WO2004001412A1 - 標準プローブを持つdnaマイクロアレイ及び該アレイを有するキット - Google Patents

標準プローブを持つdnaマイクロアレイ及び該アレイを有するキット Download PDF

Info

Publication number
WO2004001412A1
WO2004001412A1 PCT/JP2003/007918 JP0307918W WO2004001412A1 WO 2004001412 A1 WO2004001412 A1 WO 2004001412A1 JP 0307918 W JP0307918 W JP 0307918W WO 2004001412 A1 WO2004001412 A1 WO 2004001412A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
probe
base sequence
dna microarray
target base
Prior art date
Application number
PCT/JP2003/007918
Other languages
English (en)
French (fr)
Inventor
Masahiro Kawaguchi
Tadashi Okamoto
Hiromitsu Takase
Hiroyuki Hashimoto
Original Assignee
Canon Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002183249A external-priority patent/JP3998237B2/ja
Priority claimed from JP2002191390A external-priority patent/JP4040372B2/ja
Application filed by Canon Kabushiki Kaisha filed Critical Canon Kabushiki Kaisha
Priority to EP03733543A priority Critical patent/EP1522853A4/en
Priority to US10/736,545 priority patent/US20040132080A1/en
Publication of WO2004001412A1 publication Critical patent/WO2004001412A1/ja
Priority to US12/264,241 priority patent/US20090093373A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips

Definitions

  • the present invention relates to a DNA microarray useful for quantitative analysis of the amount of a nucleic acid having a target base sequence contained in a sample. More specifically, a nucleic acid probe having a complementary base sequence is immobilized on a solid phase for a nucleic acid having a target base sequence contained in a sample.
  • the present invention relates to a DNA microarray capable of improving the quantification accuracy when performing analysis, and a detection kit used for a detection operation using the DNA microarray. Background art
  • the seeds are immobilized in an array on the surface of a substrate such as glass.
  • a single-stranded nucleic acid fragment having a complementary base sequence, which is used as a hybridization probe for the target gene, is called oligo-DNA, a chemically synthesized DNA oligomer, or c-DNA.
  • oligo-DNA a single-stranded nucleic acid fragment having a complementary base sequence
  • c-DNA a chemically synthesized DNA oligomer
  • c-DNA Complemented by enzymatic biosynthesis
  • a gene derived from biological tissue Chain DNA fragments and the like are commonly used.
  • DNA is used, for example, in US Pat. No. 5,474,796 (or Japanese Patent Application Laid-open No.
  • Hei 9-150568 Applicant: ProtoGene Laboratories
  • a method in which the terminal is fixed in advance and the DNA molecule itself is sequentially synthesized on a substrate to obtain an immobilized nucleic acid fragment After synthesizing oligo DNA separately as described in the method described in Japanese Patent Application Laid-Open No. 11-187070 (Applicant: Canon Inc.), the nucleic acid fragment was synthesized using various binding means. The method is roughly divided into a method of immobilizing on a substrate.
  • Various methods can be used to immobilize the separately prepared nucleic acid fragments on the substrate, for example, an adsorption and immobilization method using the charge of the substrate and the charge of the nucleic acid fragment, and a poly L-lysine, aminosilane coupling agent
  • an adsorption and immobilization method using the charge of the substrate and the charge of the nucleic acid fragment, and a poly L-lysine, aminosilane coupling agent
  • a fixing method has been proposed in which the substrate surface is coated with such a material and the coating film is used to improve fixing efficiency.
  • samples subjected to genetic testing using DNA microarrays are generally subjected to amplification of nucleic acids having the target base sequence due to sensitivity issues, and amplified products that incorporate a detectable label at the same time. obtain.
  • the basic technology of this amplification operation is called PCR, and is described in U.S. Pat. Nos. 4,683,195, 4,683,022, No. 4,965,188.
  • PC contains many difficult-to-control factors during the amplification reaction.For example, even if the same sample is amplified at the same time, the yield of the amplified product varies from several times to several tens times.
  • the present invention solves the above-mentioned problems, and an object of the present invention is to significantly simplify these assay operations, and to correct the correction data when quantifying and measuring a nucleic acid having a target base sequence contained in a sample.
  • An object of the present invention is to provide a DNA microarray that can be obtained and an assay kit to be used at that time.
  • the inventor of the present invention has conducted intensive studies to solve the above-mentioned problems.
  • a method of fixing the probe a separately prepared nucleic acid probe was applied to a substrate by using an inkjet method when preparing a DNA microarray.
  • An immobilization method Japanese Unexamined Patent Application Publication No. 11-187900 was adopted, and in addition to a nucleic acid probe for detecting a nucleic acid having a target base sequence, an internal standard protocol was placed on the same DNA microarray. It has been found that the use of a DNA microarray in which DNA and Z or a probe for an external standard are combined and immobilized in the same manner can greatly simplify these assay operations. Based on such findings, the present inventors have devised a kit for accurately and easily operating these assay operations in the above-described detection operation using the DNA microarray, and have completed the present invention.
  • a kit for accurately and easily operating these assay operations in the above-described detection operation using the DNA microarray and have completed the present invention
  • DNA that is used to detect a nucleic acid molecule having a target base sequence contained in a sample and has a nucleic acid probe having a base sequence complementary to the base sequence of the target nucleic acid molecule immobilized on a substrate In microarrays,
  • a DNA microarray comprising one or more probes selected from the group consisting of: At this time, the amount of the internal standard probe and / or the external standard probe immobilized on the substrate is 4 points or more. Preferably, they are fixed on the substrate as a series at a time.
  • the internal standard probe immobilized on the DNA microarray is desirably composed of two or more types of probes corresponding to different chain lengths of amplification reaction products derived from the internal standard nucleic acid.
  • the probe for external standard is preferably composed of two or more types of probes containing a non-complementary base sequence having an arbitrary number of nucleobases to the external standard nucleic acid to be added.
  • the internal standard probe and the partial standard probe have a synthetic nucleic acid immobilized on a substrate.
  • the synthetic nucleic acid preferably has a chain length of 15 to 75 bases.
  • the DNA microarray according to the present invention comprises a probe for an internal standard
  • the primer set according to the present invention is a primer set for an amplification reaction of an internal standard nucleic acid which is subjected to amplification simultaneously with the nucleic acid having the target base sequence during the amplification reaction of the nucleic acid having the target base sequence.
  • the length of the amplification product derived from the nucleic acid having the target base sequence is designed to be equivalent to the length of the amplification product derived from the internal standard nucleic acid provided by the primer set. It is a featured primer set.
  • the present invention provides a primer suitable for use in quantitatively detecting a nucleic acid having a target base sequence using the DNA microarray of the present invention, including a set of primers for amplification reaction of an internal standard nucleic acid.
  • Kit is also provided. That is, the kit for detecting a target nucleotide sequence according to the present invention comprises:
  • the nucleic acid having the target base sequence is subjected to amplification simultaneously with the nucleic acid having the target base sequence during an amplification reaction of the nucleic acid having the target base sequence.
  • Plies for amplification reaction of internal standard nucleic acid A primer kit according to claim 7, which is a detection kit containing a set of primers, wherein when two or more types of amplification products derived from the nucleic acid having the target base sequence have two or more chain lengths, the primers correspond to the different chain lengths.
  • a kit for detecting a target base sequence comprising two or more sets.
  • a target base characterized in that one or more of the primer sets are included for amplification product chain length of 200 bp or less, 200 to 500 bp, 500 to 2000 bp, or 2000 bp or more. It can be a kit for sequence detection.
  • the nucleic acid having the target base sequence is subjected to amplification simultaneously with the nucleic acid having the target base sequence during an amplification reaction of the nucleic acid having the target base sequence.
  • a detection kit containing an internal standard nucleic acid characterized in that it contains at least two types of nucleic acids derived from microorganisms or nucleic acids derived from viruses that have no homology to the nucleotide sequence to be detected as internal standard nucleic acids. It is desirable to use a nucleotide sequence detection kit.
  • the present invention utilizes the DNA microarray of the present invention, including the above-mentioned external standard nucleic acid, to obtain a target base sequence.
  • a detection kit suitable for use in quantitatively detecting a nucleic acid having the same comprises:
  • a detection kit containing an external standard nucleic acid added to a sample, wherein the synthetic nucleic acid is labeled with a detectable label.
  • a kit for detecting a base sequence of interest comprising at least two types of external standard nucleic acids.
  • the label be one of a fluorescent substance, a radioactive substance, and a luminescent substance.
  • the nucleic acid probe is composed of a single-stranded nucleic acid
  • a nucleic acid probe composed of a single-stranded nucleic acid is used for DNA, RNA, PNA (peptide nucleic acid), cDNA (complementary DNA), and cDNA (complementary RNA). It can be composed of either.
  • the DNA microarray is a DNA microarray composed of both a single-stranded nucleic acid as a nucleic acid probe and a target nucleic acid introduced by hybridization to the nucleic acid probe. Is also good. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows an example of an embodiment of the present invention, and is a diagram showing a probe for an internal standard, a probe for an external standard, an external standard nucleic acid, a primer set for amplifying an internal standard nucleic acid, and an amplification product thereof.
  • FIG. 2 schematically shows an embodiment of the DNA microarray according to the present invention, and is a diagram showing the arrangement of internal standard probes provided in the DNA microarray.
  • FIG. 3 is a diagram showing an example of preparing a calibration curve for calculating a probe immobilization rate using a probe for an external standard provided in a DNA microarray in a quantitative analysis using a DNA microarray according to the present invention. It is.
  • FIG. 4 shows the calibration curve and the nucleic acid chain length of the amplification product in the calculation of the PCR amplification factor using the internal standard probe provided in the DNA microarray in the quantitative analysis using the DNA microarray according to the present invention.
  • FIG. 4 is a diagram showing a difference in detection sensitivity.
  • FIG. 5 is a diagram schematically illustrating a planar arrangement and a cross-sectional shape (cross-section in AA) showing an example of the configuration of the biochip according to the present invention.
  • Figure 6 is a graph showing the relationship between the measured secondary ionic strength and the DNA formation density (the number of DNA molecules per probe dot) for the biochip.
  • the internal standard probe is, in a broad sense, a probe for detecting an internal standard nucleic acid used for assisting the quantification of a nucleic acid having a target base sequence.
  • a nucleic acid probe which has a base sequence complementary to the internal standard nucleic acid (gene) whose abundance in the sample is known, and is capable of binding to the internal standard nucleic acid (gene); It refers to one that enables quantification of a nucleic acid having a target base sequence by measuring the relative ratio to the abundance of a nucleic acid having the target base sequence.
  • a transcript of a gene housekeeping gene
  • mRNA of 3-actin and liposomal RNA.
  • an internal standard nucleic acid in a narrow sense is used to amplify the amount of a nucleic acid or to add a detectable label to a nucleic acid having a target base sequence by using a nucleic acid amplification reaction represented by PCR.
  • a nucleic acid having a known base sequence which is added to a sample in a known amount when performing a reaction.
  • the internal standard nucleic acid in a narrow sense to be added to the sample is selected so that it is amplified or labeled with the same efficiency as the nucleic acid having the target base sequence when performing the amplification reaction or labeling reaction of the nucleic acid having the target base sequence.
  • the amplification magnification and the label addition rate can be calculated, and the abundance of the nucleic acid having the target base sequence can be determined by the internal standard. It can be determined as a relative ratio to the amount of nucleic acid present.
  • a second mode according to the present invention is to mount a probe for an external standard nucleic acid (external standard probe) on a DNA microarray.
  • External standard nucleic acids are those already added to a sample, mainly for the purpose of correcting variations in the DNA microarray production process and / or detection and measurement processes.
  • a nucleic acid having a known base sequence Specifically, a highly pure nucleic acid such as synthetic DNA or plasmid DNA into which a detectable and quantifiable label is introduced is used. The label attached to such an external standard nucleic acid has been tested in advance for its labeling efficiency and the like. Regardless of the type of DNA microarray (target gene), the same external standard nucleic acid can be used for all DNA microarrays as long as it has a base sequence that does not show homology to the base sequence to be detected. .
  • the external standard probe is a nucleic acid probe having a base sequence complementary to the external standard nucleic acid and capable of selectively binding.
  • a DNA microarray equipped with three or more, preferably five or more types of external standard probes is prepared, and a labeled external standard nucleic acid corresponding to the DNA microarray is converted to a nucleic acid having the target base sequence. Change the concentration (known amount) for each type and add to the detection operation. By plotting the detected amounts of these external standard nucleic acids, a calibration curve can be created. It is also possible to test the amount of probes fixed on the DNA microarray using a set of one type of external standard nucleic acid and a probe for external standard.
  • an external standard probe is immobilized on a DNA microarray at a concentration of 3 or more, preferably 5 or more.
  • the ratio of the number of molecules of the probe actually immobilized on the DNA microarray can be measured.
  • a third embodiment according to the present invention is a detection kit used to more effectively and easily utilize the detection and quantification methods using the DNA microarrays of the first and second embodiments.
  • a detection kit using a DNA microarray having an internal standard probe includes a set of primers for amplifying an internal standard nucleic acid.
  • a detection kit using a DNA microarray provided with a probe for an external standard includes an external standard nucleic acid that is labeled with a detectable and quantifiable label and whose labeling ratio is tested.
  • the contents of the primer set for amplifying the internal standard nucleic acid vary depending on various requirements.
  • the base sequence (corresponding position) of one set of primers must be set so as to generate an amplification product having a base sequence complementary to the probe for the internal standard in an amplification reaction using an internal standard nucleic acid as type II. No.
  • the nucleic acid having the target base sequence is in the form of ⁇ to avoid the generation of an unintended amplification product.
  • the nucleic acid chain length of the amplification product generated in the amplification reaction of the nucleic acid having the target base sequence, and the internal It should be avoided that the nucleic acid strand length of the amplification product obtained when used for amplification is significantly different.
  • the nucleic acid chain length of the amplification product derived from the internal standard nucleic acid is set in several steps, and any one of the chain length of the amplification product derived from the internal standard nucleic acid and amplification derived from the nucleic acid having the target base sequence is used. It is desirable to select such that the chain length of the product is equivalent.
  • a set of four types of primers in which the chain length of the amplification product obtained is 200 bp or less, 200-500 bp, 500-2000 bp, or 2,000 bp or more, is prepared, and it depends on the nucleic acid having the target base sequence. It is desirable to select a suitable one according to the chain length of the incoming amplification product. Of course, it is no problem to further subdivide the range setting of the amplification product chain length to prepare a large set of primers.
  • Nucleic acids used as internal standard nucleic acids have a known base sequence and high purity
  • nucleic acids commonly available in the field of molecular biology and medical care such as plasmid vectors, phage DNA, and microbial genomes can be used.
  • plasmid vector, phage DNA, and the like are more preferably used because a single sample of high purity can be obtained relatively easily.
  • a nucleic acid having a known base sequence and having high purity can be preferably used as the external standard nucleic acid which is labeled with a detectable and quantifiable label and whose labeling ratio has been tested.
  • Synthetic DNA, plasmid vector and the like are more preferably used as the external standard nucleic acid which is labeled with a detectable and quantifiable label and whose labeling ratio has been tested.
  • Synthetic DNA, plasmid vector and the like are more preferably used.
  • Synthetic DNA is particularly preferably used because it has a stable labeling efficiency and a label having a high labeling rate per molecular weight can be obtained.
  • the DNA microarray has both an internal standard probe and an external standard probe.
  • the assay kit is preferably a kit that includes both an internal standard nucleic acid amplification primer set and an external standard nucleic acid.
  • the same Probe array
  • the concentration standard probe can also be used as an external standard probe.
  • the present invention further provides a method for analyzing the DNA array itself. I do. Hereinafter, a specific embodiment will be described.
  • Quantitative analysis using the conventional TOF-SIMS method had the following problems. That is, the measurement conditions, specifically, the primary ion irradiation conditions (acceleration energy, incident angle, ion species, irradiation amount), the secondary ion detection conditions (energy width), and the sample In the case of There is a problem that the intensity of the detected secondary ion varies depending on the degree of desorption caused by the electron beam and the degree of charge neutralization.
  • the standard sample and the sample to be measured do not always have the same charging state when irradiated with primary ions. Therefore, in order to achieve high quantification, it is necessary to strictly optimize the measurement conditions every time the sample is changed, and if the optimization is insufficient, the accuracy of the measurement results will be lost .
  • the preparation of the calibration curve required cumbersome work because it required the same number of standard samples as the number of concentration levels to be measured.
  • the present invention provides a so-called nucleic acid chip probe in which a plurality of nucleic acid-related substances (probes) are arranged in a matrix on a substrate, and is capable of achieving high quantitative performance.
  • Time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis, nucleic acid chip analysis method, and the use of such an analysis method enables the analysis of nucleic acid probes placed on nucleic acid chips and nucleic acids present in dots.
  • a DNA microarray in a form in which the amount, that is, the formation density (the amount of nucleic acid per probe / dot) can be easily determined.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and found that, in addition to nucleic acid probes and dots of which formation density is unknown, which are arranged on a nucleic acid chip, a part of the substrate surface has a dot.
  • a nucleic acid probe and a dot for concentration reference for which the average nucleic acid density per unit is known, are set in the same manner as in the formation of the nucleic acid probe dot, and the nucleic acid probe and dot for concentration reference are set.
  • Based on the signal intensity of the secondary ion detected by performing secondary ion mass spectrometry it is located on the substrate. It has been found that the nucleic acid concentration of an unknown concentration of nucleic acid probe / dot can be determined by secondary ion mass spectrometry, and that its quantification shows excellent reproducibility.
  • Both of the target nucleic acids introduced by the hybridization may be present on the substrate.
  • the present embodiment is a method for producing a DNA microarray in which nucleic acid probes composed of a plurality of nucleic acid-related substances are arranged in a matrix on a substrate, wherein the nucleic acid probes and dots are formed in a DNA microarray. It is characterized in that a nucleic acid probe and a dot for concentration reference are provided on a part of the substrate surface, the average nucleic acid density per dot being determined, and at least the nucleic acid probe and the dot are arranged in a matrix on the substrate.
  • a step of forming a nucleic acid probe * dot is characterized in that a region where the nucleic acid concentration of the formed probe dot is known is formed on a part of the DNA microarray substrate.
  • a calibration curve is created from the secondary ion intensity detected by the TOF-SIMS method, and the calibration curve is used to convert the secondary ion intensity detected in other regions on the DNA microarray substrate to the probe dot. It determines the amount of nucleic acid (forming density) of the fixed nucleic acid probe.
  • a plurality of nucleic acid-related substances are arranged in a matrix on the substrate, that is, a part of the substrate on which the so-called DNA microarray is formed has a nucleic acid per dot.
  • Nuclei of known concentration An acid probe and a dot are provided and used as a concentration standard for quantitative measurement by the TOF-SIMS method.
  • the calibration curve can be formed on the spot. It is possible to make a measurement with higher quantification.
  • nucleic acid probes that have a known nucleic acid concentration per dot, which is used as a concentration standard
  • a dot is prepared by chemical analysis in advance using nucleic acid probes and dots prepared under the same preparation conditions. Use the nucleic acid probe / dot for which the concentration of nucleic acid contained in each sample has been determined.
  • the DNA microarray generally has an outer size.
  • the present invention employs means for analyzing the concentration of nucleic acid probes fixed to each matrix dot on the surface of a DNA microarray using the TOF-SIMS method, and is provided on the same substrate. Using the above-mentioned concentration standard, it is possible to carry out a test with high accuracy.
  • the nucleic acid probe arranged on the substrate is immobilized on the substrate by a covalent bond as described later.
  • the covalent bond for immobilization, for example, in the process of treating the surface of the substrate, the surface of the substrate is treated with an amino group-bonded silane coupling agent (N —— (aminoethyl) —aminopropyltrimethoxysilane). It is also effective to form a coating film by treating with ⁇ -maleimidocaproyloxysuccinimide (EMCS) which is a crosslinking agent.
  • EMCS ⁇ -maleimidocaproyloxysuccinimide
  • the microanalytical means used for quantifying the amount of phosphorus in the nucleic acid is not particularly limited, but is preferably one with high sensitivity and high accuracy, such as the ICP-MS method.
  • the limit of phosphorus detection by the ICP-MS method is about 10 ppb, and at least 2 to 3 times this, that is, about 20 to 30 ppb is required for quantification.
  • the sample volume (solution volume) must be at least lml.
  • a nucleic acid probe is formed by the ink jet method described below, it is very difficult to form a nucleic acid probe having a matrix size of, for example, about 200 rows ⁇ 300 columns in an area of 1 inch ⁇ 3 inches. That's not something.
  • a single ejection amount in the inkjet method shows high reproducibility, and the average value (on the order of p1) can be estimated with high accuracy.
  • the concentration of the probe DNA in the discharged solution (of the order of xM) used for producing the above-mentioned concentration reference dot is set in advance, and is of course known.
  • the sample required for the above ICP-MS analysis can be estimated to some extent.
  • a matrix size of about 200 rows x 300 columns and a discharge amount per dot pi It is necessary to use several tens of DNA microarrays.
  • the concentration reference dots provided on the DNA microarray the number of probes and dots whose nucleic acid concentration is known for each concentration is particularly limited. However, it is preferable to form a plurality.
  • a nucleic acid probe for unknown concentration is used by using a calibration curve created based on the signal intensity of secondary ions detected between a plurality of dots and a nucleic acid probe for concentration reference in which the nucleic acid concentration is changed stepwise. ⁇ It is possible to determine the nucleic acid concentration of the dot. At that time, in the analysis method of the present invention, using secondary ion intensity detected by time-of-flight secondary ion mass spectrometry is effective in achieving higher quantitativeness.
  • the above-mentioned secondary ion intensity is preferably not the counting rate but the integrated intensity counted for a certain time under a certain condition.
  • the dose of primary ions is a constant value of 1 X 10 12 / cm 2 or less, which is the so-called static condition, and the count value (count number) of the following secondary ions emitted from a fixed area It is preferable that The dose of primary ions must be at least 1 ⁇ 10 14 cm 2 or less.
  • probe nucleic acid and target nucleic acid introduced by hybridization include single-stranded nucleic acid, more specifically, DNA, RNA, cDNA (complementary DNA), cRNA. for (complementary one RN a), derived from the phosphoric acid which constitutes the nucleic acid backbone P-, PO ", ⁇ 2 - ., ⁇ 0 3 one, etc.
  • the electron beam irradiation used together with the primary ion irradiation uses the pulse width and frequency of the primary ions. It is necessary to determine appropriate irradiation conditions in consideration of the dielectric constant of the sample and the thickness of the glass substrate.
  • the analysis method of the DNA microarray of the present invention is also characterized in that the secondary ion intensity due to nucleic acids can be quantitatively displayed as a two-dimensional image in accordance with the primary ion irradiation scan. .
  • Example 1 Preparation of Internal Standard Nucleic Acid Plasmid DNA having a known base sequence: pUC118 (3,162 bp, manufactured by Takara Shuzo Co., Ltd.) was selected as the internal standard nucleic acid. In order to use it as a template for PCR, the plasmid pUC118 was cut with a restriction enzyme EcoRI according to a standard method to obtain linear DNA. Next, after confirming the cleavage status by agarose gel electrophoresis, the restriction enzyme cleavage reaction solution was treated with phenol, and the desired linear DNA was recovered by ethanol precipitation.
  • EcoRI restriction enzyme
  • the recovered linear DNA is dissolved in TE buffer (10 mM Tris-HC1 (pH 7.5), ImM EDTA) to a final concentration of 10 ng // z1 (2.4 pmolZml). This was used as a nucleic acid solution for internal standard.
  • Example 2 Preparation of primer for amplification of nucleic acid for internal standard Based on the base sequence information of linear DNA: pUC118EcoR ID igest prepared in Example 1, as primer for PCR, As shown, 5 forward primers: P1 to P5 and 4 reverse primers: RP1 to RP4 were selected. Name Sequence Chain length Position GC (%)
  • the positions shown in Table 1 indicate the positions of the nucleotide sequences of the primers when renumbering was performed with the start of the cleavage site of the restriction enzyme EcoRI as Position 1.
  • the reverse primers in Table 1; RP1 to RP4 indicate the position of the base sequence on the complementary strand.
  • each primer whose base sequence is shown in Table 1 was purified by high performance liquid chromatography (HPLC), and dissolved in TE buffer to a final concentration of 10 pmo ⁇ / 1, respectively.
  • FIG. 1 shows the nucleic acid for the internal standard prepared in Example 1, using PUC118 EcoR I Digest as type III, and using the primers shown in Table 1 to carry out the PCR amplification reaction.
  • combinations of forward primer and reverse primer to be used are shown.
  • a reverse primer having a fluorescent label (rhodamine) at the 5 ′ end was separately prepared, and the same treatment as the unlabeled primer was performed to obtain a fluorescent-labeled primer solution.
  • Example 3 Preparation of probe for internal standard Linear plasmid DNA prepared in Example 1: pUC118EcoRIDig
  • the positions shown in Table 2 show the positions of the nucleotide sequences of the probes when renumbering was performed with the start of the restriction site EcoRI cut as Position 1.
  • a sulfanyl group was introduced at the 5 'end of each nucleic acid according to a standard method as a functional group for immobilization on a DNA microarray. After introduction of the functional group, it was purified and freeze-dried. The lyophilized probe for the internal standard was stored at 130 ° C in a freezer.
  • Figure 1 shows the position of the target base sequence where the four internal standard probes hybridize. The position of the target nucleotide sequence is also indicated for each PCR amplification product.
  • the positions shown in Table 3 indicate the nucleotide sequence of the relevant external standard nucleic acid when renumbering was performed with the start of the restriction site EcoRI cut as Position 1. Indicates the position of.
  • These four kinds of external standard nucleic acids have base sequences complementary to the four kinds of internal standard probes shown in Table 2.
  • Each of the four types of external standard nucleic acids whose base sequences are shown in Table 3 was used as a marker for detection and quantification.
  • a fluorescent dye rhodamine
  • purification was carried out and dissolved in a TE buffer solution to a final concentration of 5 M to obtain an external standard nucleic acid solution.
  • This external standard nucleic acid solution was placed in a light-shielded container, and stored at ⁇ 30 ° C. in a freezer.
  • Figure 1 shows that the four external standard nucleic acids also have complementary nucleotide sequences to the four nucleotides, and that the four internal standard probes hybridize with the target nucleotide sequence position and the nucleotide sequence position. Is shown.
  • a synthetic quartz glass substrate (size: 25 mm X 75 mm XL, manufactured by Iiyama Special Glass Co., Ltd.) was placed in a heat-resistant and alkali-resistant rack, and immersed in a cleaning solution for ultrasonic cleaning prepared at a predetermined concentration. After soaking in the washing solution overnight, ultrasonic cleaning was performed for 20 minutes. Subsequently, the substrate was taken out of the cleaning solution, lightly rinsed with pure water, and then subjected to ultrasonic cleaning in ultrapure water for 20 minutes. Next, the substrate was immersed in a 1 N aqueous sodium hydroxide solution heated to 80 ° C. for 10 minutes. Re-cleaning, pure water cleaning and ultrapure water cleaning were performed to prepare a cleaned quartz glass substrate for a DNA chip.
  • a silane coupling agent; KB M-603 (manufactured by Shin-Etsu Silicone Co., Ltd.) was dissolved in pure water so as to have a concentration of 1 wt%, and stirred at room temperature for 2 hours. Subsequently, the washed glass substrate was immersed in an aqueous solution of a silane coupling agent, and left at room temperature for 20 minutes. After pulling up the glass substrate and gently cleaning the surface of the substrate with pure water, the substrate was dried by blowing nitrogen gas onto both sides of the substrate. Next, the dried substrate is baked for 1 hour in an oven heated to 120 ° C to complete the surface treatment with the coupling agent. I let you. With the aminosilane coupling agent treatment, an amino group is introduced into the substrate surface.
  • N-maleimidocaproyloxysuccinimide N- (6—Ma1eimi dodocaproyloxy) succinimido, hereinafter abbreviated as EMCS
  • An EMCS solution was prepared by dissolving dimethylsulfoxide and ethanol in a 1: 1 (volume ratio) mixed solvent to a final concentration of 0.3 mgZml. After the completion of the baking, the glass substrate was allowed to cool, and then immersed in the prepared EMCS solution at room temperature for 2 hours.
  • the amino group introduced into the surface by the silane coupling agent treatment reacts with the succinimide group of EMCS, and a maleimide group derived from EMCS is introduced into the substrate surface.
  • the glass substrate pulled up from the EMCS solution is washed using the above-mentioned mixed solvent of dimethyl sulfoxide and ethanol. Further, after washing with ethanol, the surface-treated glass substrate was dried in a nitrogen gas atmosphere.
  • Example 3 Using four kinds of internal standard probes prepared in Example 3, they were dissolved in pure water to prepare solutions having various concentrations and mixed solutions in accordance with the composition table shown in Table 4 below. Each of the internal standard probe solutions was subdivided into a fixed amount after the preparation, and lyophilized to remove water.
  • the bubble jet printer used here has been modified so that it can be printed on a flat plate.
  • this bubble jet printer discharges ink dots in the corresponding pattern by inputting a print pattern according to a predetermined file creation method, and spots a DNA solution of about 5 pico-liters at a pitch of about 120 micrometer. Is possible.
  • the DNA solution remaining on the surface was washed away with (pH 7.0) to obtain a gene chip (DNA probe array substrate) on which a single-stranded DNA spotted in a matrix on the glass substrate surface was immobilized.
  • Example 6 Assay of a substrate with an external standard nucleic acid
  • Eight DNA microarrays prepared in Example 5 were prepared. The eight DNA microarrays were immersed in a blocking solution having the composition shown below, and allowed to stand at room temperature for 3 hours. Treatment.
  • the DNA microarray was rinsed with the basic buffer.
  • One piece of each of the blocking-treated DNA microarrays was immersed in each of the prepared eight hybridization solutions and sealed with a plastic pack. Each was subjected to a hybridization reaction at 45 ° C for 3 hours.
  • Room temperature 1 minute XI times The composition of 2XSSC is 17.5 g of NaC 11 / trisodium citrate. Dihydrate is 8.8 gZl, adjusted to pH 7.0 using sodium hydroxide solution. After the washing was completed, the solution was drained using an air blow and dried. After drying, the amount of fluorescence of each spot was measured using a DNA array scanner (GenePix 4000 B, manufactured by Axon). The measurement data was analyzed using the analysis software (GenePixPro3.0) attached to the DNA array scanner.
  • the density ratio of each probe was determined from the measured amount of fluorescence. See Table 7. ⁇
  • the density ratio was determined as a relative ratio to the fixed density of the DNA probe in Ink No. 5 assuming 100%.
  • the labeling ratio of each external standard nucleic acid is measured separately, and the density ratio obtained by correcting the labeling ratio is shown.
  • the density ratio (fluorescence amount) of Ink.- 1 to 4 is less than 200% of the theoretical value because the fixed amount of probe nucleic acid reaches the allowable amount (saturation amount) of the substrate. Because it is.
  • Example 8 Preparation of calibration curve using external standard nucleic acid From the results of Example 7, the fixed amount of each probe was tested, and a calibration curve was prepared using the corrected data. Specifically, using the DNA microarray prepared in Example 5, a hybridization experiment was performed in the same manner as in Example 6. On the other hand, the addition amount of the external standard nucleic acid was a mixed amount shown below. Mixing ratio of external standard nucleic acid
  • Example 9 Preparation of a calibration curve using PCR products Using the nucleic acid for internal standard prepared in Example 1 and the primer for internal standard prepared in Example 2, a calibration curve of PCR amplification product was prepared. Went.
  • a PCR amplification reaction was performed according to a standard method using a combination of primers for the internal standard shown in Table 8.
  • the composition of the PCR reaction solution is as follows.
  • the reverse primer used in the present example was the one prepared by performing fluorescent labeling at the 5 ′ end prepared in Example 3.
  • the asterisk indicates that a fluorescent label is attached.
  • the following example shows an example in which a probe for concentration standard added for abundance or density analysis of the probe formed by the same method as that for forming a nucleic acid probe is used.
  • FIG. 5 is a diagram schematically illustrating a planar arrangement and a cross-sectional structure of a probe array in which a plurality of probes are coupled in a spot shape on a substrate.
  • Reference numeral 501 denotes a probe group prepared under arbitrary conditions
  • reference numeral 502 denotes a probe group having a known nucleic acid concentration.
  • 503 is a substrate
  • 504 is a surface treatment layer made of an organic substance
  • 5 00 is a nucleic acid probe.
  • a single-stranded nucleic acid of SEQ ID NO: 9 (40-mer of dT) was synthesized at the request of a DNA synthesizer (Vex).
  • a sulfonyl 10 group (SH) was introduced into the 5 ′ end of the single-stranded DNA of SEQ ID NO: 1 using a zinc modifier (Dallen Research) at the time of synthesis.
  • a zinc modifier Dallen Research
  • the single-stranded DNA of SEQ ID NO: 1 described in [3] was used at a final concentration of 8 M at a concentration of 7.5% by weight of dariserin, 7.5% by weight of urea, 7.5% by weight of thiodiglycol, and 20% by weight of acetylene alcohol (trade name: Acetyleneol EH (manufactured by Kawaken Fine Chemical Co., Ltd.) was dissolved in a solution containing 1%.
  • a printer head BC-50 (Canon) for a bubble jet printer BJF-850 (Cannon) using a bubble jet method, which is a kind of the solar jet method, was modified to discharge several hundreds of solutions.
  • the modified head was mounted on a discharge drawing machine that was modified to discharge ink onto a flat quartz substrate.
  • a discharge drawing machine Into the modified tank of this head, Several tens of liquids were injected, and an EMC S-treated substrate was mounted on a discharge drawing machine, and spotted on an EMCS-treated surface.
  • the discharge amount at the time of spotting was 4 plZd rodlet, and the spotting range was 200 dpi, that is, 127 m pitch, within the range of 2 Omm X 3 Omm on the substrate. Under these conditions, the dots spotted in a matrix (157 rows and 236 columns) had a diameter of about 50 m.
  • the substrate is allowed to stand in a humidified chamber for 30 minutes to allow the maleimide group on the substrate surface to react with the sulfanyl group (1SH) at the 5 'end of the nucleic acid probe, thereby immobilizing the DNA probe.
  • the substrate was washed with pure water and stored in pure water.
  • the DNA-bonded substrate was dried by blowing nitrogen gas immediately before analysis by TOF-SIMS, and further dried in a vacuum desiccator. Under these conditions, a total of 15 DNA chips were produced.
  • the single-stranded DNA concentration of SEQ ID NO: 1 in the DNA solution used for spotting was selected to be 5 / zM and 2.5 M, and the same procedure was repeated for 25 and 35 DNA chips, respectively. Produced.
  • the above three were used as standard DNA chips.
  • a DNA chip using a general solution concentration of single-stranded DNA (about 8 M) was prepared under the same conditions as above.
  • the same three single-stranded DNA solutions used in the preparation of the standard DNA chip were used in the first to third lines at the end.
  • the first line at the end of the substrate is the spot of the probe formed with the DNA solution at the concentration of IOM
  • the second line is the spot of the probe formed with the DNA solution at the concentration of 5 M
  • the third line is the spot of the concentration of 2
  • Rows other than the first to third rows at the end were prepared using another lot of a 8 M solution of DNA.
  • the number of probe arrays can be set arbitrarily.
  • the standard DNA chips prepared at three different DNA concentrations were each washed with an acid to dissolve the DNA probe, and then concentrated until the acid solution was not dispersed to 1 ml or less. Next, ultrapure water was added to the concentrated solution to adjust the volume to 1 ml. This solution was introduced into an ICP-MS apparatus, and the weight of P (phosphorus) was measured. Based on this value, the average value of the number of DNA molecules (per dot) of the DNA probe prepared at each concentration was determined in consideration of the number of dots (number of spots) used for the measurement.
  • the number of substrates prepared at each DNA concentration can be determined by considering the P detection limit concentration (about 10 ppb) in the ICP-MS device and the number of DNA molecules on each substrate. The number is not limited to the number shown in the tenth embodiment.
  • the DNA chip shown in Fig. 5 was transported to the analysis room of a time-of-flight secondary ion mass spectrometer (TO FS IMS IV: ION TOF), and the injection dose of primary ions was adjusted under the conditions shown in Table 1. Irradiated until 1 X 10 12 at oms / cm 2 , accumulated secondary intensity P0 3 — (mass-to-charge ratio: 78.958 amu (atom mass unit)) was calculated, and cumulative intensity was calculated. .
  • Figure 6 shows the average secondary ion intensity measured at the dot positions at each DNA concentration in the first to third lines, and the density of DNA formation.
  • the formation density of DNA and the second-order ion intensity in the dots in each row were proportional.
  • the nucleic acid concentration in the D NA solution ejected by the ink jet printer one formed as 8 M, for nucleic acid probes was T OF- S IMS measurements, P0 3 - each dot obtained from the count number (D NA number of molecules per dot) formation density of D NA in DOO is approximately 2. 0 X 1 0 7, the variation in 1 within 0 dots arbitrarily selected, a 2 0% or less was.
  • Image display of formation density distribution A plurality of nucleic acid probes of the same sample used in Example 12 were set, primary ions were scanned on the sample surface, and the generated secondary ions were made to correspond to each scanning point.
  • the intensity of ⁇ _ obtained at each scanning point is divided into a plurality of steps to set a pseudo color, and the intensity distribution of ⁇ ⁇ ⁇ ⁇ _, that is, the area density of nucleic acids (the number of nucleic acid molecules per probe / dot) )
  • the distribution of the formation density was quantitatively compared.
  • the present invention it is possible to provide a DN microarray capable of simple and detailed analysis. Specifically, the assay operation can be easily performed at the same time as the actual nucleic acid detection operation. In addition, the test work itself can be performed at the same time, resulting in highly accurate test results. Therefore, by using the DNA microarray according to the present invention, the quantitative accuracy of quantitative analysis of the target nucleic acid molecule is significantly improved. In addition, in the quantitative analysis operation, the user can use the present invention very easily by using the primer for internal standard amplification and the external standard nucleic acid as a detection kit corresponding to the DNA microarray according to the present invention. it can.
  • a nucleic acid probe and a dot for concentration reference which are formed by the same method as the formation of the nucleic acid probe and the dot and whose average nucleic acid density per dot is determined, are provided on the substrate.
  • the nucleic acid concentration of an unknown concentration of the nucleic acid probe-dot can be determined by secondary ion mass spectrometry, and reproducibility and quantification are improved as compared with the conventional method.
  • the reliability of a DNA microarray product can be improved. It is also possible to display the distribution of the formation density of nucleic acid probes and dots arranged in a matrix in a DNA microarray as an image.

Abstract

検体中の標的核酸分子を検出するため使用される、標的核酸分子の塩基配列に対して実質的に相補的な塩基配列を持つ核酸プローブを基板上に固定化したDNAマイクロアレイであって、そこにさらに、標的核酸の増幅反応を検定するための一種以上の内部標準用プローブ、検出操作及びプローブ量を検定するための一種以上の外部標準用プローブ、前記核酸プローブと同じ手法で形成される、前記核酸プローブの存在量または密度を検定するためのプローブ、からなる群から選ばれる一種以上のプローブを有することを特徴とするDNAマイクロアレイ。

Description

明 細 書
標準プローブを持つ D NAマイクロアレイ及び該アレイを有するキット 技術分野
本発明は、 検体中に含まれる目的の塩基配列を有する核酸量の定量分析に 有用な DNAマイクロアレイに関する。 より具体的には、 検体中に含まれる目 的の塩基配列を有する核酸に対して、 相補的な塩基配列を持つ核酸プローブ を固相上に固定化してなる' DNAマイクロアレイを用いて、 定量的分析を行う 際、 定量精度向上を可能とする DNAマイクロアレイ、 ならびに、 該 DNAマイ クロアレイによる検出操作に利用する検出用キットに関する。 背景技術
ハイブリダィゼーシヨン法に基づく遺伝子 D NAの検出、 測定法の発展と して、 基板上に複数種の核酸プローブを固定し、 検体試料中に含有される遺 伝子 D NAについて同時に複数の検出試験を行うための遺伝子チップ '(D N Aチップ、 マイクロアレイ) に関する研究が近年急速に進んでいる。 かかる 遺伝子チップ (D NAチップ、 マイクロアレイ) を利用して検体試料中に含 有される遺伝子 D NAの検出、 測定を行う方法は、 分子生物学研究、 遺伝子 疾患、 感染症診断など様々な分野での応用が期待されている。 ' 遺伝子チップの基本形態は、 ハイブリダィゼーシヨン法に基づき、 目的と する遺伝子 D NAを検出するため、 目的遺伝子の塩基配列に対して、 相補的 な塩基配列を有する一本鎖核酸断片複数種を、 ガラスなどの基板表面にァレ ィ状に固定化したものである。 目的遺伝子に対して、 ハイブリダィゼ一ショ ン 'プローブとして利用される、相補的な塩基配列を持つ一本鎖核酸断片は、 オリゴ D NAと呼ばれる、 化学合成された D NAオリゴマーや、 c D NAと 呼ばれる、 生物組織由来の遺伝子を铸型として、 酵素的に生合成された相補 鎖 D NA断片などが、 一般的に利用される。 一本鎖核酸断片の基板表面への 固定化に関しては、 オリゴ: D NAでは、 例えば、 U S 5 , 4 7 4 , 7 9 6 (または、特表平 9一 5 0 0 5 6 8号公報、出願人: ProtoGene Laboratories) に記載される方法のように、 予め末端を固定した上で、 D N A分子自体を基 板上で逐次合成し、 固定化された核酸断片とする方法と、 例えば、 特開平 1 1 - 1 8 7 9 0 0号公報 (出願人:キャノン株式会社) に記載される方法の =ように、 オリゴ D NAを別途合成した後、 種々の結合手段を利用して、 核酸 断片を基板上に固定化する方法とに大別される。
別途調製した核酸断片を、 基板上へ固定化する手段として、 様々な方式、 例えば、 基板の持つ電荷と核酸断片の電荷を利用した吸着固定法、 また、 ポ リー L—リジン、 アミノシランカップリング剤などを基板表面にコートし、 このコート被膜を利用して固定効率の向上を図った固定法などが提案されて いる。
現在、 一般に使用されている DNAマイクロアレイは、 目的の塩基配列を有 する核酸の定量分析のための特別なプローブ等は搭載されていない。 従来、 固相表面での逐次合成法で作製された DNAマイクロアレイであっても、 ピン 法で作製された DNAマイクロアレイであっても、 その作製方法に起因するバ ラツキ、 例えば、 核酸配列による合成効率のバラツキ、 ピン ·スポッターか ら基板に滴下されるプロ一ブ液量のバラツキや、 固定率のパラツキなどを内 包するため、 定量精度、 再現性に問題があった。 一方、 これら DNAマイクロ アレイ作製時のバラツキを解決するべく、インクジエツトを用いた作製法 (特 開平 1 1一 1 8 7 9 0 0号公報) などが提案されている。
一方、 DNAマイクロアレイによる遺伝子検査に供される検体に対しては、 感度の問題から、 一般に、 目的の塩基配列を有する核酸の増幅操作を施し、 同時に検出可能な標識物を取り込ませた増幅産物を得る。 この増幅操作の基 本技術は、 P C Rと呼ばれ、米国特許第 4 6 8 3 1 9 5、第 4 6 8 3 2 0 2、 第 4 9 6 5 1 8 8などに記載されている。 しかしながら、 P C は、 その増 幅反応の過程に制御の困難な要因を多数含み、 例えば、 同一のサンプルを同 時に増幅した場合でも、 増幅産物の収率は数倍から数十倍の間でバラツキを 生じることもあることが知られている。 この増幅産物収量の不確定性を解決 すべく、 多くの研究が行われ、 競合 (C o m p e t i t i v e ) P C R法な どが発明された。 競合 P C R法は、 P. D. S i eber.t らの論文 (Nature 359 ; 557-558 (1992) , Bi o Techniques 14 ; 244-249 (1993) ) などに詳しい。 ま た、 別の方法としては、 患者等から採取さ Lた検体に、 既知量の内部標準と なる核酸を添加し、 目的の塩基配列を有する核酸の増幅反応と同時に内部標 準核酸も増幅して、 この内部標準核酸の増幅率から目的の塩基配列の有する 核酸の増幅率を推定する手法などが挙げられる。 発明の開示
上で述べたように、 DNAマイクロアレイを用いて、 目的の塩基配列を有す る核酸の定量分析を行う上では、 その定量性に影響を及ぼす、 様々な不安定 要因が存在している。
まず、 DNAマイクロアレイ作製時、 基板上に固定化されるプロ一ブ量のパ ラツキに由来する精度、再現性の低信頼性がある。また、 P C R法における、 目的の塩基配列を有する核酸の増幅効率の不確定性に起因し、 検体に含まれ る目的の塩基配列を有する核酸の増幅率にバラツキがある。 従来、 これら異 なる要因のバラツキは、 別途、 様々な方法でそれぞれを検定した後、 DNAマ イクロアレイを用いた定量分析に供され、 分析結果を、 それぞれの検定結果 に基づく補正を行って、 実際の定量を得ていた。
これら複数種の検定作業は、 何れも、 非常に煩雑であり、 また、 長時間の 作業が必要であることから、 多数の検体を処理する上で、 検定作業がその作 業性を阻害する要因となっていた。 本発明は前記の課題を解決するもので、 本発明の目的は、 これらの検定作 業を著しく簡便化し、検体中に含まれる目的の塩基配列を有する核酸の定量、 測定時に、 その補正データを取得することが可能な DNAマイクロアレイと、 その際に利用さる検定用キットを提供することにある。
本発明者は、 前記課題を解決すべく、 鋭意検討を進めたところ、 DNAマイ クロアレイを作製する際、 プローブの固定法として、 インクジェットを利用 して、 別途作製した核酸プローブを基板上に塗布,固定する作製法 (特開平 1 1 - 1 8 7 9 0 0号公報) を採用し、 目的の塩基配列を有する核酸の検出 用核酸プローブに加えて、 同一の DNAマイクロアレイ上に内部標準用プロ一 ブおよび Zまたは外部標準用プローブを併せて、 同じ手法で固定している DNAマイクロアレイとすることで、 これらの検定作業を著しく簡便化できる ことを見出した。 かかる知見に基づき、 本発明者らは、 前記の DNAマイクロ アレイを用いる検出操作において、 これらの検定作業を精度良く、 簡便に運 用するためのキットをも考案し、 本発明を完成するに至った。
すなわち、 本発明にかかる DNAマイクロアレイは、
検体中に含まれる目的の塩基配列を有する核酸分子を検出するため使用さ れる、 該目的核酸分子の塩基配列に対して、 相補的な塩基配列を持つ核酸プ ローブを基板上に固定化した DNAマイクロアレイにおいて、
前記検体中に含まれる前記目的の塩基配列を有する核酸分子の含有濃度を 定量するため、 該目的塩基配列を有する核酸の増幅反応検定用に添加される 一種以上の内部標準用プローブ、 検出操作及ぴプローブ量検定用に添加され る一種以上の外部標準用プローブ、 前記核酸プローブの形成と同じ手法によ り形成される前記プロ一ブの存在量または密度を検定するための一種以上の プローブからなる群から選ばれる一種以上のプロ一ブを有することを特徴と する DNAマイクロアレイである。 その際、 基板上に固定化される該内部標準 用プローブ及び/もしくは該外部標準用プロ一ブは、 4点以上の量もしくは密 度で一連の群として基板上に固定化されていることが好ましい。
なお、 DNAマイクロアレイ上に固定化される、 該内部標準用プローブは、 内部標準核酸に由来する増幅反応産物の異なる鎖長に対応する、 二種以上の プローブで構成されることが望ましい。 また、 該外部標準用プロ一ブは、 添 加される外部標準核酸に対して、 任意の核酸塩基数の非相補的な塩基配列を 含む二種以上のプローブで構成されていることが望ましい。
' 加えて、 該内部標準用プローブおよび部標準用プローブは、 合成核酸を基 板上に固定化したものであることがより好ましい。 その際、 該合成核酸の鎖 長は、 1 5塩基〜 7 5塩基の長さであることが好ましい。
さらには、 本発明にかかる DNAマイクロアレイが、 内部標準用プロ一ブを 具えるものである際、 目的の塩基配列を有する核酸の増幅反応時に、 該目的 の塩基配列を有する核酸と同時に、 内部標準核酸を増幅に供し、 増幅反応の 増幅効率を測定するが、 この内部標準核酸の増幅反応用プライマーセッ卜の 発明も本発明は提供する。 すなわち、 本発明にかかるプライマーセットは、 目的の塩基配列を有する核酸の増幅反応時に、 該目的の塩基配列を有する 核酸と同時に増幅に供される内部標準核酸の増幅反応用プライマ一セッ卜で あって、 目的の塩基配列を有する核酸に由来する増幅産物の鎖長と、 該プラ イマーセッ卜が与える内部標準核酸に由来する増幅産物の鎖長とが同等にな るように設計されていることを特徴とするプライマーセットである。
また、 本発明は、 前記の内部標準核酸の増幅反応用プライマ一セットを含 め、 本発明の DNAマイクロアレイを利用して、 目的の塩基配列を有する核酸 を定量的に検出する用途に適合する検出用キットをも併せて提供する。 すな わち、 本発明にかかる目的塩基配列検出用キットは、
DNAマイクロアレイを利用して、 目的の塩基配列を有する核酸を定量的に 検出する際、 該目的の塩基配列を有する核酸の増幅反応時に、 該目的の塩基 配列を有する核酸と同時に増幅に供される内部標準核酸の増幅反応用プライ マ一セットを含む検出用キットであって、 前記目的の塩基配列を有する核酸 に由来する増幅産物の鎖長が二種以上ある際、 該異なる鎖長に対応する請求 項 7に記載のプライマ一セットを二種以上包含することを特徴とする目的塩 基配列検出用キットである。 その際、 例えば、 該プライマ一セット複数が、 増幅産物鎖長 200bp以下用、 200〜500bp用、 500〜2000bp用、 2000bp以上用 として、 各 1種以上包含されていることを特徴とする目的塩基配列検出用キ ットとすることができる。
一方、 本発明にかかる目的塩基配列検出用キットでは、
DNAマイクロアレイを利用して、 目的の塩基配列を有する核酸を定量的に 検出する際、 該目的の塩基配列を有する核酸の増幅反応時に、 該目的の塩基 配列を有する核酸と同時に増幅に供される内部標準核酸を含む検出用キット であって、 検出目的の塩基配列と相同性を持たない、 微生物由来核酸もしく は、 ウィルス由来核酸を内部標準核酸として二種以上包含することを特徴と する目的塩基配列検出キットとすることが望ましい。
また、 本発明にかかる DNAマイクロアレイが、 外部標準用プローブを具え るものである際、 本発明は、 前記の外部標準核酸を含め、 本発明の DNAマイ クロアレイを利用して、 目的の塩基配列を有する核酸を定量的に検出する用 途に適合する検出用キットをも併せて提供する。 すなわち、 本発明にかかる 目的塩基配列検出用キットは、
DNAマイクロアレイを利用して、 目的の塩基配列を有する核酸を定量的に 検出する際、 検体に添加される外部標準核酸を含む検出用キットであって、 検出可能な標識物で標識された合成核酸である外部標準核酸を二種以上包含 することを特徴とする目的塩基配列検出用キットである。 なお、 その際、 該 標識物が、 蛍光物質、 放射性物質、 発光物質のいずれかであることが好まし い。
また、本発明の D N Aアレイでは、核酸プローブが一本鎖核酸で構成され、 具体的には、 一本鎖核酸で構成される核酸プローブを、 D NA、 R NA、 P NA (ペプチド核酸)、 c D NA (コンプリメンタリー D NA)、 c R NA (コ ンプリメンタリー R N A) のいずれかで構成することができる。 さらには、 D NAマイクロアレイが、 核酸プローブとする一本鎖核酸と、 この核酸プロ —ブに対するハイブリダィゼーシヨンにより導入された標的核酸の両者から 構成されている形態の D N Aマイクロアレイとなっていてもよい。 図面の簡単な説明
図 1は本発明の実施形態の一例を示し、 内部標準用プローブ、 外部標準用 プローブ、 外部標準核酸、 ならびに、 内部標準核酸の増幅用プライマーセッ 卜、 その増幅産物を示す図である。
図 2は本発明にかかる D N Aマイクロアレイの一実施態様を模式的に示し、 D N Aマイクロアレイ中に具える内部標準用プローブの配置を示す図である。 図 3は本発明にかかる D N Aマイクロアレイを利用する定量分析において、 D N Aマイクロアレイ中に具える外部標準用プロ一ブを利用する、 プローブ 固定化率を算定するための、 検量線の作成例を示す図である。
図 4は本発明にかかる D N Aマイクロアレイを利用する定量分析において、 D NAマイクロアレイ中に具える内部標準用プローブを利用する、 P C R増 幅倍率の算定時における検量線と、 増幅産物の核酸鎖長による検出感度の相 違を示す図である。
図 5は本発明にかかるバイオチップについて、 その構成の一例を示す平面 配置と断面形状 (AAでの断面) を模式的に示す図である。
図 6はバイオチップについて、 測定される 2次イオン強度と. D N A形成密 度 (プローブ' ドット当たりの D NA分子数) の関係を示すグラフである。 発明を実施するための最良の実施の形態 本発明にかかる第一の形態は、 内部標準用プローブを DNAマイクロアレイ 上に搭載することである。
内部標準用プローブとは、 広義には、 目的の塩基配列を有する核酸の定量 を補助するために利用する内部標準核酸を検出するためのプローブである。 検体中の存在量が判明している内部標準核酸 (遺伝子) と相補的な塩基配列 を有し、 内部標準核酸 (遺伝子) と結合しうる核酸プローブであって、 内部 標準核酸の存在量と、 目的の塩基配列を有する核酸の存在量との相対比を測 定することにより目的の塩基配列を有する核酸の定量を可能とするものを指 す。例えば、生体細胞で細胞骨格を形作る遺伝子(ハウスキーピング遺伝子) の転写産物は、 その発現量に変動が少なく、 発現量も比較的多いので内部標 準核酸として用いられることが多い。 具体的には、 GAPDHや 3—ァクチンの m R N A、 リポゾ一マル RNAなどが挙げられる。
さらに、 狭義の内部標準核酸とは、 P C Rに代表される核酸の増幅反応を 利用して、 核酸量の増幅や、 目的とする塩基配列を有する核酸に検出可能な 標識物を付加するために増幅反応を行う際に検体中に既知量添加される、 既 知の塩基配列を有する核酸を指す。検体中に添加する狭義の内部標準核酸は、 目的の塩基配列を有する核酸の増幅反応もしくは標識反応を行う際に、 目的 の塩基配列を有する核酸と同じ効率で増幅もしくは標識されるように選択す る。 増幅反応もしくは標識反応の後、 この添加された内部標準核酸の量を定 量することで、 増幅倍率や標識付加率を算定でき、 また、 目的の塩基配列を 有する核酸の存在量を、 内部標準核酸の存在量に対する相対比として求める ことができる。
本発明にかかる第二の形態は、外部標準核酸に対するプローブ (外部標準用 プローブ)を DNAマイクロアレイ上に搭載することである。
外部標準核酸とは、 主として、 DNAマイクロアレイの作製工程及び/または 検出、 測定工程でのバラツキなどを補正する目的で、 検体中に添加される既 知の塩基配列 ¾有する核酸を指す。具体的にほ、合成 DNA、 プラスミツド DNA などの純度の高い核酸に、 検出、 定量可能な標識物を導入したものを使用す る。 また、 かかる外部標準核酸に付されている標識はその標識効率などを事 前に検定してあるものである。 この外部標準核酸は、 DNAマイクロアレイの 種類 (対象遺伝子) に依らず、 検出目的の塩基配列とは相同性を示さない塩 基配列を有するものであれば、 全ての DNAマイクロアレイに同じものを使用 できる。 外部標準用プローブは、 前記の外部標準核酸に対して、 相補的な塩 基配列を有し、 選択的に結合可能な核酸プローブである。
また、 外部標準核酸、 外部標準用プローブは、 数種類のセットを同時に用 いることで、 DNAマイクロアレイの有する性能、 すなわち、 定量性の検定が 可能となる。 具体的には、 例えば、 3種類以上、 好ましくは、 5種類以上の 外部標準用プローブを搭載した DNAマイクロアレイを用意し、 これに対応し た標識済み外部標準核酸を、 目的の塩基配列を有する核酸の検出操作にそれ ぞれの種類ごとに濃度 (既知量) を変えて添加する。 これらの外部標準核酸 の検出量をプロットすることで、検量線を作成することが可能となる。また、 一種類の外部標準核酸と外部標準用プロ一ブのセットを用いて、 DNAマイク ロアレイに固定されているプローブ量を検定することも可能である。つまり、 一種類のセットを用いて、 DNAマイクロアレイ間 (基板間) において、 プロ ーブ固定効率のバラツキを補正することも可能である。 この方法は、 まず、 外部標準用プロ一ブを 3段階以上、 好ましくは、 5段階以上の濃度で DNAマ イクロアレイ上に固定する。 これに、 十分量の標識済み外部標準核酸を反応 させて、 結合した外部標準核酸の量を測定することで、 DNAマイクロアレイ 上に実際に固定されているプローブの分子数比が測定できる。
本発明にかかる第三の形態は、 上記する第一及び第二の形態の DNAマイク ロアレイを利用する検出、 定量法を、 より有効かつ簡便に活用するために用 いられる検出用キットである。 内部標準用プローブを具える DNAマイクロアレイを利用する検出キットに は、 内部標準核酸の増幅用プライマ一セットが包含される。 また、 外部標準 用プローブを具える DNAマイクロアレイを利用する検出キットには、 検出お よび定量が可能な標識物で標識され、 かつその標識率が検定されている外部 標準核酸が包含される。 これらは、 いずれも内部標準用プローブ、 外部標準 用プローブに対応させて、 少なくとも、 一種類、 必要に応じて、 数種類〜十 数種類がセットとして、 検定用キットに組み込まれる。
内部標準核酸の増幅用プライマーセットは、 様々な要件によってその内容 は変化する。 まず、 内部標準核酸を铸型とする増幅反応において、 内部標準 用プローブと相補的な塩基配列を有する増幅産物を生じるように、 プライマ 一セットの塩基配列 (対応位置) が設定されていなくてはならない。 また、 同時に、 核酸を増幅する際に、 目的の塩基配列を有する核酸を錶型として、 意図しない増幅産物を生じないように留意する必要もある。 さらに、 内部標 準として定量性の精度を向上させるためには、 目的の塩基配列を有する核酸 の増幅反応で生じる増幅産物の核酸鎖長と、 内部標準核酸を本キットに含ま れる増幅用プライマーを用いて増幅した際に得られる増幅産物の核酸鎖長と が、 著しく異なることを避けるべきである。 具体的には、 内部標準核酸に由 来する増幅産物の核酸鎖長を数段階設定し、 内部標準核酸に由来する増幅産 物の鎖長のいずれかと目的の塩基配列を有する核酸に由来する増幅産物の鎖 長とが同等となるように選択することが望ましい。 例えば、 得られる増幅産 物の鎖長が、 200bp以下、 200〜500bp、 500〜2000bp、 2000bp以上の 4種類と なる、 四種のプライマ一セットを用意し、 目的の塩基配列を有する核酸に由 来する増幅産物の鎖長に合わせて、適合するものを選択することが望ましい。 もちろん、 この増幅産物鎖長のレンジ設定をさらに細分化して、 多数のプラ イマ一セットを用意することは何ら問題ない。
内部標準核酸に利用される核酸は、 既知の塩基配列を有し、 かつ高い純度 のものを入手できるものが好適に利用でき、例えば、分子生物、医療分野で一 般に市販されている核酸、 例えば、 プラスミツドベクター、 ファージ DNA、 微生物ゲノムなどを利用することができる。 特に、 プラスミツドベクタ一、 ファージ DNA等は、 純度の高い、 単一種の試料を比較的簡便に入手できるこ とから、 より好適に用いられる。
一方、 検出、 定量可能な標識物で標識され、 その標識率が検定されている 外部標準核酸も、 既知の塩基配列を有し、 かつ高い純度のものを入手できる ものが好適に利用でき、 例えば、 合成 DNA、 プラスミツドベクタ一などがよ り好適に用いられる。 合成 DNAは、 標識効率が安定していて、 また、 分子量 当たりの標識率の高いものが得られることから特に好適に用いられる。
加えて、 本発明にかかる DNAマイクロアレイでは、 内部標準用プローブと 外部標準用プローブとの双方を具える形態とすることがより好ましい。 その 場合検定用キットは、 内部標準核酸の増幅用プライマーセットと、 外部標準 核酸とを双方ともに具えたキットとすることが好ましい。
なお外部標準プローブ、内部標準プローブは、個別に扱う場合は同じ Probe (の配列) が使用可能である。 ただし、 同時に使用する場合は、 競合してし まうので異なる配列 (違う種類) の Probeを使用する必要がある。 濃度標準 プローブは、 外部標準プローブと兼用可能である。
[核酸プローブの存在量または密度検定用に添加される、 前記核酸プローブ と同じ手法により形成される濃度標準用プローブを用いた分析方法] 本発明は、 さらに D NAアレイそのものの分析方法をも提供する。 以下に 具体的な実施形態を用いて説明する。
従来の TO F— S I M S法により定量分析には、 以下のような問題点があ つた。 すなわち、 その測定条件、 具体的には、 1次イオンの照射条件 (加速 エネルギー、 入射角、 イオン種、 照射量)、 2次イオンの検出条件 (エネルギ 一幅)、加えて、試料が絶縁体の場合には、帯電補正のためにパルス照射され る電子線に因る脱離、 また、 帯電中和の程度などに依って、 検出される 2次 ィォン強度が違つてくるという問題があつた。
特に、 試料が絶縁体の場合には、 標準試料と被測定試料とでは、 1次ィォ ンを照射した際の帯電状況は必ずしも同じとは限らない。 そのため、 高い定 量性を達成するには、 試料を変えるごとに、 厳密に測定条件を最適化する必 要があり、最適化が不十分の場合には測定結果の精度が失われることとなる。 また、 検量線の作成は、 測定対象となる濃度の水準数と同じ数の標準試料を 必要とするため、 煩わしい作業を伴っていた。
また、 核酸チップの標準試料を、 P . L a z z e r iらが報告したよう なスピンコート法で作製する場合、 広い面積で平均すれば濃度再現性のよい 塗布形成がなされているものの、 T O F— S I M S法のスポットサイズの測 定領域、 具体的には、 数 1 0 /x m2から数 1 0 0 iz m2の微少な領域毎では、 塗布面内の均一性が十分とはいえず、 測定結果の信頼性に大きな問題を与え ていた。本発明は、前記の課題を解決するため、複数の核酸関連物質(プロ一 ブ)が基板上にマトリクス状に配置された、所謂核酸チップのプローブを、高 い定量性を達成可能な、飛行時間型 2次イオン質量分析(T O F - S I M S ) 法により分析する、 核酸チップの分析方法、 およびかかる分析方法を利用す ることで、 核酸チップ上に配置される核酸プローブ, ドットに存在する核酸 の量すなわち、 形成密度 (プローブ · ドットあたりの核酸の量) を簡便に決 定することが可能な形態の D N Aマイクロアレイを提供する。
本発明者らは、 前記の課題を解決すべく鋭意検討を進めたところ、 核酸チッ プ上に配置される、 形成密度が未知の核酸プローブ · ドットに加えて、 基板 表面の一部に、 ドッ卜当たりの平均的な核酸密度が判明している濃度基準用 の核酸プローブ · ドットを前記核酸プロ一ブ' ドットの形成と同じ手法で設 け、 この濃度基準用の核酸プローブ · ドットに対して、 2次イオン質量分析 を行い検出される 2次イオンの信号強度を基準とすれば、 基板上に配置され た未知濃度の核酸プローブ · ドットの核酸濃度を、 2次イオン質量分析法に よって決定することが可能であり、 また、 その定量性は優れた再現性を示す ことを見出した。
さらには、 本実施形態にかかる D NAマイクロアレイでは、 一本鎖核酸で 構成される核酸プローブと、 該核酸プローブに対するハイプリ
ダイゼーションにより導入された標的核酸の両者が、 その基板上に存在して いてもよい。
加えて、 本実施形態は複数の核酸関連物質からなる核酸プローブが基板上 にマトリクス状に配置された D N Aマイクロアレイの製造方法であって、 D NAマイクロアレイにおいて、 前記核酸プローブ · ドットが形成されて いる基板表面の一部に、 ドット当たりの平均的な核酸密度が決定された、 濃 度基準用の核酸プローブ · ドットを設けることを特徴とし、 少なくとも、 前記基板上に核酸プローブ · ドットをマトリクス状に形成する工程、 前記核酸プローブ · ドットが形成されている基板表面の一部に、 前記核酸プローブ · ドットの形成と同じ手法により、 ドット当たりの平均的 な核酸密度が決定された、 濃度基準用の核酸プロ一ブ* ドットを形成するェ 程とを有する。 本実施形態にかかる D NAマイクロアレイは、 D NAマイク ロアレイ基板上の一部に、 形成されているプローブ' ドットの核酸濃度が既 知である領域を形成することを特徴とするが、 該領域で T O F— S I M S法 により検出される 2次ィォン強度から検量線を作成し、この検量線を用いて、 D NAマイクロアレイ基板上の他の領域で検出された 2次イオン強度から、 そのプローブ · ドットに固定されている核酸プローブの核酸量 (形成密度) を^定するものである。
すなわち、 本実施形態にかかる D NAマイクロアレイでは、 複数の核酸関 連物質が基板上にマトリクス状に配置された、 所謂、 D NAマイクロアレイ が形成されている基板上の一部に、 ドット当たりの核酸濃度が既知である核 酸プローブ · ドットを設け、 TO F— S I MS法により定量的測定の際、 濃 度基準に利用する。 また、 そのドット当たりの核酸濃度が既知である核酸プ ローブ · ドットとして、 DN Aマイクロアレイ基板上に、 段階的に核酸濃度 を変えた核酸プローブ · ドットを形成することで、 その場で検量線を作成で き、 より高い定量性を有する測定が可能となる。 一般に、 濃度基準に利用す る、ドット当たりの核酸濃度が既知である核酸プローブ'ドットに関しては、 別途、 同一の作製条件で作製した核酸プロ一ブ · ドットを用いて、 予め化学 分析により、 ドット当たりに含有される核酸濃度を決定した核酸プローブ · ドッ卜を用いる。
本発明において DN Aマイクロアレイは、 一般的には、 その外形サイズが
1 cmX 1 cm、 1インチ X 1インチ (25. 4mmX 25. 4mm)、 ある いは、 スライドグラスサイズ (例えば、 26mmX 76mm) の基板を利用 して作製し、 プローブ · ドットのマトリクスは、 その内部に配置されている 平面形態とされる。 本発明は、 既に述べたように、 DNAマイクロアレイ表 面の各マトリクス · ドットに固定されている核酸プローブの濃度を、 TOF — S IMS法を用いて分析する手段を採用し、 同一基板内に設けてある前記 濃度基準を利用して、 高い確度で検定することを可能としている。
本実施形態の DN Aマイクロアレイにおいては、 基板上に配置する核酸プ ローブは、 後述するように基板上に共有結合で固定されていることが好まし い。その共有結合による固定に利用するため、例えば、基板表面処理過程で、 該基板表面を、 アミノ基を結合したシランカップリング剤 (N— — (アミ ノエチル) —ァ一ァミノプロピルトリメトキシシラン) および架橋剤である Ν—マレイミドカプロイロキシスクシンイミド (EMCS) で処理し、 被覆 膜を形成する形態とすることも有効である。
ドット当たりに含有される核酸濃度を決定する際に利用する化学分析では、 それぞれ段階的に核酸濃度を変えた核酸プローブが多数形成された複数の D N Aマイクロアレイを、 例えば、 酸処理することによって、 核酸プロ一ブを 基板から分離し、 この溶液に含まれる核酸プローブ量を、 その核酸中のリン の量を、 微量分析手段を用いて分析することで、 別途定量するものである。 核酸中のリンの量の定量に利用する微量分析手段は、 特に限定されるもので はないが、 高感度かつ高精度なものが好ましく、 例えば、 I CP— MS法な どが挙げられる。 I CP— MS法でのリンの検出限界は、 l O ppb程度で あり、 定量を行うには、 少なくとも、 この 2〜3倍、 すなわち 20〜30 p pb程度が必要である。 また、 試料量 (溶液量) としては、 最低限 lml必 要である。
一方、後述のインクジエツト法により、核酸プローブを形成する場合には、 1インチ X 3インチの面積に、 例えば、 200行 X 300列程度のマトリク ス ·サイズの核酸プローブを形成することも、 さほど困難なことではない。 また、 インクジェット法での 1回の吐出量は、 高い再現性を示し、 その平均 値 (p 1のオーダー) は高い確度で推定できる。 一方、 上記濃度基準用ドッ 卜の作製に利用する、 吐出溶液中のプローブ DN A濃度 ( xMのオーダー) は、 前もって設定するものであり、 勿論判明している。
これらの値に加えて、 吐出量中のプローブ DNAの固定量 (水洗等で固定 されなかった分を差し引いた量、 数 10%のレベル) を用いて、 上記 I CP — MS分析に必要な試料量を得るために、 基板上から溶出させるべき、 核酸 プローブ' ドットの総数は、 ある程度推定できる。 具体的には、 上記の標準 的な条件で核酸チップを作製した場合、 一種類の濃度 ( Mのオーダ一) に つき、 200行 X 300列程度のマトリクス ·サイズ、 ドット当たりの吐出 量 (p iのオーダー) の DNAマイクロアレイで、 数 10枚を用いることが 必要となる。
なお、 DNAマイクロアレイ上に付設される濃度基準用ドットに関して、 各濃度毎の、 核酸濃度が既知のプローブ · ドット数は、 特に限定されるもの ではないが、 複数個形成するのが好ましい。
本実施形態は、 段階的に核酸濃度を変えた、 濃度基準用の核酸プローブ · ドット複数間で検出される 2次イオンの信号強度に基づき作成された検量線 を用いて、 未知濃度の核酸プローブ · ドットの核酸濃度を決定することを可 能とする。 その際、 本発明の分析方法では、 飛行時間型 2次イオン質量分析 で検出される 2次イオン強度を用いることが、 より高い定量性を達成する上 で有効である。
なお、 上述の 2次イオン強度とは、 計数率ではなく、 一定条件で一定時間 計数した積分強度であることが好ましい。 正確には、 1次イオンのドーズ量 を、 いわゆる s t a t i c条件と言われる 1 X 1012/ c m2以下の一定値と し、 一定の面積から放出される下記 2次イオンの計数値 (カウント数) とす ることが好ましい。 なお、 1次イオンのドーズ量は、 少なくとも 1 X 1014 ノ c m2以下とする必要がある。
TOF-S I MS法による測定において、利用される 1次イオンとしては、 Cs+イオン、 G a+イオンあるいは Ar+イオンを用いることが可能である。 2次イオン種としては、 プロ一ブ核酸、 およびハイブリダイゼ一ションで導 入された標的核酸が、 一本鎖核酸、 より具体的には、 DNA、 RNA、 cD NA (コンプリメンタリ一 DN A)、 cRNA (コンプリメンタリ一 RN A) の場合、 核酸の骨格を構成するリン酸に由来する P―, PO", ΡΟ2-, Ρ03一 等が挙げられる。 また、 塩基種からプロトンが脱離したもの、 即ち、 塩基種 がアデニンの場合は、 C5H4N (134 a. m. u.)、 グァニンの場合は C 5H4N50" (150 a. m. u.)、 シトシンの場合は C4H4N3〇— (1 10 a. m. u.)> チミンの場合は C5H5N202- (125 a. m. u) も、 2次イオン 種として検出可能である。 また、 核酸プローブが、 RN Aプローブの場合に はチミンの代わりにゥラシルに由来する C4H3N22— (111 a. m. u) を 検出する以外は、 DN Aプローブと同様な 2次イオンを検出することが可能 である。 また、 DN Aマイクロアレイを構成する基板として、 例えば、 ガラ スなどの絶縁物基板を用いる際には、 1次イオン照射と併せて、 併用される 電子線照射は、 1次イオンのパルス幅、 周波数および試料の誘電率、 さらに は、 ガラス基板の厚さを考慮して、 適切な照射条件を決定する必要がある。 本発明の DN Aマイクロアレイの分析方法では、 また、 核酸に起因する 2 次イオン強度を、 1次イオン照射のスキャンに合わせて、 二次元的なィメー ジとして、 定量的に表示できることも特徴である。
実施例
以下に、 実施例を挙げて、 本発明をより具体的に説明する。 ここに挙げる 実施例は、本発明にかかる最良の実施形態の一例ではあるものの、本発明は、 かかる実施例に示す形態に限定されるものではない。
(実施例 1) 内部標準用核酸の調製内部標準用核酸として、 既知の塩基配 列を有するプラスミツド DNA: pUC 118 (3, 162 bp、 宝酒造株 式会社製)を選択した。 PCRのテンプレートとするために、定法に従って、 前記プラスミツド pUC 1 18を、 制限酵素 Ec oR Iで切断し、 直鎖 DNAとした。 次に、 ァガロースゲル電気泳動で切断状況を確認した後、 制 限酵素切断反応液をフエノール処理し、 エタノール沈澱により、 目的の直鎖 DNAを回収した。 回収した直鎖 DNAを、 TE緩衝液 (10mM T r i s— HC 1 (pH7. 5)、 ImM EDTA) 中に、 最終濃度 10 n g//z 1 (2. 4 pmo lZm l) となるように溶解し、 内部標準用核酸溶液と した。
(実施例 2) 内部標準用核酸の増幅用プライマーの調製 実施例 1で調製 した、 直鎖状 DNA: pUC 118 Ec oR I D i g e s t の塩基 配列情報に基づき、 PCR用プライマ一として、 下記表 1に示す、 順方向プ ライマー 5種: P 1〜P 5、 逆方向プライマー 4種: RP 1〜RP 4を選択 した。 名称 配列 鎖長 ポジション GC(%)
P1 gagacaataaccctgata 18 1083- 1100 38.9
P2 ccttaacgtgagttttcg 18 2101 -2118 44.4
F - Primer P3 gcttggagcgaacgacct 18 2507― 2524 61.1
P4 gagtcgacctgcaggcat 18 32-49 61.1
P5 ggt tggactcaagacgatag 20 2432 - 2451 50.0
RP1 taagttgggtaacgccag 18 116- 99 50.0
RP2 agggcgctggcaagtgta 18 368― 351 61.2
R - Primer
RP3 cgtttcggtgatgacggt 18 926 - 909 55.6
RP4 gcggtaatacggttatccac 20 2858 - 2839 50.0 1-?14:配列番号10-18)
表 1中に示されるポジションは、制限酵素 EcoR Iの切断部位の先頭をポジ シヨン 1として、 ナンバリングしなおした際、 当該プライマーの塩基配列の 位置を示す。なお、表 1中の逆方向プライマ一; RP 1〜RP 4に関しては、 相補鎖上における塩基配列の位置を示す。
表 1に塩基配列を示す各プライマーは、 合成後、 高速液体クロマトグラフ ィー (HPLC) により精製し、 それぞれ、 最終濃度 10 pmo \/ 1 と なるように TE緩衝液に溶解し、 プライマ一溶液とした。
図 1に、 実施例 1で調製される、 内部標準用核酸: PUC118 EcoR I Digest を錡型として、 表 1に示すプライマ一を用いて、 PCR増幅反応を行って得 られる増幅産物の鎖長、 ならびに、 利用される順方向プライマーと逆方向プ ライマーとの組み合わせを示す。 なお、 逆方向プライマーには、 5' 末端に 蛍光標識 (ローダミン) を行ったものを別途に用意し、 上記未標識のプライ マーと同様の処理を行って蛍光標識プライマー溶液とした。
(実施例 3) 内部標準用プローブの調製実施例 1で調製される、 直鎖状プ ラスミツド DNA: pUC 118 Ec oR I D i g
e s t の塩基配列情報に基づき、 以下の内部標準用プローブを設定した。 表 2
Figure imgf000020_0001
(B-H: 配列番号 1一 4)
表 2中に示されるポジションは、制限酵素 EcoR Iの切断部位の先頭をポジ シヨン 1として、 ナンバリングしなおした際、 当該プローブの塩基配列の位 置を示す。
表 2に塩基配列を示す内部標準用プローブ 4種は合成後、 それぞれ、 DNA マイクロアレイ上に固定するための官能基として、 各核酸の 5' 末端にスル ファニル基を定法に従って導入した。 官能基の導入後、 精製し、 凍結乾燥し た。 凍結乾燥した内部標準用プローブは、 冷凍庫中、 一 30°Cで保存した。 図 1に、 内部標準用プローブ 4種がハイブリダィズする、 標的塩基配列の 位置を示す。 また、 各 PC R増幅産物についても、 併せて、 標的塩基配列の 位置を示す。
(実施例 4) 外部標準核酸の調製
実施例 1で準備した直鎖状プラスミッド: pUC 1 18 Ec oR I D i ge s t の配列情報より以下の外部標準核酸を設定した。
表 3
Figure imgf000020_0002
(A - G: 配列番号 5— 8)
表 3中に示されるポジションは、制限酵素 EcoR Iの切断部位の先頭をポジ シヨン 1として、 ナンバリングしなおした際、 当該外部標準核酸の塩基配列 の位置を示す。 この外部標準核酸 4種は、 表 2に示す内部標準用プローブ 4 種に対して、 相補的な塩基配列を有する。
表 3に塩基配列を示す外部標準核酸 4種は、 それぞれ、 検出、 定量用の標 識として、 合成後、 定法に従って、 各核酸の 5 ' 末端に蛍光色素 (ローダミ ン) を導入した。 蛍光標識の導入後、 精製し、 最終濃度 5 Mになるように T E緩衝液に溶解し、 外部標準核酸溶液とした。 この外部標準核酸溶液は、 遮光処理を施した容器に入れた上で、 冷凍庫中、 — 3 0 °Cで保存した。 図 1に、外部標準核酸 4種に関しても、それと相補的な塩基配列を有する'、 上記内部標準用プロ一ブ 4種がハイブリダイズする、 標的塩基配列の位置と 併せて、 その塩基配列の位置を示す。
(実施例 5 ) D N Aマイクロアレイの作製
[ 1 ] ガラス基板の洗浄
合成石英ガラス基板(サイズ: 25顯 X 75mmX l画、飯山特殊ガラス社製)を、 耐熱性、 耐アルカリ性のラックに入れ、 所定の濃度に調製した超音波洗浄用 の洗浄液に浸した。一晩洗浄液中で浸した後、 2 0分間超音波洗浄を行った。 続いて、 洗浄液から基板を取り出し、 軽く純水ですすいだ後、 超純水中で 2 0分超音波洗浄を行った。 次に、 8 0 °Cに加熱した 1 N水酸化ナトリウム水 溶液中に、 1 0分間基板を浸した。 再ぴ、 純水洗浄と超純水洗浄を行い、 D N Aチップ用の洗浄済石英ガラス基板を用意した。
[ 2 ] 表面処理
シランカップリング剤; KB M—6 0 3 (信越シリコーン社製) を、 濃度 1 w t %となるように、純水中に溶解させ、 2時間室温で攪拌した。続いて、 洗浄済ガラス基板をシランカップリング剤水溶液に浸し、 2 0分間室温で放 置した。 ガラス基板を引き上げ、 軽く純水で基板表面を洗浄した後、 基板の 両面に窒素ガスを吹き付けて乾燥させた。 次に、 乾燥した基板を 1 2 0 °Cに 加熱したオーブン中で 1時間べ一クし、 表面のカップリング剤処理を完結さ せた。 このアミノシランカップリング剤処理に伴い、 基板表面にァミノ基が 導入される。
一方、 同仁化学研究所社製の N—マレイミドカプロイロキシスクシイミド (N— (6— Ma 1 e imi do c ap r oy l oxy) s uc c i n im i do, 以下、 EMCSと略す) を、 ジメチルスルホキシドとエタノールの 1 : 1 (体積比) 混合溶媒中に最終濃度が 0. 3mgZmlとなるように溶 解した EMCS溶液を用意した。 ベ一クの終了後、 ガラス基板を放冷し、 次 いで、 調製した EMCS溶液中に室温で 2時間浸した。 この処理により、 シ ランカツプリング剤処理によって表面に導入されたァミノ基と、 EMCSの スクシイミド基とが反応し、 基板表面に EMCSに由来するマレイミド基が 導入される。 EMCS溶液から引き上げたガラス基板を、 先述のジメチルス ルホキシドとエタノールの混合溶媒を用いて洗浄する。 さらに、 エタノール により洗浄した後、 表面処理を施したガラス基板を窒素ガス雰囲気下で乾燥 させた。
[3] プローブ DNA
実施例 3で調製した内部標準用プローブ 4種を利用し、 下記表 4に示す組 成表に従って、 純水に溶解し、 種々の濃度を有する溶液の調製、 混合溶液の 調製を行った。 各内部標準用プローブ溶液は、 調製後一定量毎に小分けし、 凍結乾燥を行い、 水分を除いた。
表 4
Figure imgf000023_0001
[4] B Jプリンターによる DNA吐出、 および基板への結合グリセリン 7. 5wt%、 チォジグリコール 7. 5w t %、 尿素 7. 5wt %、 ァセチ レノール EH (川研ファインケミカル社製) 1. 0wt %を含む水溶液を用 意した。 続いて、 表 4に示す、 予め小分け調製した 27種類のプローブ溶液 凍結乾燥物を、 上記の混合溶媒所定量に加え、 規定濃度になるように溶解し た。得られた DN Aプロ一ブ溶液を、パブルジェット ·プリン夕ー(商品名: B JF- 850 キャノン社製) 用インクタンクに充填し、 印字ヘッドに装 着した。
なお、 ここで使用するバブルジェット ·プリンタ一は、 平板への印刷が可 能なように改造を施したものである。 また、 このバブルジエツト ·プリンタ —は、所定のファイル作成方法に従って印字パターンを入力することにより、 対応するパターンにインクドットの吐出を行い、 約 5ピコリツトルの DNA 溶液を約 120マイクロメ一トルピッチでスポッティングすることが可能と なっている。
続いて、 この改造バブルジェット 'プリンターを用いて、 1枚の表面処理 済ガラス基板に対して、 図 2に示す配列順序に従って、 27種類のプローブ 溶液をそれぞれ、 スポッティングした。 目的とするスポット印字が行われて いることを確認した後、 30分間加湿チャンバ一内に静置して、 ガラス基板 表面のマレイミド基と DNAプローブ 5' 末端のスルファニル基とを反応さ せた。
[5] 洗浄
30分間の反応後、 100 mMの N a C 1を含む 10 mMのリン酸緩衝液
(pH7. 0) により表面に残った DNA溶液を洗い流し、 ガラス基板表面 にマトリックス状にスポットされた一本鎖 D N Aが固定した遺伝子チップ (DNAプローブ ·アレイ基板) を得た。
(実施例 6) 外部標準核酸による基板の検定 実施例 5で作製した DNAマ イクロアレイを 8枚用意した。 この 8枚の DNAマイクロアレイに対して、 以 下に示す組成のブロッキング溶液に浸し、 室温で 3時間放置し、 グ処理を施した。
表 5 ブロッキング溶液組成
Figure imgf000025_0001
一方、 下記表 6に示す組成の外部標準核酸を含んだハイブリダィゼーショ ン溶液を 8種類作製した。なお、ハイブリダィゼーション溶液の基本溶媒は、 1 0 O mM. N a C 1 O mM リン酸緩衝液(p H 7 . 0 ) (以下、 基 本緩衝液と称す。) であり、 表 6に示す外部標準核酸の単独または混合物を、 この基本緩衝液に、 それぞれ、 合計の最終核酸濃度として 3 O n Mになるよ うに溶解した。 表 6
Figure imgf000025_0002
表 6中、 外部標準核酸の欄に記入した略号は、 表 3に示した外部標準核酸 名称の頭文字であり、 その外部標準核酸が含有されることを示す。
プロッキング処理終了後、 DNAマイクロアレイを基本緩衝液でリンスした。 用意した 8種類のハイブリダィゼーシヨン溶液に、 ブロッキング処理済みの DNAマイクロアレイを各 1枚浸し、 ビニールパックで密閉した。 それぞれ、 4 5 °Cで 3時間、 ハイプリダイゼーション反応を行わせた。
反応終了後、 DNAマイクロアレイをビニールパックから取り出し、 以下の 洗浄を行った。
2XSSC+0. 1 %ドデシル硫酸ナトリウム (SDS) 55t: 5分 X 3回 0. 1 XSSC. 室温 1分 X I回 なお、 2XSSCの組成は、 Na C 1 17. 5 g/し クェン酸三ナトリウム · 2水和物 8. 8 gZlで あり、 水酸化ナトリウム溶液を用いて pH 7. 0に調整したものである。 洗浄終了後、 エアブローを用いて液切りを行い、 乾燥させた。 乾燥後、 D NAアレイスキャナ一 (GeneP i x 4000 B, Ax o n社製) を用 いて、 各スポットの蛍光量を測定した。 測定データは、 DNAァレイスキヤ ナー付属の解析ソフトウェア (Ge ne P i x P r o 3. 0) を用いて 解析を行った。
(実施例 7) 固定プローブの密度検定
測定した蛍光量から各プローブの密度比を求めた。 表 7に示す。 ·
表 7
Figure imgf000027_0001
密度比は、 I nk No.5における DN Aプローブの固定密度を 100% とした際、 それに対する相対比として求めた。 また、 各外部標準核酸の標識 率は、 別途測定し、 その標識率による補正を行った、 密度比を示す。
表 7中、 I nk o.- 1〜4の密度比 (蛍光量) が、 理論値の 200 % に満たないのは、 プローブ核酸の固定量が、 基板の許容量 (飽和量) に達し ているためである。
また、表 4中に示した I nk No.17〜27の混合プローブにおける、 各プローブの密度比は、 それぞれ、 対応する各プローブ濃度の単独プローブ 密度比に準じた値を示した。 (実施例 8) 外部標準核酸を用いた検量線の作成 実施例 7の結果から、 各プロ一ブの固定量が検定され、この補正データを用いて検量線を作成した。 具体的には、 実施例 5で作製した DNAマイクロアレイを用いて、 実施例 6 と同様にハイブリダィゼ一シヨン実験を行った。 伹し、 外部標準核酸の添加 量は、 以下に示す混合量とした。 外部標準核酸の混合比
A-R ο : 66. 7 % (20 nM)
C-Rh o : 25. 0% (7. 5 nM)
E-Rh o : 6. 7% (2. 0 nM)
G-Rh o : 1. 7 % (0. 5 nM)
実施例 6と同様の手順で、 測定及び解析を行った。
測定結果と、 実施例 7で求められたプローブ密度の補正値を用いて、 検量 線を作成した。 図 3に、 作成された検量線を示す。
(実施例 9) PCR産物を用いた検量線の作成 実施例 1で調製した内部標 準用核酸、 及び、 実施例 2で調製した内部標準用プライマ一を用いて、 PC R増幅産物の検量線作成を行つた。
まず、 表 8の内部標準用プライマーの組み合わせを用いて、 定法に従って PCR増幅反応を行った。 PCR反応液組成は、 以下の通りである。 なお、 本実施例で使用した逆方向プライマーには、 実施例 3において準備した 5 ' 末端に蛍光標識を行ったものを使用した。
PCR反応液
PCR プレミック反応液 (2X) 25 l
pUC118 EcoR I Digest 1 1
混合プライマ一 (表 8) 6 l
純水 18 1 Z I タル 50 1 温度サイクル (92°C : 10秒 62t: : 15秒 72°C : 30秒
24サイクル) 表 8
Figure imgf000029_0001
*印は、 蛍光標識付を示す。
反応後、 ゲルろ過を行い、 P C R増幅産物を精製した。 T E緩衝液を用い て容量調整した後、 2 4 0 n mの吸光度と蛍光量を測定して、 核酸量と蛍光 標識量を定量し、 標識率を求めた。
標識率を求めた内部標準増幅産物を用いて、 実施例 8と同様に八イブリダ ィゼ一シヨン反応を行い、 プローブに結合した内部標準増幅産物に起因する 蛍光量を測定した。
測定結果から、 内部標準増幅産物標識率と実施例 7で求められたプローブ 密度の補正値を用いて、 検量線を作成した。 図 4に、 作成された検量線を示 す。
図 4に示す検量線を検討すると、 増幅産物の分子量 (鎖長) に依存して、 検量線の傾きに差異がある。すなわち、目的の塩基配列を有す核酸の定量を、 より高い確度で行うためには、 目的の塩基配列を有する核酸の増幅産物と、 同等の鎖長を有する内部標準増幅産物を与えるプライマー組み合わせを採用 することが必要であると判断される。
以下の実施例は、 核酸プローブの形成と同じ手法により形成される前記プ ローブの存在量または密度検定用に添加される濃度標準用プローブを用いた 例を示す。
(実施例 1 0 )
図 5は、 基板上にプローブを複数個スポット状に結合させたプローブァレ ィの平面配置および断面構造を模式的に示す図である。 5 0 1は、 任意の条 件で作製したプロ一ブ群、 5 0 2は、 核酸濃度が既知であるプローブ群であ る。 断面図では、 5 0 3は基板、 5 0 4は有機物質からなる表面処理層、 5 00は核酸プローブである。 以下、 図 5に例示する構成のプローブアレイに ついて、 公知の方法 (特開平 11一 187900号公報に記載の方法 9) を 応用して、 作製する工程について説明する。
〔1〕 ガラス基板の洗浄および 〔2〕 表面処理は、 実施例 5と同様に処理を 5 行った。
〔3〕 プローブ DN Aの合成
DNA合成業者 (ベックス) に依頼して、 配列番号 9の一本鎖核酸 (dT の 40量体) を合成した。 なお、 配列番号 1の一本鎖 DNAの 5 ' 末端には、 合 成時にチォ一ルモディファイア (ダレンリサーチ) を用いて、 スルファニル 10 基 (SH) を導入した。 DNA合成後、 脱保護、 DNAの回収は定法により 行い、 また、 精製には、 HPLC を用いた。 合成から精製までの一連の工程は、 すべて合成業者に依頼して行つた。
配列番号: 9
5 ' -HS- (CH2) 6— 0_PO「0 - TTTTTTTTTT TTTTT
I 1 ι Ί "了、 ' つ
〔4〕 サーマルジェットプリンタ一による DNA吐出、 および基板への結 合
〔3〕 に記載する配列番号 1の一本鎖 DNAを、 最終濃度 8 Mで、 ダリ セリン 7. 5 w t %、 尿素 7. 5wt %、 チォジグリコ一ル 7. 5wt% 20 アセチレンアルコール (商品名:ァセチレノール EH;川研ファインケミカ ル (株) 社製) 1^¥セ%を含む溶液に溶解した。
一方、 サ一マルジエツト法の一種であるバブルジエツト法を用いたバブル ジェットプリンター B J F— 850 (キャノン) 用のプリンタ一ヘッド BC -50 (キャノン) を、 数 100 1の溶液を吐出できるよう改造した。 こ 25 の改造を施したヘッドを、 平板である石英基板上へインク吐出できるよう改 造した吐出描画機に搭載した。 このヘッドの改造タンク部に、 前記 DNA溶 液を数 10 1注入し、 吐出描画機に EMC S処理基板を装着して、 EM C S処理表面にスポッティングした。 なお、 スポッティング時の吐出量は 4 p lZd r op l e tで、 スポッティングの範囲は、 基板上の 2 OmmX 3 Ommの範囲に、 200 d p i、すなわち、 127 mのピッチで吐出した。 この条件では、 マトリックス (157行 236列) 状にスポッティングされ たドットの直径は約 50 mであった。
スボッティング終了後、 基板を 3 0分間加湿チャンバ一内に静置し、 基板 表面のマレイミド基と、 核酸プロ一ブ 5 ' 末端のスルファニル基 (一 SH) とを反応させ、 DN Aプローブを固定させた。次いで、基板を純水で洗浄し、 純水中で保存した。 DNA結合基板 (DNAチップ) は、 TOF— S I MS による分析直前に窒素ガスを吹き付けて乾燥し、 真空デシケ一夕一中でさら に乾燥した。 この条件で、 DNAチップを計 1 5枚作製した。
さらに、 スポッティングに用いる DNA溶液中の、 配列番号 1の一本鎖 D NA濃度を、 5 /zM、 2. 5 Mに選択して、 同様の操作で、 DNAチップ を各々 25枚、 3 5枚作製した。 以上の 3種を、 標準 DNAチップとした。 次に、 一本鎖 DN Aの一般的な溶液濃度 (約 8 M) を用いた DNAチッ プを上記と同条件で作製した。 ただし、 該 DNAチップにおいては、 端部の 1行目から 3行目には標準 D N Aチップ作製に使用した同じ一本鎖 D N A溶 液三種を用いた。 すなわち、 基板最端の 1行目に、 濃度 I O Mの DNA溶 液で形成したプローブのスポット、 2行目に、 濃度 5 Mの DNA溶液で形 成したプローブのスポット、 3行目に、 濃度 2. 5 Mの DNA溶液で形成 したプローブのスポットを配置した。 また、 端部の 1行目から 3行目以外の 行 (4行目から 1 5 7行目) を、 別ロットの DNA濃度 8 Mの溶液を用い て作製した。 なお、 プロ一ブアレイの数は任意に設定できる。
(実施例 1 1 )
核酸チップ上の核酸の定量 3種類の D N A濃度で作製した標準 D N Aチップを、 それぞれ酸で洗浄し て DN Aプローブを溶解させた後、 該酸溶液が飛散しない条件で 1 m 1以下 になるまで濃縮した。 次いで、 該濃縮溶液に超純水を加えて lmlになるよ うに定容した。 この溶液を、 I CP—MS装置に導入して P (リン) の重量 を測定した。 この値をもとに、 測定に供したドットの数 (スポッティングの 数) を考慮して、 各濃度で作製した DNAプローブの (1ドット当たりの) DNA分子数の平均値を決定した。 なお、 各 DNA濃度で作製した基板の枚 数は、 I CP— MS装置での Pの検出限界濃度 (約 l O ppb) と、 各基板 上の DN Aの分子数を考慮して決定すればよく、 実施例 10で示した枚数に 限定されるものではない。
(実施例 12)
TOF-S I MS測定
図 5に示した DNAチップを、 飛行時間型二次イオン質量分析装置 (TO FS IMS I V: I ON TO F社) の分析室に搬送し、 表 1の条件で 1 次イオンの注入ドーズ量が 1 X 1012 a t oms/cm2になるまで照射し て、 その間に検出される 2次イオン P03— (質量電荷比 78. 958 amu (アトムマスユニット)) を積算して累積強度を求めた。 図 6に、 1行目から 3行目までの各 D N A濃度のドット位置で測定された 2次イオン強度の平均 値と、 DNAの形成密
度 (1ドット当たりの DNA分子数) との対応を示した。 ここでは、 プロ一 ブ DN Aを固定する直前、 表面処理済基板において測定された P03—の強度 を、 バックグランドとした。
各行のドットにおける D N Aの形成密度と 2次ィォン強度は比例すること が、確認された。 同じ測定条件で、 インクジェットプリンタ一で吐出させる D NA溶液中の核酸濃度を 8 Mとして形成した、 核酸プローブについて、 T OF— S IMS測定したところ、 P03-のカウント数から求められた各ドッ トにおける D NAの形成密度 (1ドット当たりの D NA分子数) は、 およそ 2 . 0 X 1 07で、 任意に選択した 1 0個のドット内でのバラツキは、 2 0 % 以下であった。
表 9 T O F - S I M Sの測定条件
Figure imgf000033_0001
(実施例 1 3 )
形成密度分布の画像表示 実施例 1 2に用いた同じ試料の複数の核酸プロ ーブを設定して、 1次イオンを試料面で走査し、 発生する 2次イオンを各走 査点に対応させて表示させ、各走査点で得られた Ρ_の強度を複数の段階に分 けて擬似カラーを設定し、 Ρ_の強度分布すなわち、核酸の面密度(プローブ · ドット当たりの核酸の分子数) 形成密度の分布を定量的に比較した。 産業上の利用の可能性
以上説明したように、 本発明によれば、 簡便且つ詳細な分析が可能な D N Αマイクロアレイを提供することが可能となる。 具体的には、 実際の目的と する核酸の検出操作と同時に、 検定作業を簡便に実施することができる。 ま た、 その検定作業自体、 同時に行う結果、 高い精度の検定結果を得られる。 そのため、 本発明にかかる D N Aマイクロアレイを利用することによって、 目的とする核酸分子の定量分析における定量性精度は、 著しく向上される。 また、 その定量分析操作では、 本発明にかかる D NAマイクロアレイに対応 させて、 内部標準増幅用プライマー、 外部標準核酸を検出用キットとして用 いることで、 利用者は非常に簡便に本発明を利用できる。 さらに、 チップ基 扳上に、 前記核酸プローブ · ドットの形成と同じ手法により形成される、 ド ット当たりの平均的な核酸密度が決定された、 濃度基準用の核酸プローブ · ドットを具えることで、 基板上に配置される、 未知濃度の核酸プローブ- ド ットの核酸濃度を、 2次イオン質量分析法によって決定することができ、 従 来法と比較して、 再現性、 定量性が向上する。
本発明の手法を用いることにより、 D N Aマイクロアレイ製品の信頼性を 高めることができる。 また、 D NAマイクロアレイ内にマトリックス状に配 置されている、 核酸プローブ · ドットの形成密度の分布を画像として表示す ることも可能になる。

Claims

請求 の 範囲
1. 検体中に含まれる目的の塩基配列を有する核酸分子を検出するため使用 される、 該目的核酸分子の塩基配列に対して、 実質的に相補的な塩基配列を 持つ核酸プローブを基板上に固定化した DNAマイクロアレイにおいて、 該目的塩基配列を有する核酸の増幅反応検定用に添加される、 一種以上の 内部標準用プローブ、 検出操作及びプローブ量検定用に添加される、 一種以 上の外部標準用プロ一ブ、 前記核酸プローブの形成と同じ手法により形成さ れる、 前記核酸プローブの存在量または密度検定用プロ一ブ、 からなる群か ら選ばれる一種以上のプローブを有することを特徴とする DNAマイクロアレ ィ。
2 . 検体中に含まれる目的の塩基配列を有する核酸分子を検出するため使用 される、 該目的核酸分子の塩基配列に対して、 実質的に相補的な塩基配列を 持つ核酸プロ一ブを基板上に固定化した DNAマイクロアレイにおいて、 前記検体中に含まれる前記目的の塩基配列を有する核酸分子の含有濃度を 定量するため、 一種以上の該目的塩基配列を有する核酸の増幅反応検定用に 添加される内部標準用プローブ、 一種以上の検出操作及びプローブ量検定用 に添加される外部標準用プローブからなる群から選ばれる一種以上のプロ一 ブを有することを特徴とする DNAマイクロアレイ。
3 . 基板上に固定化される該内部標準用プロ一ブ及び/もしくは該外部標準 用プローブは、 4点以上の量もしくは密度で一連の群として基板上に固定化 されていることを特徴とする請求項 2に記載の DNAマイクロアレイ。
4 . 該内部標準用プローブは、 内部標準核酸に由来する増幅反応産物の異な る鎖長に対応する、 二種以上のプローブで構成されることを特徴とする請求 項 2に記載の DNAマイクロアレイ。
5 . 該外部標準用プローブは、添加される外部標準核酸に対して、任意の核 酸塩基数の相補的な塩基配列を含む二種以上のプローブで構成されているこ とを特徴とする請求項 2に記載の DNAマイクロアレイ。
6 . 該内部標準用プローブおよび外部標準用プローブは、合成核酸を基板上 に固定化したものであることを特徵とする請求項 2に記載の DNAマイクロア レイ。
7 . 該合成核酸の鎖長は、 15塩基〜 75塩基の長さであることを特徴とする 請求項 6に記載の DNAマイクロアレイ。
8 . DNAマイクロアレイを利用して、 目的の塩基配列を有する核酸を定量的 に検出する際、 該目的の塩基配列を有する核酸の増幅反応時に、 該目的の塩 基配列を有する核酸と同時に増幅に供される内部標準核酸の増幅反応用ブラ イマ一セッ卜であって、 目的の塩基配列を有する核酸に由来する増幅産物の 鎖長と、 該プライマ一セッ卜が与える内部標準核酸に由来する増幅産物の鎖 長とが同等になるように設計されていることを特徴とするプライマーセット。
9 . DNAマイクロアレイを利用して、 目的の塩基配列を有する核酸を定量的 に検出する際、 該目的の塩基配列を有する核酸の増幅反応時に、 該目的の塩 基配列を有する核酸と同時に増幅に供される内部標準核酸の増幅反応用ブラ イマ一セットを含む検出用キットであって、 前記目的の塩基配列を有する核 酸に由来する増幅産物の鎖長が二種以上ある際、 該異なる鎖長に対応する請 求項 8に記載のプライマ一セットを二種以上包含することを特徴とする目的 塩基配列検出用キット。
1 0 . 該プライマーセット複数が、増幅産物鎖長 200bp以下用、 200〜500bp 用、 500〜2000bp用、 2000bp以上用として、 各 1種以上包含されていること を特徴とする請求項 9に記載の目的塩基配列検出用キット。
1 1 . DNAマイクロアレイを利用して、 目的の塩基配列を有する核酸を定量 的に検出する際、 検体に添加される外部標準核酸を含む検出用キットであつ て、 検出可能な標識物で標識された合成核酸である外部標準核酸を二種以上 包含することを特徴とする目的塩基配列検出用キット。
1 2 . 該標識物が、蛍光物質、放射性物質、発光物質のいずれかであること を特徴とする請求項 1 1に記載の目的塩基配列検出用キット。
1 3 . DNAマイクロアレイを利用して、 目的の塩基配列を有する核酸を定量 的に検出する際、 該目的の塩基配列を有する核酸の増幅反応時に、 該目的の 塩基配列を有する核酸と同時に増幅に供される内部標準核酸を含む検出用キ ットであって、 検出目的の塩基配列と相同性を持たない、 微生物由来核酸も しくは、 ウィルス由来核酸を内部標準核酸として二種以上包含することを特 徴とする目的塩基配列検出キット。
1 4 . 複数の核酸関連物質からなる核酸プロ一ブ'ドットが基板上にマトリ クス状に配置された D N Aマイクロアレイであって、
前記核酸プロ一プ' ドットが形成されている基板表面の一部に、 前記核酸 プローブ' ドットの形成と同じ手法により形成される、 ドット当たりの平均 訂正された用紙 (規則 ) 的な核酸密度が決定された、 存在量または密度検定用の核酸プローブ · ドッ トを具えていることを特徴とする DNAマイクロアレイ。
15. 前記濃度基準用の核酸プローブ ·ドットとして、複数段階の平均的な 核酸密度を有する、 ドット当たりの平均的な核酸密度が決定された、 複数種 の核酸プローブ · ドットを具えていることを特徴とする請求項 14に記載の DNAマイクロアレイ。
16. ドット当たりの平均的な核酸密度が決定された、核酸プローブ *ドッ トは、 別途に、 該ドット当たりの平均的な核酸密度を、 化学分析により決定 されていることを特徴とする請求項 14に記載の D N Aマイクロアレイ。
17. 前記化学分析手段として、誘導結合プラズマ質量分析法(I ndue t i ve l y Coup l e d P l a sma Ma s s S p e c t r o me t r y、 以下 I CP— MSと略す) による分析を用いて、 該ドット当た りの平均的な核酸密度が決定されていることを特徴とする請求項 16に記載 の DNAマイクロアレイ。
18. 前記核酸プローブは、一本鎖核酸で構成されていることを特徴とする 請求項 14に記載の DNAマイクロアレイ。
19. 前記 DNAマイクロアレイは、一本鎖核酸で構成される前記核酸プロ ーブと、 該核酸プロ一ブに対するハイブリダイゼーシヨンにより導入された 標的核酸の両者が、 その基板上に配置されていることを特徴とする請求項 1 4に記載の DNAマイクロアレイ。
2 0 . 複数の核酸関連物質からなる核酸プローブ ·ドットが基板上にマトリ クス状に配置された D N Aマイクロアレイの分析方法であって、
前記核酸プローブ · ドットが形成されている基板表面の一部に、 前記核酸 プローブ · ドットの形成と同じ手法により形成される、 ドット当たりの平均 5 的な核酸密度が決定された、 濃度基準用の核酸プローブ · ドットを設け、 ' 前記濃度基準用の核酸プローブ · ドットとして、 複数段階の平均的な核酸 密度を有する、 ドット当たりの平均的な核酸密度が決定された、 複数種の核 酸プローブ · ドットを具え、
前記複数段階の平均的な核酸密度を有する、 複数種の核酸プローブ · ドッ 0 トに対して、 2次イオン質量分析を行った際に検出される 2次イオンの信号 強度に基づいて作成される検量線を用いて、
基板上に配置される、 未知濃度の核酸プローブ · ドットの核酸濃度を、 2 次イオン質量分析法によって決定することを特徴とする D N Aマイクロアレ ィの分析方法。
15
2 1 . 前記 2次イオン質量分析として、飛行時間型 2次イオン質量分析法を 用いることを特徴とする請求項 2 0に記載の方法。
2 2 . 前記 2次イオン質量分析において検出される 2次イオン強度は、 1次 0 イオンのドーズ量を、 1 X 1 0 14/ c m2以下に選択される一定値とした際、 1次イオンの照射される一定の面積から放出される、 前記核酸プローブに由 来する特定の 2次イオンの積分強度 (カウント数) であることを特徴とする 請求項 2 1に記載の方法。
25 2 3 . 前記 2次イオン質量分析において検出される 2次イオン強度は、 1次 イオンのドーズ量を、 1 X 1 0 12/ c m2以下に選択される一定値とした際、 1次イオンの照射される一定の面積から放出される、 前記核酸プローブに由 来する特定の 2次イオンの積分強度 (カウント数) であることを特徴とする 請求項 2 1に記載の方法。
2 4. 前記 2次イオン質量分析において検出される 2次イオンとして、アデ ニン、 チミン、 グァニン、 シトシン、 ゥラシルの各塩基から水素原子が 1個 脱離した陰イオン、 あるいは、 P -、 P O—、 P 02—、 P〇3からなる、 核酸プ ローブに由来する 2次イオン種の群から選択される陰イオンを利用すること を特徴とする請求項 2 1 - 2 3のいずれかに記載の方法。
2 5 . 前記 2次イオン質量分析において検出される 2次イオンの強度に基 づき、
1次イオンの照射位置に対応させ、 2次イオン強度を二次元的に表示する イメージ像として、 検出結果を表示する工程を設けることを特徴とする請求 項 2 1〜 2 4のいずれかに記載の方法。
2 6 . 複数の核酸関連物質からなる核酸プローブが基板上にマトリクス状 に配置された D NAマイクロアレイの製造方法であって、
D NAマイクロアレイにおいて、 前記核酸プローブ · ドットが形成されて いる基板表面の一部に、 ドット当たりの平均的な核酸密度が決定された、 濃 度基準用の核酸プローブ · ドットを設ける際、 少なくとも、
前記基板上に核酸プローブ · ドットをマトリクス状に形成する工程、 前記核酸プローブ · ドットが形成されている基板表面の一部に、 前記核酸プローブ · ドットの形成と同じ手法により、 ドット当たりの平均的 な核酸密度が決定された、 濃度基準用の核酸プローブ · ドットを基板上に形 成する工程とを有することを特徴とする D N Aマイクロアレイの製造方法。
PCT/JP2003/007918 2002-06-24 2003-06-23 標準プローブを持つdnaマイクロアレイ及び該アレイを有するキット WO2004001412A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03733543A EP1522853A4 (en) 2002-06-24 2003-06-23 DNA MICROARRAY WITH STANDARD PROBE AND KIT CONTAINING THE MICROARRAY
US10/736,545 US20040132080A1 (en) 2002-06-24 2003-12-17 DNA micro-array having standard probe and kit including the array
US12/264,241 US20090093373A1 (en) 2002-06-24 2008-11-03 Dna micro-array having standard probe and kit including the array

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-183249 2002-06-24
JP2002183249A JP3998237B2 (ja) 2002-06-24 2002-06-24 含有量検定用標準プローブを持つdnaマイクロアレイ及び検出用キット
JP2002191390A JP4040372B2 (ja) 2002-06-28 2002-06-28 核酸チップおよび核酸チップの分析方法
JP2002-191390 2002-06-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/736,545 Continuation US20040132080A1 (en) 2002-06-24 2003-12-17 DNA micro-array having standard probe and kit including the array

Publications (1)

Publication Number Publication Date
WO2004001412A1 true WO2004001412A1 (ja) 2003-12-31

Family

ID=30002262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007918 WO2004001412A1 (ja) 2002-06-24 2003-06-23 標準プローブを持つdnaマイクロアレイ及び該アレイを有するキット

Country Status (4)

Country Link
US (2) US20040132080A1 (ja)
EP (1) EP1522853A4 (ja)
CN (1) CN1668923A (ja)
WO (1) WO2004001412A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591543A3 (en) * 2004-04-26 2005-11-30 Canon Kabushiki Kaisha PCR amplification reaction apparatus and method for PCR amplification reaction using apparatus

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003006676A2 (en) 2001-07-13 2003-01-23 Nanosphere, Inc. Method for immobilizing molecules onto surfaces
US7461730B2 (en) * 2001-09-05 2008-12-09 Inventive Travelware Handle apparatus with cantilevered handle grip for luggage case
US7833745B2 (en) * 2003-09-11 2010-11-16 E. I. Du Pont De Nemours And Company Direct detection method for products of cellular metabolism using ToF-SIMS
JP4711326B2 (ja) * 2003-12-22 2011-06-29 キヤノン株式会社 検定試料および検量線の作製方法
JP4541731B2 (ja) * 2004-03-12 2010-09-08 キヤノン株式会社 核酸検出方法
KR100666754B1 (ko) 2004-10-13 2007-01-09 한국표준과학연구원 Dna의 정량방법
JP2007010413A (ja) * 2005-06-29 2007-01-18 Canon Inc 核酸ハイブリッドの融点測定方法及びそのための装置
JP4789518B2 (ja) * 2005-06-30 2011-10-12 キヤノン株式会社 製造条件付きプローブ固定担体を用いた標的物質の検出方法ならびにそのための装置、キット及びシステム
US7642086B2 (en) * 2005-08-09 2010-01-05 Canon Kabushiki Kaisha Labeled probe bound object, method for producing the same and method for using the same
US8962302B2 (en) * 2005-11-07 2015-02-24 Canon Kabushiki Kaisha Biological tissue processing substrate for fixing proteins or protein degradation products in tissue for analysis
US20070128611A1 (en) * 2005-12-02 2007-06-07 Nelson Charles F Negative control probes
US20090011413A1 (en) * 2005-12-14 2009-01-08 Canon Kabushiki Kaisha Method for screening colon cancer cells and gene set used for examination of colon cancer
WO2007114517A1 (en) * 2006-03-31 2007-10-11 Canon Kabushiki Kaisha Probe, probe set, probe-immobilized carrier, and genetic testing method
US8009889B2 (en) * 2006-06-27 2011-08-30 Affymetrix, Inc. Feature intensity reconstruction of biological probe array
US7629124B2 (en) 2006-06-30 2009-12-08 Canon U.S. Life Sciences, Inc. Real-time PCR in micro-channels
JP4861788B2 (ja) * 2006-10-11 2012-01-25 キヤノン株式会社 生体標本の処理方法及び解析方法
US20080102452A1 (en) * 2006-10-31 2008-05-01 Roberts Douglas N Control nucleic acid constructs for use in analysis of methylation status
JP4426600B2 (ja) * 2007-04-27 2010-03-03 キヤノン株式会社 処理溶液の使用方法
JP2008275550A (ja) 2007-05-07 2008-11-13 Canon Inc 検体の前処理方法及び検体の分析方法
JP4854590B2 (ja) * 2007-05-11 2012-01-18 キヤノン株式会社 飛行時間型2次イオン質量分析装置
JP5078440B2 (ja) * 2007-05-25 2012-11-21 キヤノン株式会社 情報取得方法
US8380457B2 (en) * 2007-08-29 2013-02-19 Canon U.S. Life Sciences, Inc. Microfluidic devices with integrated resistive heater electrodes including systems and methods for controlling and measuring the temperatures of such heater electrodes
DE102007055386B4 (de) 2007-11-20 2015-07-16 Boehringer Ingelheim Vetmedica Gmbh Verfahren zur Kalibrierung eines Sensorelements
JP2010004873A (ja) * 2008-05-27 2010-01-14 Fujifilm Corp 核酸マイクロアレイを用いた解析方法
US8384021B2 (en) 2009-04-10 2013-02-26 Canon Kabushiki Kaisha Method of forming mass image
JP5698471B2 (ja) * 2009-06-30 2015-04-08 シスメックス株式会社 マイクロアレイを用いた核酸の検出方法およびマイクロアレイデータ解析用プログラム
JP5607373B2 (ja) 2010-01-04 2014-10-15 東洋鋼鈑株式会社 マイクロアレイの検出方法
EP2580354A4 (en) * 2010-06-11 2013-10-30 Pathogenica Inc NUCLEIC ACIDS FOR MULTIPLEX DETECTION OF ORGANISMS AND METHOD FOR THEIR USE AND MANUFACTURE
CN103890161A (zh) * 2011-10-31 2014-06-25 株式会社日立高新技术 核酸扩增方法、核酸基板、核酸分析方法及核酸分析装置
CN103570782A (zh) * 2012-07-23 2014-02-12 医影生物纳米技术(苏州)有限公司 纳米分子探针fmau前体及其制备方法
CN106591303A (zh) * 2017-01-23 2017-04-26 苏州贝斯派生物科技有限公司 一种脱氧核糖核酸探针集、试剂盒及其制备方法与应用
GB201701688D0 (en) 2017-02-01 2017-03-15 Illumia Inc System and method with fiducials in non-recliner layouts
SG11201906442TA (en) 2017-02-01 2019-08-27 Illumina Inc System and method with fiducials responding to multiple excitation frequencies
GB201701689D0 (en) 2017-02-01 2017-03-15 Illumia Inc System and method with fiducials of non-closed shapes
GB201701691D0 (en) 2017-02-01 2017-03-15 Illumina Inc System and method with reflective fiducials
GB201701686D0 (en) 2017-02-01 2017-03-15 Illunina Inc System & method with fiducials having offset layouts
WO2021025935A1 (en) * 2019-08-02 2021-02-11 Georgetown University Dna-fish method for measurement of telomere length
CN112980891B (zh) * 2019-12-16 2023-12-12 中国科学院分子植物科学卓越创新中心 一种基于CRISPR-Cas的大肠杆菌基因组编辑工具
CN111394475A (zh) * 2020-03-26 2020-07-10 迈杰转化医学研究(苏州)有限公司 一种核苷酸组合物、包含其的检测试剂盒及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270896A (ja) * 1999-01-28 2000-10-03 Canon Inc プローブ結合基板、プローブ結合基板の製造方法、プローブアレイ、標的物質の検出方法、サンプル中の一本鎖核酸の塩基配列を特定する方法、及びサンプル中の標的物質の定量方法
WO2001031055A2 (en) * 1999-10-28 2001-05-03 Facultes Universitaires Notre-Dame De La Paix Method and kit for the screening and/or the quantification of multiple homologous nucleic acid sequences on arrays
JP2001526381A (ja) * 1997-12-05 2001-12-18 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ マトリックス補助レーザー脱着/イオン化質量分光分析による核酸の同定方法
JP2002071688A (ja) * 2000-09-01 2002-03-12 Hitachi Software Eng Co Ltd バイオチップを用いたハイブリダイゼーション反応の実験結果表示方法及び実験誤差評価方法
JP2003194812A (ja) * 2001-12-27 2003-07-09 Mitsubishi Heavy Ind Ltd マイクロアレイ及びこれを用いた測定方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4965188A (en) * 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4683202A (en) * 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US6309822B1 (en) * 1989-06-07 2001-10-30 Affymetrix, Inc. Method for comparing copy number of nucleic acid sequences
US5474796A (en) * 1991-09-04 1995-12-12 Protogene Laboratories, Inc. Method and apparatus for conducting an array of chemical reactions on a support surface
BE1010608A3 (fr) * 1996-09-09 1998-11-03 Jose Remacle Procede de quantification d'une sequence d'acides nucleiques.
US6024925A (en) * 1997-01-23 2000-02-15 Sequenom, Inc. Systems and methods for preparing low volume analyte array elements
DK0937096T3 (da) * 1996-11-06 2004-06-14 Sequenom Inc Fremgangsmåde til massespektrometri-analyse
DE19782095T1 (de) * 1996-11-06 2000-03-23 Sequenom Inc DNA-Diagnose auf der Basis von Massenspektrometrie
JP4313861B2 (ja) * 1997-08-01 2009-08-12 キヤノン株式会社 プローブアレイの製造方法
US7122303B2 (en) * 1999-09-17 2006-10-17 Agilent Technologies, Inc. Arrays comprising background features that provide for a measure of a non-specific binding and methods for using the same
US20010026919A1 (en) * 2000-02-08 2001-10-04 Alex Chenchik Nucleic acid assays employing universal arrays
JP2002071687A (ja) * 2000-08-31 2002-03-12 Canon Inc 変異遺伝子のスクリーニング方法
EP1186673A3 (en) * 2000-09-11 2003-03-26 Agilent Technologies, Inc. (a Delaware corporation) Calibration of molecular array data
JP2004024203A (ja) * 2002-06-28 2004-01-29 Canon Inc 飛行時間型二次イオン質量分析法によるrnaの分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526381A (ja) * 1997-12-05 2001-12-18 マックス−プランク−ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ マトリックス補助レーザー脱着/イオン化質量分光分析による核酸の同定方法
JP2000270896A (ja) * 1999-01-28 2000-10-03 Canon Inc プローブ結合基板、プローブ結合基板の製造方法、プローブアレイ、標的物質の検出方法、サンプル中の一本鎖核酸の塩基配列を特定する方法、及びサンプル中の標的物質の定量方法
WO2001031055A2 (en) * 1999-10-28 2001-05-03 Facultes Universitaires Notre-Dame De La Paix Method and kit for the screening and/or the quantification of multiple homologous nucleic acid sequences on arrays
JP2002071688A (ja) * 2000-09-01 2002-03-12 Hitachi Software Eng Co Ltd バイオチップを用いたハイブリダイゼーション反応の実験結果表示方法及び実験誤差評価方法
JP2003194812A (ja) * 2001-12-27 2003-07-09 Mitsubishi Heavy Ind Ltd マイクロアレイ及びこれを用いた測定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1591543A3 (en) * 2004-04-26 2005-11-30 Canon Kabushiki Kaisha PCR amplification reaction apparatus and method for PCR amplification reaction using apparatus
US7569366B2 (en) 2004-04-26 2009-08-04 Canon Kabushiki Kaisha PCR amplification reaction apparatus and method for PCR amplification reaction using apparatus

Also Published As

Publication number Publication date
EP1522853A4 (en) 2005-10-19
CN1668923A (zh) 2005-09-14
US20090093373A1 (en) 2009-04-09
EP1522853A1 (en) 2005-04-13
US20040132080A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
WO2004001412A1 (ja) 標準プローブを持つdnaマイクロアレイ及び該アレイを有するキット
EP1138782B1 (en) Multiplex sequence variation analysis of DNA samples by mass spectrometry
Guo et al. Development of a single nucleotide polymorphism DNA microarray for the detection and genotyping of the SARS coronavirus
JP5404832B2 (ja) ハイブリッド体の検出によるサンプル核酸の検出方法に用いる前記プローブセットの設計方法
AU2005284980A1 (en) Methods for long-range sequence analysis of nucleic acids
JP3658397B2 (ja) 飛行時間型二次イオン質量分析法による素子の情報取得方法、および、情報取得装置
JP3998237B2 (ja) 含有量検定用標準プローブを持つdnaマイクロアレイ及び検出用キット
JP5229895B2 (ja) 核酸標準物質
Koch-Paiz et al. Estimation of relative mRNA content by filter hybridization to a polyuridylic probe
US20040137491A1 (en) Method of analyzing probe carrier using time-of-flight secondary ion mass spectrometry
EP1519189A1 (en) Method of analyzing probe support by using flying time secondary ion mass spectrometry
WO2004067765A2 (en) Organism fingerprinting using nicking agents
JP4040372B2 (ja) 核酸チップおよび核酸チップの分析方法
JP4380535B2 (ja) プローブ担体および該プローブ担体の分析方法
JP4532874B2 (ja) 質量分析可能な原子群を構成単位とする鎖状構造を有する分子に対して付加情報を付与して、情報記録コードとして利用する方法
JP2007300829A (ja) Dnaマイクロアレイ等に供する検体の調製方法
US20060147913A1 (en) Method of analyzing substance on substrate by mass spectrometry
US8518642B2 (en) Method of analyzing probe nucleic acid, microarray and kit for the same
JP2004024203A (ja) 飛行時間型二次イオン質量分析法によるrnaの分析方法
JP2004037120A (ja) 飛行時間型二次イオン質量分析法による有機膜の組成分析方法
JP4353504B2 (ja) 核酸の増幅方法および標識化方法、これを用いた核酸検出方法
JP3990948B2 (ja) ハロゲン標識による飛行時間型二次イオン質量分析法を用いた核酸ハイブリッド体の分析方法
JP3890265B2 (ja) 飛行時間型二次イオン質量分析法による核酸チップの分析方法
JP3990946B2 (ja) ハロゲン標識による飛行時間型二次イオン質量分析法を用いたプローブ担体の分析方法
WO2014188941A1 (ja) 核酸分析キットおよび核酸分析方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10736545

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003733543

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038168146

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003733543

Country of ref document: EP