WO2004000568A1 - Film with microstructured surface - Google Patents

Film with microstructured surface Download PDF

Info

Publication number
WO2004000568A1
WO2004000568A1 PCT/US2003/015480 US0315480W WO2004000568A1 WO 2004000568 A1 WO2004000568 A1 WO 2004000568A1 US 0315480 W US0315480 W US 0315480W WO 2004000568 A1 WO2004000568 A1 WO 2004000568A1
Authority
WO
WIPO (PCT)
Prior art keywords
microstructured
wall
height
backing
article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2003/015480
Other languages
English (en)
French (fr)
Inventor
Thomas P. Hanschen
Paul D. Graham
Mark F. Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US10/483,873 priority Critical patent/US7678443B2/en
Priority to DE60316943T priority patent/DE60316943T2/de
Priority to AU2003229303A priority patent/AU2003229303A1/en
Priority to EP03726890A priority patent/EP1515855B1/en
Priority to JP2004515688A priority patent/JP2005530636A/ja
Publication of WO2004000568A1 publication Critical patent/WO2004000568A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0067Using separating agents during or after moulding; Applying separating agents on preforms or articles, e.g. to prevent sticking to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F3/00Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
    • G09F3/08Fastening or securing by means not forming part of the material of the label itself
    • G09F3/10Fastening or securing by means not forming part of the material of the label itself by an adhesive layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24612Composite web or sheet

Definitions

  • the present invention relates to printable adhesive articles.
  • the present invention is related to printable adhesive articles.
  • the present invention is especially useful for linerless adhesive tapes and labels. Images and printed matter including indicia, bar codes, symbols and graphics are common. Images and data that warn, educate, entertain, advertise or otherwise inform, etc. are applied on a variety of interior and exterior surfaces.
  • thermal mass transfer printing also known simply as thermal transfer printing
  • dot-matrix printing laser printing
  • electrophotography including photocopying
  • inkjet printing can include printing by drop-on-demand inkjet or continuous inkjet techniques.
  • Drop on demand techniques include piezo inkjet and thermal inkjet printing which differ in how the ink drops are created.
  • Inkjet inks can be organic-solvent based, aqueous (water-based) or solid (phase-change) inkjet inks.
  • Solid inkjet inks have a solid wax or resin binder component. The ink is melted. The molten ink is then printed by inkjet.
  • the components of an inkjet system used for making graphics can be grouped into three major categories: the computer, software, and printer category, the ink category and the category of receptor medium.
  • the computer, software, and printer will control the size, number and placement of the ink drops and will transport the receptor medium through the printer.
  • the ink will contain the colorant.
  • the receptor medium provides a repository to accept and hold the ink.
  • the quality of the inkjet image is a function of the total system.
  • inkjet drop size is smaller than in the past.
  • a typical drop size for this dpi precision is less than about 10 picoliters.
  • Some printer makers are striving for even smaller drop sizes, while other printer makers are content with the larger drop sizes for large format graphics.
  • Containers, packages, cartons, and cases, (generally referred to as "boxes") for storing and shipping products typically use box sealing tape, such as an adhesive tape, to secure the flaps or covers so that the box will not accidentally open during normal shipment, handling, and storage. Box sealing tape maintains the integrity of a box throughout its entire distribution cycle.
  • Box sealing tape can be used on other parts of boxes and on other types of article.
  • a typical box sealing tape comprises a plastic film backing with a printable surface and a pressure-sensitive adhesive layer. This tape can be printed and applied to a box to seal the box. It can also be printed, cut into a label and applied onto a box or article. These tapes can be made in roll or pad form, and can have information printed or otherwise applied to, or contained within or on, the tape.
  • These boxes generally display information about the contents. This information most commonly located on the box might include lot numbers, date codes, product identification information, and bar codes.
  • the information can be placed onto the box using a number of methods. These include preprinting the box when it is manufactured, or printing this information onto the box at the point of use. Other approaches include the use of labels, typically white paper with preprinted information either applied manually, or with an online automatic label applicator.
  • each box can carry specific information about its contents and the final destination of the product, including lot numbers, serial numbers, and customer order numbers.
  • the information is typically provided on tape or labels that are customized and printed on demand, generally at the point of application onto the box.
  • One system for printing information involves thermal transfer ink printing onto tape or labels using an ink ribbon and a special heat transfer print head.
  • a computer controls the print head by providing input to the head, which heats discrete locations on the ink ribbon.
  • the ink ribbon directly contacts the label so that when a discrete area is heated, the ink melts and is transferred to the label.
  • Another approach using this system is to use labels that change color when heat is applied (direct thermal labels).
  • variable information is directly printed onto a box or label by an inkjet printer including a print head.
  • a computer can control the ink pattern sprayed onto the box or label.
  • Both thermal transfer and inkjet systems produce sharp images. With both inkjet and thermal transfer systems, the print quality depends on the surface on which the ink is applied. It appears that the best system for printing variable information is one in which the ink and the print substrate can be properly matched to produce a repeatable quality image, especially bar codes, that must be read by an electronic scanner with a high degree of reliability.
  • the printing apparatus includes a handling system for guiding a continuous web of tape to the print head away from the print head following printing for subsequent placement on the article of interest (for example, a box).
  • the web of tape is normally provided in a rolled form ("tape supply roll"), such that the printing device includes a support that rotatably maintains the tape supply roll.
  • tape supply roll a rolled form
  • the adhesive of the tape is in intimate contact with the printable surface of the next wrap of tape in the roll.
  • microstructured ink receptor media can be found in WO 99/55537, WO 00/73083, WO 00/73082, WO 01/58697 and WO 01/58698.
  • the adhesive layer tends to flow into the microstructured elements of the microstructure surface or the porous surface of the microporous substrate. Under certain conditions of time, pressure and temperature, the adhesive layer may become transferred or bonded to the surface below. Therefore, in stacks of linerless labels or in a roll of tape, the adhesive can no longer be separated from the microstructured surface directly below it. This results in either failure between the adhesive and its backing or complete failure to remove the top layer of the adhesive article.
  • the present invention is directed to an adhesive article having a receptor medium comprising a microstructured surface that can be stacked into a pad or wound into a roll of tape and maintain the removability of the top adhesive article or the leading edge of the tape.
  • the present invention is directed to an article comprising at least one major surface comprising a microstructured surface, the microstructured surface comprising microstructured elements, the microstructured elements comprising walls and at least one wall has variable height with a maximum height and a minimum height along the wall length.
  • the present invention is additionally directed to a multi-layer article comprising a first layer and a seconf layer.
  • the first layer comprises a first backing, the backing comprising a first major surface and a second major surface, wherein the first major surface comprises a microstructured surface comprising depressed microstructured elements, wherein the microstructured elements have walls separating the microstructured elements and at least one wall has variable height along the wall and a maximum height and a minimum height along the wall; and a first adhesive layer on the second major surface of the first backing.
  • the second layer comprises a second backing, the backing comprising a first major surface and a second major surface, wherein the first major surface comprises a microstructured surface comprising depressed microstructured elements, wherein the microstructured elements have walls separating the microstructured elements and at least one wall has variable height along the wall and a maximum height and a minimum height along the wall; and a second adhesive layer on the second major surface of the second backing.
  • the first adhesive layer is in contact with the first major surface of the second backing.
  • the present invention is further directed to a method of manufacturing a film comprising extruding a resin between a nip roll and a cast roll under pressure, wherein the temperature of the cast roll during the method (Tp r0C ess) is lower than the temperature required for full replication of the tool (T J T R )- Generally Tp roceSs is at least 5°C lower than TFR-
  • Figure 1 is a scanning electron microscopy image of an embodiment of the present invention.
  • Figure 2 is a transverse cross-sectional view of the embodiment illustrated in Figure 1 along line 2-2.
  • Figure 3 is a transverse cross-sectional view of the embodiment illustrated in Figure 1 along line 3-3.
  • Figure 4 is a cross-sectional view of an embodiment of the present invention including a multilayer structure.
  • Figures 5-6 are cross sectional views along the wall of additional embodiments of the present invention.
  • Microstructured element means a recognizable geometric shape that either protrudes or is depressed.
  • Microstructured surface is a surface comprising microstructured elements.
  • Figure 1 is a scanning electron microscopy of an embodiment of the present invention. The optical image illustrates microstructured elements 20 and walls 21 enclosing the microstructured elements.
  • Figure 2 illustrates an adhesive article embodying features of the invention.
  • Figure 2 shows a longitudinal cross sectional view of an embodiment as shown in Figure 1 along the line 2-2.
  • the adhesive article comprises a microstructured backing 212 and an adhesive layer 214.
  • the microstructured backing 212 comprises a first major surface 216 and a second major surface 218.
  • An adhesive layer 214 is in contact with the second major surface 218.
  • the adhesive layer 214 may be a continuous layer or a discontinuous layer (e.g. stripes or dots of adhesive.)
  • Figure 3 illustrates a longitudinal cross sectional view of an embodiment as shown in Figure 1 along the line 3-3.
  • the first major surface 316 of the microstructured backing defines microstructured elements, in this case depressed microstructured elements 320, within the first major surface 316.
  • the microstructured elements 320 have a surface 322.
  • the microstructured element surface 322 may be smooth or textured (e.g. ridges defined within the microstructured element surface 322 (not shown)).
  • the ridges may have any pattern, such as straight lines or crosscut lines.
  • the microstructured elements 20 are enclosed by walls 21.
  • the walls 21 illustrated in Figure 1 have a variable height.
  • the walls 21 have a height (i.e. height above the surface of the microstructured element 22) of from about 5 to about 200 micrometers, for example between about 5 and about 100 micrometers.
  • the difference in height between the shortest height on the wall (minimum height) and the tallest (maximum height) is between about 1 and about 50 micrometers, for example between about 1 and about 30 micrometers, and may exist at any point along the wall.
  • the difference between the minimum and the maximum height is between about 5 and about 20 micrometers.
  • Figure 3 illustrates in some embodiments the walls 21 have intersection points 323 (i.e.
  • the walls have a point 325 along the walls between any two intersection points, and the minimum height is at the point 325. In other embodiments, the minimum height is zero (0) and a portion of the wall may be level with the microstructured element surface 322.
  • the walls generally have a thickness of between about 1 to about 50 micrometers, for example between about 1 and about 30 micrometers. In certain examples, the walls have a thickness of between about 5 and about 30 micrometers.
  • the choice of geometrical configuration of the microstructured element has sufficient capacity to control placement of an individual drop of ink.
  • the geometrical configuration is chosen such that the microstructured element pitch (that is, center to center distance between microstructured elements) is between about 1 and about 1000 micrometers, for example between about 10 and about 500 micrometers. In specific embodiments, the pitch is between about 50 and about 400 micrometers.
  • the microstructured elements may have any structure.
  • the structure for the microstructured element can range from the extreme of cubic elements with parallel vertical, planar walls, to the extreme of hemispherical elements, with any possible solid geometrical configuration of walls in between the two extremes.
  • Specific examples include cube elements, cylindrical elements, conical elements with angular, planar walls, truncated pyramid elements with angular, planar walls, honeycomb elements and cube corner shaped elements.
  • Other useful microstructured elements are described in PCT publications WO 00/73082 and WO 00/73083.
  • the pattern of the topography can be regular, random, or a combination of the two.
  • Regular means that the pattern is planned and reproducible.
  • Random means one or more features of the microstructured elements are varied in a non-regular manner. Examples of features that are varied include for example, microstructured element pitch, peak-to valley distance, depth, height, wall angle, edge radius, and the like.
  • Combination patterns may for example comprise patterns that are random over an area having a minimum radius of ten microstructured element widths from any point, but these random patterns can be reproduced over larger distances within the overall pattern.
  • Regular refers to the pattern imparted to the length of web by one repeat distance of the tool having a microstructured pattern thereon.
  • the tool when the tool is a cylindrical roll, one repeat distance corresponds to one revolution of the roll.
  • the tool may be a plate and the repeat distance would be a plate and the repeat distance would correspond to one or both dimensions of the plate.
  • the volume of a microstructured element can range from about 1 to about 20,000 pL, for example from about 1 to about 10,000 pL. Certain embodiments have a volume of from about 3 to about 10,000 pL, for example from about 30 to about 10,000 pL, such as from about 300 to about 10,000 pL.
  • the volumes of the microstructured elements may decrease as printing technology leads to smaller ink drop size.
  • microstructured element volumes For applications in which desktop inkjet printers (typical drop size of 3 - 20 pL) will be used to generate the image, microstructured element volumes generally range from about 300 to about 8000 pL. For applications in which large format desktop inkjet printers (typical drop size of 10-200 pL will be used to generate the image, microstructured element volumes range from about 1,000 to about 10,000 pL.
  • Aspect ratio is the ratio of the height of a microstructured element to the width of a microstructured element.
  • Useful aspect ratios for a depressed element range from about 0.01 to about 2, for example from about 0.05 to about 1, and in specific embodiments from about 0.05 to about 0.8.
  • Useful aspect ratios for a protruding element range from about 0.01 to about 15, for example from about 0.05 to about 10, and in specific embodiments from about 0.05 to about 8.
  • the overall height of the microstructured elements depends on the shape, aspect ratio, and desired volume of the microstructured element.
  • the height of a microstructured element can range from about 5 to about 200 micrometers. In some embodiments, the height ranges from about 20 to about 100 micrometers, for example about 30 to about 90 micrometers.
  • Microstructured element pitch is in the range of from 1 to about 1000 micrometers. Certain embodiments have a microstructured element pitch of from about 10 to about 500 micrometers, for example from about 50 to about 400 micrometers.
  • the microstructured element pitch may be uniform, but it is not always necessary or desirable for the pitch to be uniform.
  • microstructured elements with, perhaps, an assortment of pitches may comprise the microstructured surface.
  • the average peak to valley distances of individual elements is from about 1 to about 200 micrometers.
  • Figure 4 shows an embodiment of the present invention in a multilayer structure 400.
  • Figure 4 illustrates two layers of a multilayer structure with first adhesive article 410a and second adhesive article 410b.
  • the first adhesive article 410a comprises a microstructured backing 412a and an adhesive layer 414a.
  • the microstructured backing 412a comprises a first major surface 416a and a second major surface 418a.
  • the second adhesive article 410b comprises a microstructured backing 412b and an adhesive layer 414b.
  • the microstructured backing 412b comprises a first major surface 416b and a second major surface 418b.
  • the first adhesive layer 414a is in direct contact with the first major surface 416b of the second microstructured backing 412b. Therefore, in order to remove the first adhesive article 410a from the second adhesive article 410b, the first adhesive layer 414a releases from the first major surface of 416b of the second microstructured backing 412b.
  • Figures 5 and 6 illustrate different embodiments of a cross section of an article of the invention.
  • the microstructured backing typically comprises a polymer.
  • the backing can be a solid film.
  • the backing can be transparent, translucent, or opaque, depending on desired usage.
  • the backing can be clear or tinted, depending on desired usage.
  • the backing can be optically transmissive, optically reflective, or optically retroreflective, depending on desired usage.
  • Nonlimiting examples of polymeric films useful as backing in the present invention include thermoplastics such as polyolefins (e.g. polypropylene, polyethylene), poly(vinyl chloride), copolymers of olefins (e.g.
  • copolymers of propylene copolymers of propylene
  • copolymers of ethylene with vinyl acetate or vinyl alcohol fluorinated thermoplastics such as copolymers and terpolymers of hexafluoropropylene and surface modified versions thereof, poly(ethylene terephthalate) and copolymers thereof, polyurethanes, polyimides, acrylics, and filled versions of the above using fillers such as silicates, silica, aluminates, feldspar, talc, calcium carbonate, titanium dioxide, and the like.
  • fillers such as silicates, silica, aluminates, feldspar, talc, calcium carbonate, titanium dioxide, and the like.
  • coextruded films and laminated films made from the materials listed above. More specifically, the microstructured backing is formed from polyvinyl chloride, polyethylene, polypropylene, and copolymers thereof.
  • Properties of the backing used in the present invention can be augmented with optional coatings that improve control of the ink receptivity of the microstructured surface of the backing. Any number of coatings are known to those skilled in the art. It is possible to employ any of these coatings in combination with the microstructured surface of the present invention.
  • Surfactants can be cationic, anionic, nonionic, or zwitterionic. Many types of surfactant are widely available to one skilled in the art.
  • any surfactant or combination of surfactants or polymer(s) that will render a polymer surface hydrophilic can be employed.
  • surfactants can be coated or otherwise applied onto the microstructured element surface of the microstructured elements in the microstructured surface.
  • Various types of surfactants have been used in the coating systems. These may include but are not limited to fluorochemical, silicon and hydrocarbon-based ones wherein the said surfactants may be cationic, anionic or nonionic.
  • the nonionic surfactant may be used either as it is or in combination with another surfactant, such as an anionic surfactant in an organic solvent or in a mixture of water and organic solvent, the said organic solvents being selected from the group of alcohol, amide, ketone and the like.
  • non-ionic surfactants can be used, including but not limited to: fluorocarbons, block copolymers of ethylene and propylene oxide to an ethylene glycol base, polyoxyethylene sorbitan fatty acid esters, octylphenoxy polyethoxy ethanol, tetramethyl decynediol, silicon surfactants and the like known to those skilled in the art.
  • a release coating (low adhesion backsize) may additionally be applied to the microstructured surface.
  • the release coating may be a continuous layer or a discontinuous layer (e.g. stripes and dots.)
  • the release coating may be applied to the entire microstructured surface, including the microstructured elements, or only to certain areas of the microstructured surface. For example, in embodiments comprising depressed microstructured elements, the release coating may be applied only to the surface and not within the microstructured elements.
  • a release material can be blended with the material used to make the microstructured backing and incorporated into the backing.
  • an inkjet receptor coating may be used.
  • the inkjet receptor coating may comprise one or more layers.
  • Useful ink receptive coatings are hydrophilic and aqueous ink sorptive.
  • Such coatings include, but are not limited to, polyvinyl pyrrolidone, homopolymers and copolymers and substituted derivatives thereof, polyethyleneimine and derivatives, vinyl acetate copolymers, for example, copolymers of vinyl pyrrolidone and vinyl acetate, copolymers of vinyl acetate and acrylic acid, and the like, and hydrolyzed derivatives thereof; polyvinyl alcohol, acrylic acid homopolymers and copolymers; co-polyesters; acrylamide homopolymers and copolymers; cellulosic polymers; styrene copolymers with allyl alcohol, acrylic acid, and or maleic acid or esters thereof, alkylene oxide polymers and copolymers; gelatins and modified gelatins; polysaccharides, and the like.
  • a suitable mordant may be coated onto the microstructured surface in order to demobilize or "fix" the dyes.
  • Mordants that may be used generally consist of, but are not limited to, those found in patents such as US 4,500,631; US 5,342,688; US 5,354,813; US 5,589,269; and US 5,712,027.
  • An inkjet receptor coating is a solution containing polyvinyl polymers and copolymers containing vinyl pyridine as described in copending U.S. provisional application number 60/357863 filed February 19, 2002.
  • Various blends of these materials with other coating materials are also within the scope of the invention.
  • directly affecting the substrate by means generally known in the art may be employed in the context of this invention.
  • flame treated surfaces, corona treated surfaces(air and nitrogen), or surface dehydrochlorinated poly(vinyl chloride) could be made into a microstructured backing as a printable substrate.
  • the microstructured backing may be formed into an adhesive article by the addition of an adhesive layer on the second major surface of the microstructured backing.
  • the adhesive may be a pressure sensitive adhesive. Any suitable pressure sensitive adhesive composition can be used for this invention.
  • the pressure-sensitive adhesives can be any conventional pressure-sensitive adhesive that adheres to both the microstructured backing and to the surface receiving the adhesive article.
  • the pressure sensitive adhesive component can be any material that has pressure sensitive adhesive properties including the following: (1) tack, (2) adherence to a substrate with no more than finger pressure, and (3) sufficient ability to hold onto an adherend.
  • the pressure sensitive adhesive component can be a single pressure sensitive adhesive or the pressure sensitive adhesive can be a combination of two or more pressure sensitive adhesives.
  • Pressure sensitive adhesives useful in the present invention include, for example, those based on natural rubbers, synthetic rubbers, styrene block copolymers, polyvinyl ethers, poly (meth)acrylates (including both acrylates and methacrylates), polyolefins, and silicones.
  • the pressure sensitive adhesive may be inherently tacky.
  • tackifiers may be added to a base material to form the pressure sensitive adhesive.
  • Useful tackifiers include, for example, rosin ester resins, aromatic hydrocarbon resins, aliphatic hydrocarbon resins, and te ⁇ ene resins.
  • Other materials can be added for special pu ⁇ oses, including, for example, oils, plasticizers, antioxidants, ultraviolet ("UV") stabilizers, hydrogenated butyl rubber, pigments, and curing agents.
  • the pressure sensitive adhesive is based on styrene- isoprene-styrene block copolymer.
  • the adhesive is a low-flow adhesive.
  • a low-flow adhesive is taught in US Application Serial No. 60/391,497, filed June 25, 2002.
  • One specific embodiment of the invention has a fiber reinforced pressure sensitive adhesive as described in co-pending US Application Serial No. 09/764478, filed January 17, 2001 and the continuation in part US Application Serial No. 10/180,784, filed June 25, 2002.
  • any suitable pressure sensitive adhesive composition can be used as a matrix of adhesive for the fiber reinforced adhesive.
  • the pressure sensitive adhesive may be a low-flow adhesive, but some pressure sensitive adhesives that are not low-flow adhesives may still be adequate as a matrix for the fiber reinforced pressure sensitive adhesive.
  • the pressure sensitive adhesive is then reinforced with a fibrous reinforcing material.
  • Various reinforcing materials may be used to practice the present invention.
  • the reinforcing material is a polymer.
  • the reinforcing material is elastomeric. Examples of the reinforcing material include an olefin polymer, such as ultra low density polyethylene.
  • Additional layers of adhesive may be included on the adhesive layer opposite the microstructured backing.
  • a second adhesive layer may be coated on the low flow adhesive layer.
  • the second adhesive layer may or may not be a low flow adhesive.
  • an a second adhesive layer that is not a low flow adhesive may be beneficial in a thin layer to maximize the tack of the adhesive article.
  • the tape comprises a microstructured film and an adhesive layer.
  • the microstructured film has a first major surface comprising a microstructured surface and a second major surface.
  • the microstructured surface can be made in a number of ways, such as using casting, coating, or compressing techniques.
  • microstructuring the first major surface of the backing can be achieved by at least any of (1) casting a molten thermoplastic using a tool having a microstructured pattern, (2) coating of a fluid onto a tool having a microstructured pattern, solidifying the fluid, and removing the resulting film, or (3) passing a thermoplastic film through a nip roll to compress against a tool having a microstructured pattern.
  • the tool can be formed using any of a number of techniques known to those skilled in the art, selected depending in part upon the tool material and features of the desired topography. Illustrative techniques include etching
  • microstructured surface includes thermoplastic extrusion, curable fluid coating methods, and embossing thermoplastic layers which can also be cured.
  • the compressing method uses a hot press familiar to those skilled in the art of compression molding.
  • the pressure exerted in the press typically ranges from about 48 kPa to about 2400 kPa.
  • the temperature of the press at the mold surface typically ranges from about 50°C to about 200°C, for example from about 110°C to about 170°C.
  • the duration time in the press typically ranges from about one second to about 5 minutes.
  • the pressure, temperature and duration time used depend primarily on the particular material being micro-embossed, and the type of microstructured element being generated as is known to those skilled in the art.
  • the process conditions should be sufficient to cause the material to flow and generally take the shape of the surface of the tool being used. Any generally available commercial hot press may be used.
  • the extrusion method involves passing an extruded material or preformed substrate through a nip created by a chilled roll and a casting roll engraved with an inverse pattern of the desired microstructure. Or, an input film is fed into an extrusion coater or extruder. A polymeric layer is hot-melt coated (extruded) onto the input film. The polymeric layer is then formed into a microstructured surface.
  • the temperature profile in the extruder can range from 100°C to 250°C depending on the melt characteristics of the resin.
  • the temperature at the die ranges from 150°C to 250°C depending on the characteristics of the resin.
  • the pressure exerted in the nip can range from about 140 to about 1380 kPa and preferably from about 350 to about 550 kPa.
  • the temperature of the nip roll can range from about 5°C to about 150°C, for example from about 10°C to about 100°C, and the temperature of the cast roll can range from about 25°C to about 100°C, for example about 40°C to about 60°C.
  • T roceSs the temperature of the cast roll during the process
  • T FR is the minimum temperature the cast roll should be set at to ensure complete replication of the pattern in the tool to the resin film.
  • T FR is dependent on many factors, including the resin used, the line speed and the pressure in the nip.
  • Tp rocess is generally at least 5°C lower than T FR .
  • the speed of movement through the nip typically ranges from about 0.25 to about 500 meters/min, but generally will move as fast as conditions allow.
  • Calendering may be accomplished in a continuous process using a nip, as is known in the film handling arts.
  • a web having a suitable surface, and having sufficient thickness to receive the desired microstructure pattern is passed through a nip formed by two cylindrical rolls, one of which has an inverse image to the desired embossing engraved into its surface.
  • the surface layer contacts the engraved roll at the nip.
  • the web is generally heated to temperatures of from 100°C up to 540°C with, for example, radiant heat sources (for example, heat lamps, infrared heaters, etc.) and/or by use of heated rolls at the nip.
  • a combination of heat and pressure at the nip (typically, 100 to 500 lb/inch (1.8 kg/centimeter to 9 kg/centimeter)) is generally used in the practice of the present invention.
  • the second major surface of the microstructured backing is adhesive coated with an adhesive composition as described above. This may be accomplished using any coating technique known in the art.
  • the resulting adhesive article may include a release liner on the adhesive layer (not shown), though a release liner is not necessary.
  • Release liners are known and commercially available from a number of sources. Examples of release liners include silicone coated kraft paper, silicone coated polyethylene coated paper, silicone coated or non-coated polymeric materials such as polyethylene or polypropylene.
  • the aforementioned base materials may also be coated with polymeric release agents such as silicone urea, fluorinated polymers, urethanes, and long chain alkyl acrylates.
  • the adhesive article described is desirable to print.
  • the microstructured elements contain any ink receptive coating and any ink applied to the microstructured surface, resulting in a controlled image.
  • the adhesive article may be printed by any method known in the art. Specifically, the present adhesive article may be placed into an ink-jet printer and printed at high speeds (i.e. speeds in excess of 5 cm/second) while maintaining a clean image.
  • high speeds i.e. speeds in excess of 5 cm/second
  • Examples Test Methods Microstructured Film Images and Wall Height Differential Images of the microstructure film providing three dimensional relief were obtained using Scanning Electron Microscopy at a magnification of from about 40 to about 250 X.
  • the height differential of the walls forming the recesses was obtained by scanning white light interferometry.
  • Examples 1 (Comparative) and 2 a Wyko interferometer was employed and for Examples 3 (Comparative) and 4-10 a Zygo interferometer was used.
  • This and samples of 3M Scotch® Box Sealing Tape No. 311 (a general pu ⁇ ose box sealing tape having a 0.00095 inch (24 micrometer) thick pressure sensitive acrylic adhesive on a 0.0011 inch (28 micrometer) thick biaxially oriented polypropylene backing, available from 3M Company, St. Paul, MN) were conditioned for 24 hours at 77°F (25°C) and 50% relative humidity.
  • 3M Scotch® Superior Performance Box Sealing Tape No. 375 a superior performance packaging tape having a 0.0011 inch (28 micrometer) thick pressure sensitive hot melt adhesive on a 0.002 inch (51 micrometer) thick biaxially oriented polypropylene backing, available from 3M Company, St. Paul, MN) in place of the 311 tape.
  • Adhesion Strength (Initial)" and aged as follows. The assemblies were aged at 150°F (66°C) for 24 hours then equilibrated for 24 hours at 77°F (25°C) and 50% relative humidity before testing for peel adhesion strength as previously described.
  • a microstructured film was prepared which exhibited an essentially uniform height for both the walls and intersection points of the walls running pe ⁇ endicular to each other. More specifically, an 83: 17 (w:w) mixture of a clear polypropylene resin (FINA 3376, a polypropylene homopolymer resin containing calcium stearate having a melt flow rate (per ASTM D1238, 230C / 2.16 kg load) of between about 2.5 and about 3.1 g/10 minutes, a clear polypropylene resin (FINA 3376, a polypropylene homopolymer resin containing calcium stearate having a melt flow rate (per ASTM D1238, 230C / 2.16 kg load) of between about 2.5 and about 3.1 g/10 minutes, a
  • the extruder had a diameter of 3.18 centimeters (cm) (1.25 inches), a length/diameter ratio of 30: 1, and five heated zones which were set as follows: Zone 1, 124°C (255°F); Zone 2, 177°C (350°F); Zone 3, 235°C (455°F); Zone 4, 243°C (470°F); and Zone 5, 249°C (480°F).
  • the die temperature was set at 249°C (480°F).
  • the upper nip roll was a rubber coated roll and the lower nip roll was a metal tool roll having a microstructured pattern engraved on its surface.
  • the nip rolls both had a diameter of approximately 30.5 cm (12 inches) and were hollow to permit heating or chilling of the rolls by passing a fluid through their interiors.
  • the setpoint of the upper roll was 38°C (100°F) and the setpoint of the lower roll was 110°C (230°F).
  • the web speed was between approximately 3.0 and 3.7 meters/minute
  • the metal tool roll was engraved with three sets of grooves. There were two sets of parallel grooves, which were pe ⁇ endicular to each other and are referred to hereinafter as the major grooves. These two pe ⁇ endicular sets of helical grooves ran at an angle of approximately 45° to the roll axis, and had a depth of approximately 75 micrometers
  • the third set of grooves hereinafter referred to as the minor grooves, ran at an angle of approximately 90° to the roll axis (i.e., parallel to the web direction) and had a depth of between about 8 and about 10 micrometers, a width of approximately 8 micrometers at the bottom and approximately 11 micrometers at the top, and were spaced approximately 35 ⁇ m apart.
  • the microstructured surface of the tool roll embossed the extruded polypropylene resin to provide a polypropylene film having a first major surface with a microstructured pattern thereon, and a second major surface.
  • the embossed film thus obtained, having a total thickness of about 0.0056 inches (142 micrometers), cooled prior to reaching a windup roll.
  • the embossed pattern on the film comprised wells or recesses separated by walls. The recesses were rhomboidal in shape with a nominal depth of 75 ⁇ m, and the walls lay at 45° to the machine direction (web direction) of the microstructured film.
  • the bottom of the recesses contained ridges which ran at an angle of 45° to the direction of the walls of the recesses (that is, they ran parallel to the web direction) and which had a nominal height of between 8 and 10 ⁇ m, a width at the top of about 8 micrometers and at the bottom of about 11 micrometers, and which were spaced approximately 35 ⁇ m apart. Inspection with a Wyco Interferrometer microscope (Model RST, obtained from Veeco Metrology Group, Arlington, AZ) revealed essentially uniform wall heights along their lengths including the intersection points where the walls that ran pe ⁇ endicular to each other crossed. The ridge heights also appeared to be uniform.
  • Example 2 Example 2
  • Example 1 was repeated with the following modification.
  • the metal tool roll had a temperature setpoint of 99°C (210°F).
  • the microstructured film thus obtained, having a total thickness of 0.0050inches (127 micrometers), inspected by interferrometer. It was observed that the walls possessed a saddle-like shape with respect to their height. There was a minimum in the wall height at a position between the intersection points and a maximum in the region of the intersection points, with the height differential being approximately 14 ⁇ m. The ridges in the bottom of the recesses exhibited a uniform height.
  • Microstructured films were prepared which exhibited varying degrees of height differential between the intersection points of the walls running pe ⁇ endicular to each other and a point along the wall length between the intersection points. These were evaluated for their release characteristics from adhesive tapes both initially and after aging at elevated temperature and for their wall height differential. More specifically, clear polypropylene resin (Homopolymer 4018 Injection Molding Resin having a melt flow rate of 13.5 g/10 minutes (230°C/2.16 kg), available from BP Amoco Polymers, Naperville, IL) was extruded into between two heated nip rollers located in close proximity to the exit die using a Davis Standard single screw extruder (available from Davis Standard Killion,
  • the extruder had a diameter of 6.35 cm (2.50 inches), a length/diameter ratio of 38/1, and six heated zones which were set as shown in Table 1 below. Also shown in Table 1 are the actual feedblock and die temperatures.
  • the upper nip roll was a rubber coated roll and the lower nip roll was a metal tool roll having a microstructured pattern engraved on its surface. This pattern was comprised of major grooves and minor grooves like that described in Example 1 with the following modification.
  • the set of minor grooves had a depth of between about 4 and about 5 micrometers, a width of approximately 8 ⁇ m at the bottom and approximately 11 ⁇ m at the top, and were spaced approximately 35 ⁇ m apart.
  • the nip rolls both had a diameter of approximately 45.7 cm (18 inches) and were hollow to permit heating or chilling of the rolls by passing a fluid through their interiors.
  • the temperatures of the upper rubber roll and lower metal, as well as the web speeds, for each example are given in Table 1 below.
  • Example 3 The total film thicknesses for Examples 1-10 are shown in Table 3 below.
  • the resulting microstructured films were evaluated for their wall height differential and their release characteristics from an adhesive tape both initially and after aging at elevated temperature as described in the test methods above. The results are shown in Table 4 below.
  • Microstructured films were prepared which exhibited varying degrees of height differential between the intersection points of the walls running pe ⁇ endicular to each other and a point along the wall length between the intersection points. These were evaluated for their release characteristics from adhesive tapes both initially and after aging at elevated temperature and for their wall height differential. More specifically, an 83 : 17 (w:w) mixture of a clear polypropylene resin (Homopolymer 4018 Injection Molding Resin, available from BP Amoco Polymers, Naperville, IL) and a white pigmented polypropylene resin like that used in Example 1 was extruded into a microstructured film using the procedure described for Examples 3 (Comparative) and 4-7 above. The zone, feedblock, die, rubber roll, and metal roll temperatures, as well as web speeds, are shown in Table 2 below.
  • a clear polypropylene resin Homopolymer 4018 Injection Molding Resin, available from BP Amoco Polymers, Naperville, IL
  • microstructured films thus obtained, having a total thickness of about 0.0055 inches (140 micrometers), were evaluated their wall height differential and their release characteristics from an adhesive tape both initially and after aging at elevated temperature as described in the test methods above. The results are shown in Table 4 below.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Ink Jet (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
PCT/US2003/015480 2002-06-25 2003-05-16 Film with microstructured surface Ceased WO2004000568A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/483,873 US7678443B2 (en) 2003-05-16 2003-05-16 Complex microstructure film
DE60316943T DE60316943T2 (de) 2002-06-25 2003-05-16 Folie mit mikrostrukturierter oberfläche
AU2003229303A AU2003229303A1 (en) 2002-06-25 2003-05-16 Film with microstructured surface
EP03726890A EP1515855B1 (en) 2002-06-25 2003-05-16 Film with microstructured surface
JP2004515688A JP2005530636A (ja) 2002-06-25 2003-05-16 微細構造表面を有するフィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/183,121 US20030235677A1 (en) 2002-06-25 2002-06-25 Complex microstructure film
US10/183,121 2002-06-25

Publications (1)

Publication Number Publication Date
WO2004000568A1 true WO2004000568A1 (en) 2003-12-31

Family

ID=29735161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/015480 Ceased WO2004000568A1 (en) 2002-06-25 2003-05-16 Film with microstructured surface

Country Status (9)

Country Link
US (1) US20030235677A1 (enExample)
EP (3) EP1607231B1 (enExample)
JP (1) JP2005530636A (enExample)
CN (1) CN100408346C (enExample)
AT (3) ATE404379T1 (enExample)
AU (1) AU2003229303A1 (enExample)
DE (3) DE60322970D1 (enExample)
ES (3) ES2311911T3 (enExample)
WO (1) WO2004000568A1 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582329A4 (en) * 2002-11-27 2006-12-20 Japan Science & Tech Agency MICROVOLUTION STRUCTURE AND ITS MANUFACTURING METHOD
WO2009076270A3 (en) * 2007-12-12 2010-08-12 3M Innovative Properties Company Microstructured antimicrobial film
US9238309B2 (en) 2009-02-17 2016-01-19 The Board Of Trustees Of The University Of Illinois Methods for fabricating microstructures
US10618266B2 (en) 2007-12-12 2020-04-14 3M Innovative Properties Company Hydrophilic gel materials and methods of making

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001931A1 (en) * 2002-06-25 2004-01-01 3M Innovative Properties Company Linerless printable adhesive tape
US7678443B2 (en) * 2003-05-16 2010-03-16 3M Innovative Properties Company Complex microstructure film
US7487566B2 (en) 2003-09-04 2009-02-10 The Evercare Company Adhesive roller
US20050050660A1 (en) * 2003-09-04 2005-03-10 The Evercare Company Adhesive roller
US7658980B2 (en) * 2004-08-06 2010-02-09 3M Innovative Properties Company Tamper-indicating printable sheet for securing documents of value and methods of making the same
US7648744B2 (en) * 2004-08-06 2010-01-19 3M Innovative Properties Company Tamper-indicating printable sheet for securing documents of value and methods of making the same
KR20130008643A (ko) 2004-12-28 2013-01-22 쓰리엠 이노베이티브 프로퍼티즈 컴파니 불소- 또는 규소-함유 프리즘을 갖는 프리즘 역반사 물품
US7195360B2 (en) 2004-12-28 2007-03-27 3M Innovative Properties Company Prismatic retroreflective article and method
DE102005060731A1 (de) * 2005-12-16 2007-06-21 Röhm Gmbh Prismenfilme für optische Anwendungen
US20080233297A1 (en) * 2007-03-23 2008-09-25 Xerox Corporation Methods of forming a photoreceptor device having a self-assembled patterned binder layer
EP2347007A2 (en) 2008-10-17 2011-07-27 3M Innovative Properties Company Biological sterilization indicator, system, and methods of using same
BRPI0918357A2 (pt) * 2008-12-19 2016-07-26 3M Innovative Properties Co sistema e método para processamento de amostras
EP2373974A1 (en) 2008-12-19 2011-10-12 3M Innovative Properties Company System and method for concentrating samples
WO2011011189A1 (en) 2009-07-20 2011-01-27 3M Innovative Properties Company Biological sterilization indicator and method of using same
JP6345935B2 (ja) 2010-10-28 2018-06-20 スリーエム イノベイティブ プロパティズ カンパニー 細菌付着を低減するための加工表面
ES2662536T3 (es) 2010-11-01 2018-04-06 3M Innovative Properties Company Sistema y método indicador de esterilización biológico
BR112013010254B1 (pt) 2010-11-01 2021-05-18 3M Innovative Properties Company indicador biológico de esterilização e método de uso do mesmo
WO2012061212A1 (en) 2010-11-01 2012-05-10 3M Innovative Properties Company Method of detecting a biological activity
CN103180454B (zh) 2010-11-01 2016-10-19 3M创新有限公司 生物灭菌指示器系统和方法
JP6178239B2 (ja) 2010-11-01 2017-08-09 スリーエム イノベイティブ プロパティズ カンパニー 生物活性の検出方法
US8530021B2 (en) * 2011-03-08 2013-09-10 3M Innovative Properties Company Microstructured tape
WO2013003373A1 (en) 2011-06-27 2013-01-03 3M Innovative Properties Company Microstructured surfaces for reducing bacterial adhesion
WO2013003309A1 (en) 2011-06-30 2013-01-03 3M Innovative Properties Company Systems and methods for detecting an analyte of interest in a sample using filters and microstructured surfaces
JP2014518394A (ja) 2011-06-30 2014-07-28 スリーエム イノベイティブ プロパティズ カンパニー 微細構造化表面を使用して、サンプル内の目的の検体を検出するためのシステム及び方法
WO2013130293A1 (en) * 2012-02-28 2013-09-06 3M Innovative Properties Company Microstructured tape comprising coextensive, intersecting paint-retention and hand-tear patterns
JP6269169B2 (ja) * 2013-03-07 2018-01-31 株式会社リコー インクジェット記録用粘着ラベル
EP2999794B1 (en) 2013-05-21 2018-03-28 3M Innovative Properties Company Nanostructured spore carrier
US10639629B2 (en) 2013-12-20 2020-05-05 3M Innovative Properties Company Systems and methods for sample concentration and detection using a separation liquid
CN105828947B (zh) 2013-12-20 2017-09-29 3M创新有限公司 用于样品浓缩和检测的系统和方法
JP6832274B6 (ja) 2014-10-03 2021-03-24 スリーエム イノベイティブ プロパティズ カンパニー 入射光の散乱を管理する方法、及びそれにより形成される物品
CN104609029A (zh) * 2015-01-16 2015-05-13 江南大学 一种表面微图案设计的抗菌表面及抗菌膜
JP6570329B2 (ja) * 2015-06-12 2019-09-04 スリーエム イノベイティブ プロパティズ カンパニー 粘着層と剥離層とを備えた物品
US10663637B2 (en) * 2016-05-27 2020-05-26 Illinois Tool Works Inc. Optically variable film, apparatus and method for making the same
US20200088615A1 (en) 2016-12-09 2020-03-19 3M Innovative Properties Company Systems and methods for rapid detection of an analyte of interest
WO2018235775A1 (ja) * 2017-06-21 2018-12-27 京セラ株式会社 被覆工具、切削工具及び切削加工物の製造方法
WO2020115661A1 (en) 2018-12-06 2020-06-11 3M Innovative Properties Company FLUORINATED 4' ALKYLUMBELLIFERYL α-D-GLUCOPYRANOSIDES, BIOLOGICAL STERILIZATION INDICATORS INCLUDING THE SAME AND METHODS OF USING THE SAME
US20220220264A1 (en) * 2019-05-31 2022-07-14 3M Innovative Properties Company Heat-treated, non-oriented (co)polymeric films and methods for making the same using an oriented carrier film
US11766822B2 (en) 2019-08-20 2023-09-26 3M Innovative Properties Company Microstructured surface with increased microorganism removal when cleaned, articles and methods
JP2022545424A (ja) 2019-08-20 2022-10-27 スリーエム イノベイティブ プロパティズ カンパニー 洗浄時の微生物除去が向上した微細構造化表面、物品、及び方法
US12434427B2 (en) 2019-08-20 2025-10-07 Solventum Intellectual Properties Company Microstructured surface with increased microorganism removal when cleaned, articles and methods
CN114269682A (zh) 2019-08-20 2022-04-01 3M创新有限公司 具有清洁时去除微生物能力增强的微结构化表面的医疗制品及其方法
CN110450398B (zh) * 2019-08-29 2024-03-01 荆门市国弘模具有限公司 一种台布印花生产线
EP4034544B1 (en) 2019-09-25 2023-11-15 3M Innovative Properties Company 8-fluoro-4-alkylumbelliferyl alpha-d-glucopyranoside, biological sterilization indicator including the same and its use in a method of determining efficacy of a sterilization process
US20230158557A1 (en) 2020-05-20 2023-05-25 3M Innovative Properties Company Medical Articles with Microstructured Surface
EP4259415A1 (en) 2020-12-11 2023-10-18 3M Innovative Properties Company Method of thermoforming film with structured surface and articles
EP4284570A1 (en) 2021-01-28 2023-12-06 3M Innovative Properties Company Microstructured surface with increased microorganism removal when cleaned, articles and methods
US20240099815A1 (en) 2021-02-23 2024-03-28 3M Innovative Properties Company Medical articles with microstructured surface having increased microorganism removal when cleaned and methods thereof
US20240343550A1 (en) 2021-09-14 2024-10-17 3M Innovative Properties Company Articles including a microstructured curved surface and methods of making same
WO2023105372A1 (en) 2021-12-07 2023-06-15 3M Innovative Properties Company Microstructured surface and articles with lower visibilty of scratches and methods
CN114639326B (zh) * 2022-05-20 2022-09-13 苏州苏大维格科技集团股份有限公司 一种呈现立体浮雕图像的精密微结构及其制备方法与应用
WO2024141815A1 (en) 2022-12-28 2024-07-04 3M Innovative Properties Company Multilayered articles including a uv barrier layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055537A1 (en) * 1998-04-29 1999-11-04 3M Innovative Properties Company Receptor sheet for inkjet printing having an embossed surface
WO2000073083A1 (en) * 1999-06-01 2000-12-07 3M Innovative Properties Company Optically transmissive microembossed receptor media
US20010031342A1 (en) * 2000-02-08 2001-10-18 Engle Lori P. Media for cold image transfer

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058458B2 (ja) 1982-08-12 1985-12-20 コニカ株式会社 放射線画像形成方法
US5300263A (en) * 1992-10-28 1994-04-05 Minnesota Mining And Manufacturing Company Method of making a microlens array and mold
US5354813A (en) 1993-03-12 1994-10-11 Minnesota Mining And Manufacturing Company Polymeric mordants for dyes and the like
US5342688A (en) 1993-03-12 1994-08-30 Minnesota Mining And Manufacturing Company Ink-receptive sheet
US5450235A (en) * 1993-10-20 1995-09-12 Minnesota Mining And Manufacturing Company Flexible cube-corner retroreflective sheeting
JP3592715B2 (ja) * 1993-10-29 2004-11-24 ミネソタ マイニング アンド マニュファクチャリング カンパニー 微細構造化面を有する感圧接着剤
JP3973709B2 (ja) * 1995-09-22 2007-09-12 王子製紙株式会社 型付きインクジェット記録用紙
US5897930A (en) * 1996-12-31 1999-04-27 Minnesota Mining And Manufacturing Company Multiple embossed webs
US6129964A (en) * 1997-11-06 2000-10-10 3M Innovative Properties Company Nonwoven pressure sensitive adhesive tape
US6203885B1 (en) * 1998-06-18 2001-03-20 3M Innovative Properties Company Cling films having a microreplicated topography and methods of making and using same
JP3500307B2 (ja) * 1998-06-29 2004-02-23 ソニーケミカル株式会社 両面粘着テープ
CN1167553C (zh) 1999-06-01 2004-09-22 3M创新有限公司 喷墨打印介质及其制备方法
CA2398147A1 (en) * 2000-02-08 2001-08-16 3M Innovative Properties Company Ink fixing materials and methods of fixing ink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055537A1 (en) * 1998-04-29 1999-11-04 3M Innovative Properties Company Receptor sheet for inkjet printing having an embossed surface
US6386699B1 (en) * 1998-04-29 2002-05-14 3M Innovative Properties Company Embossed receptor media
WO2000073083A1 (en) * 1999-06-01 2000-12-07 3M Innovative Properties Company Optically transmissive microembossed receptor media
US20010031342A1 (en) * 2000-02-08 2001-10-18 Engle Lori P. Media for cold image transfer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582329A4 (en) * 2002-11-27 2006-12-20 Japan Science & Tech Agency MICROVOLUTION STRUCTURE AND ITS MANUFACTURING METHOD
WO2009076270A3 (en) * 2007-12-12 2010-08-12 3M Innovative Properties Company Microstructured antimicrobial film
US8318282B2 (en) 2007-12-12 2012-11-27 3M Innovative Properties Company Microstructured antimicrobial film
US10618266B2 (en) 2007-12-12 2020-04-14 3M Innovative Properties Company Hydrophilic gel materials and methods of making
US9238309B2 (en) 2009-02-17 2016-01-19 The Board Of Trustees Of The University Of Illinois Methods for fabricating microstructures

Also Published As

Publication number Publication date
CN100408346C (zh) 2008-08-06
DE60316943T2 (de) 2008-07-17
DE60316196T2 (de) 2008-07-31
DE60316943D1 (de) 2007-11-29
AU2003229303A1 (en) 2004-01-06
ATE375869T1 (de) 2007-11-15
EP1609612A1 (en) 2005-12-28
DE60316196D1 (de) 2007-10-18
ATE372216T1 (de) 2007-09-15
EP1609612B1 (en) 2007-09-05
DE60322970D1 (de) 2008-09-25
EP1607231A1 (en) 2005-12-21
US20030235677A1 (en) 2003-12-25
EP1515855B1 (en) 2007-10-17
ATE404379T1 (de) 2008-08-15
ES2292966T3 (es) 2008-03-16
ES2290833T3 (es) 2008-02-16
ES2311911T3 (es) 2009-02-16
JP2005530636A (ja) 2005-10-13
EP1515855A1 (en) 2005-03-23
CN1662387A (zh) 2005-08-31
EP1607231B1 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
EP1607231B1 (en) Film with microstructured surface
US7678443B2 (en) Complex microstructure film
US20030235678A1 (en) Complex microstructure film
US20040001931A1 (en) Linerless printable adhesive tape
EP2473357B1 (en) Laser marking process and articles
US6521325B1 (en) Optically transmissive microembossed receptor media
EP1685206B1 (en) Structured paper release liner, adhesive-backed article assembly and method of making same
KR101974666B1 (ko) 레이저 마킹 방법 및 용품
MXPA04001936A (es) Construccion de hoja de tarjeta.
EP2692809A1 (en) Pressure-sensitive adhesive label and label issuing device
JP2013045036A (ja) 粘着ラベル及びラベル発行装置
US20040229018A1 (en) Complex microstructure film
KR20050016630A (ko) 복합 미세조직 필름
CN120265722A (zh) 对粘合剂层进行图案化的方法
JPH09218647A (ja) 物流ラベル
WO2024261643A2 (en) Systems and methods for depositing and identifying patterned coatings
JPH11228923A (ja) 擬似接着シートおよびその製造方法
JPH11184379A (ja) 擬似接着シートの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10483873

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003726890

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004515688

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038150026

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003726890

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003726890

Country of ref document: EP