WO2004003623A1 - 光スイッチ - Google Patents

光スイッチ Download PDF

Info

Publication number
WO2004003623A1
WO2004003623A1 PCT/JP2003/008187 JP0308187W WO2004003623A1 WO 2004003623 A1 WO2004003623 A1 WO 2004003623A1 JP 0308187 W JP0308187 W JP 0308187W WO 2004003623 A1 WO2004003623 A1 WO 2004003623A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflecting surface
light reflecting
optical fiber
input
Prior art date
Application number
PCT/JP2003/008187
Other languages
English (en)
French (fr)
Inventor
Tomoki Uesugi
Yoichi Nakanishi
Kazuki Fukuda
Original Assignee
Omron Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation filed Critical Omron Corporation
Priority to KR10-2004-7020338A priority Critical patent/KR20050010921A/ko
Priority to EP03738550A priority patent/EP1548486A1/en
Priority to US10/516,390 priority patent/US7236658B2/en
Priority to CA002488054A priority patent/CA2488054A1/en
Publication of WO2004003623A1 publication Critical patent/WO2004003623A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/352Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element having a shaped reflective surface, e.g. a reflective element comprising several reflective surfaces or facets that function together
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • G02B6/3514Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror the reflective optical element moving along a line so as to translate into and out of the beam path, i.e. across the beam path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/35481xN switch, i.e. one input and a selectable single output of N possible outputs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3568Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details characterised by the actuating force
    • G02B6/3572Magnetic force
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/3564Mechanical details of the actuation mechanism associated with the moving element or mounting mechanism details
    • G02B6/3582Housing means or package or arranging details of the switching elements, e.g. for thermal isolation

Definitions

  • the present invention relates to an optical switch for switching a coupling relationship between an input optical path (for example, an input optical fiber) and an output optical path (for example, an output optical fiber).
  • an input optical path for example, an input optical fiber
  • an output optical path for example, an output optical fiber
  • FIGS. 1 (a;) and 1 (b) are a plan view and a cross-sectional view for explaining the structure of the main part of a conventionally proposed 2 ⁇ 2 type optical switch.
  • a circuit portion 3 is provided on a plate-like switch substrate 2, and the first and second optical reflections are made so that an inner surface of the concave portion 3 forms an angle of 90 degrees.
  • Surfaces 4 and 5 are formed.
  • a long flexible member 6 having elasticity is provided on the bottom surface of the switch substrate 2 in a cantilever manner, and a cube-shaped movable reflecting member 7 is fixed to a front end of the flexible member 6.
  • the movable reflecting member 7 is disposed so as to be located at an inner corner portion formed by the first and second light reflecting surfaces 4 and 5, and the third and adjacent surfaces of the movable reflecting member 7 Fourth light reflecting surfaces 8 and 9 are formed.
  • the flexible member 6 is configured to bend up and down as shown in FIG. 1 (b), and the movable reflecting portion located at the inner corner of the first and second light reflecting surfaces 4.
  • the material .7 is formed by bending the flexible member 6 downwardly so that the first and second light reflecting surfaces 4,
  • an electromagnetic stone is provided below the switch board 2, and when the electromagnet is excited, the flexible member 6 is attracted downward, and the movable reflecting member 7 is lowered, thereby demagnetizing the electromagnet. Then, the flexible member 6 returns upward, and the movable reflection member 7 returns before the first and second light reflection surfaces 4 and 5.
  • FIGS. 2A and 2B are diagrams for explaining the switching operation by the optical switch.
  • a first input optical fiber 10 is arranged facing the first light reflecting surface 4, and a second input optical fiber 11 is arranged facing the fourth light reflecting surface 9.
  • a first output optical fiber 12 is arranged to face the third light reflecting surface 8, and a second output optical fiber 13 is arranged to face the second light reflecting surface 5.
  • the movable reflecting member 7 when the movable reflecting member 7 is raised and is located in front of the first and second light reflecting surfaces 4 and 5, as shown in FIG.
  • the light 14 emitted from the output optical fiber 10 is coupled to the first output optical fiber 12 after being reflected by the first light reflecting surface 4 and the third light reflecting surface 8.
  • the light 15 emitted from the second input optical fiber 11 is reflected by the fourth light reflecting surface 9 and the second light reflecting surface 5 and then coupled to the second output optical fiber 13 '. I do.
  • the first input optical fiber 1 When the movable reflecting member 7 is lowered and is not in front of the first and second light reflecting surfaces 4 and 5, as shown in FIG. 2 (b), the first input optical fiber 1
  • the light 14 emitted from 0 is reflected by the first light reflecting surface 4 and the second light reflecting surface 5 and then coupled to the second output optical fiber 13.
  • Light 15 emitted from the second input optical fiber 11 is coupled to the first output optical fiber 12 after being reflected by the second light reflecting surface 5 and the first light reflecting surface 4. I do.
  • the first input optical fiber 10 and the second input optical fiber 1 are driven by raising and lowering the movable reflecting member 7 by driving the flexible member 6 with the electromagnet.
  • the light output from 1 is coupled to the first output optical fiber.
  • the first and second light reflecting surfaces 4 and 5 and the third and fourth light reflecting surfaces 8 and 9 are separate members (the inner surface of the recess of the switch substrate 2).
  • the movable reflecting member 7 the positioning of each light reflecting surface and the optical fiber becomes very complicated during the assembly process of the optical switch and the coupling work between the optical switch and the optical fiber. The work was difficult.
  • optical fibers 10, 11, 1 so that the light 14 emitted from 10 is incident
  • the positions 2 and 13 are aligned for each combination of input and output, and after the alignment, the optical fibers 10, 11, 12 and 13 are fixed with an adhesive or the like.
  • the movable reflection member 7 is arranged in front of the second input optical fiber 11 and the first output optical fiber 12, and the position and angle of the movable reflection member 7 are adjusted by moving the movable reflection member 7. As shown in FIG. 2 (a), the light 14 emitted from the first input optical fiber 10 enters the first output optical fiber 12, and enters the second output optical fiber 13.
  • the position and angle of the movable reflection member 7 are adjusted with respect to each of the optical fibers 10, 11, 12 and 13 so that the light 15 emitted from the second input optical fiber 11 is incident. Then, the movable reflection member 7 is fixed to the upper surface of the distal end portion of the flexible member 6 with an adhesive or the like. However, after aligning each optical fiber 10, 11, 12 and 13 before attaching the movable reflecting member 7 to the flexible member 6, each optical fiber 10, 11, Since 12 and 13 are fixed, the movable reflecting member 7 is continuously moved to the front of the optical fibers 11 and 12 even if the position and angle of the movable reflecting member 7 are adjusted. , 11, 12 and 13 cannot be changed, so that the position and angle of the movable reflecting member 7 cannot be adjusted with high precision.
  • the optical fibers 10, 11, 1, 12 and 1 positioned with reference to the light reflecting surfaces 4 and 5 will be described. Since the position 3 also varies, it becomes more difficult to adjust the position and angle of the movable reflecting member 7. Therefore, in the optical switch having such a structure, the positions of the optical fibers 10, 11, 12, and 13, and the positions and angles of the movable reflective members 7 before and after the movable reflective member 7 is attached. Had to be adjusted by trial and error, which made assembly of the optical switch difficult. Disclosure of the invention
  • the present invention has been made in view of such a point, and an object of the present invention is to provide an optical switch for switching a coupling relationship between an input optical path and an output optical path, and to provide an input optical path and an output optical path.
  • the purpose of the present invention is to make it possible to easily perform axis alignment between the optical path for use and the light reflecting surface.
  • An optical switch includes a total of at least three input optical paths and output optical paths, and changes a combination of an input optical path and an output optical path that mutually transmit light.
  • the front surface of the mirror member which is relatively movable with respect to the input optical path and the output optical path is opposed to the input optical path and the output optical path, and a predetermined angle is set.
  • a first region in which a pair of 'light reflecting surfaces' intersect with each other is formed, and a second region in which a plurality of pairs of light reflecting surfaces are formed in which adjacent light reflecting surfaces intersect with each other at a predetermined angle.
  • the input optical path is an optical transmission medium that transmits and propagates light and emits light to space, and is constituted by, for example, an optical fiber or an optical waveguide.
  • the output optical path is an optical transmission medium for transmitting and propagating light incident from a space, and is constituted by, for example, an optical fiber / optical waveguide.
  • the optical switch according to the present invention for example, when both the input optical path and the output optical path are plural, some of the input optical paths as in the optical switch according to the embodiment of the present invention are used.
  • the light emitted from the optical path is reflected by the light reflecting surface provided in the first region, and is made incident on some output optical paths.
  • the light emitted from the other input optical paths is The light reflected by the light reflecting surface provided in the area is incident on another output optical path, and the light emitted from the partial input optical path is the light provided in the second area.
  • the light reflected by the reflection surface is made incident on the other output optical path, and the light emitted from the other input optical path is reflected by the light reflection surface provided in the second region, thereby reflecting the light.
  • the mirror member can be configured to be incident on some output optical paths. Since the mirror member is relatively moved and the region for reflecting light is switched between the first region and the second region, the coupling relationship between the input optical path and the output optical path can be switched. . (Note that the description of this embodiment refers to the case where one of the input optical path and the output optical path is one or the number of input optical paths and the number of output optical paths are not equal in the optical switch of the present invention. It is not excluded.)
  • the first region having a pair of light reflecting surfaces and the second region having a plurality of pairs of light reflecting surfaces are formed integrally with a mirror member. Therefore, the positional deviation and the angle error between the light reflecting surface in the first region and the light reflecting surface in the second region are extremely small due to only the component accuracy (not affected by assembly), and Thus, the position adjustment between the input optical path and the output optical path and each light reflecting surface can be easily performed.
  • the optical switch since the optical switch according to another embodiment of the present invention includes an actuator for moving the mirror member, the optical switch can be switched by an electric signal.
  • the input optical path and the output optical path are formed integrally with portions facing the front surface of the mirror member, so that the input optical path and the output optical path It is only necessary to adjust the position of the entire mirror and the mirror member, and the position adjusting operation can be further simplified.
  • any one of the first area and the second area on the front surface of the mirror member faces the input optical path and the output optical path. Since the monitoring means is provided with means for monitoring whether or not the optical switch has been switched, the switching state of the optical switch can be known through, for example, an electric signal.
  • An optical switch is configured such that, after the light emitted from the input optical path is emitted from the input optical path, the light is reflected by the light reflecting surface provided in the first region.
  • the spatial light path length before entering the output light path and the light emitted from the input light path are reflected from the light reflection surface provided in the second area after being emitted from the input light path.
  • the spatial optical path length until the light enters the output optical path is made equal.
  • the spatial optical path length is an optical path length of an optical path through which light propagates until light emitted from the input optical path enters the output optical path.
  • the second area is longer than the spatial optical path length of the light reflected by the light reflection area provided in the first area. Since the spatial optical path length of the light reflected by the light reflecting area provided in the area becomes shorter, in order to make the optical path lengths of both light equal, the second area is more intrusive than the first area. What is necessary is just to arrange so that it may become far from the optical path for emission.
  • the spatial light path length of the light reflected by the first area is equal to the spatial light path length of the light reflected by the second area.
  • FIGS. 1A and 1B are a plan view and a cross-sectional view illustrating the structure of a main part of a conventional 2 ⁇ 2 optical switch.
  • -FIGS. 2 (a) and 2 (b) are diagrams for explaining the switching operation by the optical switch.
  • FIG. 3 is an external perspective view of the optical switch according to the first embodiment of the present invention.
  • Fig. 4 is a schematic cross-sectional view C of the above optical switch (the cover is not shown).
  • FIG. 5 is a perspective view showing the internal structure of the optical switch of FIG.
  • FIG. 6 is a perspective view showing the structure of the mirror unit.
  • FIG. 7 is a plan view for explaining the structure of a driven part used in the above mirror unit.
  • FIG. 8 is a perspective view showing a shape of a mirror block fixed on a driven portion.
  • ⁇ (b) is a plan view and a front view of the above-mentioned mirror block.
  • FIG. 10 is a perspective view of a support base constituting the optical fiber installation unit.
  • FIG. 11 is a perspective view showing an adjustment plate and an optical fiber array which constitute the optical fiber installation unit.
  • FIG. 12 is an exploded perspective view of the optical fiber array.
  • FIGS. 13 (a) and 13 (b) are diagrams for explaining the operation of the optical switch according to the present invention.
  • FIG. 14 is a plan view showing another example of the optical fiber installation unit.
  • FIGS. 15 (a), (b) and (c) are a partially broken plan view, a front view, and a partially broken bottom view showing a mirror mouthpiece used in the second embodiment of the present invention. It is.
  • FIG. 16 is a perspective view of a mirror block used in the third embodiment of the present invention.
  • FIG. 17 (a) is a plan view of the same mirror block, and Fig. 17 (b) is Fig. 17 (a).
  • FIG. 17 (c) is a sectional view taken along the line XX of FIG. 17 (a).
  • FIGS. 18 (a) and 18 (b) show a fourth embodiment of the present invention and are schematic views for explaining the operation of a 1 ⁇ 2 optical switch.
  • FIGS. 19 (a) and 19 (b) are schematic views for explaining the operation of a 4 ⁇ 4 optical switch according to a fifth embodiment of the present invention.
  • FIG. 20 is a perspective view of a mirror block used for an optical switch according to the sixth embodiment of the present invention.
  • FIGS. 21 (a) and 21 (b) are explanatory diagrams of the operation of the above mirror block.
  • FIG. 3 is an external perspective view of the optical switch according to the first embodiment of the present invention
  • FIG. 4 is a cross-sectional view of a main part of the optical switch
  • FIG. 5 is a perspective view showing the internal structure of the optical switch.
  • This embodiment is a 2 ⁇ 2 type optical switch capable of switching the coupling relationship between two input optical fibers and two output optical fibers.
  • the optical switch 21 includes an optical switch body 22 and a cover 23.
  • the optical switch body 22 is configured as shown in FIG. First, the configuration of each part of the optical switch 21 will be described.
  • the optical switch body 22 is configured by mounting a mirror unit 25, an optical fiber installation unit 26, and an optical fiber array 27 on a substrate 24.
  • the mirror unit 25 is mounted on one side of the substrate 24, and the optical fiber array 27 is held by an optical fiber installation unit 26 fixed to the other side of the substrate 24, and faces the mirror unit 25. .
  • Electrode pads 30 for mounting the mirror unit 25 are provided on the upper surface of the substrate 24, and lead feet 31 of the optical switch 21 are provided on the lower surface of the substrate 24, as shown in FIG.
  • the lead is not limited to the type that is inserted into the circuit board as the lead leg 31 shown in FIG. 4, but may be a surface-mount type lead.
  • FIG. 6 is a perspective view showing the structure of the mirror unit 25.
  • an electromagnet 38 is accommodated in a housing 37 having an open upper surface (see FIG. 4), and a driven part 39 is disposed above the electromagnet 38.
  • FIG. 7 is a partially omitted plan view showing the structure of the driven part 39.
  • a rectangular iron piece 40 and a pair of metal spring pieces 43 arranged in parallel on both sides of the iron piece 40 are formed and integrated by a resin mold part 4.4. Both ends of the iron piece 40 and both ends of the spring piece 43 are both exposed from the resin mold part 44. Further, a torsional deformation shaft 41 protrudes from the outer central portion of each of the spring pieces 43, and a fixed piece 42 is provided at the tip of the torsional deformation shaft 41. The torsional deformation shaft 41 and the fixed piece 42 are also exposed from the resin mold part 44. Further, as shown in FIG. 4, a permanent magnet 45 is fixed to the center of the lower surface of the iron piece 40.
  • the driven portion 39 is disposed above the electromagnet 38, and has a fixed piece 42 fixed to the upper surface of the housing 3.7, and is supported by a torsionally deformable shaft 41 so as to be swingable. Therefore, the driven part 39 can rotate around the torsion deformation shaft 41 by torsionally deforming the torsion deformation shaft 41.
  • the electromagnet 38 is formed by winding a coil 47 around the outer periphery of a core 46 as shown in FIG.
  • the core 46 is formed of a permanent magnet, and both ends of the core 46 extend upward (the portions extending upward at both ends of the core 46 are referred to as yoke portions 48a and 48b).
  • the yoke portions 48a and 48b face the lower surfaces of both ends of the iron piece 40, respectively, and are magnetized to the S pole and the N pole, respectively.
  • the entire iron piece 40 is magnetized to the same pole (for example, the S pole face of the permanent magnet 45 is the iron piece 40 When it is joined to the iron, the iron piece 40 becomes the S pole.)
  • the lead feet 69 of the mirror unit 25 are provided on both sides of the housing 37.
  • the driven part 39 can be rotated in different directions depending on the direction of the current flowing from the electromagnet 38 to the coil 47, and moreover, one end of the iron piece 40 is at one end.
  • the iron piece 40 will remain The state of being adsorbed by the lock sections 48a and 48b is maintained. That is, latch operation is performed in both directions, and no power is consumed to maintain the switching state.
  • the mirror block 50 is raised depending on which of the detection units 49 a and 49 b outputs a detection signal. You can monitor if the force is falling.
  • FIG. 8 is a perspective view showing the shape of the mirror block 50 fixed to the end of the iron piece 40
  • FIGS. 9 (a) and 9 (b) are a plan view and a front view thereof.
  • the mirror block 50 is formed in a substantially rectangular parallelepiped shape by metal, glass, plastic, or the like.
  • a first light reflection surface 51 and a second light reflection surface 52 are formed on the left and right sides of the front surface of the mirror block 50 so as to form an angle of 90 degrees.
  • mirror blocks are formed in a substantially rectangular parallelepiped shape by metal, glass, plastic, or the like.
  • a first light reflection surface 51 and a second light reflection surface 52 are formed on the left and right sides of the front surface of the mirror block 50 so as to form an angle of 90 degrees.
  • mirror blocks are formed on the left and right sides of the front surface of the mirror block 50 so as to form an angle of 90 degrees.
  • a third light reflecting surface 53 and a fourth light reflecting surface 54 project right and left so as to form an angle of 90 degrees.
  • the third light reflecting surface 53 and the first light reflecting surface 51 also form an angle of 90 degrees
  • the fourth light reflecting surface 54 and the second light reflecting surface 52 also It forms an angle of 90 degrees.
  • the first light reflecting surface 51, the third light reflecting surface 53, the second light reflecting surface 52, and the second light reflecting surface 52 form an angle of 90 degrees with each other.
  • the fourth light reflecting surface 54 is formed in the shape of a W groove, and in the lower half of the front surface of the mirror block 50, the first light reflecting surface 51 and the first light reflecting surface 51 form an angle of 90 degrees with each other.
  • the second light reflecting surface 52 is formed in a V-groove shape. Specifically, in the upper half of the mirror block 50, the first light reflecting surface 51, the third light reflecting surface 53, the second light reflecting surface 52, and the fourth light reflecting surface
  • the surface 54 is plane-symmetric, and in the lower half of the mirror block 50, the first light reflection surface 51 and the second light reflection surface 52 are plane-symmetric with respect to the center plane.
  • Mirror block 5 0 is fixed by bonding with an adhesive lower surface at an end portion upper face of the iron 4 0, it becomes W groove-shaped light reflecting surface 5 1, 5 2, 5 3 and 5 4 above, V Grooved
  • the light reflecting surfaces 51 and 52 are below. Contrary to this, the V-groove-shaped light reflecting surfaces 51, 52 are on the upper side, and the W-groove-shaped light reflecting surfaces 51, 52, 53, and 54 are on the lower side. It is also possible to bond the mirror block 50 to the iron piece 40 with the upper surface facing down.
  • the adhesive rises from the two V-grooves between the light-reflecting surfaces 52 and 2 by capillary action, so that the light-reflecting surfaces are easily stained.
  • the adhesive is applied between the first light reflecting surface 51 and the second light reflecting surface 52. Since it rises only through the V-groove of the book, the light reflecting surface is not easily stained by the adhesive.
  • the optical fiber installation unit 26 includes a substantially U-shaped support base 55 shown in FIG. 10 and an adjustment plate 56 shown in FIG.
  • the support base 55 has a recess 58 on the upper surface on both sides, and the bottom surface is fixed to the upper surface of the substrate 24 in advance.
  • the adjusting plate 56 has a bar-shaped arm 57 extending from each side.
  • the adjustment plate 56 is fixed to the lower surface of the optical fiber array 27 with an adhesive before being attached to the support 55.
  • the arm 5 7 of the adjusting plate 56 on which the optical fiber array 27 is placed is placed in the recess 58 of the support base 55, and the position of the optical fiber array 27 is adjusted. 7 is fixed in the M part 58, and the optical fiber 27 is supported by the adjusting plate 56 in the air.
  • FIG. 12 is an exploded perspective view of the optical fiber array 27.
  • the ends of four optical fibers 32, 33, 34 and 35 are held in a holder 59.
  • the ends of the optical fibers 32, 33, ⁇ 34, and 35 are precisely positioned in the holder 59 in the axial center, are arranged in a line at a predetermined pitch, and are fixed in that state.
  • a multi-core ferrule may be fitted, and the optical fibers 32, 33, 34 and 35 may be fitted. May be inserted into a V-groove group.
  • a lens array 60 is fixed to the front of the holder 59 with an adhesive or the like, and the lens array 60 has optical fibers 32, 33, 34, and 35 attached thereto.
  • a minute coupling lens 61 is formed so as to face each end face.
  • a coupling lens 61 made of a transparent resin may be provided on a transparent resin substrate, or a coupling lens 61 made of glass may be provided on a glass substrate.
  • a coupling lens 61 made of glass may be provided on the glass substrate, and a coupling lens 61 made of a transparent resin may be provided on the glass substrate.
  • the lens array 60 is disposed on the front of the holder 59 with an uncured adhesive therebetween, and then emits light from each of the optical fibers 32, 33, 34, and 35 to each of the coupling lenses 61.
  • the optical axes of the optical fibers 32, 33, 34, and 35 and the coupling lens 61 are aligned, and the adhesive is applied in this state. It is cured and fixed to the front of the holder 59.
  • the mirror unit 25 is mounted on the substrate 24 by first soldering the lead feet 69 of the mirror unit 25 to the electrode pads 30 of the substrate 24.
  • a mirror block 50 is attached to the mirror unit 25 in advance.
  • the support 55 of the optical fiber installation unit 26 is also arranged at a position facing the mirror unit 25 and is bonded to the upper surface of the substrate 24 in advance.
  • an adjusting plate 56 is adhered to the lower surface of the optical fiber array 27 so that the optical fiber array 27 and the adjusting plate 56 are integrated.
  • the optical fiber array 27 is grasped by a robot hand, the optical fiber array 27 is carried above the support base 55, and the arm 57 of the adjusting plate 56 fixed to the lower surface of the optical fiber array 27 is moved. Set it in the recess 5 8 of the support base 5 5.
  • the mirror block 50 is raised, and the first light reflecting surface 51 and the second light reflecting surface 52 are opposed to the optical fibers 32, 33, 34, and 35.
  • Move the optical fiber array 27 to adjust the optical axis position see Fig. 13 (b)), and store the position of the optical fiber array 27 in the computer.
  • the mirror block 50 is lowered, and the first light reflecting surface 51, the third light reflecting surface 53, the fourth light reflecting surface 54, and the second light reflecting surface 52 are connected to the optical fiber 3.
  • the optical fiber array 27 is moved to adjust the optical axis position while facing the optical fiber arrays 2, 3, 3, 34, and 35 (see Fig. 13 (a)), and the position of the optical fiber array 27 is adjusted.
  • the computer determines the optimum position based on the data. Calculate (for example, find the average position ').
  • the optical fiber array 27 is finely adjusted by the robot hand to be at the optimum position, and is maintained in that state. While maintaining this state, an ultraviolet curing adhesive is dropped between the arm 57 and the recess 58, and the ultraviolet curing adhesive is irradiated with ultraviolet light to be cured, and the arm 57 is recessed with the adhesive. 8 and fix the optical fiber array 27 at the final adjustment position.
  • the adhesive for fixing the arm 57 is not limited to the ultraviolet-curable adhesive as long as it is a quick-curing adhesive. Further, the arms 5.7 may be fixed not only by the adhesive but also by a solder or the like.
  • the optical switch body 22 includes a mirror block 50 of a mirror unit 25 and an optical fiber array.
  • the end faces of the optical fibers 32, 33, 34, and 35 of 27 face each other, and the electromagnet 38 of the mirror unit 25 is excited to provide the mirror pick 50 of the iron piece 40.
  • the mirror block 50 rises.
  • the third light reflecting surface 53 and the fourth light reflecting surface 54 are optical fibers 32,
  • the first input optical fiber is located in the lower half of the mirror block 50, rising above the plane containing the axes of the ends of 33, 34 and 35. 3 2 and the first output optical fiber 34 face the first light reflecting surface 51, and the second input optical fiber 33 and the second output optical fiber 35 It faces the reflection surface 52. Also, when the electromagnet 38 of the mirror unit 25 is excited to attract the end of the iron piece 40 on the side where the mirror block 50 is provided, the mirror block 50 is lowered. In this state, as shown in FIG.
  • the first input optical fiber 32 faces the first light reflecting surface 51 in the upper half of the mirror block 50, and the first output fiber
  • the optical fiber 34 faces the third light reflecting surface 53
  • the second input optical fiber 33 faces the fourth light reflecting surface 54
  • the second output optical fiber 35 It faces the second light reflection surface 52. Therefore, if the positional relationship between each optical fiber 32, 33, 34, and 35 and each light reflecting surface 51, 52, 53, and 54 is properly adjusted, then FIG. As shown in (a), the switching of the mirror block 50 is down; in the optical switch 21 in the ⁇ state, the light 66 emitted from the first input optical fiber 32 is reflected by the first optical reflection. After being reflected by the surface 51 and the third light reflecting surface 53, the light enters the first output optical fiber 34.
  • the light 67 ′ emitted from the second input optical fiber 33 is reflected by the fourth light reflecting surface 54 and the second light reflecting surface 52, and then the second output optical fiber It is incident on 3-5. Therefore, in this switching state, the first input optical fiber 32 and the first output optical fiber 34 are coupled, and the second input optical fiber 33 and the second output optical fiber 3 are connected. And 5 are combined.
  • the light 66 emitted from the first input optical fiber 32 becomes the second light. After being reflected by the first light reflecting surface 51 and the second light reflecting surface 52, the light enters the second output optical fiber 35. Further, the light 67 emitted from the second input optical fiber 33 is reflected by the second light reflecting surface 52 and the first light reflecting surface 51, and then the first output optical fiber It is incident on 34. Therefore, in this switching state, the first input optical fiber 32 and the second output optical fiber 35 are coupled, and the second input optical fiber 33 and the first output optical fiber 3 are connected. And 4 are combined.
  • the arm 57 may move until the adhesive is completely cured, and after the optical fiber array 27 is attached, There may be a case where it is desired to adjust the position again.
  • the arm 57 is bent or meandered, and even after the adjustment plate 56 is fixed to the support 55, the arm The optical fiber array 27 is moved together with the adjusting plate 56 by plastically deforming the optical fiber array 57 to adjust the position of the optical fiber array 27 in the vertical and horizontal directions, or to adjust the angle of the optical fiber array 27. It may be.
  • FIGS. 15 (a), (b) and (c) are a partially broken plan view, a front view and a partial view showing the structure of a mirror block 50 used for an optical switch according to the second embodiment of the present invention. It is the bottom view which fractured.
  • the flat portions 62, 63, and 63 are formed by filling the deepest portion of each V-groove, respectively.
  • the depth of the V-groove is flat, but a curved surface is acceptable.
  • the opening width W1 of the V groove between the first light reflecting surface 51 and the second light reflecting surface 52 is 1 mm, and the first light reflecting surface 51 and the third light reflecting surface
  • the opening width W2 of the V groove between 53 and the fourth light reflecting surface 54 and the second light reflecting surface 52 between the fourth light reflecting surface 52 is 0.5 mm, and the flat portions 62 and 63 at the back of the V groove.
  • the width W 3 of this is approximately 50 ⁇ m.
  • FIG. 16 is a perspective view showing the structure of a mirror block 50 used for an optical switch according to the third embodiment of the present invention.
  • FIG. 17 (a) is a plan view of the mirror block 50
  • FIGS. 17 (b) and (c) are cross-sectional views taken along line XX and Y-Y of FIG. 17 (a), respectively.
  • FIG. in the mirror block 50 the lower half of the front of the mirror block 50 is formed in a V-groove shape by the first light reflecting surface 51a and the second light reflecting surface 52a.
  • the normals set on the first light reflecting surface 51a and the second light reflecting surface 52a are optical fibers.
  • the first light-reflecting surface 51a and the second light-reflecting surface 52 are inclined downward so that they are included in the same plane as the optical axis at the tip of 32, 33, 34 and 35. Further, in the upper half of the front surface of the mirror block 50, the first light reflecting surface 51b, the second light reflecting surface 52b, the third light reflecting surface 53, and the fourth light The first light reflecting surface 51b and the second light are formed when the mirror block 50 attached to the mirror unit 25 is lowered by forming a W-shaped groove by the reflecting surface 54.
  • the first light reflecting surface 5 lb, and the second light reflecting surface 52b, the third light reflecting surface 53 and the fourth light reflecting surface 54 are inclined upward to be included.
  • the light reflected by the mirror block 50 does not deviate from the plane including the optical axes of the optical fibers 32, 33, 34, and 35, and
  • the light-reflecting surfaces 51a, 51b, 52a, 52b, 53, and 54 can be easily aligned with the optical fibers 32, 33, 34, and 35.
  • the coupling efficiency of the optical switch 21 can be improved.
  • the optical switch shown in FIG. 18 is a 1 ⁇ 2 type optical switch having one input optical fiber and two output optical fibers.
  • the first output optical fiber 3 4 faces the third light-reflecting surface 5 3
  • the second output optical fiber 35 is disposed so as to face the light reflecting surface 54 and the second output optical fiber 35.
  • the light 65 emitted from the input optical fiber 64 becomes the second light reflecting surface 52 and After being reflected by the first light reflecting surface 51, the light enters the first output optical fiber 34. Therefore, in this switching state, the input optical fiber 64 and the first output optical fiber 34 are coupled.
  • IX2-type optical switch having two input optical fibers and one output optical fiber is also possible.
  • FIG. 19 shows a 4 ⁇ 4 type optical switch having four input optical fibers and four output optical fibers.
  • the first input optical fiber 71 and the second input optical fiber 72 face the first light reflecting surface 51
  • the first output optical fiber 7.5 and the second output optical fiber 76 face the third light reflecting surface 53
  • the third input optical fiber 73 and the fourth input optical fiber 74 is arranged so as to face the fourth light reflecting surface 54
  • the third output optical fiber 77 and the fourth output optical fiber 78 are arranged so as to face the second light reflecting surface 52.
  • the first input optical fiber 71 and the second input optical fiber 72, and the light 79, 80 emitted from the second input optical fiber 72 Is reflected by the first light reflecting surface 51 and the third light reflecting surface 53 and then enters the second output optical fiber 76 and the first output optical fiber 75, respectively.
  • Lights 8 1 and 8 2 emitted from the third input optical fiber 73 and the fourth input optical fiber 74 are reflected by the fourth light reflecting surface 54 and the second light reflecting surface 52. After being reflected, they enter the fourth output optical fiber 78 and the third output optical fiber 77, respectively.
  • the first input optical fiber 71 and the second output optical fiber 76 are coupled, and the second input optical fiber 72 and the first output optical fiber 71 are combined.
  • the third input optical fiber 73 and the fourth output optical fiber 78 are connected, and the fourth input optical fiber 74 and the third output optical fiber 7 are connected. 7 and are combined.
  • the mirror block 50 is raised as shown in FIG. 19 (b)
  • the light is emitted from the first input optical fiber 71 and the second input optical fiber 72.
  • the fourth output optical fiber 78 and the third output optical fiber respectively. It is incident on 7 7.
  • Lights 81 and 82 emitted from the third input optical fiber 73 and the fourth input optical fiber 74 are transmitted to the second light reflecting surface 52 and the first light reflecting surface 51, respectively. After being reflected by the optical fiber, the light enters the second output optical fiber 76 and the first output optical fiber 75. Therefore, in this switching state, the first input optical fiber 71 and the fourth output optical fiber 78 are coupled, and the second input optical fiber 72 and the third output optical fiber 7 7, the third input optical fiber 73 and the second output optical fiber 76 are connected, and the fourth input optical fiber 74 and the first output optical fiber 75 are coupled. And are combined.
  • the light 6 6 emitted from the first input optical fiber 32 is used. Is reflected by the first light reflecting surface 51 and the third light reflecting surface 53 and enters the first output optical fiber 34, and the first input optical fiber 32 In the case where the emitted light 66 is reflected by the first light reflecting surface 51 and the second light reflecting surface 52 and enters the second output optical fiber 35, the first The spatial optical path lengths from the light reflecting surface 51 to the first output optical fiber 34 or the second output optical fiber 35 are different.
  • the light 66 incident on the first output optical fiber 34 and the light 66 incident on the second output optical fiber 35 have a phase and an optical spot of the light 66 on the fiber end face.
  • the diameter and other factors differ, and switching the optical switch changes the characteristics of the optical signal. For example, the lens position may need to be adjusted or the coupling efficiency may change.
  • FIG. 20 is a perspective view showing an optimum structure of the mirror block 50 for solving the above-mentioned problem.
  • the lower half of the front of the mirror block 50 is formed in a V-groove shape by the first light reflecting surface 51a and the second light reflecting surface 52a. Smell in the upper half of the mouth 50
  • the first light reflecting surface 51b, the second light reflecting surface 52b, the third light reflecting surface 53, and the fourth light reflecting surface 54 form a W groove.
  • first light reflecting surface 51b, the second light reflecting surface 52b, the third light reflecting surface 53, and the fourth light reflecting surface 54 formed in the upper half are: It is retracted backward from the first light reflecting surface 51a and the second light reflecting surface 52a formed in the lower half, so that the upper half of the mirror block 50 can be used. However, even if the lower half is used, the spatial optical path length does not change.
  • FIGS. 21 (a) and (b) show that the mirror block 50 is lowered and the first light reflecting surface 51b, the second light reflecting surface 52b, the third light reflecting surface 53 4 when the first light reflecting surface 51a and the second light reflecting surface 52a are used with the mirror hook 50 raised.
  • the state of FIG. 13 (a) is changed from the state of FIG. 13 (b) Since the distance over which the spatial optical path length increases when switching to is equal for light 66 and light 67, the first light reflecting surface 5 1b and the second light reflecting surface 5 are only half that distance. 2b, by lowering the third light reflecting surface 53 and the fourth light reflecting surface 54 backward, the spatial light path length can be prevented from changing.
  • the driven unit 39 of the mirror unit 25 is driven like a seesaw to rotate the mirror block 50.
  • the mirror unit 25 is configured to move the mirror block 50 by an electromagnet, but the mirror unit 25 may be configured to move the mirror block 50 by another method such as an electrostatic actuator and a voice coil.
  • an electromagnet even when an electromagnet is used, only one electromagnet is used.When the electromagnet is excited, the mirror block 50 is at the lowered position, and when the electromagnet is demagnetized, the mirror block 50 is at the raised position. You may make it.
  • a type that does not latch can be used. Industrial applicability
  • the present invention relates to an optical fiber transmission line used in optical communication and an optical switch for switching a new optical transmission / reception terminal.
  • the present invention relates to an input optical path (for example, an input optical fiber) and an output optical path (for example, output).
  • Optical fiber for example, an input optical fiber
  • an output optical path for example, output

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

 ミラーブロック(50)の下半分に互いに90度の角度をなすようにして第1の光反射面(51)及び第2の光反射面(52)を形成する。ミラーブロック(50)の上半分にも互いに90度の角度をなすようにして第1の光反射面(51)及び第2の光反射面(52)を形成し、第1の光反射面(51)と第2の光反射面(52)の間において互いに90度の角度をなすようにして第3の光反射面(53)及び第4の光反射面(54)を形成する。この光スイッチによれば、光を反射させる領域をミラーブロック(50)の上半分と下半分に切り替えることにより、入力用光ファイバと出力用光ファイバの結合関係を切り替えることができる。

Description

明細書 光スィツチ 技 術 分 野
本発明は、 入力用光路 (例えば、 入力用光ファイバ) と出力用光路 (例えば、 出力用光ファイバ) との結合関係を切り換えるための光スィツチに関する。 背 景 技 術
光通信の分野においては、 光ファイバ伝送路や光送受信端末装置などを切り换 えるために光スィッチが用いられている。 図 1 ( a;)、 ( b ) に示すものは、 従 来より提案されている 2 X 2型光スィッチの主要部分の構造を説明する平面図及' び断面図である。 この光スィッチにあっては、 平板状をしたスィッチ基板 2に回 部 3が設けられており、 凹部 3の内側面に 9 0度の角度をなすようにして第 1及 び第 2の光反射面 4、 5が形成されている。 また、 スィッチ基板 2の底面には弾 性を有する長尺の可撓性部材 6が片持ち状に設けられており、 可撓性部材 6の先 端にはキューブ状の可動反射部材 7が固定されている。 可動反射部材 7は、 第 1 及び第 2の光反射面 4、 5によって構成された内隅部分に位置するように配置さ れており、 可動反射部材 7の隣接する 2面には第 3及び第 4の光反射面 8、 9が 形成されている。 可撓性部材 6は、 図 1 ( b ) に示すように、 上下に屈曲するよ うになつており、 第 1及ぴ第 2の光反射面 4の内隅部に位置していた可動反射部 材 .7は、可撓性部材 6が下方へ屈曲することによって第 1及び第 2の光反射面 4、
5よりも下方へ下降する。 図示しないが、 このスィッチ基板 2の下方には、 電磁 石が設置されており、 電磁石を励磁すると、 可撓性部材 6が下方へ吸着されて可 動反射部材 7が下方へ下がり、 電磁石を消磁すると、 可撓性部材 6が上方へ復帰 して可動反射部材 7が第 1及び第 2の光反射面 4、 5の前に戻る。
図 2 ( a )、 ( b ) は上記光スィッチによる切替え動作を説明するための図で ある。 この例では、 第 1の光反射面 4に対向させて第 1の入力用光ファイバ 1 0 を配置し、第 4の光反射面 9に対向させて第 2の入力用光ファイバ 1 1を配置し、 第 3の光反射面 8に対向させて第 1の出力用光ファイバ 1 2を配置し、 第 2の光 反射面 5に対向させて第 2の出力用光ファイバ 1 3を配置している。
しかして、 可動反射部材 7が上昇していて第 1及び第 2の光反射面 4、 5の前 面に位置している場合には、 図 2 ( a ) に示すように、 第 1の入力用光ファイバ 1 0から出射された光 1 4は、 第 1の光反射面 4及び第 3の光反射面 8で反射さ れた後に第.1の出力用光ファイバ 1 2に結合する。 第 2の入力用光ファイバ 1 1 から出射された光 1 5は、 第 4の光反射面 9及び第 2の光反射面 5で反射された 後に第 2の出力用光ファイバ 1 3'に結合する。
また、 可動反射部材 7が下降していて第 1及び第 2の光反射面 4、 5.の前面に ない場合には、 図 2 ( b ) に示すように、 第 1の入力用光ファイバ 1 0から出射 された光 1 4は、 第 1の光反射面 4及び第 2の光反射面 5で反射された後に第 2 の出力用光ファイバ 1 3に結合する。 第 2の入力用光ファイバ 1 1から出射され た光 1 5は、 第 2の光反射面 5及び第 1の光反射面 4で反射された後に第 1の出 力用光ファイバ 1 2に結合する。
従って、 このような光スィッチによれば、 電磁石で可撓性部材 6を駆動させて 可動反射部材 7を昇降させることにより、 第 1の入力用光ファイバ 1 0及び第 2 の入力用光ファイバ 1 1から出射された光の結合先を、 第 1の出力用光ファイバ
1 2と第 2.の出力用光ファイバ 1 3との間で切り換えることができる。
しかし、 このような構造の光スィッチでは、 第 1及び第 2の光反射面 4、 5と 第 3及び第 4の光反射面 8、 9とが互いに別個の部材 (スィッチ基板 2の凹部内 側面と可動反射部材 7 ) に設けられているので、 光スィッチの組立て工程や、 光 スィツチと光ファイバとの結合作業時において、 各光反射面と光ファイバとの位 置合わせが非常に煩雑になり、 作業が困難であった。
具体的に説明すると、 以下のとおりである。 まず、 可撓性部材 6に可動反射部 材 7を取付ける前の状態において、 第 1及び第 2の入力用光ファイバ 1 0、 1 1 と第 1及び第 2の出力用光ファイバ 1 2、 1 3を平行に配置した後、 図 2 ( b ) のように、 第 1の出力用光ファイバ 1 2に第 2の入力用光ファイバ 1 1から出射 された光 1 5が入射し、 第 2の出力用光ファイバ 1 3に第 1の入力用光ファイバ
1 0から出射された光 1 4が入射するように、 4本の光ファイバ 1 0、 1 1、 1 2及び 1 3の位置を入出射の組み合わせ毎に調芯し、 その調芯後の状態で各光フ ァイノく 1 0、 1 1、 1 2及び 1 3を接着剤等で固めて固定する。 ついで、 第 2の 入力用光ファイバ 1 1及び第 1の出力用光ファイバ 1 2の前方に可動反射部材 7 を配置し、 可動反射部材 7を動かしてその位置及び角度を調整する。 図 2 ( a ) に示すように、 第 1の出力用光ファイバ 1 2に第 1の入力用光ファイバ 1 0から 出射された光 1 4が入射し、 第 2の出力用光ファイバ 1 3に第 2の入力用光ブァ ィバ 1 1から出射された光 1 5が入射するよう、 各光ファイバ 1 0、 1 1、 1 2 及び 1 3に対して可動反射部材 7の位置及び角度が調整されたら、 その状態で可. 動反射部材 7を可撓性部材 6の先端部上面に接着剤等で固定する。 . . ところが、 可動反射部材 7を可撓性部材 6に取り付ける前の状態で各光フアイ ノ 1 0、 1 1、 1 2及び 1 3を調芯した後、 各光ファイバ 1 0、 1 1、 1 2及ぴ 1 3は固定されているので、 続けて可動反射部材 7を光ファイバ 1 1、 1 2の前' 方において可動反射部材 7の位置及び角度を調整しようとしても、 光ファイバ 1 0、 1 1、 1 2及び 1 3の位置関係は変えることができないので、 高精度で可動 反射部材 7の位置及び角度を調整することはできない。 また、 第 1の光反射面 4 及び第 2の光反射面 5の位置にバラツキがあると、 光反射面 4、 5を基準にして 位置決めされた光ファイバ 1 0、 1 1、 1 2及び 1 3の位置にもバラツキが生じ るので、 可動反射部材 7の位置や角度の調整が余計困難になる。 そのため、 この ような構造の光スィッチでは、 可動反射部材 7を取付ける前と後とで、 各光ファ ィバ 1 0、 1 1、 1 2及び 1 3の位置と可動反射部材 7の位置及び角度を試行錯 誤的に調整しなければならず、このことが光スィツチの組立てを困難にしていた。 発 明 の 開 示
.本発明は、 このような点に鑑みてなされたものであり、 その目的とするところ は、 入力用光路と出力用光路との結合関係を切り換えるための光スィツチにおい て、 入力用光路や出力用光路と光反射面との軸芯合わせを簡単に行えるようにす ることにある。
本発明にかかる光スィッチは、 合計で少なくとも 3本の入力用光路及び出力用 光路を備え、 互いに光を伝送し合う入力用光路と出力用光路の組み合わせを変更 することにより光路切り替えを行う光スィツチにおいて、 入力用光路及び出力用 光路に対して相対的に移動可能となったミラー部材の正面を前記入力用光路及び 前記出力用光路に対向させ、 所定角度をなして互いに交わる一対の'光反射面を形 成された第 1の領域と、 隣接する光反射面どうしが所定角度をなして互いに交わ る複数対の光反射面を形成された第 2の領域と'を、 前記ミラー部材の正面にその 移動方向に沿って配設したものである。 . .
ここで、 入力用光路とは、 光を透過伝搬させて空間へ光を出射する光伝送媒体 であって、 例えば光ファイバや光導波路等によって構成されている。 出力用光路 とは、 空間から入射した光を透過伝搬させる光伝送媒体であって、.例えば光フ了 ィバゃ光導波路等によって構成されている。 ·
本発明にかかる光スィツチによれば、 例えば入力用光路と出力用光路とがいず れも複数本である場合には、 本発明に実施態様の光スィッチのように、 一部の入 力用光路から出射された光は、 第 1の領域に設けられた光反射面で反射されるこ とによって一部の出力用光路に入射させられ、 他の入力用光路から出射された光 は、 第 1の領域に設けられた光反射面で反射ざれることによって他の出力用光路 に入射させられ、 また、 前記一部の入力用光路から出射された光は、 第 2の領域 に設けられた光反射面で反射されることによって前記他の出力用光路に入射させ られ、 前記他の入力用光路から出射された光は、 第 2の領域に設けられた光反射 面で反射されることによって前記一部の出力用光路に入射させられるように構成 することができるので、 ミラ一部材を相対的に移動させて光を反射させる領域を 第 1の領域と第 2の領域とで切り替えることにより、 入力用光路と出力用光路と の結合関係を切り替えることができる。 (なお、 この実施態様の記載は、 本発明 の光スィツチにおいて、 入力用光路又は出力用光路のいずれか一方が 1本である 場合や、 入力用光路と出力用光路の本数が等しくない場合を排除するものではな い。)
しかも、 この光スィッチにあっては、 一対の光反射面を形成された第 1の領域 と複数対の光反射面を形成された第 2の領域とをミラ一部材に一体に形成してレ、 るので、 第 1の領域の光反射面と第 2の領域の光反射面との位置ずれや角度誤差 が、 部品精度のみ (組立てによる影響を受けない) になって、 非常に小さく、 且 つ安定したものになり、 入力用光路及び出力用光路と各光反射面との位置調整作 業を容易に行うことができる。
本発明の別な実施態様による光スィツチは、 前記ミラー部材を移動させるため のァクチユエータを備えているので、 電気的信号によって光スィツチを切り替え ることができる。
本発明のさらに別な実施態様による光スィツチは、 前記入力用光路及び前記出 力用光路の、 前記ミラー部材の正面と対向する部分を一体に構成しているので、 入力用光路及び出力用光路の全体とミラー部材との位置調整を行えばよくなり、 位置調整作業をより一層簡略にすることができる。
また、 本発明のさらに別な実施態様による光スィッチは、 前記ミラー部材の正 面のうち前記第 1の領域又は前記第 2の領域のうちいずれが前記入力用光路及ぴ 前記出力用光路に対向しているか、 をモニタリングする手段を備えているので、 当該モニタリング手段を通じて例えば電気信号により光スィツチの切替状態を知 ることができる。
本発明のさらに別な実施態様による光スィツチは、 前記入力用光路から出射さ れた光が、 前記入力用光路から出射された後、 第 1の領域に設けられた光反射面 で反射されて出力用光路に入射するまでの空間光路長と、 前記入力用光路から出 射された光が、 前記入力用光路から出射された後、 第 2の領域に設けられた光反 射面で反射されて出力用光路に入射するまでの空間光路長とが等しくなるように している。
ここで、 空間光路長とは、 入力用光路から出射された光が出力用光路に入射す るまでに光が伝搬する光路の光学的光路長である。 一般に、 第 1の領域と第 2の 領域が入出力用光路から等しい距離にあれば、 第 1の領域に設けられた光反射領 域で反射される光の空間光路長よりも、 第 2の領域に設けられた光反射領域で反 射される光の空間光路長の方が短くなるので、 両者の光路長を等しくするために は、 第 1の領域よりも第 2の領域の方が入出射用光路から遠くなるように配置す ればよい。
このさらに別な実施態様による光スィツチにあっては、 第 1の領域で反射され る光の空間光路長と第 2の領域で反射される光の空間光路長とが等しくなつてい るので、 光スィッチの切替えに伴うレンズ位置の調整などが不要になり、 また、 光の結合効率の変化も起こらなくなる。
なお、 この発明の以上説明した構成要素は、 可能な限り任意に み合わせるこ とができる。 図面の簡単な説明
図 1 (a;)、 (b) は、 従来例の 2 X 2型光スィッチの主要部分の構造を説明 する平面図及び断面図である。 - 図 2 (a)、 (b) は、 上記光スィッチによる切替え動作を説明する図である。 図 3は、 本発明の第 1の実施形態による光スィッチの外観斜視図である。
図 4は、 同上の光スィッチの概略断面図 Cある (カバーは図示省略)。
図 5は、 図 3の光スィツチの内部構造を示す斜視図である。
図 6は、 ミラーユニットの構造を示す斜視図である。
図 7は、 同上のミラーュニットに用いられている被駆動部の構造を説明するた めの平面図である。
図 8は、 被駆動部上に固定されているミラープロックの形状を示す斜視図であ る。 · « 図 9 ( a )\ (b) は、 同上のミラ一ブロックの平面図及び正面図である。
図 1 0は、 光ファイバ設置ユニットを構成する支持台の斜視図である。
図 1 1は、 光ファイバ設置ユニットを構成する調整板と光ファイバアレイを示 す斜視図である。
図 1 2は、 光ファイバアレイの分解斜視図である。
図 1 3 (a)、 (b) は、 本発明にかかる光スィッチの作用説明図である。
図 1 4は、 光ファイバ設置ュニットの別な例を示す平面図である。
図 1 5 (a)、 (b) 及び (c) は、 本発明の第 2の実施形態に用いられるミ ラープ口ックを示す一部破断した平面図、正面図及び一部破断した下面図である。 図 1 6は、 本発明の第 3の実施形態に用いられるミラーブロックの斜視図であ る。
図 1 7 (a) は、 同上のミラーブロックの平面図、 図 1 7 (b) は図 1 7 (a) の X_X線断面図、 図 1 7 (c) は図 1 7 (a) の Y— Y線断面図である。
図 1 8 (a)、 (b) は、 本発明の第 4の実施形態であって、 1 X 2型の光ス イッチの作用説明のための概略図である。
図 1 9 (a)、 (b) は、 本発明の第 5の実施形態であって、 4 X 4型の光ス ィツチの作用説明のための概略図である。
図 20は、 本発明の第 6の実施形態による光スィツチに用いられるミラープロ ックの斜視図である。
図 2 1 (a)、 (b) は、 同上のミラーブロックの作用説明図である。 . 発明を実施するための最良の形態
以下、 本発明を実施するための最良の形態について、 図面を参照しながら詳細 に説明する。
(第 1の実施形態)
図 3は本発明の第 1の実施形態による光スィツチの外観斜視図、 図 4は当該光 スィッチの要部の断面図である。 また、 図 5は当該光スィッチの内部構造を示す 斜視図である。 この実施形態は、 2本の入力用光ファイバと、 2本の出力用光フ アイバとの結合関係を切り換えるこどができる 2 X 2型光スィツチである。 この 光スィツチ 21は、 光スィツチ本体 22とカバー 23とからなり、 光スィツチ本 体 22は、 図 5に示すように構成されている。 まず、 この光スィッチ 21め各部 の構成から説明する。
図 5に示すように、光スィツチ本体 22は、基板 24上にミラーュニット 25、 光ファイバ設置ュニット 26、光ファイバアレイ 27を実装して構成されている。 ミラーユニット 25は、 基板 24内の一方に実装されており、 光ファイバアレイ 27は、 基板 24内の他方に固定された光ファイバ設置ュニット 26に保持され ていて、 ミラーユニット 25と対向している。
基板 24の上面にはミラーュニット 25を実装するための電極パッド 30が設 けられ、 基板 24の下面には、 図 4に示すように、 光スィッチ 21のリード足 3 1が設けられている。 なお、 リードは図 4に示すリード足 31のように回路基板 に差し込むタイプのものに限らず、 表面実装型のリードであってもよい。 図 6はミラーュニット 2 5の構造を示す斜視図である。 このミラーュニット 2 5にあっては、 上面が開口したハウジング 3 7内に電磁石 3 8が納められており (図 4参照)、 電磁石 3 8の上方に被駆動部 3 9が配設されている。 図 7は被駆 動部 3 9の構造を示す一部省略した平面図である。 被駆動部 3 9は長方形状をし た鉄片 4 0と、 鉄片 4 0の両側に平行に配置された一対の金属製バネ片 4 3とを 樹脂モールド部 4· 4によつて成形一体化したものであり、 鉄片 4 0の両端部とバ ネ片 4 3の両端部はいずれも樹脂モールド部 4 4から露出している。 また、 各バ ネ片 4 3の外側中央部からは、 ねじれ変形軸 4 1が突出しており、 ねじれ変形軸 4 1の先端に固定片 4 2が設けられている。 ねじれ変形軸 4 1及び固定片 4 2も 樹脂モールド部 4 4から露出している。 さらに、 図 4に示すように、 鉄片 4 0の 下面中央部には、 永久磁石 4 5が固着されている。
被駆動部 3 9は、 電磁石 3 8の上方に配設されて固定片 4 2をハウジング 3. 7 の上面に固定されており、ねじれ変形軸 4 1によって揺動自在に支持されている。 従って、 被駆動部 3 9は、 ねじれ変形軸 4 1をねじれ変形させる.ことにより、 ね じれ変形軸 4 1を中心として回動できる。
電磁石 3 8は、 図 4に示すように、 コア 4 6の外周にコイル 4 7を卷き回した ものである。 コア 4 6は永久磁石によって形成されており、 コア 4 6の両端部は 上方へ延びて (コア 4 6の両端の上方へ延びている部分を、 ヨーク部 4 8 a、 4 8 bという。) 鉄片 4 0の両端部下面に対向し、 ヨーク部 4 8 a、 4 8 bはそれ ぞれ S極と N極とに磁ィ匕されている。 また、 鉄片 4 0の下面には、 永久磁石 4 5 が接合されているので、 鉄片 4 0は全体が同一極に磁化されている (例えば、 永 久磁石 4 5の S極面が鉄片 4 0に接合されていると、 鉄片 4 0は S極となる。)。 なお、 ミラーュニット 2 5のリード足 6 9は、 ハウジング 3 7の両側面に設けら れている。
このような構造のミラーュニット 2 5の動作及び原理については、 特開平 1 0 一 2 5 5 6 3 1号公報に開示されている。 簡単にいうと、 電磁石 3 8がコイル 4 7に流す電流の向きによって被駆動部 3 9を異なる方向に回動させることがで き、 しかも、 鉄片 4 0のいずれか一方の端部がいずれかのヨーク部 4 8 a、 4 8 bに吸着されると、 コイル 4 7の電流をオフにしても鉄片 4 0はいずれかのョー ク部 4 8 a、 4 8 bに吸着された状態を維持する。 すなわち、 両方向でラッチ動 作し、 切替状態を保持するために電力を消費しない。
このようにして電磁石 3 8によって、 被駆動^ 3 9が駆動されると、 鉄片 4 0 の端がヨーク部 4 8 a、 4 8 bに当接することにより、 鉄片 4 0は常に所定角度 で停止させられる。 また、 鉄片 4 0が傾くと、 それと共にバネ片 4 3も傾く。 バ ネ片 4 3の両端部下面には電気接点が設けられており、 バネ片 4 3の電気接点に 対向する位置には、 バネ片 4 3が接触したことを検出するための検知部 4 9 a、
4 9 b (例えば; 電気的な接点) がそれぞれ設けられており、 いずれの検知部 4 9 a、 4 9 bから検知信号が出力されているかによつてミラーブロック 5 0が上 昇している力 \ 下降しているかをモニターすることができる。
図 8は、 鉄片 4 0の端部に固定されているミラープロック 5 0の形状を示す斜 視図であり、 図 9 ( a )、 ( b ) はその平面図及び正面図である。 ミラーブロッ ク 5 0は、 金属、 ガラス、 プラスチック等によってほぼ直方体状に形成されてい る。 ミラーブ口ック 5 0の前面には 9 0度の角度を成すようにして左右に第 1の 光反射面 5 1と第 2の光反射面 5 2が形成されている。 さらに、 ミラーブロック
5 0の前面上半分では、 9 0度の角度を成すようにして左右に第 3の光反射面 5 3と第 4の光反射面 5 4が突出している。 ここで、 第 3の光反射面 5 3と第 1の 光反射面 5 1も 9 0度の角度を成しており、 第 4の光反射面 5 4と第 2の光反射 面 5 2も 9 0度の角度を成している。 従って、 ミラーブロック 5 0の前面上半分 では、 互いに 9 0度の角度を成すようにして第 1の光反射面 5 1、 第 3の光反射 面 5 3、第 2の光反射面 5 2及び第 4の光反射面 5 4が W溝状に形成されており、 ミラーブ口ック 5 0の前面下半分では、 互いに 9 0度の角度を成すようにして第 1の光反射面 5 1と第 2の光反射面 5 2が V溝状に形成されている。具体的には、 ミラーブロック 5 0の上半分では、 中心面に関して第 1の光反射面 5 1及ぴ第 3 の光反射面 5 3と第 2の光反射面 5 2及び第 4の光反射面 5 4とが面対称となつ ており、 ミラーブロック 5 0の下半分では、 中心面に関して第 1の光反射面 5 1 と第 2の光反射面 5 2が面対称となっている。
ミラーブロック 5 0は下面を鉄片 4 0の端部上面に接着剤により接着して固定 されており、 W溝状の光反射面 5 1、 5 2、 5 3及び 5 4が上になり、 V溝状の 光反射面 5 1、 5 2が下になつている。 これとは反対に、 V溝状の光反射面 5 1、 5 2が上になり、 W溝状の光反射面 5 1、 5 2、 5 3及び 5 4が下になるように して、 ミラーブ口ック 5 0の上面を下にして鉄片 4 0に接着するごとも可能であ る。 しかし、 このような構造では、 ミラーブロック 5 0の接着作業時に、 第 1の 光反射面 5 1と第 3の光反射面 5 3の間と、 第 4の光反射面 5 4と第 2の光反射 面 5 2の間との 2本の V溝から接着剤が毛細管現象によって昇り、 光反射面を汚 し易くなる。 本実施形態のように、 ミラーブロック 5 0の下面を下にして鉄片 4 0に接着すれば、 接着剤は第 1の光反射面 5 1と第 ·2の光反 面 5 2の間の 1本 の V溝を通ってしか昇らないので、 光反射面が接着剤で汚れにくくなる。
光ファイバ設置ュニット 2 6は、 図 1 0に示す略 U字状をした支持台 5 5と、 図 1 1に示す調整板 5 6とからなる。 支持台 5 5は、 両側部上面に凹部 5 8を設 けられており、 予め底面を基板 2 4の上面に固定されている。 調整板 5 6は、 両 側面からそれぞれ棒状をしたアーム 5 7を延出されている。 この調整板 5 6は、 支持台 5 5に取付けられる前に、 光ファイバアレイ 2 7の下面に接着剤で固定さ れる。 ついで、 光ファイバアレイ 2 7を載置された調整板 5 6のアーム 5 7を支 持台 5 5の凹部 5 8に納め、 光ファイバアレイ 2 7の位置を調整した後、 接着剤 によってアーム 5 7を M部 5 8内に固定し、 空中において調整板 5 6で光フアイ バァレイ 2 7を支持させる。
図 1 2は光ファイバアレイ 2 7の分解斜視図である。 この光ファイバアレイ 2 7にあっては、 ホルダー 5 9内に 4本の光ファイバ 3 2、 3 3、 3 4及び 3 5の 端部が保持されている。 各光ファイバ 3 2、 3 3、■ 3 4及び 3 5の先端部は、 ホ ルダー 5 9内で精密に軸心を位置決めされ、所定ピッチで一列に平行に配列され、 その状態で固定されている。 具体的には、 順次、 第 1の入力用光ファイバ 3 2、 第 1の出力用光ファイバ 3 4、 第 2の入力用光ファイバ 3 3、 第 2の出力用光フ アイバ 3 5が配列されている。 ホルダー 5 9に光ファイバ 3 2、 3 3、 3 4及ぴ 3 5を精密に位置決めする手段としては、多芯のフェルールに嵌め込んでもよく、 光ファイバ 3 2、 3 3、 3 4及び 3 5を V溝状のグループにはめ込むことによつ て行ってもよい。 また、 ホルダー 5 9の前面にはレンズアレイ 6 0が接着剤等で 固定されており、 レンズアレイ 6 0には光ファイバ 3 2、 3 3、 3 4及び 3 5の 各端面に対向させて微小な結合用レンズ 6 1が成形されている。 このレンズァレ ィ 6 0としては、 透明樹脂基板に透明樹脂からなる結合用レンズ 6 1を設けても よく、 ガラス基板にガラスからなる結合用レン 、 6 1を設けてもよ'く、 透明樹脂 基板にガラスからなる結合用レンズ 6 1を設けてもよく、 ガラス基板に透明樹脂 からなる結合用レンズ 6 1を設けてもよい。 このレンズアレイ 6 0は、 未硬化の 接着剤を挟んでホルダー 5 9の前面に配置した後、 各光ファイバ 3 2、 3 3、 3 4及び 3 5から各結合用レンズ 6 1に光を出射させ、 各結合用レンズ 6 1を通過 した光をモニターすることによって光ファイバ 3 2、 3 3、 3 4及ぴ 3 5と結合 用レンズ 6 1の光軸合せを行い、 その状態で接着剤を硬化させてホルダー 5 9の 前面に固定される。
つぎに、 この光スィッチ 2 1の組立て工程を説明する。 光スィッチ 2 1の組立 て工程においては、 まず基板 2 4の電極パッド 3 0にミラーュニット 2 5のリー ド足 6 9をハンダ付けすることにより、 基板 2 4上にミラーュニット 2 5を実装 する。 ミラーユニット 2 5には予めミラープロック 5 0が取付けられている。 光 ファイバ設置ュニット 2 6の支持台 5 5も、 ミラーュニット 2 5と対向する位置 に配置され、 予め基板 2 4の上面に接着される。
ついで; 図 1 1に示すように光ファイバアレイ 2 7の下面に調整板 5 6を接着 して光ファイバアレイ 2 7と調整板 5 6を一体化しておく。 この光ファイバァレ ィ 2 7をロボットハンドで掴み、 光ファイバアレイ 2 7を支持台 5 5の上方へ搬 入し、 光ファイバアレイ 2 7の下面に固定されている調整板 5 6のアーム 5 7を 支持台 5 5の凹部 5 8内に納める。 '
この後、 ミラープロック 5 0を上昇させて第 1の光反射面 5 1及び第 2の光反 射面 5 2を光ファイバ 3 2、 3 3、 3 4及び 3 5に対向させた状態で、 光フアイ バアレイ 2 7を動かして光軸位置の調整を行い (図 1 3 ( b ) 参照)、 光フアイ バアレイ 2 7の位置をコンピュータに記憶させる。 ついで、 ミラーブロック 5 0 を下降させて第 1の光反射面 5 1、 第 3の光反射面 5 3、 第 4の光反射面 5 4及 び第 2の光反射面 5 2を光ファイバ 3 2、 3 3、 3 4及び 3 5に対向させた状態 で、光ファイバアレイ 2 7を動かして光軸位置の調整を行い(図 1 3 ( a )参照)、 光ファイバアレイ 2 7の位置をコンピュータに記憶させる。 こう して、 ミラーブ ロック 5 0を上昇させた状態と下降させた状態で光ファイバアレイ 2 7の光軸調 整位置を検出し、 各位置をコンピュータに記憶させると、 コンピュータはそのデ ータに基づいて最適位置を演算する (例えば、 位置の平均位置'を求める。)。 光ファイバアレイ 2 7の最適位置がコンピュータによって演算されると、 光ファ ィバアレイ 2 7はロボットハンドによって最適位置となるように微調整され、 そ の状態に保持される。 この状態を保ったままで、 アーム 5 7と凹部 5 8の間に紫 外線硬化型接着剤を滴下し、 紫外線硬化型接着剤に紫外線を照射して硬化させ、 接着剤によってアーム 5 7を凹部 5 8内に固定し、 光ファイバアレイ 2 7を最終 調整位置に固定する。 尚、 アーム 5 7を固定するための接着剤として、 即硬化型 の接着剤であれば、 紫外線硬化型接着剤に限らない。 また、 接着剤に限らず、 半 田等によってアーム 5· 7を固定するようにしてもよレ、。
こうして基板 2 4内にミラーュニット 2 5と光ファイバ設置ュニット 2 6を取 付けることにより、 光スィッチ本体 2 2が組立てられる。 この光スィッチ本体 2 2においては、 ミラーユニット 2 5のミラーブロック 5 0と、 光ファイバアレイ
2 7の各光ファイバ 3 2、 3 3、 3 4及び 3 5の端面とが互いに対向しており、 ミラーュニット 2 5の電磁石 3 8を励磁して鉄片 4 0のミラープ ック 5 0が設 けられているのと反対側の端部を吸着させると、ミラーブ口ック 5 0が上昇する。 この状態では、 第 3の光反射面 5 3及び第 4の光反射面 5 4は光ファイバ 3 2、
3 3、 3 4及び 3 5の端部の軸心が含まれる平面よりも上に上がり、図 1 3 ( b ) に示すように、 ミラープロック 5 0の下半分で第 1の入力用光ファイバ 3 2及 第 1の出力用光ファイバ 3 4が第 1の光反射面 5 1に対向し、 第 2の入力用光フ アイバ 3 3及び第 2の出力用光ファイバ 3 5が第 2の光反射面 5 2に対向する。 また、 ミラーュニット 2 5の電磁石 3 8を励磁して鉄片 4 0のミラープロック 5 0が設けられている側の端部を吸着させると、ミラーブ口ック 5 0が下に下がる。 この状態では、 図 1 3 ( a ) に示すように、 ミラーブロック 5 0の上半分で第 1 の入力用光ファイバ 3 2が第 1の光反射面 5 1に対向し、 第 1の出力用光フアイ バ 3 4が第 3の光反射面 5 3に対向し、 第 2の入力用光ファイバ 3 3が第 4の光 反射面 5 4に対向し、 第 2の出力用光ファイバ 3 5が第 2の光反射面 5 2に対向 する。 しかして、 各光ファイバ 3 2、 3 3、 3 4及び 3 5と各光反射面 5 1、 5 2、 5 3及び 5 4との位置関係が正しく調整されているとすれば、 図 1 3 ( a ) のよ うにミラーブ口ック 5 0が下降している切り替; ί状態の光スィツチ 2 1では、 第 1の入力用光ファイバ 3 2から出射された光 6 6は第 1の光反射面 5 1及び第 3 の光反射面 5 3で反射された後、第 1の出力用光ファイバ 3 4に入射する。また、 第 2の入力用光ファイバ 3 3から出射された光 6 7'は第 4の光反射面 5 4及び第 2の光反射面 5 2で反射された後、 第 2の出力用光ファイバ 3 5に入射する。 よ つて、 この切り替え状態では、 第 1の入力用光ファイバ 3 2と第 1の出力用光フ アイバ 3 4が結合され、 第 2の入力用光ファイバ 3 3と第 2の出力用光ファイバ 3 5とが結合されている。
これに対し、 図 1 3 ( b ) のようにミラーブロック 5 0が上昇している切り替 え状態の光スィツチ 2 1では、 第 1の入力用光ファイバ 3 2から出射された光 6 6は第 1の光反射面 5 1及び第 2の光反射面 5 2で反射された後、 第 2の出力用 光ファイバ 3 5に入射する。 また、 第 2の入力用光ファイバ 3 3から出射された 光 6 7は第 2の光反射面 5 2及び第 1の光反射面 5 1で反射された後、 第 1の出 力用光ファイバ 3 4に入射する。 よって、 この切り替え状態では、 第 1の入力用 光ファイバ 3 2と第 2の出力用光ファイバ 3 5が結合され、 第 2の入力用光ファ ィバ 3 3と第 1の出力用光ファイバ 3 4とが結合される。
なお、 ミラーブロック 5 0と光ファイバアレイ 2 7とを精密に位置調整したと しても、 接着剤が完全に硬化するまでにアーム 5 7が動いたりして、 光ファイバ アレイ 2 7の取り付け後に再度位置調整したい場合も考えられる。 そのような場 合に対処するためには、 図 1 4に示すように、 アーム 5 7を屈曲又は蛇行した形 状にしておき、 調整板 5 6を支持台 5 5に固定した後でも、 アーム 5 7を塑性変 形させて調整板 5 6と共に光ファイバアレイ 2 7を動かし、 光ファイバアレイ 2 7を縦方向及び横方向に位置調整し、 あるいは、 光ファイバアレイ 2 7の角度を 調整できるようにしてもよい。
光ファイバアレイ 2 7の位置調整が完了したら、 光スィツチ本体 2 2の上面を カバー 2 3で覆って光スィッチ本体 2 2の上面を封止する。 これにより、 封止構 造の光スィッチ 2 1が製造される。 (第 2の実施形態)
図 1 5 (a)、 (b) 及ぴ (c) は本発明の第 2の実施形態による光スィッチ に用いられるミラーブロック 50の構造を示す一部破断した平面図、 正面図及ぴ 一部破断した下面図である。 このミラーブロック 50にあっては、 第 1の光反射 面 5 1と第 2の光反射面 52の間の V溝、 第 1の光反射面 51と第 3の光反射面 53の間の V溝、第 4の光反射面 54と第 2の光反射面 52の間の V溝において、 各 V溝の最深部を埋めることによってそれぞれ平面部 62、 63、 63を形成し、 ミラーブ口ック 50の接着時に V溝の奥で毛細管現象により接着剤を吸い上げに くくしている。 図では、 V溝の奥が平面になっているが、 曲面であっても差し支 えない。 このようにして、 V溝の奥の溝幅に下限値を設定すれば、 接着剤を光反 射面に吸い上げにくくなるので、 より一層光反射面が接着剤で汚れにくくなる。 なお、 この実施形態では、 第 1の光反射面 51と第 2の光反射面 52の間の V 溝の開口幅 W1が 1 mmで、 第 1の光反射面 51と第 3の光反射面 53の間の V 溝と第 4の光反射面 54と第 2の光反射面 52の間の V溝の各開口幅 W2が 0. 5 mmであり、 V溝の奥の平面部 62、 63の幅 W 3はほぼ 50 μ mとなってい る。
(第 3の実施形態) ' 上記のような構造のミラーュニット 25では、 鉄片 40をシーソー状に回動さ せてミラーブロック 50を昇降させているので、 ミラーブ口ック 50が上昇して いるときと、 ミラーブロック 50が下降しているときとで、 ミラープロック 50 の正面 (光反射面) の角度が上下に変化する。 特に、 ミラーユニット 25を小型 化すると、 ミラープロック 50が昇降したときの角度の変化が大きくなり、 入力 用光ファイバ 32、 33から出てミラーブロック 50で反射された光が出力用光 ファイバ 34、 35から逸れる恐れがある。 このような場合には、 図 1 6及び図 1 7 (a)、 (b)、 (c) に示すような構造のミラーブロック 50を用いればよ レ、。
図 1 6は本発明の第 3の実施形態による光スィツチに用いられるミラーブ口ッ ク 50の構造を示す斜視図である。図 1 7 (a)はミラープロック 50の平面図、 図 1 7 (b)、 (c) は、 それぞれ図 1 7 (a) の X-X線断面図及び Y— Y線断 面図である。 このミラ一ブロック 5 0にあっては、 ミラーブロック 5 0の正面の 下半分においては、 第 1の光反射面 5 1 aと第 2の光反射面 5 2 aによって V溝 状に形成されており、 しかも、 ミラーユニット 2" 5に取付けられだミラーブロッ ク 5 0が上昇したときに第 1の光反射面 5 1 a及び第 2の光反射面 5 2 aに立て た法線が光ファイバ 3 2、 3 3、 3 4及ぴ 3 5の先端の光軸と同一平面に含まれ るよう、 第 1の光反射面 5 1 a及び第 2の光反射面 5 2を下方へ傾けている。 さ らに、 ミラーブロック 5 0の正面の上半分においては、 第 1の光反射面 5 1 b、 第 2の光反射面 5 2 b、 第 3の光反射面 5 3及び第 4の光反射面 5 4によって W 溝状に形成されており、 しかも、 ミラーユニット 2 5に取付けられたミラープロ ック 5 0が下降じたときに第 1の光反射面 5 1 b、 第 2の光反射面 5 2 b、 第 3 の光反射面 5 3及び第 4の光反射面 5 4の立てた各法線が光ファイバ3 2 , 3 3 , 3 4及び 3 5の先端の光軸と同一平面に含まれるよう、 第 1の光反射面 5 l b、 及び第 2の光反射面 5 2 b、 第 3の光反射面 5 3及び第 4の光反射面 5 4を上方 へ傾けてい.る。
よって、 このようなミラーブロック 5 0を用いれば、 ミラーブロック 5 0で反 射された光が光ファイバ 3 2、 3 3、 3 4及び 3 5の光軸を含む平面から外れる ことがなく、 各光反射面 5 1 a、 5 1 b、 5 2 a、 5 2 b、 5 3及び 5 4と各光 ファイバ 3 2、 3 3、 3 4及び 3 5との軸芯合せを容易に行えると共に、 光スイ- ッチ 2 1の結合効率を向上させることができる。
(第 4の実施形態)
図 1 8に示すものは、入力用光ファイバが 1本で、出力用光ファイバが 2本の、 1 X 2型の光スィツチである。 この実施形態では、 ミラーブ口ック 5 0の下降時 に、 第 1の出力用光ファイバ 3 4が第 3の光反射面 5 3に対向し、 入力用光ファ ィバ 6 4が第 4の光反射面 5 4に対向し、 第 2の出力用光ファイバ 3 5が第 2の 光反射面 5 2に対向するように配置されている。
し力 して、 この光スィッチにおいては、 ミラーブロック 5 0が下降している切 り替え状態では、 図 1 8 ( a ) のように、 入力用光ファイバ 6 4から出射された 光 6 5は第 4の光反射面 5 4及び第 2の光反射面 5 2で反射された後、 第 2の出 力用光ファイバ 3 5に入射する。 よって、 この切り替え状態では、 入力用光ファ ィバ 6 4と第 2の出力用光ファイバ 3 5とが結合されている。
これに対し、 ミラーブロック 5 0が上昇している切り替え状態では、 図 1 8 ( b ) のように、 入力用光ファイバ 6 4から出射された光 6 5は第 2の光反射面 5 2及び第 1の光反射面 5 1で反射された後、 第 1の出力用光ファイバ 3 4に入 射する。 よって、 この切り替え状態では、 入力用光ファイバ 6 4と第 1の出力用 光ファイバ 3 4とが結合される。
なお、 入力用光ファイバが 2本で、 出力用光ファイバが 1本の、 I X 2型の光 スィッチも可能であることはもちろんである。 '
(第 5の実施形態) +
図 1 9に示すものは、入力用光ファイバが 4本で、出力用光ファイバが 4本の、 4 X 4型の光スィッチである。 この光スィッチにおいては、 ミラーブロック 5 0 が下降しているとき、 第 1の入力用光ファイバ 7 1及び第 2の入力用光ファイバ 7 2が第 1の光反射面 5 1に対向し、 第 1の出力用光ファイバ 7· 5及び第 2の出 力用光ファイバ 7 6が第 3の光反射面 5 3に対向し、 第 3の入力用光ファイバ 7 3及び第 4の入力用光ファイバ 7 4が第 4の光反射面 5 4に対向し、 第 3の出力 用光ファイバ 7 7及び第 4の出力用光ファイバ 7 8が第 2の光反射面 5 2に対向 するように配置されている。
し力 して、 ミラーブロック 5 0が下降している切り替え状態では、.第 1の入力 用光ファイバ 7 1及び第 2の入力用光ファイバ 7 2力、ら出射された光 7 9、 8 0 は第 1の光反射面 5 1及び第 3の光反射面 5 3で反射された後、 それぞれ第 2の 出力用光ファイバ 7 6及び第 1の出力用光ファイバ 7 5に入射する。 また、 第 3 の入力用光ファイバ 7 3及び第 4の入力用光ファイバ 7 4から出射された光 8 1、 8 2は第 4の光反射面 5 4及び第 2の光反射面 5 2で反射された後、 それぞ れ第 4の出力用光ファイバ 7 8及び第 3の出力用光ファイバ 7 7に入射する。 よ つて、 この切り替え状態では、 第 1の入力用光ファイバ 7 1と第 2の出力用光フ アイバ 7 6とが結合され、 第 2の入力用光ファイバ 7 2と第 1の出力用光フアイ バ 7 5とが結合され、 第 3の入力用光ファイバ 7 3と第 4の出力用光ファイバ 7 8とが結合され、 第 4の入力用光ファイバ 7 4と第 3の出力用光ファイバ 7 7と が結合される。 これに対し、 図 1 9 ( b ) のようにミラーブロック 5 0が上昇している切り替 え状態では、 第 1の入力用光ファイバ 7 1及び第 2の入力用光ファイバ 7 2から 出射された光 7 9、 8 0は第 1の光反射面 5 1及び第 2の光反射面— 5 2で反射さ れた後、 それぞれ第 4の出力用光ファイバ 7 8及び第 3の出力用光ファイバ 7 7 に入射する。 また、 第 3の入力用光ファイバ 7 3及ぴ第 4の入力用光ファイバ 7 4から出射された光 8 1、 8 2は第 2の光反射面 5 2及び第 1の光反射面 5 1で 反射された後、 第 2の出力用光ファイバ 7 6及び第 1の出力用光ファイバ 7 5に 入射する。 よって、 この切り替え状態では、 第 1の入力用光ファイバ 7 1と第 4 の出力用光ファイバ 7 8とが結合され、 第 2の入力用光ファイバ 7 2と第 3の出 力用光ファイバ 7 7とが結合され、 第 3の入力用光ファイバ 7 3と第 2の出力用 光ファイバ 7 6とが結合され、 第 4の入力用光ファイバ 7 4と第 1の出力用光フ アイバ 7 5とが結合される。
(第 6の実施形態)
第 1の実施形態のようなミラーブロック 5 0を用いた場合には、 図 1 3 ( a ) ( b ) から分かるように、 例えば第 1の入力用光ファイバ 3 2から出射された光 6 6が第 1の光反射面 5 1と第 3の光反射面 5 3で反射されて第 1の出力用光フ ァイノく 3 4に入射する場合と、 第 1の入力用光ファイバ 3 2力 ら出射された光 6 6が第 1の光反射面 5 1と第 2の光反射面 5 2.で反射されて第 2の出力用光ファ ィバ 3 5に入射する場合とでは、 第 1の光反射面 5 1から出射してから第 1の出 力用光ファイバ 3 4又は第 2の出力用光ファイバ 3 5に入射するまでの空間光路 長が異なる。 従って、 第 1の出力用光ファイバ' 3 4に入射する光 6 6と、 第 2の 出力用光ファイバ 3 5に入射する光 6 6とでは、 ファイバ端面における、 光 6 6 の位相や光スポット径などが異なり、 光スィッチを切り換えることによって光信 号の特性が変化し、 例えば、 レンズ位置の調整が必要になったり、 結合効率が変 化する恐れがある。
図 2 0に示すものは上記のような問題を解消するための、 最適なミラープロッ ク 5 0の構造を示す斜視図である。 このミラーブロック 5 0にあっては、 ミラー ブロック 5 0の正面の下半分においては、 第 1の光反射面 5 1 aと第 2の光反射 面 5 2 aによって V溝状に形成され、 ミラーブ口ック 5 0の正面の上半分におい ては、 第 1の光反射面 5 1 b、 第 2の光反射面 5 2 b、 第 3の光反射面 5 3及び 第 4の光反射面 5 4によって W溝状に形成されている。 しかも、 上半分に形成さ れている第 1の光反射面 5 1 b、 第 2の光反射 ® 5 2 b、 第 3の光反射面 5 3及 び第 4の光反射面 5 4が、 下半分に形成されている第 1の光反射面 5 1 aと第 2 の光反射面 5 2 aよりも後方へ後退させられており、 それによつてミラープロッ ク 5 0の上半分を用いても、 下半分を用いても空間光路長に変化がないようにし ている。
図 2 1 ( a ) ( b ) は、 ミラーブロック 5 0が下降していて第 1の光反射面 5 1 b、 第 2の光反射面 5 2 b、 第 3の光反射面 5 3及び第 4の光反射面 5 4が用 いられている状態と、 ミラープ口ック 5 0が上昇していて第 1の光反射面 5 1 a と第 2の光反射面 5 2 aが用いられている状態とを表わしている。 図 1 3 ( a ) ( b ) に示されている光 6 6と光 6 7の光路の幾何学的関係から分かるように、 図 1 3 ( a ) の状態から図 1 3 ( b ) の状態へ切り換えたときに空間光路長が長 くなる距離は、 光 6 6と光 6 7とで等しいので、 その距離の半分だけ第 1の光反 射面 5 1 b、 第 2の光反射面 5 2 b、 第 3の光反射面 5 3及び第 4の光反射面 5 4を後方へ下げることで空間光路長が変化しないようにできる。 ■
この実施形態によれば、 光スィツチの切替えに伴うレンズ位置の調整などが不 要になり、 光の結合効率の変化も防止することができる。
なお、 上記実施形態においては、 ミラーュニット 2 5の被駆動部 3 9はシーソ 一状に駆動されてミラープロック 5 0を回動させていたが、 被駆動部 3 9を昇降 させることによってミラープロック 5 0を上下に平行移動させるようにしてもよ レ、。 また、 ミラーユニット 2 5は電磁石によってミラーブロック 5 0を動かすよ うにしていたが、 ミラーュニット 2 5は静電ァクチユエータゃボイスコイルなど 他の方式でミラーブロック 5 0を動かすようにしていても良い。 また、 電磁石を 用いる場合でも、 電磁石を 1個だけにし、 電磁石が励磁されている場合にはミラ 一ブロック 5 0が下降位置となり、 電磁石が消磁されている場合にミラープロッ ク 5 0が上昇位置となるようにしても良い。 また、 電磁石を用いる場合でも、 ラ ツチの掛からないタイプのものであっても差し支えない。 産業上の利用可能性
本発明は、 光通信で用いられる光ファイバ伝送路や光送受新端末を切り換える ための光スィッチに関するものであって、 入力角光路 (例えば、 入力用光フアイ バ) と出力用光路 (例えば、 出力用光ファイバ) との接合部分で用いることがで きる。

Claims

請求の範囲
1 . 合計で少なくとも 3本の入力用光路及び出力用光路を備え、 互いに光を 伝送し合う入力用光路と出力用光路の組み合わせを変更することにより光路切り 替えを行う光スィッチにおいて、
入力用光路及び出力用光路に対レて相対的に移動可能となったミラー部材の正 面を前記入力用光路及び前記出力用光路に対向させ、 所定角度をなして互い'に交 わる一対の光反射面を形成された第 1の領域と、 '隣接する光反射面どうしが所定 角度をなして互いに交わる複数対の光反射面を形成された第 2の領域とを、. 前記 ミラー部材の正面にその移動方向に沿って配設したことを特徴とする光スィッ チ。
2 . 前記ミラー部材を移動させるためのァクチユエータを備えた、 請求項 1 に記載の光スィツチ。
3 . 前記入力用光路及び前記出力用光路の、 前記ミラー部材の正面と対向す る部分を一体に構成したことを特徴とする、 請求項 1に記載の光スィッチ。
4 . 複数本の前記入力用光路のうち一部の入力用光路から出射された光は、 前記第 1の領域に設けられた光反射面で反射されることによって複数本の前記出 力用光路のうちの一部の出力用光路に入射させられ、 他の入力用光路から出射さ れた光は、 前記第 1の領域に設けられた光反射面で反射されることによって他の 出力用光路に入射させられ、 また、 前記一部の入力用光路から出射された光は、 前記第 2の領域に設けられた光反射面で反射されることによって前記他の出力用 光路に入射させられ、 前記他の入力用光路から出射された光は、 前記第 2の領域 に設けられた光反射面で反射されることによって前記一部の出力用光路に入射さ せられることを特徴とする、 請求項 1に記載の光スィツチ。
5 . 前記ミラ一部材の正面のうち前記第 1の領域又は前記第 2の領域のうち いずれが前記入力用光路及び前記出力用光路に対向しているか、 をモニタリング する手段を備えた、 請求項 1に記載の光スィツ 。 '
6 . 前記入力用光路から出射された光が、前記入力用光路から出射された後、 第 1の領域に設けられた光反射面で反射されて出力用光路に入射するまでの空間 光路長と、 前記入力用光路から出射された光が、 前記入力用光路から出射された 後、 第 2の領域に設けられた光反射面で反射されて出力用光路に入射するまでの 空間光路長とが等しくなるようにしたことを特徴とする、 請求項 1に記載の光ス イッチ。
PCT/JP2003/008187 2002-07-01 2003-06-27 光スイッチ WO2004003623A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR10-2004-7020338A KR20050010921A (ko) 2002-07-01 2003-06-27 광 스위치
EP03738550A EP1548486A1 (en) 2002-07-01 2003-06-27 Optical switch
US10/516,390 US7236658B2 (en) 2002-07-01 2003-06-27 Optical switch
CA002488054A CA2488054A1 (en) 2002-07-01 2003-06-27 Optical switch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002192368A JP4055492B2 (ja) 2002-07-01 2002-07-01 光スイッチ
JP2002-192368 2002-07-01

Publications (1)

Publication Number Publication Date
WO2004003623A1 true WO2004003623A1 (ja) 2004-01-08

Family

ID=29996969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008187 WO2004003623A1 (ja) 2002-07-01 2003-06-27 光スイッチ

Country Status (7)

Country Link
US (1) US7236658B2 (ja)
EP (1) EP1548486A1 (ja)
JP (1) JP4055492B2 (ja)
KR (1) KR20050010921A (ja)
CN (1) CN100340884C (ja)
CA (1) CA2488054A1 (ja)
WO (1) WO2004003623A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009000213T5 (de) 2008-01-28 2011-01-13 Cambridge Silicon Radio Ltd., Cambridge Integrierter Signalempfänger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7457539B2 (en) * 2004-05-10 2008-11-25 Lightech Fiberoptics, Inc. 2×2 optical switch
WO2006077648A1 (ja) * 2005-01-24 2006-07-27 Matsushita Electric Works, Ltd. 光スイッチ
US7286730B2 (en) * 2006-03-15 2007-10-23 Avanex Corporation Optical switch having angle tuning elements and multiple-fiber collimators
WO2012057152A1 (ja) * 2010-10-29 2012-05-03 オリンパス株式会社 光学測定装置および光学測定システム
US9077450B2 (en) * 2013-09-06 2015-07-07 International Business Machines Corporation Wavelength division multiplexing with multi-core fiber
US10962766B2 (en) 2019-01-03 2021-03-30 Microsoft Technology Licensing, Llc Adhesive bonded micro electro mechanical system
CN118103744A (zh) * 2021-10-15 2024-05-28 富士胶片株式会社 光耦合系统及光通信器件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094293A (en) * 1998-07-23 2000-07-25 Mitsubishi Denki Kabushiki Kaisha Optical switching apparatus for use in an optical communication system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3829392B2 (ja) * 1997-03-07 2006-10-04 オムロン株式会社 電磁継電器
US6215222B1 (en) * 1999-03-30 2001-04-10 Agilent Technologies, Inc. Optical cross-connect switch using electrostatic surface actuators
JP2003295072A (ja) 2002-04-01 2003-10-15 Fdk Corp メカニカル光スイッチ
AU2002312694A1 (en) * 2002-06-12 2003-12-31 Microcut Ag Electromagnetic linear optical positioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6094293A (en) * 1998-07-23 2000-07-25 Mitsubishi Denki Kabushiki Kaisha Optical switching apparatus for use in an optical communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112009000213T5 (de) 2008-01-28 2011-01-13 Cambridge Silicon Radio Ltd., Cambridge Integrierter Signalempfänger

Also Published As

Publication number Publication date
EP1548486A1 (en) 2005-06-29
CN1666133A (zh) 2005-09-07
CA2488054A1 (en) 2004-01-08
JP2004037652A (ja) 2004-02-05
CN100340884C (zh) 2007-10-03
KR20050010921A (ko) 2005-01-28
JP4055492B2 (ja) 2008-03-05
US7236658B2 (en) 2007-06-26
US20060039645A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
WO1989008858A1 (en) Optical device
US7095919B2 (en) Optical switch
WO2004003623A1 (ja) 光スイッチ
US6961485B2 (en) Optical switch
KR100771765B1 (ko) 광 스위치
JP4046132B2 (ja) 光スイッチ
JP3030553B1 (ja) 光スイッチ光路切換部の組立方法および光スイッチ
JP3972935B2 (ja) 光スイッチ及び光スイッチユニット
JP2004177675A (ja) 光デバイスおよびその製造方法
JP2002502052A (ja) 小型1×n電気機械的光スイッチ
JPH11242168A (ja) 光スイッチ
JP2002090665A (ja) 光スイッチ
JP2006106302A (ja) 光スイッチ
JPH03203710A (ja) 光スイッチ
JPH03260613A (ja) 光スイッチ
JP2004264336A (ja) 光反射器駆動自己保持型光スイッチ
JP2004198869A (ja) 可変光減衰器
JP2004240397A (ja) 光スイッチ
JP2008091474A (ja) 光電気変換装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2488054

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020047020338

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038154595

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003738550

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020047020338

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003738550

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006039645

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10516390

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10516390

Country of ref document: US