16 5 b, and the winding 16 5 a is lit. Connected to circuit 200.
  • an induction coil 165 is arranged inside the arc tube 170 (within the recessed portion 170a).
  • the induction coil 165 has a substantially rod-like magnetic shape. It is composed of a body Mn—Zn ferrite core 165b and a winding 165a.
  • a case 250 accommodating a lighting circuit 200 is provided below the arc tube 170, and a base 300 is attached to a lower portion of the case 250.
  • the base 300 has a function of taking the electric input from the commercial power supply (110) into the lighting circuit 200.
  • the configuration of the lighting circuit 200 is the same as the configuration shown in FIG. 1, including the detection circuit 180 and the stop circuit 190.
  • the lighting circuit 200 shown in FIG. 1 includes the rectifier circuit 120, the smoothing capacitor 130, the inverter circuit 140, the resonance load circuit 160, and the detection circuit 18 0 and a stop circuit 190.
  • the rectifier circuit 120 is a general circuit using a diode bridge 122, and includes a resistor or a thermistor (not shown) for preventing inrush current, a capacitor 122 and an inductor 1 for noise prevention. 2 and 3 are provided.
  • the pulsating flow that has been full-wave rectified by the rectifier circuit 120 is smoothed by the smoothing capacitor 130.
  • the inverter circuit 140 alternately conducts and non-conducts the switching elements 141 and 142 by a control signal generated in the inverter circuit 140, so that the direct current from the smoothing capacitor 130 is AC.
  • Convert to The load resonance circuit 160 includes a primary winding 150 b of a transformer 150, a capacitor 161, a capacitor 162, an induction coil 165, and mercury and a rare gas (for example, argon). As a luminous gas.
  • the principle of light emission can be briefly explained by using the high-frequency current flowing through the induction coil 165.
  • the generated electromagnetic field excites mercury enclosed in the arc tube 170, and emits ultraviolet rays.
  • the ultraviolet light excites a phosphor (not shown) applied to the inner surface of the arc tube 170 and is converted into visible light. In this way, visible light is obtained. If it is desired to use ultraviolet light, the phosphor need not be applied. Further, the luminescent gas may not contain mercury (for example, a rare gas only).
  • an induced voltage is generated in the secondary winding f spring 150 a of the transformer 150, and a series resonance circuit composed of the inductor 149 and the capacitor 153 forms an inductor 149 and a capacitor 153.
  • Vibration voltage is generated at both ends of the capacitor 153 because it vibrates at the resonance frequency determined by Due to this oscillation voltage, a reverse bias voltage is generated between the gate and the source of the switching element 14 1 at both ends of the capacitor 15 3, so that the switching element 14 1 is turned off and the switching element 14 2 A forward bias voltage is applied between the gate and the source, and the switching element 142 is turned on.
  • the switching element 14 2 When the switching element 14 2 is turned on, the DC voltage generated at both ends of the smoothing capacitor 13 0 is used as a power source, and the primary winding 15 0 b of the capacitor 16 1, the induction coil 16 5, and the transformer 15 0 b A current flows through the switching element 142. At this time, the current flowing through the primary winding 150b of the transformer 150 is in the opposite direction to that when the switching element 141 is in the on state, and the current flowing through the secondary winding 150a of the transformer 150 is In this case, an induced voltage of the opposite polarity is generated, and oscillates at the resonance frequency determined by the inductor 149 and the capacitor 153, so that an oscillating voltage is generated across the capacitor 153.
  • the switching element 142 is kept on for a predetermined time by this oscillating voltage, and then a reverse bias voltage is generated across the capacitor 153 between the gate and the source of the switching element 142, so that the switching element 142 is turned off. At the same time, a voltage in the quasi-bias direction is applied between the gate and source of the switching element 141, and the switching element 141 is turned on. Thereafter, switching element 141 and switching element 142 alternately turn on and off, and alternating current is applied to load resonance circuit 160. In the arc tube 170, a plasma is formed by an electromagnetic field generated by a high-frequency current flowing through the induction coil 165, whereby the mercury is excited to emit light.
  • the frequency of the high-frequency voltage applied by the lighting circuit 200 to the arc tube 170 will be briefly described.
  • the frequency is relatively lower than 1 MHz (for example, 40 to 500 kHz) as compared with 13.56 MHz or several MHz of the ISM band generally used for practical use. It is a low frequency region.
  • the reason for using the frequency in the low frequency region is as follows. First, when operating in a relatively high frequency range such as 13.56 MHz or several MHz, the noise filter for suppressing the line noise generated from the high-frequency power supply circuit in the lighting circuit (circuit board) becomes large, and the high-frequency power supply becomes large. The volume of the circuit increases.
  • the noise radiated or transmitted from the lamp is high-frequency noise
  • very strict regulations are imposed on high-frequency noise by laws and regulations. It must be used, which is a major obstacle to reducing costs.
  • inexpensive general-purpose products used as electronic components for general electronic equipment can be used as members constituting the high-frequency power supply circuit.
  • the configuration of the present embodiment is not limited to operation at 1 MHz or lower, and can operate in a frequency region such as 13.56 MHz or several MHz.
  • the detection circuit 180 of the present embodiment includes a resistor 181, a resistor 182, a diode 1884, a capacitor 1885, and a Zener diode 1886.
  • the stop circuit 190 is composed of transistors 195 and 196, resistors 193 and 194, a capacitor 197, a resistor 191 and a diode 192. I have.
  • the operation of the detection circuit 180 will be described.
  • the electrodeless discharge lamp lighting device shown in Fig. 1 When the electrodeless discharge lamp lighting device shown in Fig. 1 is operating normally, current flows through the resonant load circuit 160, resistor 181, resistor 182, and resistor 183, and the capacitor Electric charge is stored in 1 85.
  • the Zener diode 186 is rated so that the voltage across the capacitor 185 does not reach the Zener voltage of the diode 186 under normal lighting conditions. Electrodeless discharge If metal is placed near the lamp lighting device, for example, if it is mounted on metal lighting equipment, electromagnetic interference will occur between this device and the metal.
  • the discharge state in 70 is not an arc discharge state during normal lighting, but a glow discharge state.
  • the discharge state changes from an arc discharge state to a glow discharge state
  • the voltage across the capacitor 16 2 increases. For example, it is about twice as high as during normal lighting (for example, 1.5 times to 2.5 times as much as during normal lighting).
  • 18 2 and current flowing through resistor 18 3 When the voltage at both ends of the capacitor 185 becomes higher than that during normal lighting, and when this voltage reaches the Zener voltage of the Zener diode 186, the stop circuit 190 is activated through the Zener diode 186. Signal current flows.
  • the operation of the stop circuit 190 will be described.
  • a base current flows to the transistor 195 out of the two transistors 195 and 196 via the resistor 151 and the resistor 194.
  • the reason that the base current flows to the transistor 195 is that the current is delayed because the capacitor 197 is connected to the base of the transistor 196.
  • the collector current of the transistor 195 flows, which causes the voltage between the emitter and the base of the transistor 196 to become zero, so that the collector current of the transistor 196 does not flow.
  • the capacitor (impedance element) 162 of the load resonance circuit 160 has a considerably higher voltage (for example, about twice as large as that during normal operation) due to electromagnetic interference. Is applied, the detection circuit 180 detects this, and the signal current flows through the Zener diode 186 to the capacitor 197 of the stop circuit 190. As a result, the base current of the transistor 196 flows, and the transistor 196 turns on. Then, the electric charge accumulated in the capacitors 148, 153 flows through the transistor 196, and the switching element 1 4 The voltage between the gate and source of 1 becomes zero. As a result, the supply of high-frequency power from the inverter circuit 140 to the load resonance circuit 160 is stopped, and light emission in the arc tube 170 is stopped.
  • the transistor 196 When the transistor 196 is turned on, the base current of the transistor 195 is closed, and the transistor 195 is turned off. At this time, since the base current continues to flow through the transistors 1996 through the resistors 1991 and 1993, the on state is maintained each time the transistor 1996 is turned on. That is, the gate voltage of the switching element 141 remains zero, the inverter circuit 140 does not operate, and the lighting circuit 200 maintains the stopped state.
  • the detection circuit 180 causes the lighting circuit 200 to generate electromagnetic interference due to electromagnetic interference. Can be detected as being in an abnormal state, and the lighting circuit 200 (inverter circuit 140) can be stopped by the detection signal from the detection circuit 180. Therefore, it is possible to prevent flickering due to electromagnetic interference. In addition, it is possible to prevent the entire system from having a short life due to flicker.
  • electromagnetic interference occurs, the discharge state changes from arc discharge to single-discharge, so that the impedance included in the load resonance circuit 160 of the lighting circuit 200 is reduced.
  • the detection circuit 180 is connected to the lighting circuit 200.
  • a stop circuit 190 is provided in the lighting circuit 200 to stop the inverter circuit 140 based on the signal of the detection circuit 180. That is, in the electrodeless discharge lamp lighting device according to the present embodiment, the stop circuit 190 is activated when the voltage of the capacitor 162 of the load resonance circuit 160 becomes about twice as large as during normal lighting. Therefore, when a voltage change occurs due to some abnormal cause other than electromagnetic interference, for example, a malfunction of an element, a voltage change of about twice Therefore, electromagnetic interference can be reliably detected.
  • the detection circuit 180 detects the voltage across the capacitor 162 of the load resonance circuit 160.
  • the reason for detecting the voltage between both ends of the capacitor 162 is as follows. That is, in the present embodiment, for example, the capacitor 162 has a capacitance of 3900 pF, and the capacitor 361 has a capacitance of 1000 pF.
  • the induction coil 1655 has an inductance of 1550; uH, and the transformer 150 has a primary winding 150b of an inductance of 1300 ⁇ H. Have been. Then, in the present embodiment, the voltage between both ends of the capacitor 162 is 500 V, and the voltage between both ends of the capacitor 161 is lkV.
  • the withstand voltage of each element in the detection circuit 180 can be reduced by detecting the voltage across the capacitor 162 having a lower voltage.
  • the detection circuit 180 is replaced with a configuration for detecting the voltage of the capacitor 162, and the primary winding 150b of the capacitor 161, an inductive coil 165, or the transformer 150 is used as an impedance element. May be detected.
  • another configuration may be adopted in which an impedance element such as another coil or a capacitor is further connected in series with the capacitor 161 and the induction coil 165, and the voltage of this impedance element is detected. Even in such a configuration, when electromagnetic interference occurs, the voltage is about twice that of normal lighting, so that this voltage change may be detected.
  • 2 0 0 detection circuit 1 8 0 is connected to both capacitors 1 6 2 It detects that a higher voltage is generated at the end, and sends this detection signal to the stop circuit 190 to stop the operation of the inverter circuit 140.
  • the bulb-type electrodeless fluorescent lamp of the present embodiment it is possible to prevent the occurrence of flicker due to electromagnetic interference, and to suppress the shortening of the life of the system due to the electromagnetic interference.
  • the lighting circuit 200 including the detection circuit 180 and the stop circuit 190 detects an abnormality due to electromagnetic interference with the detection circuit 180, and according to a detection signal from the detection circuit 180, It is only necessary that the stop circuit 190 be able to stop the operation of the inverter circuit (DC / AC conversion circuit) 140. If the function can be ensured, another configuration may be used.
  • FIG. 4 shows a modification of the lighting circuit 200 of the present embodiment.
  • the lighting circuit 200 shown in FIG. 4 also includes a rectifier circuit 120, a smoothing capacitor 130, and an inverter circuit (DC / AC conversion circuit) 1. 40, a load resonance circuit 160, a detection circuit 180, and a stop circuit 190.
  • the lighting circuit 200 shown in Fig. 4 is significantly different from the lighting circuit 200 shown in Fig. 1 in that it has a thyristor configuration using two transistors 1 95, 1 and 19 6 ', thereby stopping. This constitutes the circuit 190. Even in the case of the stop circuit 190 having a thyristor configuration, the same operation as that of the stop circuit 190 shown in FIG. 1 can be performed.
  • the stop circuit 190 having a thyristor configuration
  • the turn-on time of the stop circuit 190 is short, and the inverter circuit 140 can be stopped more instantaneously.
  • the thyristor configuration using the two transistors 1 95 ′ and 1 96 in this way has the advantages of lower cost and lower power consumption than using a direct thyristor. can get. Note that the two resistors arranged close to the two transistors 195 'and 1966' may not be provided.
  • a thyristor 198 is directly connected. May be used. In this configuration, if, for example, about twice the voltage applied to the capacitor 162 of the load resonance circuit 160 due to the occurrence of electromagnetic interference as compared with that during normal lighting, the thyristor 198 connects to its control terminal. A current flows and the transistor is turned on. At this time, the current continues to flow through the resistors 1992a and 1992b to the thyristor 1998. The lighting circuit 200 does not operate, and the lighting circuit 200 maintains the stopped state. Therefore, also in this configuration, it is possible to prevent the occurrence of cracks due to electromagnetic interference.
  • the stop circuit 190 shown in FIG. 4 uses a transistor 19 2 ′ to improve the response of the stop operation.
  • the resistor 1992a located near the transistor 192 is provided solely for noise suppression, and the resistor 1992b protects the transistor 192 'from overcurrent. It is provided for.
  • the lighting circuit 200 shown in FIG. 4 has some additional elements, but these elements are also optional. Yes, the effects of the present embodiment can be obtained without these elements.
  • the detection circuit 180 does not issue a stop signal to the stop circuit 190 for the first second immediately after lighting. New This is due to the following reasons.
  • the arc tube 170 generates arc discharge (H discharge) during normal lighting, but glow discharge immediately after lighting (especially for one second during lighting).
  • E discharge This glow discharge is the same as that generated when electromagnetic interference occurs. Therefore, if a glow discharge occurs immediately after lighting, the detection circuit 180 of the lighting circuit 200 will A stop signal is issued to the stop circuit 190, the lamp operation stops, and the lamp does not light. Of course, if the lighting operation of the lamp is repeated again and no glow discharge occurs, the lamp will normally light up, which is inconvenient. In particular, in lighting in a dark room where the user wants the most light (for example, a toilet without a window in an apartment), the first time the lighting is turned on, a glow discharge occurs and the lamp must be turned on. This can be very unpleasant for the user.
  • the detection circuit 180 does not sense the voltage change due to the glow discharge during the first second during lighting.
  • the capacitance value of the capacitor 185 is selected so that it takes one second or more for the voltage of the capacitor 185 to reach the Zener voltage of the Zener diode 186. In this way, even if a glow discharge occurs within one second after the start of lighting, Since the path 190 does not operate, it is possible to effectively prevent the stop circuit 190 from malfunctioning due to the green discharge immediately after lighting.
  • the capacitance value of the capacitor 185 is determined in consideration of the elements constituting the detection circuit 180 (resistors 181, 182, etc.) and the specifications of the Zener diode 186. It is only necessary to determine that it takes 1 second or more to reach the Zener voltage at 86.
  • the Zener diode 1 86 takes 1 time to reach the Zener voltage. If the time is equal to or longer than seconds, a preferable time for reaching the zener voltage may be appropriately set.In order to prevent the occurrence of flicker due to electromagnetic interference, the time for reaching the zener voltage is, for example, 3 seconds or less. You can do it.
  • the detection circuit 180 or the stop circuit 190 must include a timer circuit for stopping the operation for one second. Of course, they may be combined. However, by selecting the capacitance value of the capacitor 185, it is more preferable to control the time required for the Zener diode 186 to reach the Zener voltage without increasing the number of new components and suppressing the cost increase. It can be said that this is a simple configuration.
  • FIG. 5 shows a circuit configuration of a lighting circuit 200 in the electrodeless discharge lamp lighting device of the present embodiment.
  • the electrodeless discharge lamp lighting device according to the second embodiment and the electrodeless discharge lamp lighting device according to the first embodiment are different from each other in the first embodiment in that the means for detecting that the lighting circuit is abnormal due to electromagnetic interference occurs.
  • the method is based on detecting a change in the voltage of the impedance element (16 2)
  • the second embodiment is based on detecting a change in the current flowing through the impedance element (16 2).
  • the points are different. That is, the detection circuit (380) of the present embodiment includes means for detecting a change in the current of the impedance element (162) included in the load resonance circuit.
  • the configuration of the detection circuit will be described exclusively, and the same components as those in the first embodiment will be denoted by the same reference numerals and will not be described repeatedly.
  • the configuration other than the detection circuit may be the configuration shown in FIG.
  • the detection circuit 380 of the present embodiment includes a current detection element 385, a capacitor 185, and a Zener diode 186.
  • the current detecting element for example, a current transformer can be used.
  • the electrodeless discharge lamp lighting device of the present embodiment when the electrodeless discharge lamp lighting device of the present embodiment is close to a metal and electromagnetic interference occurs, the current flowing through the induction coil 165 becomes large, and the capacitor 185 is connected via the current detection element 385. The charge stored in 5 increases, so that the voltage developed across capacitor 185 reaches the Zener voltage of Zener diode 186. Then, a current flows from the detection circuit 380 to the stop circuit 190 via the Zener diode 186, and the base current of the transistor 196 flows, and the container, the capacitor 148, and the capacitor 1 The charge stored in 53 is discharged via transistor 196. As a result, the gate-source voltage of the switching element 141 becomes zero, and the inverter circuit stops operating. That is, the lighting circuit does not function and the electrodeless discharge lamp lighting device is turned off. Once the light is turned off, this state is maintained as in the first embodiment.
  • the detection circuit 380 detects this.
  • the flickering can be generated only by activating the stop circuit 190 and turning off the light.
  • the current transformer When a current transformer is used as the current detection element, the current transformer is relatively expensive, so that the cost of the device increases accordingly. Also, the current Instead of a lance, it is possible to simply use a resistor as the current detection element, but in that case the power consumption other than that used for the lamp will increase. In consideration of these points, there are some parts where the electrodeless discharge lamp lighting device of the first embodiment (the configuration shown in FIG. 1 or FIG. 4) is more practical.
  • the change in the electrical characteristics is detected.
  • the change in the light emission output is detected, whereby the occurrence of electromagnetic interference is detected. It may be. That is, instead of the above-described detection circuits 180 and 380, a detection circuit 480 having means for detecting a change in the light output may be used.
  • FIG. 6 shows a modified example of the embodiment of the present invention having such a configuration.
  • the configuration shown in Fig. 6 can detect changes in light output between the arc discharge during normal lighting and the glow discharge that occurs when electromagnetic interference occurs. Immediately after lighting (for example, within 1 second) Except for the above, when a glow discharge occurs in the arc tube 170, the stop circuit (190) operates to stop the inverter circuit (140).
  • the detection circuit 480 of the present embodiment is a light receiving element 4 that receives a light emission output from the arc tube 170.
  • a CdS photoelectric cell is used as the light receiving element 430.
  • another light receiving element such as a silicon photodiode may be used.
  • the operation of the detection circuit 480 will be described as follows.
  • the emission output from the arc tube 170 is a large emission output due to arc discharge during normal lighting, but when electromagnetic interference occurs, the discharge in the arc tube 170 becomes a glow discharge and the emission output is compared to that during normal lighting. Very small.
  • sufficient light enters the light receiving element 4300 from the arc tube 170.
  • the photoswitch 450 is turned off, and no current flows from the load resonance circuit 160 to the detection circuit 480, but the light is emitted from the arc tube 170 to the photodetector 4330 due to electromagnetic interference.
  • the amount of light decreases, the light turns on and current flows from the load resonance circuit 160 to the detection circuit 480.
  • the bulb-type electrodeless fluorescent lamp is mounted on the lighting equipment, and if it does not turn on, the user is asked whether the bulb-type electrodeless fluorescent lamp does not turn on due to electromagnetic interference or does not turn on because of the end of its life. Is often unknown. If the lamp does not turn on due to electromagnetic interference due to its life, a display element, for example, a light emitting diode, is placed inside the bulb-shaped electrodeless fluorescent lamp, and this light emitting diode emits light when the stop circuit operates Therefore, it is desirable that a bulb-type electrodeless fluorescent lamp be provided to the market to inform the user.
  • a display element for example, a light emitting diode
  • the bulb-type electrodeless fluorescent lamp according to the fifth embodiment when the operation of the lighting circuit 200 stops due to electromagnetic interference or the like, a display element that informs a user of this fact is provided by the first and second embodiments. Has been added to the configuration.
  • FIG. 7 shows a lighting circuit of the bulb-type electrodeless fluorescent lamp of the present embodiment.
  • the display section 670 includes a display element 650 and a resistor 630. LED is used as the display element 65. Further, the resistor 630 is for preventing an overcurrent flowing through the LED.
  • the detection circuit included in the lighting circuit 200 operates, and the transistor 196 is turned on, and the transistor 196 is turned on. , The collector current flows. At this time, current also flows through the display portion 650, and the LED which is the display element 630 emits light.
  • the display device 670 is further provided, so that when the stop circuit 190 operates, it can be notified to the user. As a result, the user can determine whether the light does not turn on due to the occurrence of electromagnetic interference or does not turn on due to the end of the service life, which is convenient.
  • the inverter circuit 140 in the lighting circuit 200 is used. It is desirable that the operating frequency be in the range of 40 kHz or more and 500 kHz or less in order to prevent radiation noise and electromagnetic noise from affecting peripheral devices.
  • Mn-Zn ferrite has a high magnetic permeability and a small magnetic loss in a frequency band of 100 to several hundred kHz. This is preferable.
  • the configuration of the bulb-type electrodeless fluorescent lamp has been described as an example, the present invention can also be applied to an electrodeless discharge lamp lighting device provided with a lighting circuit 200 separately.
  • the detection circuit 200 included in the lighting circuit 2000 can detect the occurrence of electromagnetic interference and stop the lighting circuit 200. As a result, it is possible to prevent the occurrence of flicker and to suppress the shortening of the service life of the system caused by the occurrence of flicker.
  • the electrodeless discharge lamp lighting device is configured as an integrated bulb-type electrodeless fluorescent lamp with a base, it can be used by connecting it to any bulb socket. There is no flickering or stress from electromagnetic interference. In other words, when a bulb or electrodeless fluorescent lamp is installed on a lighting fixture in a hotel or home, the user must determine whether the lighting fixture is made of resin, aluminum, or iron. Even if it is not recognized, it is possible to generate flickering and prevent short life. As a result, it is possible to further spread the bulb-type electrodeless fluorescent lamp.
  • the electrodeless discharge lamp lighting device or the bulb-type electrodeless fluorescent lamp of the present invention is a conventional electrodeless lamp in which a metal ring is disposed around a light emitting tube or a transparent conductive film is formed on the surface of the light emitting tube. Economical and aesthetically pleasing compared to discharge lamp lighting devices and bulb-type electrodeless fluorescent lamps It is also advantageous from the point of view.
  • a bulb-shaped electrodeless fluorescent lamp with a display element when a bulb-shaped electrodeless fluorescent lamp with a display element is configured, if the bulb-shaped electrodeless fluorescent lamp does not light up, it may be because its life has expired, or the stop circuit may be activated by electromagnetic interference and the light may be turned off. At a glance. Therefore, the user can appropriately use the bulb-type electrodeless fluorescent lamp.
  • the present invention relates to industrial use of an electrodeless discharge lamp lighting device or a bulb-type electrodeless fluorescent lamp in that flickering due to electromagnetic interference can be prevented, the entire system is not shortened in life, and practical application can be promoted. Availability is high.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

 電磁干渉によるチラツキの発生を防止するため、発光ガスが封入された発光管170と、誘導コイル165を含む高周波点灯回路200と、高周波点灯回路200に電気的に接続された口金とを備え、発光管170と高周波点灯回路200と口金とは一体に構成されている。高周波点灯回路200は、誘導コイル165と発光管170の外に存在する導電性部材との間での電磁干渉により高周波点灯回路200が異常状態であることを検出する検出回路180と、検出回路180からの検出信号によって高周波点灯回路200を停止状態する停止回路190とを備えている。

Description

糸田 » 電球形無電極蛍光ランプぉよび無電極放電ランプ点灯装置 技術分野
本発明は、 無電極放電ランプ点灯装置に関し、 特に、 電球形無電極蛍光ランプに関 する。 背景技術
近年、 誘導結合を用いた無電極放電ランプは、 特にその長寿命特性よつてその利用 が拡がっている。 つまり、 無電極放電ランプは、 電極の枯渴の問題が発生し得ないの で、 有電極の放電ランプと比較して、 優れた長寿命特性を示し、 その長寿命特性によ つて無電極放電ランプの利用が拡がっている。
無電極放電ランプでは、 誘導結合を用いていることにより、 有電極の放電ランプと は異なった問題、 すなわち、 電磁干渉の問題がある。 言い換えると、 無電極放電ラン プに、 金属、 特に鉄などの磁性を有する金属が近接すると、 チラツキを生じたり、 点 灯しなかったりする場合が生じる。 また、 2灯の無電極放電ランプを近づけると、 チ ラツキを起こしたりすることがある。 このような現象は、 無電極放電ランプの誘導コ ィルによって発生する交流磁界が電磁干渉を起こしていることによるものである。 無電極放電ランプにおける電磁干渉を防止するために無電極放電ランプから外にで る磁束を低減する試みが多く行われてきた。
例えば、 特公平 6— 1 4 4 6 6号公報、 特開平 8— 7 8 4 4号公報、 特開平 9— 3 2 0 5 4 2号公報には、 発光管の内側、 又は外側の何れか、 あるいは双方の側に透明 導電膜を形成することによって、 電磁干渉を低減した無電極放電ランプが開示されて いる。
さらに、 発光管の外側に金属リングを形成することによって電磁干渉を低減した無 電極放電ランプもある。 これらの例としては、 特公平 6 _ 1 4 4 6 6号公報、 特開平 7 - 2 6 2 9 7号公報、 特開平 9 _ 7 5 5 1号公報に開示された無電極放電ランプを 挙げることができる。 特公平 6—1 4 4 6 6号公報には、 発光管の外側に銅線からなる複数の閉リングを 備えランプの外への磁界を低減した無電極放電ランプが開示されている。 特開平 7— 2 6 2 9 7号公報では、 誘電体からなるランプハウジングと発光管との間に短絡金属 環を配設することによって、 無電極放電ランプを取り付けた導電性の外殻構造と誘導 コイルとの間の電磁干渉を最小化する技術が開示されている。 そして、 特開平 9一 7 5 5 1号公報においては、 電磁干渉をさらに効果的に抑制するために、 誘導コイルを 遮蔽導電ループで取り卷き、 このループをコンデンサで終端した無電極放電ランプが 開示されている。
無電極放電ランプは、 主として公共照明用途に用いられてきたが、 近年は、 無電極 放電ランプがホテルなどにおいて電球代替用として用いられるようになってきている。 また、 白色電球と直接代替可能な形態の電球形無電極蛍光ランプも開発されており、 電球代替用として無電極放電ランプの利用度はさらに高くなつてきている。
これに伴って、 無電極放電ランプのワット数を、 従来の 1 0 O W〜 1 5 O Wといつ た高ヮットカ ら、 1 O W〜 2 O Wといった低ヮットへと下げたい要求が生じている。 言い換えると、 電球代替用としての用途においては、 1 0 W〜2 O Wの低ワット型の 無電極放電ランプが求められている。 ところが、 低ワットの無電極放電ランプほど、 プラズマ 'インピーダンスが高くなるため電磁干渉が発生しやすくなるという問題が ある。
一方で、 輻射ノイズおよびラインノイズの抑制のために、 無電極放電ランプの点灯 回路の動作周波数を、 従来の 2 . 6 5 MH z , 1 3 . 5 6 MH zといった MH z帯域 の周波数から、 数 1 0 0 k H z帯域の周波数へと移行させた無電極放電ランプを使用 したいというニーズもある。 動作周波数が低くなると、 輻射ノイズおよびラインノィ ズの抑制の効果は得られやすいものの、 プラズマのインピーダンスが高くなるため、 誘導コイルとプラズマとの結合が悪くなり、 電磁干渉が発生しやすくなる。 したがつ て、 動作周波数が低い無電極放電ランプでは、 金属リングによる電磁干渉の防止は難 しくなる。
本発明はかかる諸点に鑑みてなされたものであり、 その主な目的は、 電磁干渉によ つてチラツキが発生したりすることを防止した無電極放電ランプ点灯装置および電球 形無電極蛍光ランプを提供することにある。 発明の開示
本発明の電球形無電極蛍光ランプは、 発光ガスが封入された発光管と、 前記発光管 に高周波電力を供給する誘導コイルを含む高周波点灯回路と、 前記高周波点灯回路に 電気的に接続された口金とを備え、 前記発光管と前記高周波点灯回路と前記口金とは 一体に構成されており、 前記高周波点灯回路は、 前記誘導コイルと前記発光管の外に 存在する導電性部材との間での電磁干渉により当該高周波点灯回路が異常状態である ことを検出する検出回路と、 前記検出回路からの検出信号によって当該高周波点灯回 路を停止状態する停止回路とを備えている。
ある好適な実施形態において、 前記高周波点灯回路は、 インピーダンス素子を含む 負荷共振回路を含んでおり、 前記検出回路は、 前記負荷共振回路に含まれている前記 インピーダンス素子の電圧変化を検出する手段を備えている。
ある好適な実施形態において、 前記高周波点灯回路は、 インピーダンス素子を含む 負荷共振回路を含んでおり、 前記検出回路は、 前記負荷共振回路に含まれている前記 インピーダンス素子の電流変化を検出する手段を備えている。
前記検出回路は、 前記発光管からの発光出力の変化を検出する手段を備えていても よい。
前記停止回路がランプ点灯直後の一秒間は動作しないように、 前記高周波点灯回路 は構成されていることが好ましい。 - 前記停止回路が動作したことを表示する表示素子をさらに備えていることが好まし レ、。
本発明の他の電球形無電極蛍光ランプは、 発光ガスが封入され、 凹入部を有する無 電極蛍光ランプと、 前記凹入部に揷入された誘導コイルと、 前記誘導コイルに電気的 に接続された点灯回路と、 前記点灯回路に電気的に接続された口金とを備え、 前記発 光管と前記点灯回路と前記口金とは一体に構成されており、 前記点灯回路は、 交流電 圧を直流電圧に変換する A CZD C変換回路と、 前記 A CZD C変換回路で変換され た前記直流電圧を交流電圧に変換する D CZA C変換回路と、 前記 D CZA C変換回 路に接続され、 前記誘導コイルを含む共振負荷回路と、 前記共振負荷回路における電 圧または電流を検知する検知回路と、 前記検知回路からの検知信号に従って、 前記 D CZA C変換回路の動作を停止する停止回路とを有している。
前記検知回路は、 ランプ点灯直後の一秒間は前記停止回路に前記検知信号が伝わら ないように構成されていることが好ましい。
ある好適な実施形態において、 前記検知回路は、 コンデンサと、 当該コンデンサの 電圧によって導通状態になるツエナーダイォードとを含んでおり、 前記ツエナーダイ オードは、 前記停止回路に接続されており、 かつ、 前記コンデンサの電圧が前記ツエ ナーダイォードのツエナー電圧に達するのに一秒以上かかるような容量値を前記コン デンサは有している。
ある好適な実施形態において、 前記停止回路は、 2つのトランジスタによって構成 され、 サイリスタとしての機能を果たすサイリスタ構成の部分を含んでいる。
ある好適な実施形態において、 前記誘導コイルは、 フェライトからなるコアと、 前 記コアに卷かれた卷線とからなり、 前記点灯回路における前記 D C/A C変換回路が 発生する周波数は、 4 0〜5 0 0 k H zである。
本発明の無電極放電ランプは、 発光ガスが封入された発光管と、 前記発光管に高周 波電力を供給する誘導コイルを含む高周波点灯回路とを備え、 前記高周波点灯回路は、 前記誘導コイルと前記発光管の外に存在する導電性部材との間での電磁干渉により当 該高周波点灯回路が異常状態であることを検出する検出回路と、 前記検出回路からの 検出信号によって当該高周波点灯回路を停止状態する停止回路とを備えている。
本発明の他の無電極放電ランプは、 発光ガスが封入され、 凹入部を有する発光管と、 前記凹入部に挿入された誘導コイルと、 前記誘導コィルに電気的に接続された点灯回 路とを備え、 前記点灯回路は、 交流電圧を直流電圧に変換する A C/D C変換回路と、 前記 A C /D C変換回路で変換された前記直流電圧を交流電圧に変換する D C / A C 変換回路と、 前記 D CZA C変換回路に接続され、 前記誘導コイルを含む共振負荷回 路と、 前記共振負荷回路における電圧または電流を検知する検知回路と、 前記検知回 路からの検知信号に従って、 前記 D CZA C変換回路の動作を停止する停止回路とを 有している。 図面の簡単な説明
図 1は、 本発明の実施形態 1にかかる無電極放電ランプ点灯装置の点灯回路図であ る。
図 2は、 本発明の実施形態 1にかかる無電極放電ランプ点灯装置のプロック図であ る。
図 3は、 本発明の実施形態 1にかかる電球形無電極蛍光ランプの断面概略図である。 図 4は、 本発明の実施形態 1にかかる無電極放電ランプ点灯装置の改変例の点灯回 路図である。
図 5は、 本発明の実施形態 2にかかる無電極放電ランプ点灯装置の点灯回路図であ る。
図 6は、 本発明の実施形態 2にかかる無電極放電ランプ点灯装置の改変例の点灯回 路図である。
図 7は、 本発明の実施形態 3にかかる無電極放電ランプ点灯装置の点灯回路図であ る。
図 8は、 本発明の実施形態 1にかかる無電極放電ランプ点灯装置の改変例の点灯回 路図である。 発明を実施するための最良の形態
本発明の実施の形態を説明する前に、 本願発明者が発明を完成するにあたり、 事前 に検討した事項を説明し、 その後、 本発明の実施形態にかかる電球形無電極蛍光ラン プまたは無電極放電ランプ点灯装置について説明する。
本願発明者は、 電球形無電極蛍光ランプおいて電磁干渉によるチラツキを防止する ために金属リングを用いることの効果について実験検討した。 その結果、 動作周波数 4 0 0 k H z , 入力電力 2 0 Wの電球形無電極蛍光ランプにおいてチラツキを防止す るために必要な金属リングは 2本であつたが、 入力電力を下げると、 必要な金属リン グの数が増えた。 具体的には、 動作周波数が 4 0 0 k H z、 入力電力 1 1 Wの電球形 無電極蛍光ではチラツキを防止するために必要な金属リングは 6本であった。
このように動作周波数が数 1 0 0 k H zとした低 Wの無電極蛍光ランプにおいて、 例えば特公平 6— 1 4 4 6 6号公報に開示されているような、 金属リングを無電極放 電ランプの周りに配設して電磁干渉を低減する方法は、 適さないことがわかった。 金 属リングの本数が多くなると、 デザイン的に見苦しいものになるだけでなく、 金属リ ングにおける電力損失をも無視できなくなる。 加えて、 製造コス トが余分にかかると いう問題も新たに生じる。
また、 例えば特公平 6— 1 4 4 6 6号公報に開示されているような、 発光管に透明 導電性皮膜を形成した無電極放電ランプにおいては、 導電性皮膜の透明度が低いと光 損失が大きくなるという問題が生じる。 一方、 導電性皮膜の透明度を高くすると光損 失は小さくなるものの、 抵抗値が大きくなり渦電流が減少し、 その結果、 電磁干渉の 抑制効果が低減するという問題がある。
電磁干渉によるチラツキが発生すると点灯回路または発光管、 あるいは双方にスト レスがかかり、 ランプが短寿命になる場合がある。 また、 ホテルや住宅で照明器具に 電球形無電極蛍光ランプを取り付けて使用する場合、 その照明器具が樹脂でできてい るのか、 あるいはアルミニウム製なのか、 それとも鉄製なのかは必ずしも利用者には 分からない。 このため、 場合によってはチラツキが発生してしまう。 したがって、 ど んな種類の照明器具に取り付けた場合にも少なくとも短寿命にならないようなランプ を開発することが、 電球形無電極蛍光ランプの更なる普及のためには重要となる。 そこで、 電球形無電極蛍光ランプが電磁干渉が発生するような状態下に置かれたと きには、 電球形無電極蛍光ランプの動作を積極的に停止させて、 チラツキの発生を防 止することを想到し、 本発明を完成させるに至った。 具体的には、 点灯回路に備えた 検出手段により電磁干渉の発生を検出して、 この検出信号に基づき点灯回路の動作を 停止することにより、 チラツキの発生を防止することができる。 加えて、 ランプの短 寿命化も抑制することができる。
以下、 図面を参照しながら、 本発明の実施の形態を説明する。 以下の図面において は、 説明の簡潔化のため、 実質的に同一の機能を有する構成要素を同一の参照符号で 示す。 なお、 本発明は以下の実施形態に限定されない。
(実施の形態 1 )
図 1力ゝら図 3を参照しながら、 本発明の実施形態 1にかかる無電極放電ランプ点灯 装置および電球形無電極蛍光ランプを説明する。
図 1は、 本実施形態 1の無電極放電ランプ点灯装置 (電球形無電極蛍光ランプ) の 回路図を示しており、 図 2は、 無電極放電ランプ装置の点灯回路 2 0 0のブロック図 を示している。 そして、 図 3は、 本実施形態の無電極放電ランプ点灯装置を電球形無 電極蛍光ランプとして構成した場合の断面図である。
図 1に示すように、 本実施形態の無電極放電ランプ装置は、 発光ガスが封入された 発光管 (バルブ) 1 7 0と、 発光管 1 7 0に高周波電力を供給する誘導コイル 1 6 5 を含む点灯回路 (高周波点灯回路) 2 0 0とから構成されている。 そして、 点灯回路 2 0 0は、 検出回路 1 8 0および停止回路 1 9 0を含んでいる。 検出回路 1 8 0は、 誘導コイル 1 6 5と発光管 1 7 0の外に存在する導電性部材との間での電磁干渉によ つて、 点灯回路 2 0 0が異常状態であることを検出する回路であり、 停止回路 1 9 0 は、 検出回路 1 8 0からの検出信号によって点灯回路 2 0 0を停止状態する回路であ る。
本実施形態の点灯回路 2 0 0は、 図 1および図 2に示すように、 整流回路 1 2 0と、 平滑コンデンサ 1 3 0と、 平滑化された直流を交流に変換するインバータ回路 (D C ZA C変換回路) 1 4 0と、 負荷共振回路 1 6 0と、 検出回路 1 8 0と、 停止回路 1 9 0とを含んでいる。 負荷共振回路 1 6 0は、 発光管 1 7 0内の発光ガスを励起する ための電力を供給する回路である。 なお、 整流回路 1 2 0と平滑コンデンサ 1 3 0と を、 交流電圧を直流電圧に変換する A C /D C変換回路と呼んでもよい。 この整流回 路 1 2 0は、 交流電源 (例えば商用電源) 1 1 0に電気的に接続されることになる。 本実施形態では、 検出回路 1 8 0は、 負荷共振回路 1 6 0に含まれる少なくとも一 つのインピーダンス素子に印加される電圧が、 正常点灯時にそのィンピーダンス素子 に印加される電圧、 すなわち基準電圧と比較して異なる (高い) かどうかを検出し、 且つ異なる (高い) ことを検出したとき停止回路 1 9 0を起動する検出信号を発生す るように構成されている。 つまり、 本実施形態に係るランプ装置は、 後述するように 誘導コイルに高周波電流を流すことによって発光管を発光させる無電極タイプのラン プ装置であるので、 ランプ電圧を直接検出することはできない。 そこで、 検出回路 1 8 0は、 負荷共振回路 1 6 0に含まれるインピーダンス素子に印加される電圧を検出 するようにしている。 そして、 停止回路 1 9 0は、 検出回路 1 8 0からの検出信号に より起動し、 インバータ回路 1 4 0の動作を停止するように構成されている。
本実施形態の無電極放電ランプ点灯装置が電球形無電極蛍光ランプの形態の場合に は、 図 3に示すような構成となる。 図 3に示した電球形無電極蛍光ランプは、 凹入部 1 7 0 aを有する発光管 (無電極蛍光ランプ) 1 7 0と、 凹入部 1 7 0 aに揷入され た誘導コイル 1 6 5 ( 1 6 5 a、 1 6 5 b ) と、 誘導コイル 1 6 5に電気的に接続さ れた点灯回路 2 0 0と、 点灯回路 2 0 0に電気的に接続された口金 3 0 0とを備えて おり、 そして、 発光管 1 Ί 0と点灯回路 2 0 0と口金 3 0 0とは一体に構成されてい る。
発光管 1 7 0には、 水銀と希ガス (例えばアルゴン) が封入されており、 発光管 1 7 0の内側には蛍光体膜 (図示せず) が形成されている。 誘導コイル 1 6 5は、 フエ ライトからなるコア (磁芯) 1 6 5 bと、 コア 1 6 5 bに卷かれた卷線 1 6 5 aとか らなり、 卷線 1 6 5 aは、 点灯回路 2 0 0に接続されている。 本実施形態では、 発光 管 1 7 0の内側に (凹入部 1 7 0 a内に) 、 誘導コイル 1 6 5が配置されており.、 こ の誘導コィノレ 1 6 5は、 略棒状をした磁性体である M n— Z nフェライト磁芯 1 6 5 bと卷線 1 6 5 aとから構成されている。 発光管 1 7 0の下部には、 点灯回路 2 0 0 を収容するケース 2 5 0が設けられており、 このケース 2 5 0の下部に口金 3 0 0が 取り付けられている。 口金 3 0 0は、 点灯回路 2 0 0に商用電源 (1 1 0 ) からの電 気入力を取り入れる機能を果たしている。 なお、 点灯回路 2 0 0の構成は、 検出回路 1 8 0、 停止回路 1 9 0を含めて、 図 1に示した構成と同じである。
再び図 1を参照する。 図 1に示した点灯回路 2 0 0は、 上述したように、 整流回路 1 2 0と、 平滑コンデンサ 1 3 0と、 インバータ回路 1 4 0と、 共振負荷回路 1 6 0 と、 検出回路 1 8 0と、 停止回路 1 9 0とを含んでいる。
整流回路 1 2 0は、 ダイォードブリッジ 1 2 2を用いた一般的な回路であり、 突入 電流防止用抵抗もしくはサーミスタ (図示せず) と、 雑音防止用フィルタとしてコン デンサ 1 2 1およびインダクタ 1 2 3とを備えている。 整流回路 1 2 0で全波整流さ れた脈流は、 平滑コンデンサ 1 3 0で平滑化される。
インバータ回路 1 4 0は、 インバータ回路 1 4 0内で発せされる制御信号によりス ィツチング素子 1 4 1と 1 4 2とを交互に導通 ·非導通にし、 平滑コンデンサ 1 3 0 からの直流を交流に変換する。 負荷共振回路 1 6 0は、 トランス 1 5 0の一次巻線 1 5 0 bと、 コンデンサ 1 6 1 , コンデンサ 1 6 2と、 誘導コイル 1 6 5、 および、 水 銀と希ガス (例えばアルゴン) を発光ガスとして封入した発光管 1 7 0から構成され ている。
ここで、 発光原理を簡単に説明すると、 誘導コイル 1 6 5を流れる高周波電流によ つて発生する電磁界により発光管 1 7 0内に封入されている水銀を励起し、 紫外線が 放射される。 この紫外線は、 発光管 1 7 0の内面に塗布された蛍光体 (図示せず) を 励起して、 可視光に変換される。 このようにして可視光が得られる。 紫外線を利用し たい場合には、 蛍光体を塗布しなくてもよい。 また、 発光ガスは、 水銀を含まないも の (例えば、 希ガスのみ) であってもよい。
本実施形態の無電極放電ランプ点灯装置の動作を以下に説明する。
まず、 点灯回路 2 0 0が電源 1 1 0に接続されると、 平滑コンデンサ 1 3 0の両端 に発生した電圧が、 抵抗 1 5 1、 抵抗 1 5 2, コンデンサ 1 4 8、 抵抗 1 4 3の直列 回路に印加される。 コンデンサ 1 4 8に発生する電圧がツエナーダイオード 1 4 6の ツエナー電圧に達すると、 コンデンサ 1 4 8の電荷がスイッチング素子 1 4 1のゲー ト端子に供給され、 スィツチング素子 1 4 1がオン状態となる。 スィツチング素子 1 4 1がオン状態となると、 コンデンサ 1 6 1およびコンデンサ 1 6 2に充電されて いた電荷がスイッチング素子 1 4 1と トランス 1 5 0の一次卷線 1 5 0 bを通して放 電される。
このときトランス 1 5 0の二次卷 f泉 1 5 0 aに誘導電圧が発生し、 ィンダクタ 1 4 9とコンデンサ 1 5 3とで構成される直列共振回路がインダクタ 1 4 9とコンデンサ 1 5 3とで決まる共振周波数で振動動作をするためコンデンサ 1 5 3の両端に振動電 圧が発生する。 この振動電圧によってスイッチング素子 1 4 1のゲート ■ ソース間に 逆バイアス方向の電圧がコンデンサ 1 5 3の両端に発生するため、 スイッチング素子 1 4 1がオフ状態となるとともに、 スイッチング素子 1 4 2のゲート ■ ソース間に順 バイアス方向の電圧が印加されることになり、 スイッチング素子 1 4 2がオン状態と なる。
スィツチング素子 1 4 2がオン状態となると、 平滑コンデンサ 1 3 0の両端に発生 する直流電圧を電源としコンデンサ 1 6 1, 誘導コイル 1 6 5, トランス 1 5 0の一 次卷線 1 5 0 b、 スイッチング素子 1 4 2を介して電流が流れる。 このときトランス 1 5 0の一次卷線 1 5 0 bを流れる電流は、 スィツチング素子 1 4 1がオン状態の時 とは逆方向であり、 トランス 1 5 0の二次卷線 1 5 0 aには、 先程と逆極性の誘導電 圧が発生し、 インダクタ 1 4 9とコンデンサ 1 5 3とで決まる共振周波数で振動動作 をするためコンデンサ 1 5 3の両端に振動電圧が発生する。 この振動電圧によってスィツチング素子 142はオン状態を所定時間維持し、 その 後、 スィツチング素子 142のゲート ·ソース間に逆バイアス方向の電圧がコンデン サ 1 53の両端に発生するため、 スイッチング素子 142はオフ状態となるとともに、 同時にスイッチング素子 141のゲート ■ ソース間には準バイアス方向の電圧が印加 されることになり、 スイッチング素子 141がォン状態となる。 以後、 スイッチング 素子 141とスイッチング素子 142とは交互にオン状態、 オフ状態を繰り返し、 負 荷共振回路 160に交流が印加される。 発光管 1 70内には、 誘導コイル 1 65に流 れる高周波電流によって発生する電磁界でプラズマが形成され、 これにより水銀が励 起されて発光する。
これが、 図 1に示す点灯回路 200において検出回路 180と停止回路 1 90とを 除く部分の回路の構成および動作である。
ここで、 点灯回路 200が発光管 1 70に印加する高周波電圧の周波数について簡 単に説明する。 本実施形態における当該周波数は、 実用的に一般的に使用されている I SM帯の 1 3. 56MH zまたは数 MH zと比べると、 1 MHz以下 (例えば、 4 0〜500 kHz) の比較的低い周波数の領域となっている。 この低周波数領域の周 波数を使用する理由を述べると、 次の通りである。 まず、 1 3. 56MHzまたは数 MHzのような比較的高い周波数領域で動作させる場合、 点灯回路 (回路基板) 内の 高周波電源回路から発生するラインノィズを抑制するためのノィズフィルタが大型と なり、 高周波電源回路の体積が大きくなつてしまう。 また、 ランプから放射または伝 播されるノィズが高周波ノィズの場合、 高周波ノィズには非常に厳しい規制が法令に て設けられているため、 その規制をクリア一するには、 高価なシールドを設けて使用 する必要があり、 コストダウンを図る上で大きな障害となる。 一方、 40 kHz〜l MHz程度の周波数領域で動作させる場合には、 高周波電源回路を構成する部材とし て、 一般電子機器用の電子部品として使用されている安価な汎用品を使用することが できるとともに、 寸法の小さい部材を使用することが可能となるため、 コストダウン および小型化を図ることができ、 利点が大きい。 ただし、 本実施形態の構成は、 1M Hz以下の動作に限らず、 13. 56 MHzまたは数 MHz等の周波数の領域におい ても動作させ得るものである。
次に、 検出回路 1 80および停止回路 1 90について、 その構成および動作を説明 する。
本実施形態の検出回路 1 8 0は、 抵抗 1 8 1, 抵抗 1 8 2, ダイオード 1 8 4 , コ ンデンサ 1 8 5およびツエナーダイオード 1 8 6とで構成されている。 また、 停止回 路 1 9 0は、 トランジスタ 1 9 5 , 1 9 6と、 抵抗 1 9 3, 1 9 4と、 コンデンサ 1 9 7と、 抵抗 1 9 1およびダイォード 1 9 2とから構成されている。
まず、 検出回路 1 8 0の動作について説明する。 図 1に示した無電極放電ランプ点 灯装置が、 正常点灯しているときには、 共振負荷回路 1 6 0、 抵抗 1 8 1, 抵抗 1 8 2、 抵抗 1 8 3を通って電流が流れ、 コンデンサ 1 8 5に電荷が蓄積される。 ここで、 ツエナーダイォード 1 8 6の定格は、 正常点灯状態では、 コンデンサ 1 8 5の両端の 電圧がツエ "一ダイオード 1 8 6のツエナー電圧に達しないように選定されている。 無電極放電ランプ点灯装置に金属が近接しておかれた場合、 例えば金属製の照明器 具に取り付けられた場合、 本装置と金属との間で電磁干渉が発生する。 電磁干渉が大 きくなると発光管 1 7 0内の放電状態は、 正常点灯時のアーク放電状態ではなく、 グ ロー放電状態となる。 放電状態がアーク放電状態からグロ一放電状態となると、 コン デンサ 1 6 2両端の電圧が高くなり例えば正常点灯時の約 2倍程度 (例えば、 正常点 灯時に比べて、 1 . 5倍〜 2 . 5倍) に高くなる。 このため、 負荷共振回路 1 6 0か ら抵抗 1 8 1, 抵抗 1 8 2, 抵抗 1 8 3を通じて流れる電流によるコンデンサ 1 8 5 両端の電圧が、 正常点灯時に比べて高くなり、 そして、 この電圧がツエナーダイォー ド 1 8 6のツエナ一電圧に達すると、 ツエナーダイオード 1 8 6を通って停止回路 1 9 0を動作させるための信号電流が流れる。
次に、 停止回路 1 9 0の動作について説明する。 電源スィッチをオンすると、 二つ のトランジスタ 1 9 5と 1 9 6の内、 トランジスタ 1 9 5の方に、 抵抗 1 5 1 , 抵抗 1 9 4を介してベース電流が流れる。 トランジスタ 1 9 5の方にベース電流が流れる 理由は、 トランジスタ 1 9 6のベースにはコンデンサ 1 9 7が接続されているので電 流が遅れるからである。 次に、 トランジスタ 1 9 5のコレクタ電流が流れ、 これによ り、 トランジスタ 1 9 6のェミッタ 'ベ一ス間の電圧がゼロとなり、 そのため、 トラ ンジスタ 1 9 6のコレクタ電流は流れない。
ここで、 負荷共振回路 1 6 0のコンデンサ (インピーダンス素子) 1 6 2に、 電磁 干渉の発生などによつて正常点灯時に比べてかなり高い電圧 (例えば 2倍程度の電 圧) が印加された場合、 検出回路 1 8 0がこれを検出し、 ツエナーダイオード 1 8 6 を介して信号電流が停止回路 1 9 0のコンデンサ 1 9 7に流れる。 これにより、 トラ ンジスタ 1 9 6のベース電流が流れ、 トランジスタ 1 9 6がオンとなり、 次いで、 コ ンデンサ 1 4 8, 1 5 3に蓄積された電荷がトランジスタ 1 9 6を流れ、 スィッチン グ素子 1 4 1のゲート · ソース間の電圧がゼロとなる。 これにより、 インバータ回路 1 4 0から負荷共振回路 1 6 0に高周波電力の供給が停止され、 発光管 1 7 0内にお ける発光が停止する。
また、 トランジスタ 1 9 6がオンになると、 トランジスタ 1 9 5のベース電流がゼ 口となり、 トランジスタ 1 9 5はオフとなる。 このとき、 トランジスタ 1 9 6には抵 抗 1 9 1、 1 9 3を介してベース電流が流れ続けるので、 トランジスタ 1 9 6がー度 オン状態となるとずつとこのオン状態が持続される。 すなわち、 スィツチング素子 1 4 1のゲート電圧はゼロのままであり、 インバータ回路 1 4 0は動作せず、 点灯回路 2 0 0は停止状態を維持する。
したがって、 本実施形態の無電極放電ランプ点灯装置によれば、 検出回路 1 8 0お よび停止回路 1 9 0を備えているので、 検出回路 1 8 0によって、 電磁干渉により点 灯回路 2 0 0が異常状態であることを検出することができ、 そして、 当該検出回路 1 8 0からの検出信号によって点灯回路 2 0 0 (インバータ回路 1 4 0 ) を停止状態に することができる。 したがって、 電磁干渉によってチラツキが発生したりすることを 防止することが可能となる。 また、 チラツキに対してシステム全体が短寿命にならな いようにすることができる。 本実施形態では、 電磁干渉が発生する状態となったとき、 放電状態がァーク放電からグ口一放電へと変化することにより、 点灯回路 2 0 0の負 荷共振回路 1 6 0に含まれるインピーダンス素子 1 6 2の電圧が正常点灯時よりも高 くなることに着目したものであり、 このインピーダンス素子 1 6 2の電圧変化を検出 する手段として、 検出回路 1 8 0を点灯回路 2 0 0に設け、 そして、 検出回路 1 8 0 の信号に基づいてインバータ回路 1 4 0を停止させるために停止回路 1 9 0を点灯回 路 2 0 0に設けている。 すなわち、 本実施形態に係る無電極放電ランプ点灯装置では、 負荷共振回路 1 6 0のコンデンサ 1 6 2の電圧が正常点灯時に対して 2倍程度になつ たときに停止回路 1 9 0を作動させているので、 電磁干渉以外の何らかの異常原因、 例えば素子の動作不良等により電圧変化が生じたときには 2倍程度の電圧変化を遙か に越えるために、 これとは区別でき、 電磁干渉を確実に検知できるようになつている。 上述したように、 本実施形態では、 検出回路 1 8 0は、 負荷共振回路 1 6 0のコン デンサ 1 6 2の両端電圧を検出している。 このように、 コンデンサ 1 6 2の両端電圧 を検出することとしているのは以下の理由によるものである。 すなわち、 本実施形態 では、 例えば、 コンデンサ 1 6 2には静電容量が 3 9 0 0 p Fのものが、 またコンデ ンサ 3 6 1には静電容量が 1 0 0 0 p Fのものが、 また誘導コイル 1 6 5にはィンダ クタンスが 1 5 5 ; u Hのものが、 またトランス 1 5 0の一次卷線 1 5 0 bにはインダ クタンスが 1 3 0 μ Hのものがそれぞれ使用されている。 そして、 本実施形態におい ては、 コンデンサ 1 6 2の両端電圧は 5 0 0 Vとなり、 コンデンサ 1 6 1の両端電圧 は l k Vとなる。 この結果、 より電圧の低いコンデンサ 1 6 2の両端電圧を検出する 構成とすることにより、 検出回路 1 8 0において各素子の耐電圧を下げることが可能 となっている。 尚、 検出回路 1 8 0は、 コンデンサ 1 6 2の電圧を検出する構成に代 え、 インピーダンス素子であるコンデンサ 1 6 1、 誘導コィノレ 1 6 5又はトランス 1 5 0の一次卷線 1 5 0 bの電圧を検出する構成としてもよい。 あるいは、 コンデンサ 1 6 1及び誘導コイル 1 6 5に対して直列に他のコイルやコンデンサ等のインピーダ ンス素子を更に接続し、 このインピーダンス素子の電圧を検出する構成としてもよい。 このような構成であつても、 電磁干渉を生じたときには電圧が正常点灯時の約 2倍と なるので、 この電圧変化を検出するようにすればよい。
ここで、 図 3に示した電球形無電極蛍光ランプの場合についての動作を簡単に説明 すると、 以下の通りである。
口金 3 0 0を介して電力が点灯回路 2 0 0に供給されると、 点灯回路 2 0 0に含ま れるインバータ回路で高周波電流に変換され、 この高周波電力が誘導コイル 1 6 5に 供給される。 これによつて発光管 1 7◦の内部に発生される電磁界によって発光管内 に水銀を励起するための放電プラズマが形成される。 発光管 1 7 0の内部で水銀が励 起されると紫外線が発光管 1 7 0の内部に放射され、 この紫外線が発光管 1 7 0の内 側に塗布された蛍光体を励起して可視光線を放射する。
本実施形態の電球形無電極蛍光ランプが、 知らずして、 または誤って金属製照明器 具に取り付けるなど、 金属に近接することによって電磁干渉が発生した場合、 電球形 無電極蛍光ランプにおける点灯回路 2 0 0の検出回路 1 8 0がコンデンサ 1 6 2の両 端に以上に高い電圧が発生したことを検出し、 この検出信号を停止回路 1 9 0に送り インバータ回路 1 4 0の動作を停止する。
したがって、 本実施形態の電球形無電極蛍光ランプによると、 電磁干渉によるチラ ツキ発生を防止することができ、 そして、 電磁干渉に起因するシステムの短寿命化を 抑制することができる。
なお、 検出回路 1 8 0および停止回路 1 9 0を含む点灯回路 2 0 0は、 電磁干渉に よる異常を検知回路 1 8 0で検知して、 その検知回路 1 8 0からの検知信号に従って、 停止回路 1 9 0がインバータ回路 (D C /A C変換回路) 1 4 0の動作を停止するこ とができればよいので、 その機能を確保できるのであれば、 他の構成に改変してもよ い。 図 4は、 本実施形態の点灯回路 2 0 0の改変例を示している。
図 4に示した点灯回路 2 0◦も、 図 1に示した点灯回路 2 0 0と同様に、 整流回路 1 2 0と、 平滑コンデンサ 1 3 0と、 ィンバータ回路 (D C /A C変換回路) 1 4 0 と、 負荷共振回路 1 6 0と、 検出回路 1 8 0と、 停止回路 1 9 0とから構成されてい る。 図 4に示した点灯回路 2 0 0力 図 1に示した点灯回路 2 0 0と大きく異なる点 は、 2つのトランジスタ 1 9 5, 、 1 9 6 ' を用いてサイリスタ構成にし、 それによ つて停止回路 1 9 0を構成している点である。 サイリスタ構成にした停止回路 1 9 0 の場合でも、 図 1に示した停止回路 1 9 0と同様の動作をすることができる。 また、 サイリスタ構成にした停止回路 1 9 0の場合には、 停止回路 1 9 0のターンオン時間 が短く、 より瞬時にインバータ回路 1 4 0を停止することができるという利点も得ら れる。 このように 2つのトランジスタ 1 9 5 ' 、 1 9 6, を用いてサイリスタ構成に すると、 直接サイリスタを用いた場合よりも、 コストを下げることができるとともに、 消費電力を抑えることができるというメリットが得られる。 なお、 2つのトランジス タ 1 9 5 ' 、 1 9 6 ' の近接して配置されている 2つの抵抗は無くても良い。
なお、 図 8に示すように、 図 4に示した停止回路 1 9 0において、 2つのトランジ スタ 1 9 5, 、 1 9 6, を用いてサイリスタ構成にする代わりに、 直接サイリスタ 1 9 8を用いても良い。 この構成において、 電磁干渉の発生等により、 負荷共振回路 1 6 0のコンデンサ 1 6 2に正常点灯時に比べて例えば 2倍程度の電圧が印加されると、 サイリスタ 1 9 8は、 その制御端子に電流が流れてオンとなる。 このとき、 サイリス タ 1 9 8には、 抵抗 1 9 2 a, 1 9 2 bを介して電流が流れ続けるので、 このオン状 態が持続され、 ィンバータ回路 1 4 0は動作することなく、 点灯回路 2 0 0は停止状 態を維持することとなる。 したがって、 この構成においても、 電磁干渉によってチラ ッキが発生したりすることを防止することが可能となる。
また、 図 4に示した停止回路 1 9 0は、 停止の動作の応答を良くするために、 トラ ンジスタ 1 9 2 ' を用いている。 トランジスタ 1 9 2, の近傍に配置されている抵抗 1 9 2 aは、 専らノイズ対策の目的で設けられており、 そして、 抵抗 1 9 2 bは、 ト ランジスタ 1 9 2 ' の過電流の保護のために設けられている。 また、 図 1に示した点 灯回路 2 0 0と比較して、 図 4に示した点灯回路 2 0 0では、 幾つか素子を追加して いるが、 それらの素子も、 オプション的なものであり、 それらの素子が無くても本実 施形態の効果を得ることができる。
図 1および図 4に示した検出回路 1 8 0のいずれにおいても、 点灯直後の最初の 1 秒間は、 検出回路 1 8 0が停止回路 1 9 0へ停止信号を発しないようにするのが好ま しい。 これは次のような理由によるものである。 発光管 1 7 0は、 正常点灯時にはァ ーク放電 (H放電) を起こすが、 点灯直後 (特に、 点灯時の 1秒間) はグロ一放電
( E放電) を起こしやすい。 このグロ一放電は、 電磁干渉が発生した場合に生じるも のと同じであるので、 それゆえに、 点灯直後にグロ一放電が生じてしまうと、 点灯回 路 2 0 0の検出回路 1 8 0は停止回路 1 9 0へ停止信号を発し、 ランプの動作が停止 してしまい、 ランプは点灯しない。 もちろん、 再度ランプの点灯動作を繰り返し、 グ ロー放電が起こらなければ、 ランプは正常点灯するのであるが、 それでは不便である。 特に、 ユーザが最も明かりを欲しいと思われる真っ暗な部屋 (例えば、 マンション内 の窓のないトイレ) での点灯において、 最初の一回目の点灯時に、 グロ一放電が起こ り、 ランプが点灯しなければ、 ユーザーに非常に不快な思いを与えてしまう。 そして、 この暗室点灯条件 (特に、 暗室低温時の点灯条件) では、 点灯を容易にする種電子も 少ないこともあり、 明室時の点灯よりも、 点灯し難く、 グロ一放電が生じゃすい。 そ れゆえ、 点灯時の最初の一秒間は、 検出回路 1 8 0は、 グロ一放電による電圧変化を 感知しないようにすることが望ましい。
本実施形態では、 コンデンサ 1 8 5の電圧がツエナーダイォード 1 8 6のツエナー 電圧に達するのに、 1秒以上かかるように、 コンデンサ 1 8 5の容量値を選定してい る。 このようにすれば、 点灯開始後の 1秒のあいだにグロ一放電が生じても、 停止回 路 1 9 0は動作しないので、 点灯直後のグロ一放電による停止回路 1 9 0の誤動作を 効果的に防止することができる。 コンデンサ 1 8 5の容量値は、 検出回路 1 8 0を構 成する素子 (抵抗 1 8 1、 1 8 2など) とツエナーダイオード 1 8 6のスペックとを 考慮して、 ツェ^ "一ダイオード 1 8 6がツエナー電圧に達するのに、 1秒以上かかる ように決定すればよい。 最初の一秒程度の誤動作の防止を確保できればよいので、 ッ ェナーダイオード 1 8 6がツエナー電圧に達する時間が 1秒以上であれば、 当該ツエ ナー電圧に達する時間の好ましい時間は適宜設定すればよく、 電磁干渉によるチラッ キ発生を防止するためには、 ツエナー電圧に達する時間は、 例えば 3秒以下となるよ うにすればよい。
なお、 点灯後の最初の一秒間は停止回路 1 9 0が動作しないようにするには、 検出 回路 1 8 0または停止回路 1 9 0に、 当該一秒間の動作を停止させるためのタイマー 回路を組み合わせても勿論よい。 ただし、 コンデンサ 1 8 5の容量値を選定すること によって、 ツエナーダイオード 1 8 6がツエナー電圧に達する時間を制御する方が新 たな部品も増えず、 そして、 コストアップも抑制できるので、 より好適な構成といえ る。
(実施の形態 2 )
次に、 図 5を参照しながら、 本発明の実施形態 2にかかる無電極放電ランプ点灯装 置を説明する。 図 5は、 本実施形態の無電極放電ランプ点灯装置における点灯回路 2 0 0の回路構成を示している。
本実施形態 2の無電極放電ランプ点灯装置と、 上記実施形態 1の無電極放電ランプ 点灯装置とは、 電磁干渉に発生により点灯回路が異常であることを検出する手段が、 上記実施形態 1ではインピーダンス素子 (1 6 2 ) の電圧の変化を検出することによ るものであつたが、 本実施形態 2ではィンピーダンス素子 ( 1 6 2 ) を通して流れる 電流の変化を検出することによるものである点が異なる。 つまり、 本実施形態の検出 回路 (3 8 0 ) は、 負荷共振回路に含まれているインピーダンス素子 (1 6 2 ) の電 流変化を検出する手段を備えている。
なお、 説明の簡略化を図るために、 検出回路の構成について専ら説明し、 上記実施 形態 1と同様の構成要素については同一符号を用い重複して説明しないこととする。 なお、 検出回路以外の構成は、 図 4に示した構成にしてもよい。 図 5に示すように、 本実施形態の検出回路 3 8 0は、 電流検出素子 3 8 5と、 コン デンサ 1 8 5と、 ツエナーダイオード 1 8 6から構成されている。 電流検出素子とし ては、 例えばカレントトランスを利用することができる。
以下、 検出回路 3 8 0の動作について説明する。
本無電極放電ランプ点灯装置が正常に点灯しているとき、 誘導コイル 1 6 5を流れ る電流を検出するための電流検出素子 3 8 5を通して、 コンデンサ 1 8 5に電流が流 れ、 それによつてコンデンサ 1 8 5に電荷が蓄積される。 これにより、 コンデンサ 1 8 5の両端に電圧が発生するが、 この電圧ではッヱナ一ダイオード 1 8 6のツエナー 電圧には達しないようにツエナーダイォードの定格は選定されている。 したがって、 正常に点灯していることきには、 検出回路 3 8 0から停止回路 1 9 0に電流が流れる ことはない。
一方、 本実施形態の無電極放電ランプ点灯装置が金属が近接して、 電磁干渉が発生 したときには、 誘導コイル 1 6 5を流れる電流は大きくなり、 電流検出素子 3 8 5を 介してコンデンサ 1 8 5に蓄積される電荷が増大し、 それによつて、 コンデンサ 1 8 5の両端に発生する電圧が、 ツエナーダイオード 1 8 6のツエナー電圧に達する。 すると、 検出回路 3 8 0から停止回路 1 9 0にツエナーダイオード 1 8 6を介して 電流が流れ、 トランジスタ 1 9 6のベース電流が流れることになり、 そして、 コンテ、 ンサ 1 4 8, コンデンサ 1 5 3に蓄積された電荷がトランジスタ 1 9 6を介して放電 される。 これにより、 スイッチング素子 1 4 1のゲート . ソース間電圧がゼロとなり インバータ回路は動作を停止する。 すなわち、 点灯回路が機能しなくなり無電極放電 ランプ点灯装置は消灯状態となる。 一端、 消灯状態となると、 この状態が維持される ことは上記実施形態 1と同様である。
したがって、 本実施形態の無電極放電ランプ点灯装置によれば、 無電極放電ランプ 点灯装置が電磁干渉が発生するような環境下におかれた場合としても、 検出回路 3 8 0がこれを検出し、 停止回路 1 9 0が作動し、 消灯するだけで、 チラツキ発生を発生 することができる。 加えて、 チラツキ発生に起因して生じ得るシステムの短寿命を防 止することもできる。
なお、 電流検出素子としてカレントトランスを用いた場合、 カレントトランスは比 較的値段が高いので、 その分、 装置のコストが上がることになる。 また、 カレントト ランスでなく、 電流検出素子として単に抵抗を使用することも可能であるが、 その場 合にはランプに使用する以外の電力の消費量が増えてしまうことになる。 これらの点 を考慮すると、 実用的には、 上記実施形態 1の無電極放電ランプ点灯装置 (図 1また は図 4に示した構成) の方が優れている部分がある。
また、 上記実施形態 1および本実施形態においては、 電気的な特性 (電圧、 電流) の変化を検出したが、 発光出力の変化を検出して、 それにより、 電磁干渉に発生を検 出するようにしてもよい。 すなわち、 上述した検出回路 1 8 0、 3 8 0に代えて、 発 光出力の変化の検出する手段を有する検出回路 4 8 0にしてもよい。 そのような構成 にした本発明の実施形態の改変例を図 6に示す。
図 6に示した構成は、 正常点灯時のアーク放電と、 電磁干渉が発生した場合に生じ るグロ一放電との光出力の変化を検知できるものであり、 点灯直後 (例えば 1秒以 内) を除いて、 発光管 1 7 0にグロ一放電が発生した場合、 停止回路 (1 9 0 ) が動 作して、 インバータ回路 (1 4 0 ) が停止するように構成されている。
本実施形態の検出回路 4 8 0は、 発光管 1 7 0からの発光出力を受ける受光素子 4
3 0と、 受光素子 4 3 0を利用したホトスイッチ 4 5 0と、 抵抗 1 8 1、 抵抗 1 8 3、 ダイオード 1 8 4と、 コンデンサ 1 8 5と、 ツエナーダイオード 1 8 6とから構成さ れており、 受光素子 4 3 0としては、 C d S光電セルを用いている。 なお、 受光素子
4 3 0としては、 他の受光素子、 例えばシリコンフォトダイオードなどを用いてもよ レ、。
検出回路 4 8 0の動作について説明すると、 次の通りである。 発光管 1 7 0からの 発光出力は、 正常点灯時にはアーク放電による大きい発光出力であるが、 電磁干渉が 発生すると発光管 1 7 0内の放電はグロ一放電となり発光出力は正常点灯時に比べて 非常に小さい。 正常点灯時には発光管 1 7 0から受光素子 4 3 0に十分な光が入射す る。 このときホトスイッチ 4 5 0はオフとなり、 負荷共振回路 1 6 0から検出回路 4 8 0に電流が流れないが、 電磁干渉の発生により発光管 1 7 0から受光器 4 3 0に入 射する光量が少なくなるとオンとなり、 負荷共振回路 1 6 0から検出回路 4 8 0に電 流が流れる。 ホトスィッチ 4 5 0をこのような構成とすることにより、 電磁干渉が発 生するときにはツエナーダイオード 1 8 6を介して停止回路 1 9 0を動作させる検出 信号が停止回路 1 9 0に送られ、 これによりインバータ回路 1 4 0の動作が停止し、 点灯回路 2 0 0は機能を停止する。 停止回路 1 9 0を動作させる検出信号が、 点灯直 後には停止回路 1 9 0に送られないようにする構成は、 上記実施形態 1で示した通り である。
(実施の形態 3 )
次に、 図 7を参照しながら、 本発明の実施形態 3を説明する。 なお、 ここでは、 説 明の簡略化のため、 上記実施形態 1および 2と異なる部分について専ら説明すること とする。
電球形無電極蛍光ランプを照明器具に取り付けたとき、 もし点灯しなければ、 この 電球形無電極蛍光ランプが電磁干渉が発生したことにより点灯しないのか、 それとも 寿命となったため点灯しないのか利用者には分からないことが多い。 もし、 寿命では なく電磁干渉により点灯しないのであれば、 電球形無電極蛍光ランプの内部に表示素 子、 例えば発光ダイオードを配置しておき、 停止回路が動作したときにこの発光ダイ ォードが発光することで使用者に知らせるような電球形無電極蛍光ランプが市場に供 給されることが望ましい。
本実施形態 5の電球形無電極蛍光ランプでは、 電磁干渉などの理由により点灯回路 2 0 0の動作が停止した場合、 このことを利用者に知らせる表示素子を、 上記実施形 態 1および 2の構成に追加している。
図 7は、 本実施形態の電球形無電極蛍光ランプの点灯回路を示している。 表示部 6 7 0は、 表示素子 6 5 0と抵抗 6 3 0とから構成されている。 表示素子 6 5 0として は L E Dを用いている。 また抵抗 6 3 0は、 L E Dに流れる過電流を防止するための ものである。
本実施形態の電球形無電極蛍光ランプに金属が近接することにより電磁干渉が発生 すると、 点灯回路 2 0 0に含まれる検出回路が働き、 トランジスタ 1 9 6がオンとな り、 トランジスタ 1 9 6にコレクタ電流が流れる。 このとき、 表示部 6 5 0を介して も電流が流れ、 表示素子 6 3 0である L E Dが発光する。
この電球形無電極蛍光ランプの利用者がこの L E Dからの発光を見たとき、 この電 球形無電極蛍光ランプが点灯しないのは、 点灯回路 2 0 0が故障したからではなく、 電磁干渉の発生などにより点灯回路 2 0 0が動作を停止しているためであることが分 かる。 したがって、 利用者は、 使用する照明器具を買えるなど、 使用環境を適切にす ることにより正常な点灯動作を実現することが可能である。
本実施形態の電球形無電極蛍光ランプによれば、 さらに表示素子 6 7 0を備えてい るので、 停止回路 1 9 0が動作したときに、 これを使用者に知らせることができる。 その結果、 使用者は、 電磁干渉が発生したことにより点灯しないのか、 寿命となった ため点灯しないのか判別することができるので、 便利となる。
なお、 上記実施形態 1においても説明したが、 本発明の実施形態 1〜 3の無電極放 電ランプ点灯装置および電球形無電極蛍光ランプでは、 点灯回路 2 0 0におけるイン バータ回路 1 4 0の動作周波数は、 放射ノイズおよび電磁ノイズによる周辺機器への 影響を防止するために 4 0 K H z以上、 5 0 0 k H z以下の範囲とすることが望まし レヽ。 また、 誘導コイル 1 6 5のコア 1 6 5 bの材料としては、 M n— Z nフェライ ト が、 1 0 0〜数 1 0 0 k H z周波数帯において透磁率が高く、 磁性損失が小さいこと から好ましい。 なお、 専ら、 電球形無電極蛍光ランプの構成を例にして説明したが、 点灯回路 2 0 0が別途に設けられた無電極放電ランプ点灯装置にも適用できるもので ある。
本発明の無電極放電ランプ点灯装置によれば、 点灯回路 2 0 0 0内に含まれている 検出回路 2 0 0が電磁干渉の発生を検出して、 点灯回路 2 0 0を停止することができ るので、 チラツキ発生を防止し、 そして、 チラツキ発生に起因して生じるシステムの 短寿命化を抑制することができる。
また、 無電極放電ランプ点灯装置を、 口金を付けて一体化した電球形無電極蛍光ラ ンプとして構成した場合には、 任意の電球ソケットに接続して使用しても、 電球形無 電極蛍光ランプがチラツキを生じたり、 電磁干渉によるストレスを受けたりすること がない。 つまり、 ホテルや住宅で照明器具に電球形無電極蛍光ランプを取り付けて使 用する場合において、 その照明器具が樹脂でできているのか、 あるいはアルミニウム 製なのか、 それとも鉄製なのかを利用者が完全に認識していなくても、 チラツキを発 生することができ、 そして短寿命を防止することができる。 その結果、 電球形無電極 蛍光ランプをさらに普及させることが可能となる。
さらに、 本発明の無電極放電ランプ点灯装置または電球形無電極蛍光ランプは、 発 光管の周囲に金属リングを配設したり、 発光管の表面に透明導電物膜を形成した従来 の無電極放電ランプ点灯装置や電球形無電極蛍光ランプに比べて、 経済的、 美観的な 点からも有利である。
加えて、 表示素子付きの電球形無電極蛍光ランプの構成にした場合、 この電球形無 電極蛍光ランプが点灯しないとき、 これが寿命がきたためか、 それとも電磁干渉によ り停止回路が働き消灯しているのかが一目瞭然となる。 したがって、 利用者は、 電球 形無電極蛍光ランプを適切に利用することができる。 産業上の利用可能性
本発明は、 無電極放電ランプ点灯装置または電球形無電極蛍光ランプについて、 電 磁干渉によるチラツキを防止できてシステム全体が短寿命にならないようにでき、 実 用化を促進できる点で産業上の利用可能性は高い。

Claims

請求の範囲
1 . 発光ガスが封入された発光管と、
前記発光管に高周波電力を供給する誘導コィルを含む高周波点灯回路と、
前記高周波点灯回路に電気的に接続された口金と
を備 、
前記発光管と前記高周波点灯回路と前記口金とは一体に構成されており、
前記高周波点灯回路は、
前記誘導コイルと前記発光管の外に存在する導電性部材との間での電磁干渉によ り当該高周波点灯回路が異常状態であることを検出する検出回路と、
前記検出回路からの検出信号によって当該高周波点灯回路を停止状態する停止回 路とを備えている、 電球形無電極蛍光
2 . 前記高周波点灯回路は、 インピーダンス素子を含む負荷共振回路を含んでおり、 前記検出回路は、 前記負荷共振回路に含まれている前記インピーダンス素子の電圧 変化を検出する手段を備えている、 請求項 1に記載の電球形無電極蛍光ランプ。
3 . 前記高周波点灯回路は、 インピーダンス素子を含む負荷共振回路を含んでおり、 前記検出回路は、 前記負荷共振回路に含まれている前記インピーダンス素子の電流 変化を検出する手段を備えている、 請求項 1に記載の電球形無電極蛍光ランプ。
4 . 前記停止回路がランプ点灯直後の一秒間は動作しないように、 前記高周波点灯 回路は構成されている、 請求項 1から 3の何れか一つに記載の電球形無電極蛍光ラン プ。
5 . 前記停止回路が動作したことを表示する表示素子をさらに備えている、 請求項 1から 4の何れか一つに記載の電球形無電極蛍光ランプ。
6 . 発光ガスが封入され、 凹入部を有する無電極蛍光ランプと、 前記凹入部に挿入された誘導コイルと、
前記誘導コィルに電気的に接続された点灯回路と、
前記点灯回路に電気的に接続された口金と
を備え、
前記発光管と前記点灯回路と前記口金とは一体に構成されており、
前記点灯回路は、
交流電圧を直流電圧に変換する A C /D C変換回路と、
前記 A C ZD C変換回路で変換された前記直流電圧を交流電圧に変換- A C変換回路と、
前記 D C / A C変換回路に接続され、 前記誘導コィルを含む共振負荷回路と、 前記共振負荷回路における電圧または電流を検知する検知回路と、
前記検知回路からの検知信号に従って、 前記 D C /A C変換回路の動作を停止す る停止回路と
を有している、 電球形無電極蛍光ランプ。
7 . 前記検知回路は、 ランプ点灯直後の一秒間は前記停止回路に前記検知信号が伝 わらないように構成されている、 請求項 6に記載の電球形無電極蛍光ランプ。
8 . 前記検知回路は、 コンデンサと、 当該コンデンサの電圧によって導通状態にな るツエナーダイォードとを含んでおり、
前記ツエナーダイオードは、 前記停止回路に接続されており、 つ、
前記コンデンサの電圧が前記ッェナーダイォードのッヱナー電圧に達するのに一秒 以上かかるような容量値を前記コンデンサは有している、 請求項 6に記載の電球形無 電極蛍光ランプ。
9 . 前記停止回路は、 2つのトランジスタによって構成され、 サイリスタとしての 機能を果たすサイリスタ構成の部分を含んでいる、 請求項 6から 8の何れか一つに記 載の電球形無電極蛍光ランプ。
10. 前記誘導コイルは、 フェライトからなるコアと、 前記コアに卷かれた卷線と からなり、
前記点灯回路における前記 DC/AC変換回路が発生する周波数は、 40〜500 kHzである、 請求項 6から 9の何れか一つに記載の電球形無電極蛍光ランプ。
1 1. 発光ガスが封入された発光管と、
前記発光管に高周波電力を供給する誘導コィルを含む高周波点灯回路と、 を備え、
前記高周波点灯回路は、
前記誘導コイルと前記発光管の外に存在する導電性部材との間での電磁干渉によ り当該高周波点灯回路が異常状態であることを検出する検出回路と、 '
前記検出回路からの検出信号によつて当該高周波点灯回路を停止状態する停止回 路とを備えている、 無電極放電ランプ点灯装置。
12. 発光ガスが封入され、 凹入部を有する発光管と、
前記凹入部に揷入された誘導コィノレと、
前記誘導コィ こ電気的に接続された点灯回路と
を備え、
前記点灯回路は、
交流電圧を直流電圧に変換する A CZD C変換回路と、
前記 AC/DC変換回路で変換された前記直流電圧を交流電圧に変換する DC/ AC変換回路と、
前記 D C Z A C変換回路に接続され、 前記誘導コィルを含む共振負荷回路と、 前記共振負荷回路における電圧または電流を検知する検知回路と、
前記検知回路からの検知信号に従って、 前記 D C/AC変換回路の動作を停止す る停止回路と
を有している、 無電極放電ランプ点灯装置。
PCT/JP2003/008062 2002-06-28 2003-06-25 電球形無電極蛍光ランプおよび無電極放電ランプ点灯装置 WO2004004425A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003244066A AU2003244066A1 (en) 2002-06-28 2003-06-25 Bulb-shaped electrodeless fluorescent lamp and electrodeless discharge lamp operating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-190618 2002-06-28
JP2002190618A JP2006024366A (ja) 2002-06-28 2002-06-28 電球形無電極蛍光ランプおよび無電極放電ランプ点灯装置

Publications (1)

Publication Number Publication Date
WO2004004425A1 true WO2004004425A1 (ja) 2004-01-08

Family

ID=29996894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008062 WO2004004425A1 (ja) 2002-06-28 2003-06-25 電球形無電極蛍光ランプおよび無電極放電ランプ点灯装置

Country Status (3)

Country Link
JP (1) JP2006024366A (ja)
AU (1) AU2003244066A1 (ja)
WO (1) WO2004004425A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101276547B1 (ko) 2006-06-20 2013-06-25 (주)쏘코 무전극 형광 램프 구동을 위한 고주파 발생기
JP5468772B2 (ja) * 2008-12-24 2014-04-09 パナソニック株式会社 電球形ランプおよび照明装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106799A (ja) * 1981-12-19 1983-06-25 株式会社東芝 放電灯点灯装置
JPH0945487A (ja) * 1995-07-26 1997-02-14 Matsushita Electric Works Ltd 無電極放電灯点灯装置
EP0827184A2 (en) * 1996-08-28 1998-03-04 General Electric Company Compact electrodeless fluorescent a-line lamp
JPH10106774A (ja) * 1996-09-25 1998-04-24 Matsushita Electric Works Ltd 無電極放電灯点灯装置
JP2001085181A (ja) * 1999-09-14 2001-03-30 Matsushita Electric Works Ltd 無電極放電灯点灯装置
US20010030514A1 (en) * 2000-04-18 2001-10-18 Kenichiro Takahashi Discharge lamp operating apparatus
JP2002164186A (ja) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd 放電ランプ点灯装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106799A (ja) * 1981-12-19 1983-06-25 株式会社東芝 放電灯点灯装置
JPH0945487A (ja) * 1995-07-26 1997-02-14 Matsushita Electric Works Ltd 無電極放電灯点灯装置
EP0827184A2 (en) * 1996-08-28 1998-03-04 General Electric Company Compact electrodeless fluorescent a-line lamp
JPH10106774A (ja) * 1996-09-25 1998-04-24 Matsushita Electric Works Ltd 無電極放電灯点灯装置
JP2001085181A (ja) * 1999-09-14 2001-03-30 Matsushita Electric Works Ltd 無電極放電灯点灯装置
US20010030514A1 (en) * 2000-04-18 2001-10-18 Kenichiro Takahashi Discharge lamp operating apparatus
JP2002164186A (ja) * 2000-11-28 2002-06-07 Matsushita Electric Ind Co Ltd 放電ランプ点灯装置

Also Published As

Publication number Publication date
AU2003244066A1 (en) 2004-01-19
JP2006024366A (ja) 2006-01-26

Similar Documents

Publication Publication Date Title
TW586334B (en) Self-ballasted fluorescent lamp
US8482228B2 (en) Visible indication of mistaken lamp use
US7453214B2 (en) Lamp-operating unit and low-pressure mercury discharge lamp
JP2007311317A (ja) 電球形蛍光ランプ装置
JP5597264B2 (ja) 発光ダイオード点灯回路、led光源及びランプ
WO2004004425A1 (ja) 電球形無電極蛍光ランプおよび無電極放電ランプ点灯装置
JP4259008B2 (ja) 電球形蛍光ランプ
JP3439757B2 (ja) 電球形蛍光ランプ
US20120262063A1 (en) Flourescent luminaire drive circuit
JP2001319797A (ja) 電球形蛍光ランプおよび照明装置
JP4066798B2 (ja) 無電極放電灯点灯装置及び照明装置
JP2001244097A (ja) 電球形蛍光ランプ、放電ランプ点灯装置および照明装置
JP4088222B2 (ja) 無電極放電ランプ
JP3690577B2 (ja) 電球形蛍光ランプ
JP4075158B2 (ja) 高周波インバータおよび放電ランプ点灯装置
JP2004335234A (ja) 無電極放電灯点灯装置及び照明装置
JP2003173890A (ja) 放電ランプ点灯装置および照明装置
JP4200282B2 (ja) 無電極放電灯、無電極放電灯点灯装置及び照明装置
JP2001028255A (ja) 電球形蛍光ランプ
JP3690121B2 (ja) 高周波インバータ、放電ランプ点灯装置および照明装置
JP2005063861A (ja) 無電極放電灯点灯装置及び照明装置
JP3439755B2 (ja) 電球形無電極放電ランプ
JP2007194114A (ja) 電球形蛍光ランプ装置
JP2001284074A (ja) 電球形蛍光ランプ
JP2011044402A (ja) 無電極放電灯点灯装置及び照明器具

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP