WO2018235775A1 - 被覆工具、切削工具及び切削加工物の製造方法 - Google Patents

被覆工具、切削工具及び切削加工物の製造方法 Download PDF

Info

Publication number
WO2018235775A1
WO2018235775A1 PCT/JP2018/023114 JP2018023114W WO2018235775A1 WO 2018235775 A1 WO2018235775 A1 WO 2018235775A1 JP 2018023114 W JP2018023114 W JP 2018023114W WO 2018235775 A1 WO2018235775 A1 WO 2018235775A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
convex portion
coated tool
tool according
tool
Prior art date
Application number
PCT/JP2018/023114
Other languages
English (en)
French (fr)
Inventor
芳和 児玉
忠 勝間
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to DE112018003209.4T priority Critical patent/DE112018003209T5/de
Priority to US16/624,915 priority patent/US11839923B2/en
Priority to JP2019525607A priority patent/JP6977034B2/ja
Priority to CN201880041766.0A priority patent/CN110769957B/zh
Publication of WO2018235775A1 publication Critical patent/WO2018235775A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • B23C5/20Milling-cutters characterised by physical features other than shape with removable cutter bits or teeth or cutting inserts
    • B23C5/202Plate-like cutting inserts with special form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/27Composites, e.g. fibre reinforced composites

Definitions

  • This aspect relates to a coated tool used in cutting.
  • Patent Document 1 As a coated tool used for cutting such as turning and turning, for example, a coated tool described in JP-A-2009-166216 (Patent Document 1) is known.
  • the coated tool described in Patent Document 1 comprises a layer (multilayer film) containing a compound such as titanium (Ti) and a layer containing a compound of titanium, which are located on the surface of a substrate made of cemented carbide or the like.
  • a coating layer including (coupling film) and a layer ( ⁇ -type aluminum oxide film) containing ⁇ -type aluminum oxide ( ⁇ -Al 2 O 3 ) is formed.
  • the surface of the bonding film has a dendritic shape including dendrites and branch-like protrusions. Since the binding film has a dendritic shape, it is described that the adhesion between the binding film and the ⁇ -type aluminum oxide film is enhanced by the anchor effect.
  • both dendrites and branch-like protrusions protrude from the bonding film toward the ⁇ -type aluminum oxide film.
  • both dendrite-induced load and branch-induced load caused by the anchor effect are applied to the ⁇ -type aluminum oxide film. Therefore, the durability of the coating layer may be reduced.
  • a coated tool comprises a substrate having a first surface and a coated layer located on the first surface.
  • the covering layer has a first layer containing aluminum oxide located on the first surface, and a second layer containing a titanium compound located on the first layer and in contact therewith. There is. Further, in a cross section orthogonal to the first surface, the first layer has a first convex portion protruding toward the second layer and a first concave portion positioned in the first convex portion, and The second layer has a second concave portion engaged with the first convex portion and a second convex portion engaged with the first concave portion.
  • FIG. 2 is a cross-sectional view of the coated tool shown in FIG. It is an enlarged view of the coating layer vicinity in the coating tool shown in FIG. It is an enlarged view in area
  • the coated tool 1 according to the embodiment will be described in detail with reference to the drawings.
  • the respective drawings referred to in the following show only main members necessary for describing the following embodiment in a simplified manner.
  • the coated tool 1 may comprise any component not shown in the figures to which it refers.
  • the dimensions of the members in the respective drawings do not faithfully represent the dimensions of the actual constituent members, the dimensional ratio of the respective members, and the like.
  • the coated tool 1 includes a base 3 and a cover layer 5 as shown in FIGS. 1 and 2.
  • the base 3 in the example shown in FIG. 2 includes the first surface 7 (upper surface in FIG. 2), the second surface 9 (side surface in FIG. 2) adjacent to the first surface 7, the first surface 7 and the second surface 9 And a cutting edge 11 located on at least a part of the ridge line where the two intersect.
  • the base 3 in the example shown in FIG. 1 has a square plate shape, and the first surface 7 is a square. Therefore, the number of second surfaces 9 is four.
  • the coated tool 1 of the example at least a part of the first surface 7 is a rake surface area, and at least a part of the second surface 9 is a flank surface area.
  • the shape of the base 3 is not limited to the square plate shape.
  • the first surface 7 may be triangular, pentagonal, hexagonal or circular.
  • the base 3 is not limited to a plate shape, and may be, for example, a pillar shape.
  • the covering layer 5 is located on at least the first surface 7 of the substrate 3.
  • the covering layer 5 may be located only on the first surface 7 or may be located on another surface of the base 3 other than the first surface 7.
  • the covering layer 5 is located on the second surface 9 in addition to the first surface 7.
  • the covering layer 5 is provided to improve the characteristics such as the abrasion resistance and the chipping resistance of the covering tool 1 in cutting.
  • the covering layer 5 in the example shown in FIG. 3 has a first layer 13 and a second layer 15.
  • the first layer 13 is located on the first surface 7 and contains aluminum oxide (Al 2 O 3 ).
  • the second layer 15 is positioned on and in contact with the first layer 13 and contains a titanium compound.
  • the first layer 13 may contain aluminum oxide as a main component.
  • the second layer 15 may contain a titanium compound as a main component.
  • said "main component” means that it is a component with the largest value of mass% compared with another component.
  • the first layer 13 may contain a component other than aluminum oxide
  • the second layer 15 may contain a component other than a titanium compound.
  • the bonding property of the first layer 13 and the second layer 15 is high.
  • the bonding property of the first layer 13 and the second layer 15 is high.
  • Examples of aluminum oxide contained in the first layer 13 include ⁇ -alumina ( ⁇ -Al 2 O 3 ), ⁇ -alumina ( ⁇ -Al 2 O 3 ), and ⁇ -alumina ( ⁇ -Al 2 O 3). Can be mentioned. Among these, when the first layer 13 contains the largest amount of ⁇ -alumina, the heat resistance of the coated tool 1 is high.
  • the first layer 13 may be configured to contain only any one of the above-described compounds, or may be configured to include a plurality of the above-described compounds.
  • Whether the aluminum oxide contained in the first layer 13 is any of the above-described compounds can be evaluated by, for example, X-ray diffraction (XRD) analysis and comparison with a JCPDS card.
  • XRD X-ray diffraction
  • the above-mentioned ⁇ -alumina, ⁇ -alumina and ⁇ -alumina may be contained in the first layer 13 in any state, for example, extending from the side of the substrate 3 toward the second layer 15
  • the first layer 13 may be provided in the state of the plurality of columnar crystals 13 a.
  • Examples of the titanium compound contained in the second layer 15 include carbides, nitrides, oxides, carbonitrides, carbooxides and oxycarbonitrides of titanium.
  • the second layer 15 may be configured to contain only any one of the above-described compounds, or may be configured to include a plurality of the above-described compounds.
  • the boundary between the first layer 13 and the second layer 15 can be identified, for example, by observing a scanning electron microscope (SEM) photograph or a transmission electron microscope (TEM) photograph. It is.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the interface on the side where the first layer 13 joins with the second layer 15 (upper interface in FIG. 4)
  • the first convex portion 17 protruding toward the second layer 15 and the first concave portion 19 positioned on the first convex portion 17 are provided.
  • the second layer 15 engages with the first concave portion 21 and the second concave portion 21 engaged with the first convex portion 17 at the interface (lower interface in FIG. 4) on the side where the second layer 15 is joined to the first layer 13.
  • the second convex portion 23 to be fitted to be fitted.
  • the first convex portion 17 protrudes toward the second layer 15, and the second convex portion 23 protrudes toward the first layer 13. Therefore, due to the anchor effect, the bonding property to the second layer 15 by the first convex portion 17 is high, and the bonding property to the first layer 13 by the second convex portion 23 is high.
  • the coated tool 1 provided with the above-described coated layer 5 has high bondability and high durability due to the anchor effect.
  • the size of the first convex portion 17 and the second convex portion 23 is not limited to a specific numerical value.
  • the maximum height of the interface of the first surface 7 located on the second surface 9 side is Rz in a cross section orthogonal to the first surface 7
  • the height of the first convex portion 17 is Rz / 10 or more
  • the height of the second convex portion 23 may be set to less than Rz / 10.
  • the length of a first virtual straight line connecting a pair of base ends of the convex portion in the cross-sectional view is taken as the width W of the convex portion.
  • the length of the second virtual straight line which is orthogonal to the first virtual straight line and which passes through the apexes of the first virtual straight line and the convex portion is taken as the height H of the convex portion.
  • the first convex portion 17 is It is larger than 2 convex part 23. Specifically, the width W1 of the first convex portion 17 is larger than the width W2 of the second convex portion 23, and the height H1 of the first convex portion 17 is larger than the height H2 of the second convex portion 23. . Thereby, the durability of the coated tool 1 is high.
  • the load due to the anchor effect is more greatly applied to the second concave portion 21 than the first concave portion 19.
  • the second layer 15 is positioned on and in contact with the first layer 13. Therefore, even if a crack is caused in the second recess 21 in the direction away from the first layer 13 due to the load due to the anchor effect, this load can be released on the surface of the covering layer 5.
  • the load caused by the anchor effect applied to the first recess 19 is relatively small, it is difficult for the first recess 19 to crack in the direction away from the second layer 15, in other words, in the direction toward the inside of the coated tool 1 . As described above, since the crack is difficult to progress deeply, the durability of the coated tool 1 is high.
  • the covering layer 5 is not limited to the structure having only the first layer 13 and the second layer 15, and may have layers other than the first layer 13 and the second layer 15.
  • the covering layer 5 may have a third layer 25 located between the base 3 and the first layer 13 in addition to the first layer 13 and the second layer 15. .
  • the third layer 25 in the example shown in FIG. 3 contains a titanium compound.
  • a titanium compound contained in the 3rd layer 25 a carbide, a nitride, an oxide, a carbonitride, a carbon oxide, and an oxycarbonitride of titanium are mentioned like the 2nd layer 15, for example.
  • the third layer 25 may have a single layer configuration, or may have a configuration in which a plurality of layers are stacked.
  • the third layer 25 is located on the side of the base 3, the layer 25 b containing titanium nitride (TiN) and the layer containing titanium carbonitride (TiCN) located on the side of the first layer 13. 25a may be located in order.
  • the bonding property of the base 3 and the covering layer 5 is high.
  • the bonding property of the third layer 25 and the first layer 13 is high.
  • Elemental analysis of the components contained in each layer of the first layer 13, the second layer 15, and the third layer 25 can be performed by, for example, SEM-EDX using an energy dispersive X-ray spectrometer (EDX) attached to a scanning electron microscope. It can be evaluated by a method or analysis using an electron beam microanalyzer (EPMA).
  • EDX energy dispersive X-ray spectrometer
  • EPMA electron beam microanalyzer
  • the number of the first convex portions 17 and the second convex portions 23 in the first layer 13 is not particularly limited, and may be one or more. It may be In the above-described cross section, when the first layer 13 has a plurality of first convex portions 17, the bonding property by the anchor effect is high.
  • the bonding property of the first layer 13 and the second layer 15 is further enhanced.
  • the durability of the first layer 13 and the second layer 15 is further enhanced.
  • the anchor effect by one first convex portion 17 is larger than the anchor effect by one second convex portion 23.
  • the anchor effect by the second convex portion 23 with respect to the first convex portion 17 per one is high. Therefore, the bondability of the first layer 13 and the second layer 15 is further enhanced, and the durability of the first layer 13 and the second layer 15 is further enhanced.
  • the direction in which the first convex portion 17 and the second convex portion 23 protrude in the cross section orthogonal to the first surface 7 is not limited to a specific direction.
  • the load due to the anchor effect in the first convex portion 17 And the load by the anchor effect in the 2nd convex part 23 is easy to be distributed. Therefore, the durability of the covering layer 5 is high.
  • the direction in which the first convex portion 17 protrudes With respect to the direction in which the first convex portion 17 protrudes, the direction in which the line connecting the middle point of the straight line connecting the two base ends 17 b and the tip end 17 a is the protruding direction. Similarly, with respect to the direction in which the second convex portion 23 protrudes, the direction in which the line connecting the middle point of the straight line connecting the two base ends 23 b and the tip end 23 a is the protruding direction.
  • the 1st layer 13 may be equipped with said several columnar crystal 13a. Further, in the cross section orthogonal to the first surface 7, as shown in FIG. 5, the base end 17b of the first convex portion 17 may be located at the boundary 13b of the columnar crystals 13a adjacent to each other. A relatively large load is likely to be applied to the proximal end 17b of the first convex portion 17, but if the proximal end 17b of at least one first convex portion 17 is located at the above location, this first convex portion The crack is less likely to progress from the base end 17b of 17 toward the inside of the columnar crystal 13a. Therefore, the durability of the first layer 13 is high.
  • the tip end 23a of at least one second convex portion 23 may be located at the boundary 13b of the columnar crystals 13a adjacent to each other.
  • a relatively large load is likely to be applied to the bottom of the first recess 19 engaged with the tip 23a of the second protrusion 23.
  • the tip 23a of the second protrusion 23 is located at the above location, The crack is less likely to progress from the bottom of the first recess 19 toward the inside of the columnar crystal 13a. Therefore, the durability of the first layer 13 is high.
  • the extending direction of the second convex portion 23 may be inclined with respect to the extending direction (vertical direction in FIG. 5) of the columnar crystal 13a.
  • the recessed direction of the first concave portion 19 engaged with the second convex portion 23 is inclined with respect to the extending direction of the columnar crystal 13 a.
  • the direction in which the load applied from the second convex portion 23 to the first concave portion 19 is inclined with respect to the direction in which the columnar crystals 13a extend, so cracks occur at the boundaries 13b of the columnar crystals 13a adjacent to each other. It is hard to occur.
  • Examples of the material of the base 3 include inorganic materials such as cemented carbide, cermet, and ceramics.
  • the material of the base 3 is not limited to these.
  • composition of the cemented carbide examples include WC (tungsten carbide) -Co (cobalt), WC-TiC (titanium carbide) -Co and WC-TiC-TaC (tantalum carbide) -Co.
  • WC, TiC and TaC are hard particles
  • Co is a binder phase.
  • cermet is a sintered composite material in which a ceramic component is compounded with a metal.
  • examples of the cermet include compounds containing TiCN, TiC or TiN as a main component.
  • the base 3 may have a through hole 27 passing through the first surface 7 and a surface (lower surface in FIG. 1) located on the opposite side of the first surface 7.
  • the through hole 27 can be used to insert a fixing member for fixing the covering tool 1 to the holder.
  • a fixing member a screw and a clamp member are mentioned, for example.
  • the size of the substrate 3 is not particularly limited.
  • the length of one side of the first surface 7 may be set to about 3 to 20 mm.
  • the height from the first surface 7 to the surface located on the opposite side of the first surface 7 may be set to about 5 to 20 mm.
  • metal powder, carbon powder and the like are appropriately added and mixed to an inorganic powder selected from carbides, nitrides, carbonitrides, oxides, etc. which can form a hard alloy to be the substrate 3 by firing, and mixed powder Make
  • a molded body is produced by molding the mixed powder into a predetermined tool shape using a known molding method. Examples of the molding method include press molding, cast molding, extrusion molding and cold isostatic press molding.
  • the base 3 is produced by baking the above-mentioned molded body in vacuum or in a non-oxidative atmosphere. The surface of the base 3 may be subjected to polishing and honing as required.
  • the covering layer 5 is formed on the surface of the substrate 3 by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • the first layer 13 can be formed by the following method. Hydrogen (H 2 ) gas, 5% by volume to 15% by volume of aluminum trichloride (AlCl 3 ) gas, 0.5% by volume to 2.5% by volume of hydrogen chloride (HCl) gas, and 0.5% by volume A first mixed gas is produced by mixing% to 5.0% by volume of carbon dioxide (CO 2 ) gas and 1% by volume or less of hydrogen sulfide (H 2 S) gas. The first mixed gas is introduced into the chamber under the conditions of a film forming temperature of 950 ° C. to 1100 ° C. and a gas pressure of 5 kPa to 20 kPa. Thereby, the first layer 13 in the covering layer 5 can be formed.
  • Hydrogen (H 2 ) gas Hydrogen (H 2 ) gas
  • AlCl 3 aluminum trichloride
  • HCl hydrogen chloride
  • a first mixed gas is produced by mixing% to 5.0% by volume of carbon dioxide (CO 2 ) gas and 1% by volume or less of hydrogen
  • the second layer 15 can be formed by the following method.
  • a second mixed gas is produced by mixing 0.1 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas and 10 to 60% by volume of nitrogen (N 2 ) gas with hydrogen gas.
  • the second mixed gas is introduced into the chamber under the conditions of a film forming temperature of 960 to 1100 ° C. and a gas pressure of 10 to 85 kPa. Thereby, the second layer 15 in the covering layer 5 can be formed.
  • the substrate 3 covered with the first layer 13 is removed from the chamber and the first layer 13 is surface processed.
  • the first layer 13 having the first convex portion 17 and the first concave portion 19 can be formed.
  • the above-mentioned surface processing is not limited to a specific processing, for example, blast processing, laser processing, etching processing, etc. are mentioned.
  • the first convex portion 17 is formed, and the first convex portion 17 is formed on the surface of the first layer 13. Blasting may be performed by spraying particles having a particle diameter smaller than the height of the convex portion 17 to form the first concave portion 19.
  • the third layer 25 can be formed by the following method.
  • hydrogen gas is mixed with 0.5 to 10% by volume of titanium tetrachloride gas and 10 to 60% by volume of nitrogen gas to prepare a third mixed gas.
  • the third mixed gas is introduced into the chamber under the conditions of a film forming temperature of 800 to 940 ° C. and a gas pressure of 8 to 50 kPa.
  • the titanium nitride-containing layer 25 b of the third layer 25 can be formed.
  • hydrogen gas is mixed with 0.5 to 10% by volume of titanium tetrachloride gas, 5 to 60% by volume of nitrogen gas, and 0.1 to 3% by volume of acetonitrile (CH 3 CN) gas.
  • a fourth mixed gas is prepared.
  • the fourth mixed gas is introduced into the chamber under the conditions of a film forming temperature of 780 to 880 ° C. and a gas pressure of 5 to 25 kPa. Thereby, the layer 25 a containing titanium carbonitride in the third layer 25 can be formed.
  • the portion of the surface of the coated layer 5 on which the cutting edge 11 is located is polished.
  • welding of the material to be cut to the cutting blade 11 is easily suppressed, so that the coated tool 1 having excellent fracture resistance is obtained.
  • said manufacturing method is an example of the method of manufacturing the coated tool 1 of embodiment. Therefore, it goes without saying that the coated tool 1 is not limited to one manufactured by the above-described manufacturing method.
  • the cutting tool 101 in one example shown in FIGS. 6 and 7 is a rod-like body extending from the first end (upper end in FIG. 6) to the second end (lower end in FIG. 6). It has the holder 105 which has it, and the above-mentioned covering tool 1 located in the pocket 103.
  • the pocket 103 is a portion to which the coated tool 1 is attached, and has a seating surface parallel to the lower surface of the holder 105 and a constraining side surface inclined to the seating surface. Further, the pocket 103 is open at the first end side of the holder 105.
  • the coated tool 1 is located in the pocket 103. At this time, the surface opposite to the first surface of the coated tool 1 may be in direct contact with the pocket 103, or a sheet may be sandwiched between the coated tool 1 and the pocket 103.
  • the coated tool 1 is mounted such that the portion used as the cutting edge in the ridge line protrudes outward from the holder 105.
  • the coated tool 1 is attached to the holder 105 by means of a screw 107. That is, the covering tool 1 is inserted by inserting the screw 107 into the through hole of the covering tool 1 and inserting the tip of the screw 107 into a screw hole (not shown) formed in the pocket 103 and screwing the screw parts together. Is attached to the holder 105.
  • the holder 105 steel, cast iron or the like can be used. In particular, when steel is used among these members, the toughness of the holder 105 is high.
  • a cutting tool used for so-called turning is illustrated.
  • Examples of turning include inner diameter machining, outer diameter machining and grooving.
  • the cutting tool is not limited to one used for turning.
  • the coated tool 1 of the above embodiment may be used for a cutting tool used for milling.
  • the machined product is manufactured by cutting the work material 201.
  • the method of manufacturing a machined product according to the embodiment includes the following steps. That is, (1) a step of rotating the work material 201; (2) bringing the cutting material 101 represented by the above-described embodiment into contact with the rotating workpiece 201; (3) releasing the cutting tool 101 from the work material 201; Is equipped.
  • the work material 201 is rotated about the axis O2, and the cutting tool 101 is relatively brought close to the work material 201.
  • the cutting edge of the cutting tool 101 is brought into contact with the material to be cut 201 to cut the material to be cut 201.
  • the cutting tool 101 is relatively moved away from the work material 201.
  • the cutting tool 101 is moved in the Y1 direction in a state in which the axis O2 is fixed and the work material 201 is rotated around the axis O2, thereby bringing the work material 201 closer. Further, in the example shown in FIG. 9, the work material 201 is cut by bringing the cutting edge of the insert 1 into contact with the work material 201 being rotated. Further, in the example shown in FIG. 10, the cutting tool 101 is moved in the Y2 direction in a state in which the work material 201 is rotated to move it away.
  • the cutting tool 101 is brought into contact with the work material 201 or the cutting tool 101 is separated from the work material 201 by moving the cutting tool 101 in each process.
  • the cutting tool 101 is not limited to such a form.
  • the work material 201 may be brought close to the cutting tool 101.
  • the work material 201 may be moved away from the cutting tool 101.
  • the process of keeping the work material 201 rotated and keeping the cutting blade of the insert 1 in contact with different places of the work material 201 may be repeated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

一態様の被覆工具は、第1面を有する基体と、第1面の上に位置する被覆層とを備えている。被覆層は、第1面の上に位置する、酸化アルミニウムを含有する第1層と、第1層の上に接して位置する、チタン化合物を含有する第2層とを有している。また、第1面に直交する断面において、第1層が、第2層に向かって突出する第1凸部と、第1凸部に位置する第1凹部とを有するとともに、第2層が、第1凸部と係合する第2凹部と、第1凹部に係合する第2凸部とを有している。

Description

被覆工具、切削工具及び切削加工物の製造方法
 本態様は、切削加工において用いられる被覆工具に関する。
 旋削加工及び転削加工のような切削加工に用いられる被覆工具としては、例えば特開2009-166216号公報(特許文献1)に記載の被覆工具が知られている。特許文献1に記載の被覆工具は、超硬合金などで構成された基体の表面に位置して、チタン(Ti)などの化合物を含有する層(多層被膜)と、チタンの化合物を含有する層(結合膜)と、α型酸化アルミニウム(α-Al)を含有する層(α型酸化アルミニウム膜)とを備えた被覆層が形成された構成となっている。
 また、特許文献1に記載の被覆工具においては、結合膜の表面が、樹状突起及び枝状突起からなる樹枝形状を有している。結合膜が樹枝形状を有していることから、アンカー効果によって結合膜とα型酸化アルミニウム膜との密着性が高められることが記載されている。
 しかしながら、特許文献1に記載の被覆工具においては、樹状突起及び枝状突起のいずれも結合膜からα型酸化アルミニウム膜に向かって突出した構成である。このような構成を被覆層が有している場合には、アンカー効果に起因する、樹状突起による負荷及び枝状突起による負荷の両方がα型酸化アルミニウム膜に対して加わる。そのため、被覆層の耐久性が低下するおそれがある。
 一態様に基づく被覆工具は、第1面を有する基体と、前記第1面の上に位置する被覆層とを備えている。前記被覆層は、前記第1面の上に位置する、酸化アルミニウムを含有する第1層と、該第1層の上に接して位置する、チタン化合物を含有する第2層とを有している。また、前記第1面に直交する断面において、前記第1層が、前記第2層に向かって突出する第1凸部と、該第1凸部に位置する第1凹部とを有するとともに、前記第2層が、前記第1凸部と係合する第2凹部と、前記第1凹部に係合する第2凸部とを有している。
実施形態の被覆工具を示す斜視図である。 図1に示す被覆工具におけるA-A断面の断面図である。 図2に示す被覆工具における被覆層付近の拡大図である。 図3に示す領域B1における拡大図である。 図4に示す領域B2における拡大図である。 実施形態の切削工具を示す平面図である。 図6に示す領域B3における拡大図である。 実施形態の切削加工物の製造方法の一工程を示す概略図である。 実施形態の切削加工物の製造方法の一工程を示す概略図である。 実施形態の切削加工物の製造方法の一工程を示す概略図である。
 以下、実施形態の被覆工具1について、図面を用いて詳細に説明する。但し、以下で参照する各図は、説明の便宜上、下記の実施形態を説明する上で必要な主要部材のみを簡略化して示している。したがって、被覆工具1は、参照する各図に示されていない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法及び各部材の寸法比率等を忠実に表したものではない。
 <被覆工具>
 実施形態の被覆工具1は、図1及び図2に示すように、基体3及び被覆層5を備えている。図2に示す一例における基体3は、第1面7(図2における上面)と、第1面7と隣り合う第2面9(図2における側面)と、第1面7及び第2面9が交わる稜線の少なくとも一部に位置する切刃11とを有している。
 図1に示す一例における基体3は四角板形状であり、第1面7が四角形である。そのため、第2面9の数は4つとなっている。一例の被覆工具1においては、第1面7の少なくとも一部がすくい面領域であり、第2面9の少なくとも一部が逃げ面領域である。なお、基体3の形状は、四角板形状には限定されない。例えば第1面7が、三角形、五角形、六角形又は円形であってもよい。また、基体3は、板形状に限定されず、例えば柱形状であってもよい。
 被覆層5は、基体3の少なくとも第1面7の上に位置している。被覆層5は、第1面7のみの上に位置していてもよく、また、基体3における第1面7以外の他の面の上に位置していてもよい。一例の被覆工具1においては、第1面7に加えて第2面9の上にも被覆層5が位置している。被覆層5は、切削加工における被覆工具1の耐摩耗性及び耐チッピング性などの特性を向上させるために備えられている。
 図3に示す一例における被覆層5は、第1層13及び第2層15を有している。第1層13は、第1面7の上に位置しており、酸化アルミニウム(Al)を含有している。また、第2層15は、第1層13の上に接して位置しており、チタン化合物を含有している。
 第1層13は、酸化アルミニウムを主成分として含有していてもよい。また、第2層15は、チタン化合物を主成分として含有していてもよい。なお、上記の「主成分」とは、他の成分と比較して質量%の値が最も大きい成分であることを意味している。
 第1層13は酸化アルミニウム以外の成分を含有していてもよく、また、第2層15はチタン化合物以外の成分を含有していてもよい。例えば、第1層13がチタン化合物を含有する場合には、第1層13及び第2層15の接合性が高い。また、第2層15が酸化アルミニウムを含有する場合にも、第1層13及び第2層15の接合性が高い。
 第1層13に含有されている酸化アルミニウムとしては、例えば、α-アルミナ(α-Al)、γ-アルミナ(γ-Al)及びκ-アルミナ(κ-Al)が挙げられる。これらのうち第1層13がα-アルミナを最も多く含有している場合には、被覆工具1の耐熱性が高い。第1層13は、上記の化合物のいずれか1つのみを含有する構成であってもよく、また、上記の化合物のうち複数を含有する構成であってもよい。
 第1層13に含有されている酸化アルミニウムが上記の化合物のいずれであるかは、例えば、X線回折(XRD:X-Ray Diffraction)分析を行い、JCPDSカードとの照合によって評価できる。
 また、上記のα-アルミナ、γ-アルミナ及びκ-アルミナはどのような状態で第1層13に含有されていてもよく、例えば、基体3の側から第2層15に向かってそれぞれ延びた複数の柱状結晶13aの状態で第1層13に備えられていてもよい。
 第2層15に含有されているチタン化合物としては、例えば、チタンの炭化物、窒化物、酸化物、炭窒化物、炭酸化物及び炭窒酸化物が挙げられる。第2層15は、上記の化合物のいずれか1つのみを含有する構成であってもよく、また、上記の化合物のうち複数を含有する構成であってもよい。
 第1層13及び第2層15の境界は、例えば、走査型電子顕微鏡(SEM:Scanning Electron Microscope)写真又は透過電子顕微鏡(TEM:Transmission Electron Microscope)写真を観察することにより、特定することが可能である。
 被覆層5を第1面7に直交する断面において観察した場合に、図4に示す一例においては、第1層13が、第2層15と接合する側の界面(図4における上側の界面)に、第2層15に向かって突出する第1凸部17と、この第1凸部17に位置する第1凹部19とを有している。また、第2層15が、第1層13と接合する側の界面(図4における下側の界面)に、第1凸部17と係合する第2凹部21と、第1凹部19に係合する第2凸部23とを有している。
 図4及び図5に示す一例における被覆層5では、第1凸部17が第2層15に向かって突出するとともに、第2凸部23が第1層13に向かって突出している。そのため、アンカー効果によって、第1凸部17による第2層15への接合性が高く、且つ、第2凸部23による第1層13への接合性が高い。
 さらに、第1層13が第1凸部17を有するとともに第2層15が第2凸部23を有していることから、アンカー効果に起因する負荷が第1層13及び第2層15の一方のみに偏りにくい。そのため、上記の被覆層5を備えた被覆工具1は、アンカー効果による高い接合性と高い耐久性とを備える。
 第1凸部17及び第2凸部23の大きさは特定の数値に限定されない。例えば、第1面7に直交する断面において、第2面9の側に位置する第1面7の界面の最大高さをRzとしたとき、第1凸部17の高さがRz/10以上、第2凸部23の高さがRz/10未満に設定されてもよい。
 以下の説明において、図5に示すように、断面視した場合での凸部の一対の基端を結ぶ第1仮想直線の長さを凸部の幅Wとする。また、上記の第1仮想直線に対して直交し、第1仮想直線及び凸部の頂点を通る第2仮想直線の長さを凸部の高さHとする。
 第2凸部23が第1凹部19に係合しており、第1凹部19が第1凸部17に位置していることから、一例の被覆工具1においては、第1凸部17は第2凸部23よりも大きい。具体的には、第1凸部17の幅W1が第2凸部23の幅W2よりも大きく、かつ、第1凸部17の高さH1が第2凸部23の高さH2よりも大きい。これにより、被覆工具1の耐久性が高い。
 第1凸部17が第2凸部23よりも大きいことから、第1凹部19よりも第2凹部21に対してアンカー効果による負荷が大きく加わる。このとき、第2層15は第1層13の上に接して位置している。そのため仮に、アンカー効果による負荷に起因して第2凹部21において第1層13から離れる方向にクラックが生じたとしても、被覆層5の表面において、この負荷を逃がすことができる。
 一方、第1凹部19に対して加わるアンカー効果に起因する負荷が比較的小さいため、第1凹部19において第2層15から離れる方向、言い換えれば被覆工具1の内部に向かう方向にクラックが生じにくい。このように、クラックが深く進展しにくくなっているため、被覆工具1の耐久性が高い。
 被覆層5は、第1層13及び第2層15のみを有する構成に限定されるものではなく、第1層13及び第2層15以外の層を有していてもよい。例えば、図3に示すように、被覆層5が、第1層13及び第2層15に加えて、基体3及び第1層13の間に位置する第3層25を有していてもよい。
 図3に示す一例における第3層25は、チタン化合物を含有している。第3層25に含有されているチタン化合物としては、第2層15と同様に、例えば、チタンの炭化物、窒化物、酸化物、炭窒化物、炭酸化物及び炭窒酸化物が挙げられる。
 また、第3層25は、単層の構成であってもよく、また、複数の層が積層された構成であってもよい。例えば、第3層25が、基体3の側に位置して、窒化チタン(TiN)を含有する層25bと、第1層13の側に位置して、炭窒化チタン(TiCN)を含有する層25aとが順に位置する構成であってもよい。
 窒化チタンを含有する層25bを有している場合には、基体3及び被覆層5の接合性が高い。また、炭窒化チタンを含有する層25aを有している場合には、第3層25及び第1層13の接合性が高い。
 第1層13、第2層15及び第3層25の各層に含有される成分の元素分析は、例えば走査型電子顕微鏡に付属するエネルギー分散型X線分光器(EDX)を用いたSEM-EDX法、或いは、電子線マイクロアナライザー(EPMA)を用いた分析によって評価することができる。
 第1面7に直交する断面において、第1層13における第1凸部17及び第2凸部23の数は特に限定されるものではなく、1つずつであってもよく、また、それぞれ複数であってもよい。上記の断面において、第1層13が複数の第1凸部17を有している場合には、アンカー効果による接合性が高い。
 また、第1面7に直交する断面において、1つの第1凸部17に複数の第1凹部19が位置している場合には、第1層13及び第2層15の接合性がさらに高く、且つ、第1層13及び第2層15の耐久性がさらに高い。
 第1凸部17が第2凸部23よりも大きいことから、1つあたりの第2凸部23によるアンカー効果よりも1つあたりの第1凸部17によるアンカー効果が大きい。このとき、1つの第1凸部17に第1凹部19が複数位置している場合には、1つあたりの第1凸部17に対する第2凸部23によるアンカー効果が高い。そのため、第1層13及び第2層15の接合性がさらに高く、且つ、第1層13及び第2層15の耐久性がさらに高い。
 第1面7に直交する断面における、第1凸部17及び第2凸部23が突出する方向は、特定の方向には限定されない。図4に示す一例のように、第2凸部23が突出する方向が、第1凸部17が突出する方向に対して傾斜している場合には、第1凸部17におけるアンカー効果による負荷、及び第2凸部23におけるアンカー効果による負荷が分散され易い。そのため、被覆層5の耐久性が高い。
 第1凸部17の突出する方向とは、2つの基端17bを結ぶ直線の中点と、先端17aとを結ぶ線の延びる方向を突出方向とする。また、同様に、第2凸部23の突出する方向とは、2つの基端23bを結ぶ直線の中点と、先端23aとを結ぶ線の延びる方向を突出方向とする。
 第1面7に直交する断面において、図4に示す一例のように、1つの第1凸部17に複数の第1凹部19が位置している際に、複数の第1凹部19のうち少なくとも1つが、基体3から離れる方向に向かって窪んでいてもよい。言い換えれば、複数の第2凸部23のうち少なくとも1つが、基体3から離れる方向に向かって突出していてもよい。上記の方向に第2凸部23が突出している場合には、仮に、アンカー効果による負荷に起因して第1凹部19においてクラックが生じたとしても、このクラックが基体3に向かって進展することが避けられ易い。
 図4及び図5に示す一例のように、第1層13が上記の複数の柱状結晶13aを備えていてもよい。また、第1面7に直交する断面において、図5に示すように、第1凸部17の基端17bが互いに隣り合う柱状結晶13aの境界13bに位置していてもよい。第1凸部17の基端17bには比較的大きな負荷が加わり易いが、少なくとも一つの第1凸部17の基端17bが上記の箇所に位置している場合には、この第1凸部17の基端17bから柱状結晶13aの内部に向かってクラックが進展しにくい。そのため、第1層13の耐久性が高い。
 また、第1面7に直交する断面において、少なくとも一つの第2凸部23の先端23aが、互いに隣り合う柱状結晶13aの境界13bに位置していてもよい。第2凸部23の先端23aに係合する第1凹部19の底には比較的大きな負荷が加わり易いが、第2凸部23の先端23aが上記の箇所に位置している場合には、第1凹部19の底から柱状結晶13aの内部に向かってクラックが進展しにくい。そのため、第1層13の耐久性が高い。
 さらに、図5に示す一例のように、上記の第2凸部23の延びた方向が、柱状結晶13aの延びた方向(図5においては上下方向)に対して傾斜していてもよい。第2凸部23が上記のように突出している場合には、第2凸部23に係合する第1凹部19の窪んだ方向が柱状結晶13aの延びた方向に対して傾斜することになる。このような場合には、第2凸部23から第1凹部19に加わる負荷の掛かる方向が柱状結晶13aの延びた方向に対して傾斜するため、互いに隣り合う柱状結晶13aの境界13bにクラックが生じにくい。
 基体3の材質としては、例えば、超硬合金、サーメット及びセラミックスなどの無機材料が挙げられる。なお、基体3の材質としては、これらに限定されるものではない。
 超硬合金の組成としては、例えば、WC(炭化タングステン)-Co(コバルト)、WC-TiC(炭化チタン)-Co及びWC-TiC-TaC(炭化タンタル)-Coが挙げられる。ここで、WC、TiC及びTaCは硬質粒子であり、Coは結合相である。また、サーメットは、セラミック成分に金属を複合させた焼結複合材料である。具体的には、サーメットとして、TiCN、TiC又はTiNを主成分とした化合物が挙げられる。
 基体3は、第1面7及び第1面7の反対側に位置する面(図1における下面)を貫通する貫通孔27を有していてもよい。貫通孔27は、被覆工具1をホルダに固定するための固定部材を挿入するために用いることができる。固定部材としては、例えばネジ及びクランプ部材が挙げられる。
 基体3の大きさは特に限定されない。例えば、第1面7の一辺の長さが、3~20mm程度に設定されてもよい。また、第1面7から第1面7の反対側に位置する面までの高さは、5~20mm程度に設定されてもよい。
 <製造方法>
 次に、実施形態に係る被覆工具1の製造方法について説明する。
  まず、基体3となる硬質合金を焼成によって形成しうる炭化物、窒化物、炭窒化物及び酸化物などから選択される無機物粉末に、金属粉末、カーボン粉末などを適宜添加及び混合して、混合粉末を作製する。次に、この混合粉末を公知の成形方法を用いて所定の工具形状に成形することによって成形体を作製する。成形方法としては、例えば、プレス成形、鋳込成形、押出成形及び冷間静水圧プレス成形などが挙げられる。上記の成形体を、真空中又は非酸化性雰囲気中にて焼成することによって基体3を作製する。なお、必要に応じて、基体3の表面に研磨加工及びホーニング加工を施してもよい。
 次に、基体3の表面に化学気相蒸着(CVD)法によって被覆層5を成膜する。
 第1層13は、以下の方法によって形成することができる。水素(H)ガスに、5体積%~15体積%の三塩化アルミニウム(AlCl)ガスと、0.5体積%~2.5体積%の塩化水素(HCl)ガスと、0.5体積%~5.0体積%の二酸化炭素(CO)ガスと、1体積%以下の硫化水素(HS)ガスとを混合して、第1混合ガスを作製する。この第1混合ガスを、成膜温度が950℃~1100℃、ガス圧が5kPa~20kPaの条件下でチャンバ内に導入する。これによって、被覆層5における第1層13を形成することができる。
 第2層15は、以下の方法によって形成することができる。水素ガスに、0.1~10体積%の四塩化チタン(TiCl)ガスと、10~60体積%の窒素(N)ガスとを混合して第2混合ガスを作製する。この第2混合ガスを、成膜温度が960~1100℃、ガス圧が10~85kPaの条件下でチャンバ内に導入する。これによって、被覆層5における第2層15を形成することができる。
 このとき、例えば第1層13を形成した後に連続して第2層15を形成するのではなく、第1層13で覆われた基体3をチャンバから取り出して第1層13を表面加工することで第1凸部17及び第1凹部19を有する第1層13を形成することができる。上記の表面加工は、特定の加工に限定されるものではないが、例えば、ブラスト加工、レーザー加工、エッチング処理などが挙げられる。
 具体的には、例えば、上記の第1混合ガスを用いて第1層13を形成する際に第1凸部17を形成し、第1凸部17を有する第1層13の表面に第1凸部17の高さよりも小さい粒径の粒子を吹き付けることによってブラスト加工を行い、第1凹部19を形成すればよい。
 被覆層5が、基体3及び第1層13の間に位置する第3層25を有する場合には、この第3層25は以下の方法によって形成することができる。
 まず、水素ガスに、0.5~10体積%の四塩化チタンガスと、10~60体積%の窒素ガスとを混合して第3混合ガスを作製する。この第3混合ガスを、成膜温度が800~940℃、ガス圧が8~50kPaの条件下でチャンバ内に導入する。これによって、第3層25における窒化チタンを含有する層25bを形成することができる。
 また、水素ガスに、0.5~10体積%の四塩化チタンガスと、5~60体積%の窒素ガスと、0.1~3体積%のアセトニトリル(CHCN)ガスとを混合して第4混合ガスを作製する。この第4混合ガスを、成膜温度が780~880℃、ガス圧が5~25kPaの条件下でチャンバ内に導入する。これによって、第3層25における炭窒化チタンを含有する層25aを形成することができる。
 その後、必要に応じて、成膜した被覆層5の表面における切刃11が位置する部分を研磨加工する。このような研磨加工を行った場合には、切刃11への被削材の溶着が抑制され易くなるため、耐欠損性に優れた被覆工具1となる。
 なお、上記の製造方法は、実施形態の被覆工具1を製造する方法の一例である。したがって、被覆工具1は、上記の製造方法によって作製されたものに限定されないことは言うまでもない。
 <切削工具>
 次に、実施形態の切削工具101について図面を用いて説明する。
 図6及び図7に示す一例における切削工具101は、第1端(図6における上端)から第2端(図6における下端)に向かって延びる棒状体であり、第1端側にポケット103を有するホルダ105と、ポケット103に位置する上記の被覆工具1とを備えている。図6及び図7に示す一例の切削工具101においては、稜線における切刃として用いられる部分がホルダ105の先端から突出するように被覆工具1が装着されている。
 ポケット103は、被覆工具1が装着される部分であり、ホルダ105の下面に対して平行な着座面と、着座面に対して傾斜する拘束側面とを有している。また、ポケット103は、ホルダ105の第1端側において開口している。
 ポケット103には被覆工具1が位置している。このとき、被覆工具1における第1面の反対側の面がポケット103に直接に接していてもよく、また、被覆工具1とポケット103との間にシートを挟んでいてもよい。
 被覆工具1は、稜線における切刃として用いられる部分がホルダ105から外方に突出するように装着される。図6及び図7に示す一例においては、被覆工具1が、ネジ107によって、ホルダ105に装着されている。すなわち、被覆工具1の貫通孔にネジ107を挿入し、このネジ107の先端をポケット103に形成されたネジ孔(不図示)に挿入してネジ部同士を螺合させることによって、被覆工具1がホルダ105に装着されている。
 ホルダ105としては、鋼、鋳鉄などを用いることができる。特に、これらの部材の中で鋼を用いた場合には、ホルダ105の靱性が高い。
 実施形態においては、いわゆる旋削加工に用いられる切削工具を例示している。旋削加工としては、例えば、内径加工、外径加工及び溝入れ加工が挙げられる。なお、切削工具としては旋削加工に用いられるものに限定されない。例えば、転削加工に用いられる切削工具に上記の実施形態の被覆工具1を用いてもよい。
 <切削加工物の製造方法>
 次に、実施形態の切削加工物の製造方法について図面を用いて説明する。
 切削加工物は、被削材201を切削加工することによって作製される。実施形態における切削加工物の製造方法は、以下の工程を備えている。すなわち、
(1)被削材201を回転させる工程と、
(2)回転している被削材201に上記の実施形態に代表される切削工具101を接触させる工程と、
(3)切削工具101を被削材201から離す工程と、
を備えている。
 より具体的には、まず、図8に示すように、被削材201を軸O2の周りで回転させるとともに、被削材201に切削工具101を相対的に近付ける。次に、図9に示すように、切削工具101における切刃を被削材201に接触させて、被削材201を切削する。そして、図10に示すように、切削工具101を被削材201から相対的に遠ざける。
 図8に示す一例においては、軸O2を固定するとともに被削材201を軸O2の周りで回転させた状態で切削工具101をY1方向に移動させることによって被削材201に近づけている。また、図9に示す一例においては、回転している被削材201にインサート1における切刃を接触させることによって被削材201を切削している。また、図10に示す一例においては、被削材201を回転させた状態で切削工具101をY2方向に移動させることによって遠ざけている。
 なお、実施形態の製造方法における切削加工では、それぞれの工程において、切削工具101を動かすことによって、切削工具101を被削材201に接触させる、あるいは、切削工具101を被削材201から離しているが、当然ながらこのような形態に限定されるものではない。
 例えば(1)の工程において、被削材201を切削工具101に近づけてもよい。同様に(3)の工程において、被削材201を切削工具101から遠ざけてもよい。切削加工を継続する場合には、被削材201を回転させた状態を維持して、被削材201の異なる箇所にインサート1における切刃を接触させる工程を繰り返せばよい。
 なお、被削材201の材質の代表例としては、炭素鋼、合金鋼、ステンレス、鋳鉄、または非鉄金属などが挙げられる。
  1・・・被覆工具
  3・・・基体
  5・・・被覆層
  7・・・第1面
  9・・・第2面
 11・・・切刃
 13・・・第1層
 13a・・柱状結晶
 15・・・第2層
 17・・・第1凸部
 17a・・先端
 17b・・基端
 19・・・第1凹部
 21・・・第2凹部
 23・・・第2凸部
 23a・・先端
 25・・・第3層
 27・・・貫通孔
101・・・切削工具
103・・・ポケット
105・・・ホルダ
107・・・固定ネジ
201・・・被削材

Claims (9)

  1.  第1面を有する基体と、前記第1面の上に位置する被覆層とを備えた被覆工具であって、
     前記被覆層は、前記第1面の上に位置する、酸化アルミニウムを含有する第1層と、該第1層の上に接して位置する、チタン化合物を含有する第2層とを有し、
     前記第1面に直交する断面において、前記第1層が、前記第2層に向かって突出する第1凸部と、該第1凸部に位置する第1凹部とを有するとともに、前記第2層が、前記第1凸部と係合する第2凹部と、前記第1凹部に係合する第2凸部とを有している、被覆工具。
  2.  前記第1面に直交する断面において、1つの第1凸部に前記第1凹部が複数位置している、請求項1に記載の被覆工具。
  3.  前記第1面に直交する断面において、前記第2凸部が突出する方向が、前記第1凸部が突出する方向に対して傾斜している、請求項1又は2に記載の被覆工具。
  4.  前記第1面に直交する断面において、1つの第1凸部に前記第1凹部が複数位置しており、
     複数の前記第1凹部のうち少なくとも1つが、前記基体から離れる方向に向かって窪んでいる、請求項3に記載の被覆工具。
  5.  前記第1層は、前記基体の側から前記第2層に向かってそれぞれ延びた複数の柱状結晶を備え、
     前記第1面に直交する断面において、前記第1凸部の基端が、互いに隣り合う前記柱状結晶の境界に位置している、請求項1~4のいずれか1つに記載の被覆工具。
  6.  前記第1層は、前記基体の側から前記第2層に向かってそれぞれ延びた複数の柱状結晶を備え、
     前記第1面に直交する断面において、前記第2凸部の先端が、互いに隣り合う前記柱状結晶の境界に位置している、請求項1~5のいずれか1つに記載の被覆工具。
  7.  互いに隣り合う前記柱状結晶の境界に先端が位置する前記第2凸部の突出する方向は、前記柱状結晶の延びた方向に対して傾斜している、請求項6に記載の被覆工具。
  8.  先端側に位置するポケットを有するホルダと、
     前記ポケット内に位置する、請求項1~7のいずれか1つに記載の被覆工具とを有する切削工具。
  9.  請求項8に記載の切削工具を回転させる工程と、
     回転している前記切削工具を被削材に接触させる工程と、
     前記切削工具を前記被削材から離す工程とを備えた切削加工物の製造方法。
PCT/JP2018/023114 2017-06-21 2018-06-18 被覆工具、切削工具及び切削加工物の製造方法 WO2018235775A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018003209.4T DE112018003209T5 (de) 2017-06-21 2018-06-18 Beschichtetes Werkzeug, Schneidwerkzeug und Herstellungsverfahren eines maschinell bearbeiteten Produkts
US16/624,915 US11839923B2 (en) 2017-06-21 2018-06-18 Coated tool, cutting tool, and method for manufacturing machined product
JP2019525607A JP6977034B2 (ja) 2017-06-21 2018-06-18 被覆工具、切削工具及び切削加工物の製造方法
CN201880041766.0A CN110769957B (zh) 2017-06-21 2018-06-18 涂层刀具、切削刀具和切削加工物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017121283 2017-06-21
JP2017-121283 2017-06-21

Publications (1)

Publication Number Publication Date
WO2018235775A1 true WO2018235775A1 (ja) 2018-12-27

Family

ID=64736989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023114 WO2018235775A1 (ja) 2017-06-21 2018-06-18 被覆工具、切削工具及び切削加工物の製造方法

Country Status (5)

Country Link
US (1) US11839923B2 (ja)
JP (1) JP6977034B2 (ja)
CN (1) CN110769957B (ja)
DE (1) DE112018003209T5 (ja)
WO (1) WO2018235775A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267201A (ja) * 1996-03-29 1997-10-14 Ngk Spark Plug Co Ltd 工具ユニット、ならびにそれに使用されるスローアウェイチップ及びチップホルダ
WO2000079022A1 (fr) * 1999-06-21 2000-12-28 Sumitomo Electric Industries, Ltd. Alliage dur enrobé
JP2004351548A (ja) * 2003-05-28 2004-12-16 Fujigen Kogyo Kk 切削工具及びスローアウェイチップ
JP2009166216A (ja) * 2008-01-21 2009-07-30 Hitachi Tool Engineering Ltd 被覆工具
JP2010173025A (ja) * 2009-01-30 2010-08-12 Mitsubishi Materials Corp 表面被覆切削工具
WO2011055813A1 (ja) * 2009-11-06 2011-05-12 株式会社タンガロイ 被覆工具

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629373A (en) * 1983-06-22 1986-12-16 Megadiamond Industries, Inc. Polycrystalline diamond body with enhanced surface irregularities
DE4209975A1 (de) * 1992-03-27 1993-09-30 Krupp Widia Gmbh Verbundkörper und dessen Verwendung
GB2295837B (en) * 1994-12-10 1998-09-02 Camco Drilling Group Ltd Improvements in or relating to elements faced with superhard material
US6106585A (en) * 1996-02-14 2000-08-22 Smith International, Inc. Process for making diamond and cubic boron nitride cutting elements
GB2316698B (en) * 1996-08-26 2000-10-18 Smith International PDC cutter element having improved substrate configuration
US5711702A (en) * 1996-08-27 1998-01-27 Tempo Technology Corporation Curve cutter with non-planar interface
GB9703571D0 (en) * 1997-02-20 1997-04-09 De Beers Ind Diamond Diamond-containing body
DE19742765A1 (de) * 1997-09-27 1999-04-01 Heller Geb Gmbh Maschf Schneidplatte, insbesondere Wendeplatte, Verfahren zur Herstellung einer solchen Schneidplatte, mit solchen Schneidplatten ausgestattetes Werkzeug und Verfahren zum Zerspanen eines Werkstückes unter Verwendung einer solchen Schneidplatte oder unter Einsatz eines solchen Werkzeuges
KR100587444B1 (ko) * 1997-11-06 2006-06-08 스미토모덴키고교가부시키가이샤 피복 초경 합금 공구
US6193001B1 (en) * 1998-03-25 2001-02-27 Smith International, Inc. Method for forming a non-uniform interface adjacent ultra hard material
US6251508B1 (en) * 1998-12-09 2001-06-26 Seco Tools Ab Grade for cast iron
US20030235678A1 (en) * 2002-06-25 2003-12-25 Graham Paul D. Complex microstructure film
US20030235677A1 (en) * 2002-06-25 2003-12-25 3M Innovative Properties Company Complex microstructure film
US7172807B2 (en) * 2003-02-17 2007-02-06 Kyocera Corporation Surface-coated member
EP1609883B1 (en) * 2004-06-24 2017-09-20 Sandvik Intellectual Property AB Coated metal cutting tool
SE528430C2 (sv) * 2004-11-05 2006-11-14 Seco Tools Ab Med aluminiumoxid belagt skärverktygsskär samt metod att framställa detta
SE528891C2 (sv) * 2005-03-23 2007-03-06 Sandvik Intellectual Property Skär belagt med ett multiskikt av metaloxid
WO2007122859A1 (ja) * 2006-03-28 2007-11-01 Kyocera Corporation 切削工具及びその製造方法、並びに切削方法
SE530861C2 (sv) * 2006-12-15 2008-09-30 Sandvik Intellectual Property Belagd hårdmetallpinnfräs för medel- och finbearbetning av härdade stål och förfarande för dess framställning
WO2008105519A1 (ja) * 2007-02-28 2008-09-04 Kyocera Corporation 切削工具およびその製造方法
GB0908375D0 (en) * 2009-05-15 2009-06-24 Element Six Ltd A super-hard cutter element
US10046397B2 (en) * 2009-08-11 2018-08-14 Sumitomo Electric Industries, Ltd. Diamond coated tool
JP4690479B2 (ja) * 2009-08-11 2011-06-01 住友電気工業株式会社 ダイヤモンド被覆工具
US10099347B2 (en) * 2011-03-04 2018-10-16 Baker Hughes Incorporated Polycrystalline tables, polycrystalline elements, and related methods
US9228258B2 (en) * 2011-03-31 2016-01-05 Hitachi Tool Engineering, Ltd. Hard-coated member and its production method, and indexable rotary tool comprising it
US9427808B2 (en) * 2013-08-30 2016-08-30 Kennametal Inc. Refractory coatings for cutting tools
RU2675190C2 (ru) * 2014-01-30 2018-12-17 Сандвик Интеллекчуал Проперти Аб Покрытый оксидом алюминия режущий инструмент
CN104085142B (zh) * 2014-05-28 2016-11-23 厦门金鹭特种合金有限公司 一种刀片基体上的涂覆涂层
CN107427930B (zh) * 2015-01-28 2019-11-22 京瓷株式会社 被覆工具

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09267201A (ja) * 1996-03-29 1997-10-14 Ngk Spark Plug Co Ltd 工具ユニット、ならびにそれに使用されるスローアウェイチップ及びチップホルダ
WO2000079022A1 (fr) * 1999-06-21 2000-12-28 Sumitomo Electric Industries, Ltd. Alliage dur enrobé
JP2004351548A (ja) * 2003-05-28 2004-12-16 Fujigen Kogyo Kk 切削工具及びスローアウェイチップ
JP2009166216A (ja) * 2008-01-21 2009-07-30 Hitachi Tool Engineering Ltd 被覆工具
JP2010173025A (ja) * 2009-01-30 2010-08-12 Mitsubishi Materials Corp 表面被覆切削工具
WO2011055813A1 (ja) * 2009-11-06 2011-05-12 株式会社タンガロイ 被覆工具

Also Published As

Publication number Publication date
JP6977034B2 (ja) 2021-12-08
US20210031280A1 (en) 2021-02-04
JPWO2018235775A1 (ja) 2020-04-16
US11839923B2 (en) 2023-12-12
CN110769957B (zh) 2021-02-26
DE112018003209T5 (de) 2020-03-19
CN110769957A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2018124111A1 (ja) 切削インサート
JP7261806B2 (ja) 被覆工具及び切削工具
CN112654450B (zh) 涂层刀具及切削刀具
JP7089038B2 (ja) 被覆工具及び切削工具
CN110461512B (zh) 涂层刀具以及切削工具
JP7261805B2 (ja) 被覆工具及び切削工具
US20190344356A1 (en) Cutting insert and cutting tool
JPWO2020050263A1 (ja) 被覆工具及び切削工具
WO2018181272A1 (ja) 被覆工具及び切削工具
JP7237831B2 (ja) 被覆工具、切削工具及び切削加工物の製造方法
JP6977034B2 (ja) 被覆工具、切削工具及び切削加工物の製造方法
JP2018079539A (ja) 切削インサート及び切削工具
WO2022085450A1 (ja) 被覆工具及びこれを備えた切削工具
JP2019025559A (ja) 被覆工具、切削工具及び切削加工物の製造方法
JP6957395B2 (ja) セラミック部材及びこれを用いた工具、切削工具
WO2023189127A1 (ja) 超硬合金およびこれを用いた被覆工具、切削工具
WO2022085429A1 (ja) 被覆工具及びこれを備えた切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525607

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18820907

Country of ref document: EP

Kind code of ref document: A1