WO2004003534A1 - 粉体被検体の水分値を測定する方法及び装置 - Google Patents

粉体被検体の水分値を測定する方法及び装置 Download PDF

Info

Publication number
WO2004003534A1
WO2004003534A1 PCT/JP2003/008178 JP0308178W WO2004003534A1 WO 2004003534 A1 WO2004003534 A1 WO 2004003534A1 JP 0308178 W JP0308178 W JP 0308178W WO 2004003534 A1 WO2004003534 A1 WO 2004003534A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive elements
powder
sand
measuring
row
Prior art date
Application number
PCT/JP2003/008178
Other languages
English (en)
French (fr)
Inventor
Tadashi Nishida
Ryoji Kanayama
Hiroaki Tokita
Hisashi Harada
Original Assignee
Sintokogio, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio, Ltd. filed Critical Sintokogio, Ltd.
Priority to AU2003246089A priority Critical patent/AU2003246089A1/en
Publication of WO2004003534A1 publication Critical patent/WO2004003534A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/121Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid for determining moisture content, e.g. humidity, of the fluid

Definitions

  • the present invention relates to a method and an apparatus for measuring a moisture value contained in a powder specimen containing powder and water.
  • the water content and temperature of the sand that is continuously conveyed on a belt conveyor are measured before the kneader (or sand cooler).
  • the amount of water that is insufficient is calculated, and the amount of water that is insufficient is injected into a kneading machine to adjust the mixing of natural sand.
  • Japanese Patent No. 32405000 assigned to the applicant of the present application Japanese Patent Application Laid-Open No. 7-19009
  • Japanese Unexamined Patent Publication No. 75 (1995) -1995 there is known a measurement head employing a pair of plate-like electrodes.
  • this conventional measurement head when a pair of plate-shaped electrodes are inserted into the sand from above while facing each other at a predetermined interval, and electricity is passed between the electrodes through the sand, the sand of the crimson sand is formed. An electric resistance value corresponding to the moisture value can be obtained. Therefore, by measuring the electric resistance value, the moisture value of the sand can be measured. Further, by correcting the electric resistance value based on the measured temperature of natural sand, a more accurate moisture value can be obtained.
  • the plate electrodes of conventional measurement heads are wide, large and bulky, and need to be inserted into natural sand from above, requiring a relatively large space for installation.
  • the selection of the installation position (ie, measurement position) is subject to spatial restrictions. Therefore, the installation position of the conventional measurement head is limited to an open place such as above a transport path (typically, a belt conveyor) for transporting natural sand.
  • a transport path typically, a belt conveyor
  • the plate-shaped electrodes are inserted into the sand transported on the belt conveyor, and the sand spills from the belt conveyor to the surroundings during the measurement. Easy and deteriorating working environment.
  • Conventional moisture measurement devices as described above are not limited to natural sand, Also used in the process.
  • ceramic raw materials such as ceramic raw materials and refractory raw materials, waste recycling raw materials such as steelmaking dust, and fertilizer raw materials
  • conventional processes such as compression, extrusion, rolling, etc., prior to molding and granulation
  • the water content is adjusted by the kneader.
  • problems similar to those in the processing line for natural sand occur, such as limitations on the installation space due to the configuration of the conventional measuring head (a pair of plate-like electrodes), and deterioration of the working environment due to the generation of dust.
  • the present invention provides a moisture value measuring device for measuring a moisture value contained in a powder specimen containing powder and water, and a measuring head thereof.
  • the measuring head has a contact surface to be brought into contact with the powder specimen, and i) a plurality of n conductive elements (where n is an integer of 3 or more) and ⁇ ) n conductive elements.
  • a row Xn column is arranged in a row Xn column at predetermined intervals and substantially parallel to each other along a row direction substantially orthogonal to the longitudinal direction thereof, and in the contact surface, the one row Xn column
  • An insulating holding member for holding the conductive elements so as to be exposed, and iii) conductive elements belonging to odd-numbered rows of the n rows of conductive elements so that the n conductive elements form a two-electrode terminal.
  • a first connection member electrically connecting the conductive elements to each other to form one pole
  • a second connection electrically connecting the conductive elements belonging to the even rows to each other to form the other pole And a member.
  • the moisture value measuring device includes a measuring head as described above, means for supplying a constant current having a low-frequency rectangular wave to the two-pole terminal of the measurement head, and a constant-current powder between the two-pole terminal.
  • Means for measuring the voltage generated between the two extremes when flowing through the subject, and for smoothing and outputting the measured value; the smoothed measured voltage value and the moisture contained in the powder subject Means for determining a moisture value contained in the powdery analyte based on a previously determined correlation with the value.
  • the moisture value measuring device includes: a temperature measuring means for measuring the temperature of the powder specimen; and, when determining the moisture value, the smoothed measurement voltage value is measured by the powder specimen measured by the temperature measuring means. And means for correcting based on the temperature of the powder sample, so that the determined moisture value reflects the temperature of the powder subject.
  • a heating means provided on the insulating holding member for heating the conductive element may be further provided.
  • the present invention provides a powder coating containing powder and water using the measurement head as described above.
  • a method for measuring a moisture value contained in a specimen based on an electric resistance value of a powder specimen comprises the steps of supplying a constant current having a low-frequency square wave to the two-pole terminal of the measurement head;
  • the term “powder subject” refers to a subject containing powder and water.
  • the term “powder” refers to a state in which a large number of particles are aggregated, and fine powder (0.1 to: ⁇ ), ordinary powder (1 to: ⁇ ), coarse powder (0.1 to: L mm ), A mixture of at least one of those roughly divided into granules (1 to 3 mm).
  • These powders include, but are not limited to, raw materials sand, ceramic raw materials, ceramic raw materials such as refractory raw materials, waste recycling raw materials such as steelmaking dust, and fertilizer raw materials.
  • sand green sand, that is, bentonite as a binder is most suitable.
  • the present invention can be easily applied to natural sand using a water-soluble binder such as starch and PVA as long as the binder uses other moisture.
  • Natural sand is not limited to natural sand before use, but also includes recovered sand that is recovered and reused after use.
  • the moisture value of the powder test object is a moisture value contained in the powder test object, and is a percentage of the weight of water contained in the unit weight.
  • FIG. 1 shows a top view of the measurement head according to the first embodiment of the present invention.
  • FIG. 2 shows a longitudinal sectional view of the measuring head of FIG.
  • FIG. 3 shows a second embodiment of the present invention, and is a schematic block diagram of a moisture value measuring device using the measuring head of FIG.
  • FIG. 4 shows a third embodiment of the present invention, and is a schematic diagram in which the moisture value measuring device of FIG. 3 is applied to a sand treatment line.
  • FIG. 5 is a graph showing an example of the measurement of the moisture value of natural sand by the apparatus of FIG.
  • Figure 6 is a graph showing the correlation between the water content of the sand and the impedance between the elements according to the number of conductive elements in the measurement head.
  • FIG. 7 shows a longitudinal sectional view of a measurement head according to the fourth embodiment of the present invention.
  • FIG. 8 shows a fifth embodiment of the present invention, and is a schematic block diagram of an apparatus for measuring the moisture value of natural sand using the measurement head of FIG.
  • FIG. 9 is a graph showing a comparison of measured moisture values between the apparatus of FIG. 8 and a conventional apparatus.
  • the conductive element 12 is preferably a metal having excellent corrosion resistance.
  • the longitudinal direction of the conductive elements 12 is defined as a column direction, and a direction substantially perpendicular to the longitudinal direction is defined as a row direction. In the row direction, the n conductive elements 12 are arranged at predetermined intervals from each other and substantially in parallel.
  • the upper surface 10a of the measurement head 10 is a contact surface that comes into contact with a powder specimen containing powder and water.
  • the conductive element 12 of 1 row X n column is exposed.
  • the end of each conductive element 12 has a fastening portion (not shown) for connecting wiring 1.6a or 16b (FIG. 2) described later.
  • the insulating holding member 14 is made of alumina ceramics, for example, and can be formed by firing after molding.
  • the conductive elements 12 belonging to the odd columns are connected to the conductive elements 12 belonging to the even columns by the first wiring 16 a.
  • Each is electrically connected to each other by wiring 16b. Therefore, the n rows of conductive elements 12 constitute a two-electrode terminal in which the conductive elements 12 belonging to the odd rows are on one side and the conductive elements 12 belonging to the even rows are on the other side. ing.
  • the wirings 16a and 16b for example, generally used wires for electric wiring can be used.
  • the thin measurement head 10 configured in a planar manner as described above does not need to be inserted into the powder subject, an open installation space is not required.
  • the measurement can be performed simply by placing the powder sample on the contact surface, the problem of environmental deterioration due to the generation of dust can be solved.
  • FIG. 3 shows a second embodiment of the present invention, and shows a moisture value measuring apparatus 20 for measuring the moisture value of a powder specimen of the present invention using the measuring head 10 of FIGS. 1 and 2.
  • the measuring device 20 supplies the above-described measuring head 10 and a constant current having a low-frequency rectangular wave (a rectangular wave of 1 kHz or less) to the two-electrode terminals of the measuring head 10.
  • the voltage between the two electrodes generated by the current flowing between the two electrodes of the rectangular wave constant current source 22 and the measurement head 10 through the powder test object is measured.
  • a voltage smoothing measuring circuit 24 for smoothing the voltage and outputting the smoothed voltage value.
  • the measuring device 20 further obtains the powder analyte from the output value of the measurement circuit 24 based on a predetermined correlation between the output value of the measurement circuit 24 and the moisture value of the powder analyte. And an arithmetic circuit 26 for calculating the moisture value of the water.
  • the previously determined correlation between the output value of the measurement circuit 24 referred to by the arithmetic circuit 26 and the moisture value of the powder sample is stored in a memory 28 a in advance as a reference table or a keyboard. May be provided to the memory 28a via the input device 28b.
  • FIG. 4 shows a third embodiment of the present invention, and shows an example in which the moisture value measuring device 20 of FIG. 3 is applied to a sand storage facility 30 in a processing line for natural sand.
  • the storage facility 30 includes a kneader patch hopper 32 and a belt conveyor 34 as a cutting device.
  • the measuring head 10 of the moisture content measuring device 20 (FIG. 3) has its contact surface 10a (the conductive element 12 is exposed as shown in FIG. 2). Surface is exposed inside the hopper 32.
  • the measurement head 10 is schematically shown for simplicity of illustration. Since the thin measuring head 10 does not require an open installation space, it can be attached to the inner surface of the hopper 32, and there is no need to provide a transport path or a belt conveyor dedicated to moisture value measurement.
  • the water level is lowered from the square wave constant current supply source 2 2 (FIG. 3) of the moisture value measuring device 20 to the measuring head 10.
  • a constant frequency rectangular wave current is supplied, and a current is caused to flow between the conductive elements 12 of the measurement head 10 via the sand S.
  • the voltage generated between the two poles of the measurement head 10 is measured by the voltage smoothing measurement circuit 24 (FIG. 3). From this measurement result, the moisture value is obtained by the arithmetic circuit 26 (FIG. 3).
  • Figure 5 shows an example of the moisture value obtained in this way.
  • the voltage on the vertical axis is voltage data measured and output by the voltage smoothing measurement circuit 24.
  • the two types of mineral sands A and B used in the measurement differ in properties such as the proportion of clay in the composition, but both A and B have a good correlation between the water content of the sand and the voltage. Is recognized. As a result, it was confirmed that the water content of the natural sand from 0.8% to 3% can be measured properly.
  • the voltage peaks at 10 V in FIG. 5 because the measurement circuit 24 sets the data of 10 V or more to 10 V. By changing this regulation, it is possible to measure more than 10 V, that is, more than 3% of sand moisture value. In Fig. 5, the voltage is 0 V when the water content of the sand is about 1% or less. By changing the level of the supply voltage from the square wave constant current supply source 22 to the measurement head 10, It is possible to measure less than 1% of water content of sand. As a basic test, multiple conductive elements 12 were arranged on a flat plate, and the impedance between the elements was measured with an LCZ meter.
  • FIG. 6 shows the relationship between the moisture in the raw sand and the elements when the number of these elements is changed by arranging conductive elements 12 with a width of 10 mm ⁇ 20 mm and a length of 20 mm.
  • the figure shows the results of a survey of impedance correlation. From Fig. 6, it can be seen that the correlation between moisture and impedance is low when three elements 12 are used, and a sufficient correlation cannot be obtained when five elements 12 are used. It was found that a higher correlation was obtained when the number of elements 12 was increased to 7, 9, and 11. When the number of elements 12 is further increased, the area of the measurement head 10 increases, and the installation space is restricted. As a result, it is possible to stably measure the moisture value of green sand with good accuracy by arranging about 7 to 11 elements 12 with a pitch of 20 mm and a length of 200 mm with a pitch of 20 mm. Was confirmed.
  • FIG. 7 shows a measuring head 40 according to a fourth embodiment of the present invention for this purpose.
  • the measuring head 30 is obtained by providing a heating member 42 via an insulating holding member 14 to the measuring head 10 (FIGS. 1 and 2) of the first embodiment.
  • the heating member 42 is a sheet-like electric heater, and is supplied with power from a suitable power supply (not shown in FIG. 7) via a wiring 44, and the heating temperature is controlled.
  • a suitable power supply not shown in FIG. 7
  • the heating temperature is controlled.
  • the smoothed voltage value output from the voltage smoothing measurement circuit 24 in FIG. 3 changes depending on the sand temperature even if the moisture value is the same. Therefore, in order to achieve higher measurement accuracy, it is necessary to consider the effect of sand temperature.
  • FIG. 8 shows a fifth embodiment of the present invention for this purpose, and shows a device 50 for measuring the moisture value of natural sand of the present invention using the measuring head 40 of FIG.
  • a rectangular wave constant current supply source 22 and a voltage smoothing measurement circuit 24 are the same as those of the moisture value measurement device 20 (FIG. 3) of the second embodiment.
  • the operation circuit 26 also has the same force S as that of the moisture value measuring device 20 and the input voltage data is different from that of the moisture value measuring device 20.
  • the device 50 further includes a power supply 52 for supplying power to the heating member 42, a temperature sensor 54 such as a thermocouple for measuring sand temperature, and a smoothed voltage value output from the voltage smoothing measurement circuit 24 for temperature.
  • a correction circuit 56 for correcting based on the sand temperature measured by the sensor 54. Temperature correction of smoothed voltage value corrected based on sand temperature It is called a voltage value.
  • the correction circuit 56 calculates the temperature correction voltage value according to the following relational expression.
  • Temperature correction voltage value Smoothed voltage value + (first constant-sand temperature) x second
  • first constant is the reference temperature of sand.
  • second constant is a voltage value that changes according to the amount of change in temperature, and is represented by VZ ° C.
  • the arithmetic circuit 26 calculates the output value of the correction circuit 56 from the output value of the correction circuit 56 based on a predetermined correlation between the temperature correction smoothing voltage value output from the correction circuit 56 and the moisture value of the material sand. Find the moisture value of the material sand. Therefore, the moisture value can be measured without being affected by the temperature of the sand.
  • the correlation referred to by the arithmetic circuit 26 is determined by a force previously stored in the memory 28a as a reference table in the same manner as the moisture value measuring device 20 of the second embodiment, or an input device 2 such as a keyboard. It may be provided to the memory 28a via 8b.
  • a field test was carried out to apply such a device 50 for measuring the moisture content of natural sand to a batcher kneading machine in a sand processing line, and to compare the moisture measurement status with the existing conventional device.
  • a batch moisture controller (BMIC) manufactured and sold by Shinto Kogyo Co., Ltd., the assignee of the present application, was used.
  • This BMIC uses the property that the electric resistance value decreases as the moisture value in the sand increases, and the BMIC regenerates the recovered sand (that is, the used sand used in the mold molding). The value is controlled with high precision.
  • the BMIC measures the moisture value of the recovered sand cooled by the sand cooler, and reclaims the recovered sand by injecting the insufficient water with respect to the set moisture value into the recovered sand.
  • FIG. 9 shows the results of the field test, showing a comparison between the measured value of moisture by the device 50 and the measured value of BMIC.
  • the moisture conversion value of the device 50 according to the present invention showed the same transition as the moisture of the BMIC, and did not fall outside the range of 2% of the moisture content of the 3BMIC. Also, no adhesion of sand to the conductive element 12 was observed.
  • a temperature sensor 54 and a correction circuit 56 are provided in the measuring device 50, and the smoothed voltage value of the voltage smoothing measuring circuit 24 is temperature-corrected. As a result, the correlation between the moisture of the sand and the smoothed voltage value is obtained. Was further strengthened.
  • the sand optimal for the molding of the sand can be adjusted.
  • the heads 10 and 40 are provided on the inner surface of the kneader / batch hopper of the sand processing line as follows.
  • Sand storage means such as sand bins and sand No ⁇
  • Processing means for processing natural sand in a sand processing line for example, a kneading machine that adjusts natural sand suitable for molding by adding a binder, water, etc. to natural sand, and pouring.
  • a kneading machine that adjusts natural sand suitable for molding by adding a binder, water, etc. to natural sand, and pouring.
  • the inner surface of a sand cooler that cools the sand, sometimes heated with molten metal, in the process of a sand treatment line.
  • a transfer means for transferring sand which is installed in the sand transfer section, typically the inner surface of the shoot.
  • a chute is provided, for example, between a natural sand conveying means such as a bucket conveyor, a belt conveyor, and an oscillating conveyor, and each device such as a storage in a sand processing line.
  • the inner surface includes an inner wall surface, an inner surface, and a bottom surface that define an open space or a closed space, and these surfaces include not only a vertical surface and a horizontal surface but also an inclined surface.
  • the equipment in the sand processing lines 1) to 3) are not shown because they are known to those skilled in the art.
  • the powder specimen is not limited to sand but may be other powder.
  • the measurement heads 10 and 40 should be attached at the start and end points for pneumatic transportation of the powder by the inner surface of the storage means and water, etc., according to the intended use of the powder.
  • the inner surface of the kneader to mix is conceivable.
  • the definition of the inner surface is the same as that of the sand processing line.
  • the measurement head of the present invention may be attached to the inner surface of a hopper of a compression granulator such as a known briquetting machine or a pelletizer to measure the moisture value of the powder.
  • a compression granulator such as a known briquetting machine or a pelletizer to measure the moisture value of the powder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

 測定ヘッド10は、絶縁性保持部材3に1行×n列に配列されて保持された細長い金属製の導電性要素12を有する。測定ヘッド10の上面1aは、粉体被検体に接触させる接触面である。この接触面1aにおいては1行×n列の導電性要素12が露出している。n列の導電性要素12においては、奇数列に属する導電性要素12が第1の配線4aにより、偶数列に属する導電性要素12が第2の配線4bにより、それぞれ相互に電気的に接続されている。従ってn列の導電性要素12は、奇数列に属する導電性要素12を一方の極、偶数列に属する導電性要素12を他方の極とする二極の電極端子を構成している。測定ヘッド10の接触面1aに粉体被検体を載置して、測定ヘッド10の2極間に生じる電圧を測定することにより、粉体被検体の水分値を求めることができる。

Description

明細書 粉体被検体の水分値を測定する方法及び装置 技術分野
一般に本発明は、粉体と水とを含む粉体被検体に含有される水分値を測 定する方法及び装置に関する。 背景技術
铸物砂を処理する従来の砂処理ラインにおいては、ベルトコンべャ上を 連続的に搬送される铸物砂に対し、 混練機 (または砂冷却機) の前段で水 分値及び温度を測定して、不足している水分量を算出し、 この不足水分量 を混練機へ注水することにより、 鍚物砂の混練調整をしている。
铸物砂に含有される水分値を測定する従来の水分値測定装置としては、 本願の出願人に譲渡された日本国特許第 3 2 4 0 0 2 5号 (特開平 7 - 1 9 0 9 7 5号公報) に開示されているように、 その測定へッドに一対の板 状電極を採用したものが知られている。 この従来の測定へッドでは、一対 の板状電極を所定間隔で対向させた状態で錶物砂内へ上方から挿入し、錶 物砂を介して電極間を通電させると、鐃物砂の水分値に応じた電気抵抗値 が得られる。従って電気抵抗値を測定することにより铸物砂の水分値を測 定できる。また電気抵抗値を铸物砂の測定温度に基づいて補正することに より、 更に正確な水分値が求められる。
しかしながら、 従来の測定へッドの板状電極は幅が広く大型で嵩張り、 また鎵物砂へ上方から挿入する必要があるため、その設置には比較的に広 い空間が必要であり、 その設置位置 (即ち測定位置) の選定には空間的な 制約を受ける。 従って、 従来の測定へッドの設置位置は、 例えば、 鎳物砂 を搬送する搬送路 (代表的にはベルトコンベア) の上方のように開放され た場所に限定される。 処理ラインの設計によっては、従来の測定へッドの 設置位置を確保するために、錶物砂の水分値測定専用の搬送路即ちベルト コンベアを特に設ける必要が生じることもあり得る。
しかもベルトコンベアの上方に従来の測定へッドを設置した場合、板状 電極は、ベルトコンベア上を搬送中の鍚物砂へ挿入するので、その測定中 にはベルトコンベアから周囲へ砂がこぼれ落ち易く、作業環境を悪化させ る。
上述のような従来の水分値測定装置は、錶物砂に限らず、他の粉体処理 工程にも使用される。 例えば、 セラミックス原料、 耐火物原料などの窯業 原料、製鋼ダストなどの廃棄物再生原料、肥料原料などの粉体処理におい て、 圧縮、 押し出し、 転造などの成形、 造粒の前工程で、 従来の水分値測 定装置を用いて原料の水分を測定することにより、混練機で水分の調整が . なされる。 この場合にも、 従来の測定ヘッド (一対の板状電極) の形態に 起因する設置空間の制約、粉塵の発生による作業環境の悪化など、铸物砂 の処理ラインと同様な問題が生じる。
従って、測定ヘッドの形態に起因する設置空間の制約を殆ど受けること がないように改良された粉体の水分値を測定する方法及び装置が望まれ る。 発明の概要
本発明は、粉体と水とを含む粉体被検体に含有される水分値を測定する 水分値測定装置及びその測定へッドを与える。 測定へッ ドは、粉体被検体 に接触させるべき接触面を有すると共に、 i ) 複数 n本 (伹し nは 3以上 の整数) の細長い導電性要素と、 ϋ ) n本の導電性要素をその長手方向に 実質的に直交する行方向に沿つて、相互に所定の間隔をおいて且つ実質的 に平行に 1行 X n列に配列すると共に、接触面において前記 1行 X n列の 導電性要素が露出するように保持する絶縁性保持部材と、 iii ) n本の導電 性要素が 2極の電極端子を構成するように、 n列の導電性要素のうち、奇 数列に属する導電性要素を相互に電気的に接続して一方の極を形成する 第 1の接続部材と、偶数列に属する導電性要素を相互に電気的に接続して 他方の極を形成する第 2の接続部材とを含む。
水分値測定装置は、上述の測定へッドと、この測定へッドの 2極端子に、 低周波矩形波を有する定電流を供給する手段と、定電流が前記 2極端子間 に粉体被検体を介して流れるときに、 2極端亍間に生じる電圧を測定し、 且つその測定値を平滑化して出力する手段と、平滑化された測定電圧値と 粉体被検体に含有される水分値との間の予め求められた相関関係に基づ いて、 粉体被検体に含有される水分値を決定する手段とを備える。
水分値測定装置は、粉体被検体の温度を測定する温度測定手段と、水分 値の決定に際し、前記平滑化された測定電圧値を、 前記温度測定手段によ り測定された粉体被検体の温度に基づいて補正する手段とを更に備える ことにより、決定される水分値に粉体被検体の温度を反映させるようにし てもよい。 この場合、 絶縁性保持部材に設けられて、 導電性要素を加熱す る加熱手段を更に備えてもよい。
本発明は、 上述のような測定へッドを用いて、粉体と水とを含む粉体被 検体に含有される水分値を粉体被検体の電気抵抗値に基づいて測定する 方法を与える。 この方法は、 測定へッ ドの 2極端子に、 低周波矩形波を有 する定電流を供給する段階と、
定電流が 2極端子間に粉体被検体を介して流れるときに、 2極端子間に 生じる電圧を測定し、 且つその測定値を平滑化して出力する段階と、粉体 被検体の温度を測定する段階と、 平滑化された測定電圧値を、温度測定手 段により測定された粉体被検体の温度に基づいて補正する段階と、補正さ れた測定電圧値と粉体被検体に含有される水分値との間の予め求められ た相関関係に基づいて、粉体被検体に含有される水分値を決定する段階と を含む。
本明細書において用語 「粉体被検体」 とは、 粉体と水とを含む被検体と する。 用語「粉体」 とは、 粒子が多数集合している状態に在り、 微粉 (0.1 〜: Ι μ πι) 、 通常の粉体 (1〜: ΙΟΟ μ πι) 、 粗粉 (0.1〜: L mm) 、 粒体 (1 〜3 m m)に大別されるもののうちの少なくとも 1つ以上を混合したもの をレヽう。
これらの粉体としては、 錶物砂、 セラミックス原料、 耐火物原料などの 窯業原料、製鋼ダストなどの廃棄物リサイクル原料、肥料原料などをこれ らに限定されることなく含む。
本発明において、 錶物砂としては、 生型铸物砂、 即ちベントナイ トを粘 結材として用いるものが最適である。その他の水分を用いた粘結材であれ ば、デンプン、 P V Aなど水溶性粘結材を用いる铸物砂に対しても本発明 を容易に適用できる。 铸物砂は、 使用前の鎳物砂に限らず、 使用後に回収 されて再生される回収砂を含む。
粉体被検査体の水分値とは、粉体被検査体に含まれる水分値であり、単 位重量に含まれる水分重量を百分率で示したものである。 図面の簡単な説明
図 1は本発明の第 1実施形態に係る測定へッドの上面図を示す。
図 2は図 1の測定へッドの縦断面図を示す。
図 3は本発明の第 2実施形態であって、図 1の測定へッドを用いた水分 値測定装置の模式的プロック図である。
図 4は本発明の第 3実施形態を示し、図 3の水分値測定装置を砂処理ラ ィンに適用した模式図である。
図 5は図 4の装置による铸物砂の水分値の測定例を示すグラフである。 図 6は測定へッ ドにおける導電性要素の個数に応じた砂の水分と要素 間のインピーダンスの相関関係を示すグラフである。 図 7は本発明の第 4実施形態に係る測定へッドの縦断面図を示す。
図 8は本発明の第 5実施形態であって、図 7の測定へッドを用いた铸物 砂の水分値測定装置の模式的ブロック図である。
図 9は図 8の装置と従来の装置とによる水分値測定値の比較を示すグ ラフである。
好適実施形態の詳細な説明
図 1及び図 2は本発明の第 1実施形態に係る測定へッド 1 0の上面図 及び縦断面図を示す。 測定へッド 1 0は、絶縁性保持部材 1 4に 1行 X n 列 (nは 3以上の整数であり、 図示の例では n = l 1 ) に配列されて保持 された細長い金属製の導電性要素 1 2を有する。 この導電性要素 1 2は、 耐腐食性に優れた金属であることが好ましい。導電性要素 1 2の長手方向 を列方向とし、 これに実質的に直交する方向を行方向とする。行方向にお いては、 n本の導電性要素 1 2は相互に所定の間隔をおいて且つ実質的に 平行に配列されている。 測定へッド 1 0の上面 1 0 aは、粉体と水とを含 む粉体被検体に接触させる接触面である。 この接触面においては 1行 X n 列の導電性要素 1 2が露出している。各導電性要素 1 2の端部は、後述の 配線 1. 6 a又は 1 6 b (図 2 ) を連結する締結部 (図示せず) を有してい る。 絶縁性保持部材 1 4は、 例えばアルミナ 'セラミックス製であり、 成 型後に焼成して作成できる。
図 2に示すように、 n列の導電性要素 1 2においては、奇数列に属する 導電性要素 1 2が第 1の配線 1 6 aにより、偶数列に属する導電性要素 1 2が第 2の配線 1 6 bにより、 それぞれ相互に電気的に接続されている。 従って n列の導電性要素 1 2は、奇数列に属する導電性要素 1 2を一方の' 極、偶数列に属する導電性要素 1 2を他方の極とする二極の電極端子を構 成している。 配線 1 6 a、 1 6 bとしては、 例えば、 一般に広く用いられ ている電気配線用の電線などを用いることができる。
このように平面的に構成された薄型の測定へッド 1 0は、粉体被検体へ 挿入する必要がないので、 開放された設置空間を必要としない。 また、 粉 体被検体を接触面上に載置するだけで測定に供することができるので、粉 塵の発生による環境悪化の問題を解消できる。
図 3は、本発明の第 2実施形態であり、 図 1及び図 2の測定へッド 1 0 を用いた本発明の粉体被検体の水分値を測定する水分値測定装置 2 0を 示す。 測定装置 2 0は、 上述の測定へッド 1 0と、 この測定へッド 1 0の 2極の電極端子に低周波矩形波 (1 k H z以下の矩形波) を有する定電流 を供給する矩形波定電流供給源 2 2と、粉体被検体を介して測定へッド 1 0の 2極間に流れる電流により生じる 2極間の電圧を測定し、この測定電 圧を平滑処理して平滑電圧値として出力する電圧平滑測定回路 2 4とを 含む。 測定装置 2 0は更に、 測定回路 2 4の出力値と、粉体被検体の水分 値との間の予め求められた相関関係に基づいて、測定回路 2 4の出力値か ら粉体被検体の水分値を求める演算回路 2 6を含む。演算回路 2 6が参照 する測定回路 2 4の出力値と粉体被検体の水分値との間の予め求められ た相関関係は、メモリ 2 8 aに参照テーブルとして予め記憶させておくカヽ 或いはキーボード等の入力装置 2 8 bを介してメモリ 2 8 aに与えても よい。
図 4は本発明の第 3実施形態であり、図 3の水分値測定装置 2 0を铸物 砂の処理ラインにおける砂貯蔵設備 3 0に適用した例を示す。貯蔵設備 3 0は、混練機パッチホッパ 3 2と切り出し装置としてのベルトコンペャ 3 4とを備える。 ホッパ 3 2の内面には、 水分値測定装置 2 0 (図 3 ) の測 定へッド 1 0をその接触面 1 0 a (図 2に示すように導電性要素 1 2が露 出している面) がホッパ 3 2の内側に露出するように装着してある。 図 4 においては、図示の単純化のため、測定へッド 1 0は概略的に示してある。 薄型の測定へッド 1 0は、 開放された設置空間を必要としないので、 ホ ッパ 3 2の内面に取り付けることができ、水分値測定専用の搬送路又はべ ルトコンベアを設ける必要がない。
水分値を測定すべき鐯物砂 Sを貯蔵設備 3 0内に投入した後、水分値測 定装置 2 0の矩形波定電流供給源 2 2 (図 3 ) から測定へッド 1 0に低周 波矩形波定電流を供給して、測定へッド 1 0の導電性要素 1 2間に鎵物砂 Sを介して電流を流す。 このとき、測定へッド 1 0の 2極間に生じる電圧 を電圧平滑測定回路 2 4 (図 3 ) により測定する。 この測定結果から演算 回路 2 6 (図 3 ) により水分値を求める。 こう して求めた水分値の例を図 5に示す。
.図5において、縦軸の電圧は、電圧平滑測定回路 2 4によって測定及び 出力された電圧データである。 測定に用いた 2種類の錡物砂 Aと Bとは、 組成に占める粘土の割合などの性質が異なっているが、 A、 B共に砂の水 分値と電圧との間に良好な相関関係が認められる。 この結果、 0 . 8 %か ら 3 %までの铸物砂の水分を適正に計測できることが確認できた。
尚、 図 5では電圧が 1 0 Vで頭打ちとなっているが、 これは、 測定回路 2 4が 1 0 V以上のデータを 1 0 Vとしているためである。この規制を変 更することによって 1 0 V以上、即ち砂の水分値 3 %以上も測定可能とな る。 また、 図 5では砂の水分値 1 %程度以下では電圧が 0 Vとなっている 力 矩形波定電流供給源 2 2から測定へッド 1 0への供給電圧レベルを変 更することにより、 砂の水分 1 %以下も測定可能になる。 基礎テストとして、 平板上に複数の導電性要素 1 2を並べ、要素間のィ ンピーダンスを LCZメータで測定した。このテストは、要素 1 2の形状、 要素への印加周波数、生砂の水分、温度などを変化させて行った。図 6は、 1 0 m m幅 X 2 0 O m m長さの導電性要素 1 2を 2 0 m mピッチで配置 して、 この要素の数を変化させたときの、生砂の水分と要素間のインピー ダンスの相関関係を調査した結果を示している。 図 6からは、要素 1 2が 3個では水分とインピーダンスの相関関係は低く、要素 1 2が 5個でも充 分な相関関係が得られないことが判る。 更に要素 1 2を 7 , 9 , 1 1個と 増やしていく と、高い相関関係が得られることが判明した。 更に要素 1 2 を増やすと、測定へッ ド 1 0の面積が増大して設置空間に制約を受けるこ とになる。 この結果、 1 0 m m幅 X 2 0 0 m m長さの要素 1 2を 2 0 m m ピッチで 7個から 11個程度配置することにより、 生砂の水分値を良好な 精度で安定して測定可能であることを確認した。
より高い測定精度が要求される場合には、導電性要素 1 2への砂の付着 に起因する誤測定を防止する必要がある。
図 7は、この目的のための本発明の第 4実施形態に係る測定へッド 4 0 を示す。 この測定へッド 3 0は、 第 1実施形態の測定へッド 1 0 (図 1及 び図 2 )に絶縁性保持部材 1 4を介して加熱部材 4 2を設けたものである。 ここで加熱部材 4 2は、 シート状電気ヒータであり、配線 4 4を介して適 宜な電源 (図 7には図示せず) により電力が供給されると共に、加熱温度 が制御される。この加熱部材 4 2により絶縁性保持部材 1 4を介して導電 性要素 1 2を加熱することにより、 導電性要素 1 2への結露を防止でき、 ひいては導電性要素 1 2への砂の付着を防止できる。
図 3の電圧平滑測定回路 2 4の出力する平滑電圧値は、水分値が同一で あっても砂の温度によって変化する。従って更に高い測定精度を達成する ためには、 砂の温度による影響を考慮する必要がある。
図 8は、 この目的のための本発明の第 5実施形態であって、 図 7の測定 ヘッド 4 0を用いた本発明の铸物砂の水分値測定装置 5 0を示す。この装 置 5 0において、矩形波定電流供給源 2 2と電圧平滑測定回路 2 4とは第 2実施形態の水分値測定装置 2 0 (図 3 ) のそれと同様である。 演算回路 2 6も水分値測定装置 2 0のそれと同様である力 S、入力される電圧データ が水分値測定装置 2 0のそれとは異なっている。
装置 5 0は更に、加熱部材 4 2へ電力を供給する電源 5 2と、砂温度を 測定する熱電対などの温度センサ 5 4と、電圧平滑測定回路 2 4の出力す る平滑電圧値を温度センサ 5 4で測定した砂温度に基づいて補正する補 正回路 5 6とを含む。砂温度に基づいて補正された平滑電圧値を温度補正 電圧値と称する。補正回路 5 6は次の関係式に従って温度補正電圧値を演 算する。
温度補正電圧値 =平滑電圧値 + (第 1の定数一铸物砂温度) X第 2の ここで第 1の定数は銪物砂の基準温度である。第 2の定数は温度の変化 量によって変化する電圧値であり、 V Z°Cで表される。
演算回路 2 6は、補正回路 5 6の出力する温度捕正平滑電圧値と、铸物 砂の水分値との間の予め求められた相関関係に基づいて、補正回路 5 6の 出力値から铸物砂の水分値を求める。従って砂の温度の影響を受けること なく水分値を測定できる。 演算回路 2 6が参照するその相関関係は、第 2 実施形態の水分値測定装置 2 0と同様にメモリ 2 8 aに参照テーブルと して予め記憶させておく力、或いはキーボード等の入力装置 2 8 bを介し てメモリ 2 8 aに与えてもよい。
このような铸物砂の水分値測定装置 5 0を砂処理ラインの混練機バッ チホツバに適用し、水分値の計測状況を既設の従来装置と比較検討するた めに、 フィールドテス トを実施した。 従来装置としては、 本願の譲受人で ある新東工業株式会社が製造販売しているバツチ水分コントローラ (Batch Moisture Controller: BMIC) を用いた。 この BMICは、 鎊物砂 中の水分値が高いほど電気抵抗値が小さくなる性質を利用して、 回収砂 (即ち錶型造型に用いた使用済みの铸物砂)を再生するためにその水分値 を高精度で制御するものである。 BMICは、砂冷却機で冷却された回収砂 の水分値を測定し、設定水分値に対する不足水分を回収砂に注水すること により、 回収砂を再生させる。
図 9はフィールドテス トの結果であって、装置 5 0による水分測定値と、 BMICの水分測定値との比較を示す。本発明に係る装置 5 0の水分換算値 は BMICの水分と同様の推移を示し、 3BMICの水分土 2 %の範囲より外 れることはなかった。 また、導電性要素 1 2への砂の付着は認められなか つた。 更に、 測定装置 5 0に温度センサ 5 4及び補正回路 5 6を設け、 電 圧平滑測定回路 2 4の平滑電圧値を温度補正する結果、鎳物砂の水分と平 滑電圧値との相関関係が一層強くなることを確認した。
鎵物砂の水分値を正確に測定することにより、混練制御の信頼度を高め ることができるので、錶型の造型に最適な鎳物砂を調整することができる c 実施形態においては、測定へッド 1 0及び 4 0を砂処理ラインの混練機 バッチホツバの内面に設ける例を示したが、以下のように砂処理ラインに おける他の機器の内面に設けてもよい。
1 ) 砂処理ラインを流れる砂の貯蔵手段、 例えばサンドビン、 砂ホッ ノ^ 砂処理ライン上のふるい装置、 砂冷却機に付帯するホッパ、 造型機に設けられた第 1のホッパ (造型機内に配置されて造型に 使用される铸物砂を貯蔵するホッパ) 、 造型機の直上に設けられ た第 2のホッパ (第 1のホッパに鎵物砂を所定量ずつ供給するた めのホッパ) の内面。
2 ) 砂処理ラインで錶物砂を処理する処理する処理手段、 例えば铸物 砂に粘結材、 水等を加えて混練して造型に適した铸物砂を調整す る混練機、 注湯時に溶湯で加熱された鍚物砂を、 砂処理ラインの 過程で冷却する砂冷却機の内面。
3 ) 砂の移送部に設けられ、 砂を移送する移送手段、 代表的にはシュ ートの内面。 このようなシュートは、 例えばバッケッ トェレベー タ、 ベルトコンベア、 及びオシレーティングコンベアなどの铸物 砂搬送手段と砂処理ラインの貯蔵器などの各機器との間に設けら れている。
何れの場合も内面とは、開放された空間又は閉じた空間を規定する内壁 面、 内側面、 底面を含み、 これらの面には垂直面や水平面に限らず、 傾斜 面も含まれる。 1 ) 乃至 3 ) の砂処理ラインにおける機器は当業者には公 知であるから図示しない。
当業者には、添付の請求項に規定された本発明の目的及び要旨を逸脱す ることなく、本発明に様々な変更や変形をなせることが明らかである。例 えば粉体被検体は、 砂に限らず、 その他の粉体としてもよい。 この場合、 測定へッド 1 0及ぴ 4 0の取り付け位置としては、粉体を空気輸送するた めの始点及び終点における貯蔵手段の内面、粉体の使用目的に合わせて水 等を加えて混ぜる混練機の内面が考えられる。内面の定義は砂処理ライン の場合と同様である。
公知のブリケッ トマシン、ペレタイザ一などの圧縮造粒機のホッパの内 面に本発明の測定へッドを取り付けて、 粉体の水分値を測定してもよい。 その測定値に応じて回転速度、 圧縮力を制御して、 圧縮、 押し出し、 転造 などの成形、 造粒に最適な粉体を調整することができる。

Claims

請求の範囲 .粉体と水とを含む粉体被検体に含有される水分値を測定する装置であ つて、 粉体被検体に接触させるべき接触面を有する測定へッ ドを備え、こ の測定へッドは、 i ) 複数 n本 (但し nは 3以上の整数) の細長い導電性要素と、 ϋ ) 前記 η本の導電性要素をその長手方向に実質的に直交する行 方向に沿って、相互に所定の間隔をおいて且つ実質的に平行に 1行 X η列に配列すると共に、 前記接触面において前記.1行 X η列の導電性要素が露出するように保持する絶縁性保持部材 と、 iii ) 前記 n本の導電性要素が 2極の電極端子を構成するように、前 記 n列の導電性要素のうち、奇数列に属する導電性要素を相互 に電気的に接続して一方の極を形成する第 1の接続部材と、偶 数列に属する導電性要素を相互に電気的に接続して他方の極 を形成する第 2の接続部材とを含み、 ' 前記装置は更に、 前記測定へッドの前記 2極端子に、低周波矩形波を有する定電流を供 給する手段と、 前記定電流が前記 2極端子間に粉体被検体を介して流れるときに、前 記 2極端子間に生じる電圧を測定し、且つその測定値を平滑化して出力 する手段と、 前記平滑化された測定電圧値と粉体被検体に含有される水分値との 間の予め求められた相関関係に基づいて、粉体被検体に含有される水分 値を決定する手段とを備える装置。 . 請求項 1の装置において、 粉体被検体の温度を測定する温度測定手段と、 前記水分値の決定に際し、前記平滑化された測定電圧値を、前記温度 測定手段により測定された粉体被検体の温度に基づいて補正する手段 とを更に備えることにより、前記決定される水分値が粉体被検体の温度 に基づいて補正される装置。. 請求項 2の装置において、 前記絶縁性保持部材に設けられ、 導電性要 素を加熱する加熱手段を更に備える装置。 .砂の処理ラインにおいて砂に含有される水分値を測定する装置であつ て、 砂に接触させるべき接触面を有する測定へッドを備え、この測定へ ッドは、 i ) 複数 n本 (但し nは 3以上の整数) の細長い導電性要素と、 ϋ ) 前記 η本の導電性要素をその長手方向に実質的に直交する行 方向に沿って、相互に所定の間隔をおいて且つ実質的に平行に 1行 X η列に配列すると共に、 前記接触面におい Τ前記 1行 X η列の導電性要素が露出するように保持する絶縁性保持部材 と、 iii ) 前記 n本の導電性要素が 2極の電極端子を構成するように、前 記 n列の導電性要素のうち、奇数列に属する導電性要素を相互 に電気的に接続して一方の極を形成する第 1の接続部材と、偶 数列に属する導電性要素を相互に電気的に接続して他方の極 を形成する第 2の接続部材とを含み、 前記装置は更に、 前記測定へッドの前記 2極端子に、低周波矩形波を有する定電流を供 給する手段と、 前記定電流が前記 2極端子間に砂を介して流れるときに、前記 2極端 子間に生じる電圧を測定し、且つその測定値を平滑化して出力する手段 と、 砂の温度を測定する温度測定手段と、 前記平滑化された測定電圧値を、前記温度測定手段により測定された 砂の温度に基づいて補正する手段と、 前記補正された測定電圧値と砂に含有される水分値との間の予め求 められた相関関係に基づいて、砂に含有される水分値を決定する手段と を備える装置。. 請求項 4の装置において、 前記絶縁性保持部材に設けられ、 導電性要 素を加熱する加熱手段を更に備える装置。. 請求項 4の装置において、前記砂が使用前又は使用後の铸物砂である . 請求項 6の装置において、 前記処理ラインが、 砂を貯蔵する貯蔵手段 と、 砂を処理する処理手段と、 砂を移送させる移送手段とを含む装置。. 請求項 7の装置において、 前記測定へッドの配置位置が、 前記貯蔵手 段、前記処理手段、前記移送手段のうちの少なく とも一つにおける内面 である装置。 .粉体と水とを含む粉体被検体に含有される水分値を粉体被検体の電気 抵抗値に基づいて測定する水分値測定装置に用いられ、粉体被検体に接 触させるべき接触面を有する測定へッドであって、 複数 n本 (但し nは 3以上の整数) の細長い導電性要素と、 前記 n本の導電性要素をその長手方向に実質的に直交する行方向に 沿つて、相互に所定の間隔をおいて且つ実質的に平行に 1行 X n列に配 · 列すると共に、前記接触面において前記 1行 X n列の導電性要素が露出 するように保持する絶縁性保持部材と、 前記 n本の導電性要素が 2極の電極端子を構成するように、前記 η列 の導電性要素のうち、奇数列に属する導電性要素を相互に電気的に接続 して一方の極を形成する第 1の接続部材と、偶数列に属する導電性要素 を相互に電気的に接続して他方の極を形成する第 2の接続部材とを備 える測定へッド。 0 . 請求項 9の測定へッドにおいて、前記粉体被検体が使用前又は使用 後の铸物砂である装置。
1 .粉体と水とを含む粉体被検体に含有される水分値を粉体被検体の電 気抵抗値に基づいて測定する方法であって、
a )粉体被検体に接触させるべき接触面を有する測定へッドを設ける 段階を含み、 この測定ヘッドは、
i ) 複数 n本 (但し nは 3以上の整数) の細長い導電性要素と、 ϋ ) 前記 η本の導電性要素をその長手方向に実質的に直交する行 方向に沿って、 相互に所定の間隔をおいて且つ実質的に平行 に 1行 X η列に配列すると共に、 前記接触面において前記 1 行 X η列の導電性要素が露出するように保持する絶縁性保持 部材と、
iii ) 前記 n本の導電性要素が 2極の電極端子を構成するように、 前記 n列の導電性要素のうち、 奇数列に属する導電性要素を 相互に電気的に接続して一方の極を形成する第 1の接続部材 と、 偶数列に属する導電性要素を相互に電気的に接続して他 方の極を形成する第 2の接続部材とを含み、
前記方法は更に、
b )前記測定へッドの前記 2極端子に、低周波矩形波を有する定電流 を供給する段階と、
c )前記定電流が前記 2極端子間に前記粉体被検体を介して流れると きに、前記 2極端子間に生じる電圧を測定し、 且つその測定値を平滑化 して出力する段階と、
d ) 粉体被検体の温度を測定する段階と、
e )前記平滑化された測定電圧値を、前記温度測定手段により測定さ れた粉体被検体の温度に基づいて補正する段階と、 f )前記補正された測定電圧値と粉体被検体に含有される水分値との 間の予め求められた相関関係に基づいて、粉体被検体に含有される水分 値を決定する段階とを含む方法。
2 . 請求項 1 1の方法において、前記粉体被検体が使用前又は使用後の 鎳物砂である方法。
PCT/JP2003/008178 2002-07-01 2003-06-27 粉体被検体の水分値を測定する方法及び装置 WO2004003534A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003246089A AU2003246089A1 (en) 2002-07-01 2003-06-27 Method and device for measuring water content of powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-191820 2002-07-01
JP2002191820 2002-07-01
JP2003-157429 2003-06-03
JP2003157429A JP2005288443A (ja) 2002-07-01 2003-06-03 電極機構、粉体水分値の測定装置及び鋳物砂水分値の測定装置

Publications (1)

Publication Number Publication Date
WO2004003534A1 true WO2004003534A1 (ja) 2004-01-08

Family

ID=30002328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008178 WO2004003534A1 (ja) 2002-07-01 2003-06-27 粉体被検体の水分値を測定する方法及び装置

Country Status (4)

Country Link
JP (1) JP2005288443A (ja)
AU (1) AU2003246089A1 (ja)
TW (1) TW200401890A (ja)
WO (1) WO2004003534A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775044A1 (en) * 2004-07-07 2007-04-18 Sintokogio, Ltd. Electrode mechanism for measuring moisture value of foundry sand, device for measuring moisture value of foundry sand, and method and device for filling water into foundry sand mixer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691316B2 (ja) * 2010-09-09 2015-04-01 新東工業株式会社 バケットエレベータ内部の結露または粉体の付着を予測及び検出する方法及び装置とそれに用いられる測定ユニット

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0138260B2 (ja) * 1981-04-29 1989-08-11 Sintokogio Ltd
US5040411A (en) * 1989-12-27 1991-08-20 Ppg Industries, Inc. Windshield moisture sensor
JPH04106752U (ja) * 1991-02-28 1992-09-14 タツタ電線株式会社 漏液センサ
JPH063312A (ja) * 1992-06-19 1994-01-11 Glory Ltd 湿度センサ
JPH07190975A (ja) * 1993-12-24 1995-07-28 Sintokogio Ltd 鋳物砂水分量の測定装置
JPH07229867A (ja) * 1993-08-31 1995-08-29 Matsushita Electric Ind Co Ltd 水分検知センサー、水分検知方法及び水分検知センサーを用いた乾燥機
US5585559A (en) * 1994-03-25 1996-12-17 Canon Kabushiki Kaisha Environment measuring apparatus
JPH11151447A (ja) * 1997-03-25 1999-06-08 Satake Eng Co Ltd 加水制御方法及び加水制御装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0138260B2 (ja) * 1981-04-29 1989-08-11 Sintokogio Ltd
US5040411A (en) * 1989-12-27 1991-08-20 Ppg Industries, Inc. Windshield moisture sensor
JPH04106752U (ja) * 1991-02-28 1992-09-14 タツタ電線株式会社 漏液センサ
JPH063312A (ja) * 1992-06-19 1994-01-11 Glory Ltd 湿度センサ
JPH07229867A (ja) * 1993-08-31 1995-08-29 Matsushita Electric Ind Co Ltd 水分検知センサー、水分検知方法及び水分検知センサーを用いた乾燥機
JPH07190975A (ja) * 1993-12-24 1995-07-28 Sintokogio Ltd 鋳物砂水分量の測定装置
US5585559A (en) * 1994-03-25 1996-12-17 Canon Kabushiki Kaisha Environment measuring apparatus
JPH11151447A (ja) * 1997-03-25 1999-06-08 Satake Eng Co Ltd 加水制御方法及び加水制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1775044A1 (en) * 2004-07-07 2007-04-18 Sintokogio, Ltd. Electrode mechanism for measuring moisture value of foundry sand, device for measuring moisture value of foundry sand, and method and device for filling water into foundry sand mixer
US7884614B2 (en) 2004-07-07 2011-02-08 Sintokogio, Ltd. Device of electrodes for measuring water content in foundry sand, an apparatus for measuring water content in foundry sand, and a method and an apparatus for supplying water to a sand mixer
EP1775044A4 (en) * 2004-07-07 2011-11-02 Sintokogio Ltd ELECTRODE MECHANISM FOR MEASURING THE MOISTURE VALUE OF FOUNDRY RIVER, DEVICE FOR MEASURING THE MOISTURE VALUE OF FOUNDRY RIVER AND METHOD AND DEVICE FOR FILLING A FOUNDRY MIXER WITH WATER

Also Published As

Publication number Publication date
AU2003246089A1 (en) 2004-01-19
JP2005288443A (ja) 2005-10-20
TW200401890A (en) 2004-02-01

Similar Documents

Publication Publication Date Title
CN101878282B (zh) 用于填充炼焦炉组的炉室的平整装置和方法
CN1110733C (zh) 自校准温度控制器
EP2883044B1 (en) Grain bin capacitive moisture sensor system
JP3777395B2 (ja) 電子部品の温度特性試験方法および装置
US5708369A (en) Capacitive measuring device
WO2004003534A1 (ja) 粉体被検体の水分値を測定する方法及び装置
EP1775044B1 (en) Device for measuring the water content in foundry sand, method and apparatus for supplying water to foundry sand in a sand mixer
CN101432607A (zh) 用于测量壳体箱中气体或空气温度的装置
CN111043872B (zh) 一种发泡陶瓷的生产质量检测方法及窑炉
TW202411645A (zh) 導體材料電阻值量測系統及方法
CA2590482C (en) System and method to forecast the electrical conductivity of anodes for aluminum production before baking
CN109997046A (zh) 电阻测量装置及电阻测量方法
WO2020196000A1 (ja) 粉粒体処理方法および粉粒体処理装置
JP4231459B2 (ja) コークス炉の装炭レベル制御方法
JP3845592B2 (ja) 石灰石の予熱装置、及びその制御方法
JP2003302171A (ja) 熱処理炉
JPS5938289B2 (ja) 焼結鉱の製造方法
KR100890356B1 (ko) 전도성 페이스트의 양생장치
JPH0818217A (ja) リフロー温度設定装置およびリフロー温度設定方法
JPS6013034A (ja) 焼結機における昇温勾配制御法
JPS6148858B2 (ja)
JPH0721745U (ja) アスファルトプラントにおける骨材加熱乾燥装置
CS248154B1 (cs) Zařízení pro současné měření průdyšnosti, vlhkosti, teploty a dalších veličin sypkých materiálů za pohybu
JPS6367505A (ja) 耐火物損耗量検知センサ−
JP2005162788A (ja) コークスの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase