WO2023189127A1 - 超硬合金およびこれを用いた被覆工具、切削工具 - Google Patents

超硬合金およびこれを用いた被覆工具、切削工具 Download PDF

Info

Publication number
WO2023189127A1
WO2023189127A1 PCT/JP2023/007459 JP2023007459W WO2023189127A1 WO 2023189127 A1 WO2023189127 A1 WO 2023189127A1 JP 2023007459 W JP2023007459 W JP 2023007459W WO 2023189127 A1 WO2023189127 A1 WO 2023189127A1
Authority
WO
WIPO (PCT)
Prior art keywords
cemented carbide
layer
region
free layer
intersection region
Prior art date
Application number
PCT/JP2023/007459
Other languages
English (en)
French (fr)
Inventor
彰浩 勝丸
尚久 松田
友也 天見
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023189127A1 publication Critical patent/WO2023189127A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • the present disclosure relates to a cemented carbide, a coated tool, and a cutting tool using the same.
  • Cemented carbide containing WC (tungsten carbide) as a hard phase is used for substrates in coated tools, etc., and is used in cutting tools such as end mills. Such cemented carbide is required to have fracture resistance and the like.
  • Patent Document 1 describes that the ridgeline of the cutting edge of a cemented carbide has a ⁇ -free layer. The thickness is also listed.
  • Patent No. 3656838 Patent Document 2 does not mention that there is a ⁇ -free layer on the ridgeline of the cutting edge of the cemented carbide, and it is not possible to adjust the thickness of the ⁇ -free layer on the rake face and flank face. Are listed.
  • a non-limiting aspect of the cemented carbide of the present disclosure has a hard phase containing W and C, a solid solution phase containing W, C, and Ti, and a binder phase containing an iron group metal.
  • the cemented carbide has a beta-free layer consisting only of WC and iron group metals on the surface of the intersection region of the rake face and flank face.
  • the average thickness of the ⁇ -free layer on the rake face in the intersection area is a
  • the average thickness of the ⁇ -free layer on the flank face in the intersection area is b.
  • the relationship between a and b satisfies b ⁇ a.
  • a non-limiting one-sided coated tool of the present disclosure includes the above cemented carbide and a coating layer located on the surface of the cemented carbide.
  • a non-limiting one-sided cutting tool of the present disclosure includes a holder that extends from a first end toward a second end and has a pocket on the first end side, and the above-mentioned covered tool located in the pocket.
  • FIG. 1 is a perspective view illustrating a non-limiting side of a cemented carbide of the present disclosure
  • FIG. FIG. 2 is a cross-sectional view of section II in the cemented carbide shown in FIG. 1, and is a cross-sectional view perpendicular to the intersection region when viewed from the top (plan view) from the rake face.
  • FIG. 2 is a cross-sectional view showing the vicinity of the surface of a non-limiting one-sided coated tool of the present disclosure.
  • FIG. 2 is a cross-sectional view showing the vicinity of the surface of a non-limiting one-sided coated tool of the present disclosure.
  • 1 is a perspective view of a non-limiting one-sided cutting tool of the present disclosure; FIG.
  • cemented carbide 1 of the present disclosure will be described in detail using the drawings. However, in each figure referred to below, only main members necessary for explaining the embodiment are shown in a simplified manner for convenience of explanation. Therefore, the cemented carbide 1 may include any constituent members not shown in the referenced figures. Further, the dimensions of the members in each figure do not faithfully represent the dimensions of the actual constituent members or the dimensional ratios of each member. These points also apply to coated tools and cutting tools that will be described later.
  • Cemented carbide 1 may have a hard phase, a solid solution phase, and a binder phase.
  • the hard phase may contain W (tungsten) and C (carbon).
  • the hard phase may contain WC.
  • the hard phase may contain WC as a main component.
  • "Main component” may mean a component having the largest mass % value compared to other components. Specifically, W and C may be the top two components in terms of mass % among the components contained in the hard phase.
  • the solid solution phase may contain W, C, and Ti (titanium).
  • the solid solution phase may contain W, C, and Ti as main components. That is, in the solid solution phase, the total value of the mass % of each of W, C, and Ti may be the largest. Furthermore, among the components contained in the solid solution layer, the top three in terms of mass % may be W, C, and Ti.
  • the binder phase may contain an iron group metal.
  • iron group metals include Co (cobalt) and Ni (nickel).
  • the bonded phase may contain at least one of Co and Ni.
  • the binder phase may contain an iron group metal as a main component.
  • the binding phase can function as a phase that binds adjacent hard phases. Iron group metals including Co and Ni, for example, may have the largest mass % value among the components contained in the binder phase.
  • composition of each of the hard phase, solid solution phase, and binder phase may be measured by, for example, energy dispersive X-ray spectroscopy (EDS).
  • EDS energy dispersive X-ray spectroscopy
  • the measurement may be performed using an EDS attached to an electron microscope.
  • the electron microscope include a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
  • the cemented carbide 1 may have a rake face 3 and a flank face 5. That is, the cemented carbide 1 may be shaped like a cutting tool. Moreover, the cemented carbide 1 may have a plate shape.
  • the cemented carbide 1 may have a rectangular plate shape, as shown in a non-limiting example shown in FIG. In this case, the upper surface may be the rake surface 3, and the side surface may be the flank surface 5.
  • the shape of the cemented carbide 1 is not limited to the square plate shape.
  • the rake face 3 may be triangular, pentagonal, hexagonal or circular.
  • Cemented carbide 1 is not limited to a specific size.
  • the width D1 of the rake face 3 may be set to 3 to 20 mm.
  • the width D2 of the flank surface 5 may be set to 5 to 20 mm.
  • the width D1 and the width D2 may be dimensions in a direction perpendicular to the intersection ridgeline of the rake face 3 and the flank face 5.
  • the cemented carbide 1 may have an intersection region 7 between the rake face 3 and the flank face 5.
  • the intersection region 7 is a ridgeline portion of the cutting edge, and the cutting edge may be honed as a cutting edge treatment, and the portion subjected to the cutting edge treatment may be used as the ridgeline portion of the cutting edge.
  • the honing process may be a processing method in which a grindstone (horn) is pressed and rotated back and forth to polish the object.
  • the intersection area 7 may be a honed area of the intersection ridgeline between the rake face 3 and the flank face 5.
  • the area S2 from the boundary L2 on the side of the flank 5 of the cutting edge ridge to the rake face 3 may be the intersection area 7 (see FIG. 2).
  • a position 80 ⁇ m from the flank surface 5 when viewed from above from the rake surface 3 may be regarded as the boundary L1.
  • a position 60 ⁇ m from the rake face 3 when viewed from above from the flank 5 may be regarded as the boundary L2.
  • the intersection area 7 may have a convex curved shape.
  • the shape of the intersection region 7 is not limited to a convex curved shape.
  • the intersection area 7 may have a planar shape that has been chamfered. Note that since the intersection region 7 having a planar shape is inclined with respect to the rake surface 3 and the flank surface 5, the end of the intersection region 7 on the rake surface 3 side and the end of the intersection region 7 on the flank surface 5 side. and can be easily identified.
  • intersection area 7 has a convex curved shape
  • the end of the intersection area 7 on the side of the rake face 3 and the end of the intersection area 7 on the side of the flank 5 can be easily identified.
  • the intersecting region 7 may be located in a part of the intersecting ridgeline between the rake face 3 and the flank face 5, or may be located on the entire intersecting ridgeline.
  • the intersection area 7 can be used for cutting a workpiece.
  • the cemented carbide 1 may have a ⁇ -free layer 9 made of only WC and iron group metals on the surface of the intersection region 7, as shown in a non-limiting example shown in FIG.
  • the ⁇ -free layer 9 is rich in iron group metals such as Co and has high toughness, and can function as a layer that absorbs the impact generated between the workpiece and the workpiece during cutting and suppresses chipping. . Therefore, when the cemented carbide 1 has the non- ⁇ layer 9 on the surface of the intersection region 7, the intersection region 7 is less likely to be damaged.
  • the ⁇ -free layer 9 consisting only of WC and iron group metals means that almost all of the components constituting the ⁇ -free layer 9 are WC and iron group metals.
  • the ⁇ -free layer 9 may contain impurities at a level unavoidable due to the manufacturing process.
  • the total content of impurities may be 3% by mass or less, in other words, the total content of WC and iron group metals may be 97% by mass or more.
  • the cemented carbide 1 may have a ⁇ -free layer 9 on the entire surface of the intersection region 7.
  • the entire surface of the intersection region 7 may be the ⁇ -free layer 9.
  • the cemented carbide 1 may also have a ⁇ -free layer 9 on the surface other than the intersection region 7.
  • the iron group metal in the ⁇ -free layer 9 may have the same composition as the iron group metal in the binder phase.
  • the confirmation of the ⁇ -free layer 9 may be performed, for example, by EDS.
  • the average thickness of the ⁇ -free layer 9 on the rake face 3 in the intersection region 7 may be a
  • the average thickness of the ⁇ -free layer 9 on the flank face 5 in the intersection region 7 may be set as b.
  • the relationship between a and b may satisfy b ⁇ a. In this case, cracks, chipping, etc. are less likely to occur in the intersection region 7, and the intersection region 7 is less likely to be damaged. Therefore, the fracture resistance of the cemented carbide 1 is high.
  • the relationship between a and b may satisfy 1 ⁇ a/b ⁇ 2.5. In this case, the fracture resistance of the cemented carbide 1 is likely to improve.
  • the relationship between a and b may satisfy 1.5 ⁇ a/b ⁇ 2.5. In this case, the fracture resistance of the cemented carbide 1 is likely to be further improved.
  • the average thickness of the ⁇ -free layer 9 on the rake face 3 in the intersection area 7 can also mean the average thickness of the ⁇ -free layer 9 at the end of the intersection area 7 on the rake face 3 side as seen from the rake face 3. good. Therefore, the average thickness of the ⁇ -free layer 9 on the rake face 3 in the intersection region 7 may be rephrased as the average thickness of the ⁇ -free layer 9 in the region S1a located at the end of the intersection region 7 on the rake face 3 side.
  • the region S1a may be, for example, a region 10 ⁇ m from the boundary L1.
  • the average thickness of the ⁇ -free layer 9 of the flank surface 5 in the intersection region 7 means the average thickness of the ⁇ -free layer 9 at the end of the intersection region 7 on the flank surface 5 side when viewed from the flank surface 5. It's okay. Therefore, the average thickness of the ⁇ -free layer 9 of the flank surface 5 in the intersection region 7 may be rephrased as the average thickness of the ⁇ -free layer 9 in the region S2a located at the end of the flank surface 5 in the intersection region 7.
  • the region S2a may be, for example, a region 5 ⁇ m from the boundary L2.
  • the thickness of the ⁇ -free layer 9 may be measured by cross-sectional observation using an electron microscope.
  • the cross section to be observed may be, for example, a cross section as shown in FIG. That is, the cross section to be observed may be a cross section perpendicular to the intersection region 7 when viewed from above (planar view) from the rake face 3.
  • the thickness of the ⁇ -free layer 9 may be measured at five or more measurement points at intervals of 1 ⁇ m over a width of 5 ⁇ m or more at any position in the region S1a or the region S2a, and the average value thereof may be calculated. .
  • a and b are not limited to specific thicknesses.
  • a may be set to 7.3 to 14.3 ⁇ m.
  • b may be set to 2.9 to 13 ⁇ m.
  • the average thickness of the ⁇ -free layer 9 in the intersection region 7 may decrease monotonically from the rake face 3 side toward the flank face 5 side.
  • the average thickness of the ⁇ -free layer 9 is as described above, cracks, chipping, etc. are less likely to occur in the intersection region 7, and the intersection region 7 is even less likely to be damaged.
  • intersection region 7 may further include a region located between the end on the rake face 3 side and the end on the flank surface 5 side, where the average thickness of the ⁇ -free layer 9 is c. .
  • the intersection region 7 may further have another region between the region S1a and the region S2a, and the average thickness of the ⁇ -free layer 9 in this region may be c.
  • c may be smaller than a and b.
  • intersection region 7 in a cross-sectional view has a convex curved shape as in the non-limiting example shown in FIG. may be located.
  • the radius of curvature of the intersecting region 7 in the region where the average thickness of the ⁇ -free layer 9 is c may be smaller than the radius of curvature of the intersecting region 7 in the region S1a and the region S2a.
  • the region where the average thickness of the ⁇ -free layer 9 is c may be located closer to the flank face 5 than to the rake face 3 side. In other words, the region where the average thickness of the ⁇ -free layer 9 is c may be located closer to the flank surface 5 than to the rake surface 3. In this case, there is an advantage that the thickness of the ⁇ -free layer 9 on the rake face 3 is increased and the fracture resistance is improved.
  • the width of the intersection region 7 when viewed from the rake face 3 in plan may be larger than the width of the intersection region 7 when viewed from the flank 5 in plan.
  • the advantage is that the radius of curvature of the honing of the rake face 3 is increased, which improves the chipping resistance.
  • WC powder, Co powder, TiC powder, etc. may be prepared as raw material powder.
  • the proportion of Co powder may be 4-12% by weight. Further, the proportion of TiC powder may be 0.5 to 15% by mass. The remainder may be made into WC powder.
  • the average particle size of the raw material powder may be appropriately selected within the range of 0.1 to 10 ⁇ m.
  • the average particle diameter of the raw material powder may be a value measured by the microtrack method.
  • the prepared raw material powders may be mixed and molded to have a rake face 3 and a flank face 5 to obtain a molded body. At this time, it may be preformed by a mold press into a shape in which the intersection ridgeline portion of the rake face 3 and flank face 5 is rounded. In this case, the ⁇ -free layer 9 is likely to be formed on the surface of the intersection region 7. Corner cutting may include forming the intersecting edge portion into a convex curved surface shape or a planar shape.
  • Cemented carbide 1 may be obtained by performing a binder removal treatment on the obtained molded body and then firing it. Firing may be performed in a non-oxidizing atmosphere such as vacuum, argon atmosphere and nitrogen atmosphere.
  • the firing temperature may be 1450 to 1600°C.
  • the firing time may be 0.5 to 3 hours. When firing at such firing temperature and firing time, the ⁇ -free layer 9 is likely to be formed on the surface of the cemented carbide 1.
  • the obtained cemented carbide 1 may be honed to form an intersection region 7 between the rake face 3 and flank face 5. Then, the thickness of the ⁇ -free layer 9 may be adjusted by polishing the intersection region 7 so that the relationship between a and b satisfies b ⁇ a. Polishing may be performed, for example, by brush processing, blasting, barrel processing, or the like.
  • the above manufacturing method is an example of a method for manufacturing cemented carbide 1. Therefore, it goes without saying that the cemented carbide 1 is not limited to that produced by the above manufacturing method.
  • FIGS. 3 and 4 a non-limiting one-sided coated tool 101 according to the present disclosure will be described using FIGS. 3 and 4, taking as an example a case in which the above-mentioned cemented carbide 1 is included.
  • the coated tool 101 may include a cemented carbide 1 and a coating layer 103 located on the surface of the cemented carbide 1, as in a non-limiting example shown in FIGS. 3 and 4.
  • the coated tool 101 may have the cemented carbide 1 as a base.
  • cutting performance such as intermittent performance is likely to be improved because the fracture resistance of the cemented carbide 1 is high. Therefore, the durability of the coated tool 101 is high.
  • the coating layer 103 may be located on the entire surface of the cemented carbide 1, or may be located only on a portion of the surface. That is, the coating layer 103 may be located on at least a portion of the surface of the cemented carbide 1.
  • the covering layer 103 may be formed by a chemical vapor deposition (CVD) method.
  • the covering layer 103 may be a CVD film.
  • the covering layer 103 may be a PVD film formed by a physical vapor deposition (PVD) method.
  • the covering layer 103 may have a single layer structure, or may have a structure in which a plurality of layers are laminated.
  • Examples of the composition of the coating layer 103 include TiCN (titanium carbonitride), Al 2 O 3 (alumina), and TiN (titanium nitride).
  • the coating layer 103 may include a TiCN layer 105 and an Al 2 O 3 layer 107 in this order from the cemented carbide 1, as in a non-limiting example shown in FIG.
  • TiCN layer 105 may be in contact with cemented carbide 1.
  • the Al 2 O 3 layer 107 may be in contact with the TiCN layer 105 .
  • the covering layer 103 may include a TiN layer 109, a TiCN layer 105, and an Al 2 O 3 layer 107 in this order from the cemented carbide 1, as shown in a non-limiting example shown in FIG.
  • TiN layer 109 may be in contact with cemented carbide 1.
  • TiCN layer 105 may be in contact with TiN layer 109.
  • the Al 2 O 3 layer 107 may be in contact with the TiCN layer 105 .
  • the coating layer 103 is not limited to a specific thickness.
  • the thickness of the TiCN layer 105 may be set to about 1.0 to 15 ⁇ m.
  • the thickness of the Al 2 O 3 layer 107 may be set to about 1 to 15 ⁇ m.
  • the thickness of the TiN layer 109 may be set to about 0.1 to 5 ⁇ m.
  • the thickness of the coating layer 103 may be measured by cross-sectional observation using an electron microscope.
  • the thickness of the covering layer 103 may be an average value. For example, the thickness may be measured at ten or more measurement points at intervals of 1 ⁇ m over a width of 10 ⁇ m or more at any position of each layer, and the average value thereof may be calculated.
  • the covered tool 101 may have a through hole 111.
  • the through hole 111 is shown in FIG.
  • the through hole 111 can be used to attach a fixing screw, a clamp member, or the like when the covered tool 101 is held in a holder.
  • the through hole 111 may be formed from the upper surface (rake surface 3) to the lower surface located on the opposite side of the upper surface, or may be open in these surfaces. Note that there is no problem even if the through holes 111 are configured to open in mutually opposing regions on the side surface (flank surface 5).
  • a coating layer 103 may be formed on the surface of the cemented carbide 1 by a CVD method to obtain a coated tool 101.
  • the TiCN layer 105 may be formed as follows. First, as for the reaction gas composition, titanium tetrachloride (TiCl 4 ) gas is 0.1 to 10 volume %, nitrogen (N 2 ) gas is 10 to 60 volume %, and methane (CH 4 ) gas is 0.1 to 15 volume %. %, and the remainder hydrogen (H 2 ) gas. Then, the TiCN layer 105 may be formed by introducing this mixed gas into the chamber and setting the temperature to 800 to 1100° C. and the pressure to 5 to 30 kPa.
  • TiCl 4 titanium tetrachloride
  • N 2 nitrogen
  • CH 4 methane
  • H 2 remainder hydrogen
  • the Al 2 O 3 layer 107 may be formed as follows. First, as the reaction gas composition, aluminum trichloride (AlCl 3 ) gas is 0.5 to 5 volume %, hydrogen chloride (HCl) gas is 0.5 to 3.5 volume %, and carbon dioxide (CO 2 ) gas is 0. A mixed gas consisting of hydrogen sulfide (H 2 S) gas of 0.5 to 5% by volume, 0.5% or less of hydrogen sulfide (H 2 S) gas, and the remainder hydrogen (H 2 ) gas may be prepared. Then, the Al 2 O 3 layer 107 may be formed by introducing this mixed gas into the chamber and setting the temperature to 930 to 1010° C. and the pressure to 5 to 10 kPa.
  • AlCl 3 aluminum trichloride
  • HCl hydrogen chloride
  • CO 2 carbon dioxide
  • the TiN layer 109 may be formed as follows. First, as a reaction gas composition, a mixed gas consisting of 0.1 to 10% by volume of titanium tetrachloride (TiCl 4 ) gas, 10 to 60% by volume of nitrogen (N 2 ) gas, and the remainder hydrogen (H 2 ) gas is used. May be adjusted. Then, the TiN layer 109 may be formed by introducing this mixed gas into the chamber and setting the temperature to 800 to 1010° C. and the pressure to 10 to 85 kPa.
  • TiCl 4 titanium tetrachloride
  • N 2 nitrogen
  • H 2 hydrogen
  • the above manufacturing method is an example of a method for manufacturing the coated tool 101. Therefore, it goes without saying that the coated tool 101 is not limited to that produced by the above manufacturing method.
  • the cutting tool 201 extends from a first end 203a toward a second end 203b, and is located in the holder 203 having a pocket 205 on the side of the first end 203a, as in the non-limiting example shown in FIG.
  • a coated tool 101 may also be provided.
  • the cutting tool 201 includes the coated tool 101, since the coated tool 101 has high durability, the cutting tool 201 has high wear resistance and stable cutting is possible.
  • the pocket 205 may be a portion where the covered tool 101 is attached.
  • the pocket 205 may be open on the outer peripheral surface of the holder 203 and the end surface on the first end 203a side.
  • the covered tool 101 may be installed in the pocket 205 such that the intersection area 7 projects outward from the holder 203. Further, the covered tool 101 may be attached to the pocket 205 by a fixing screw 207. That is, by inserting the fixing screw 207 into the through hole 111 of the covered tool 101 and inserting the tip of the fixing screw 207 into a screw hole formed in the pocket 205 to screw the threaded parts together, the covered tool 101 can be fixed. It may be attached to the pocket 205. At this time, the lower surface of the covered tool 101 may be in direct contact with the pocket 205, or a sheet may be sandwiched between the covered tool 101 and the pocket 205.
  • Examples of the material of the holder 203 include steel and cast iron. When the material of the holder 203 is steel, the holder 203 has high toughness.
  • a cutting tool 201 used for so-called turning is illustrated.
  • Examples of the turning process include inner diameter machining, outer diameter machining, and grooving. Note that the use of the cutting tool 201 is not limited to turning. For example, there is no problem even if the cutting tool 201 is used for milling.
  • the obtained molded body After performing a binder removal treatment on the obtained molded body, it was held at a temperature of 1500°C for 1 hour and fired to obtain a cemented carbide. Then, the obtained cemented carbide was honed to form an intersecting region between the rake face and the flank face.
  • the composition of the obtained cemented carbide was measured by EDS. Specifically, cross-sectional observation was performed using an EDS attached to the SEM, and measurements were made at a magnification of 5,000 to 20,000 times and an average value of measurements at five locations.
  • cemented carbides contained a hard phase containing W and C as main components, a solid solution phase containing W, C, and Ti as main components, and iron as a main component. It had a binder phase containing group metal (Co).
  • sample No. Cemented carbide Nos. 1 to 5 had a ⁇ -free layer consisting only of WC and iron group metal (Co) over the entire surface of the intersection region.
  • the evaluation results are shown in Table 1.
  • the "number of impacts until the cutting edge breaks" in the evaluation results in Table 1 represents the number of impacts until the cutting edge breaks during cutting, and can also be called intermittent performance evaluation. .
  • Sample No. 1 to 4 are sample No.
  • the stability was clearly improved compared to 5 and 6.
  • sample no. No. 6 did not have a ⁇ -removal layer on the surface of the intersection region, had the least number of impacts, had low wear resistance of the cutting edge, and was difficult to stably cut as a cutting tool.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本開示の限定されない一面の超硬合金は、WとCとを含有する硬質相と、WとCとTiとを含有する固溶体相と、鉄族金属を含有する結合相とを有する。超硬合金におけるすくい面と逃げ面との交差領域の表面に、WCおよび鉄族金属のみからなる脱β層を有する。交差領域におけるすくい面の脱β層の平均厚みをa、交差領域における逃げ面の脱β層の平均厚みをbとする。aとbとの関係が、b<aを満たす。本開示の限定されない一面の被覆工具は、上記の超硬合金と、超硬合金の表面に位置する被覆層とを有する。本開示の限定されない一面の切削工具は、第1端から第2端に向かって延び、第1端側にポケットを有するホルダと、ポケットに位置する、上記の被覆工具と、を備える。

Description

超硬合金およびこれを用いた被覆工具、切削工具 関連出願の相互参照
 本出願は、2022年3月28日に出願された日本国特許出願2022-051034号の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。
 本開示は、超硬合金およびこれを用いた被覆工具、切削工具に関する。
 WC(炭化タングステン)を硬質相として含有する超硬合金は、被覆工具における基体などに用いられ、エンドミルなどの切削工具に利用されている。このような超硬合金には、耐欠損性などが求められる。
 耐欠損性に優れる超硬合金として、例えば、特許第3235259号公報(特許文献1)には、超硬合金の刃先稜線部に脱β層があることが記載されており、この脱β層の厚みも記載されている。また、特許第3656838号公報(特許文献2)には、超硬合金の刃先稜線部に脱β層があることの記載はなく、すくい面および逃げ面の脱β層の厚みを調整することが記載されている。
 本開示の限定されない一面の超硬合金は、WとCとを含有する硬質相と、WとCとTiとを含有する固溶体相と、鉄族金属を含有する結合相とを有する。該超硬合金におけるすくい面と逃げ面との交差領域の表面に、WCおよび鉄族金属のみからなる脱β層を有する。前記交差領域における前記すくい面の前記脱β層の平均厚みをa、前記交差領域における前記逃げ面の前記脱β層の平均厚みをbとする。前記aと前記bとの関係が、b<aを満たす。
 本開示の限定されない一面の被覆工具は、上記の超硬合金と、前記超硬合金の表面に位置する被覆層とを有する。
 本開示の限定されない一面の切削工具は、第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、前記ポケットに位置する、上記の被覆工具と、を備える。
本開示の限定されない一面の超硬合金を示す斜視図である。 図1に示す超硬合金におけるII断面の断面図であり、すくい面から上面視(平面視)した場合に交差領域に直交する断面図である。 本開示の限定されない一面の被覆工具の表面付近を示す断面図である。 本開示の限定されない一面の被覆工具の表面付近を示す断面図である。 本開示の限定されない一面の切削工具を示す斜視図である。
 <超硬合金>
 以下、本開示の限定されない一面の超硬合金1について、図面を用いて詳細に説明する。但し、以下で参照する各図では、説明の便宜上、実施形態を説明する上で必要な主要部材のみが簡略化して示される。したがって、超硬合金1は、参照する各図に示されない任意の構成部材を備え得る。また、各図中の部材の寸法は、実際の構成部材の寸法および各部材の寸法比率などを忠実に表したものではない。これらの点は、後述する被覆工具および切削工具においても同じである。
 超硬合金1は、硬質相、固溶体相および結合相を有してもよい。
 硬質相は、W(タングステン)とC(炭素)とを含有してもよい。言い換えれば、硬質相は、WCを含有してもよい。硬質相は、主成分としてWCを含有してもよい。「主成分」とは、他の成分と比較して質量%の値が最も大きい成分のことを意味してもよい。具体的には、硬質相が含有する成分のうち質量%の値の上位2つが、W及びCであってもよい。
 固溶体相は、WとCとTi(チタン)とを含有してもよい。固溶体相は、主成分としてWとCとTiとを含有してもよい。すなわち、固溶体相において、WとCとTiのそれぞれの質量%の合計値が最も大きくてもよい。また、固溶体層が含有する成分のうち質量%の値の上位3つが、W、C及びTiであってもよい。
 結合相は、鉄族金属を含有してもよい。鉄族金属としては、Co(コバルト)やNi(ニッケル)などが挙げられ得る。結合相は、CoおよびNiの少なくとも一方を含有してもよい。結合相は、主成分として鉄族金属を含有してもよい。結合相は、隣り合う硬質相を結合させる相として機能し得る。CoおよびNiを一例として含む鉄族金属が、結合相が含有する成分のうち質量%の値が最も大きくてもよい。
 硬質相、固溶体相および結合相のそれぞれの組成は、例えば、エネルギー分散型X線分光分析法(Energy Dispersive X-ray Spectroscopy:EDS)で測定してもよい。測定は、電子顕微鏡に付属するEDSを用いて行ってもよい。電子顕微鏡としては、例えば、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)および透過電子顕微鏡(Transmission Electron Microscopy:TEM)などが挙げられ得る。
 図1および図2に示す限定されない一例のように、超硬合金1は、すくい面3および逃げ面5を有してもよい。すなわち、超硬合金1は、切削工具形状であってもよい。また、超硬合金1は、板形状であってもよい。例えば、超硬合金1は、図1に示す限定されない一例のように、四角板形状であってもよい。この場合には、上面がすくい面3であってもよく、また、側面が逃げ面5であってもよい。なお、超硬合金1の形状は、四角板形状に限定されない。例えば、すくい面3は、三角形、五角形、六角形または円形であってもよい。
 超硬合金1は、特定の大きさに限定されない。例えば、すくい面3の幅D1は、3~20mmに設定されてもよい。また、逃げ面5の幅D2は、5~20mmに設定されてもよい。幅D1および幅D2は、すくい面3と逃げ面5との交差稜線部に直交する方向での寸法であってもよい。
 超硬合金1は、すくい面3と逃げ面5との交差領域7を有してもよい。交差領域7とは、すなわち刃先稜線部であって、刃先には、刃先処理としてホーニング処理が施され、刃先処理が施された部分を刃先稜線部としてもよい。ホーニング処理とは、砥石(ホーン)を押し付け、回転させながら往復させて、磨き上げる加工方法であってもよい。言い換えると、交差領域7とは、すくい面3と逃げ面5との交差稜線部のうちホーニング処理が施された領域であってもよい。具体的には、すくい面3から上面視(平面視)した刃先稜線部のすくい面3側の境界部L1から逃げ面5までの範囲S1、および、逃げ面5から上面視(平面視)した刃先稜線部の逃げ面5側の境界部L2からすくい面3までの範囲S2の領域が、交差領域7であってもよい(図2参照)。
 なお、境界部L1を特定しにくい場合には、すくい面3から上面視して逃げ面5から80μmの位置を境界部L1と見做してもよい。また、境界部L2を特定しにくい場合には、逃げ面5から上面視してすくい面3から60μmの位置を境界部L2と見做してもよい。
 交差領域7は、凸曲面形状であってもよい。なお、交差領域7の形状は、凸曲面形状に限定されない。交差領域7は、例えば、チャンファー処理が施された平面形状であってもよい。なお、平面形状である交差領域7は、すくい面3及び逃げ面5に対して傾斜するため、交差領域7におけるすくい面3の側の端部と、交差領域7における逃げ面5の側の端部と、はそれぞれ容易に特定できる。また、交差領域7が凸曲面形状である場合、平面形状のすくい面3及び逃げ面5と、凸曲面形状である交差領域7と、の違いから、交差領域7におけるすくい面3の側の端部と、交差領域7における逃げ面5の側の端部と、はそれぞれ容易に特定できる。
 交差領域7は、すくい面3と逃げ面5との交差稜線部の一部に位置してもよく、また、交差稜線部の全部に位置してもよい。交差領域7は、被削材の切削に用いることが可能である。
 超硬合金1は、図2に示す限定されない一例のように、交差領域7の表面に、WCおよび鉄族金属のみからなる脱β層9を有してもよい。脱β層9は、Coなどの鉄族金属がリッチであって、靭性に富んだ層であり、切削時に被削材との間に生じる衝撃を吸収し、欠損を抑制する層として機能し得る。そのため、超硬合金1が交差領域7の表面に脱β層9を有する場合には、交差領域7が欠損しにくい。
 なお、WCおよび鉄族金属のみからなる脱β層9とは、脱β層9を構成する成分のほぼ全てが、WCおよび鉄族金属であることを意味している。脱β層9は、製造工程上不可避なレベルの不純物を含んでいてもよい。不純物の合計の含有量は、3質量%以下であればよく、言い換えれば、WCおよび鉄族金属の合計値が97質量%以上であればよい。
 超硬合金1は、交差領域7の表面の全体に脱β層9を有してもよい。言い換えれば、超硬合金1は、交差領域7の表面の全体が脱β層9であってもよい。また、超硬合金1は、交差領域7以外の表面にも脱β層9を有してもよい。脱β層9における鉄族金属は、結合相における鉄族金属と組成が同じであってもよい。脱β層9の確認は、例えば、EDSで行ってもよい。
 ここで、交差領域7におけるすくい面3の脱β層9の平均厚みをa、交差領域7における逃げ面5の脱β層9の平均厚みをbとしてもよい。そして、aとbとの関係が、b<aを満たしてもよい。この場合には、交差領域7に亀裂やチッピングなどが生じにくく、交差領域7がより欠損しにくい。そのため、超硬合金1の耐欠損性が高い。
 aとbとの関係は、1<a/b≦2.5を満たしてもよい。この場合には、超硬合金1の耐欠損性が向上し易い。
 aとbとの関係は、1.5≦a/b≦2.5を満たしてもよい。この場合には、超硬合金1の耐欠損性がさらに向上し易い。
 交差領域7におけるすくい面3の脱β層9の平均厚みとは、すくい面3から見た交差領域7のすくい面3側の端部における脱β層9の平均厚みのことを意味してもよい。そのため、交差領域7におけるすくい面3の脱β層9の平均厚みは、交差領域7におけるすくい面3側の端部に位置する領域S1aにおける脱β層9の平均厚みと言い換えてもよい。領域S1aは、例えば、境界部L1から10μmの領域であってもよい。
 また、交差領域7における逃げ面5の脱β層9の平均厚みとは、逃げ面5から見た交差領域7の逃げ面5側の端部における脱β層9の平均厚みのことを意味してもよい。そのため、交差領域7における逃げ面5の脱β層9の平均厚みは、交差領域7における逃げ面5側の端部に位置する領域S2aにおける脱β層9の平均厚みと言い換えてもよい。領域S2aは、例えば、境界部L2から5μmの領域であってもよい。
 脱β層9の厚みの測定は、電子顕微鏡を用いた断面観察で行ってもよい。観察する断面は、例えば、図2に示すような断面であってもよい。すなわち、観察する断面は、すくい面3から上面視(平面視)した場合に交差領域7に直交する断面であってもよい。そして、この断面において、領域S1aまたは領域S2aの任意の位置において5μm以上の幅にわたって1μm間隔で5箇所以上の測定点において脱β層9の厚みを測定し、その平均値を算出してもよい。
 aおよびbは、特定の厚みに限定されない。例えば、aは、7.3~14.3μmに設定されてもよい。また、bは、2.9~13μmに設定されてもよい。
 交差領域7における脱β層9の平均厚みは、すくい面3の側から逃げ面5の側に向かうにしたがって単調減少していてもよい。脱β層9の平均厚みが上記の構成である場合には、交差領域7に亀裂やチッピングなどがさらに生じにくく、交差領域7がより一層欠損しにくい。
 また、交差領域7は、すくい面3の側の端部及び逃げ面5の側の端部の間に位置して、脱β層9の平均厚みがcである領域をさらに有してもよい。言い換えれば、交差領域7は、領域S1a及び領域S2aの間に別の領域をさらに有し、この領域における脱β層9の平均厚みがcであってもよい。このとき、cが、a及びbより小さくてもよい。脱β層9の平均厚みが上記の構成である場合には、刃先における脱β層9を薄くできるため、刃先の切れ味を確保できる。
 図2に示す限定されない一例のように断面視における交差領域7が凸曲面形状である場合において、脱β層9の平均厚みがcである領域は、交差領域7における曲率半径の最も小さいところに位置してもよい。具体的には、すなわち、脱β層9の平均厚みがcである領域における交差領域7の曲率半径が、領域S1a及び領域S2aにおける交差領域7の曲率半径より小さくてもよい。交差領域7が上記の構成である場合には、刃先を鋭くすることができ、刃先の切れ味を確保できる。
 脱β層9の平均厚みがcである領域は、すくい面3の側よりも逃げ面5の側に位置してもよい。言い換えれば、脱β層9の平均厚みがcである領域は、すくい面3よりも逃げ面5の近くに位置してもよい。この場合には、すくい面3の脱β層9の厚みが増加し耐欠損性が向上するというメリットが得られる。
 すくい面3から平面視した場合における交差領域7の幅は、逃げ面5から平面視した場合における交差領域7の幅より大きくてもよい。この場合には、すくい面3のホーニングの曲率半径が大きくなることで耐チッピング性能が向上するというメリットが得られる。
 <超硬合金の製造方法>
 次に、本開示の限定されない一面の超硬合金の製造方法について、超硬合金1を製造する場合を例に挙げて説明する。
 まず、原料粉末として、WC粉末、Co粉末およびTiC粉末などを準備してもよい。Co粉末の割合は、4~12質量%であってもよい。また、TiC粉末の割合は、0.5~15質量%であってもよい。残部をWC粉末としてもよい。
 原料粉末の平均粒径は、0.1~10μmの範囲で適宜選択してもよい。原料粉末の平均粒径は、マイクロトラック法で測定された値であってもよい。
 準備した原料粉末を混合して、すくい面3および逃げ面5を有するように成形し、成形体を得てもよい。このとき、金型プレスによってすくい面3と逃げ面5との交差稜線部が角落としされた形状に予め成形してもよい。この場合には、交差領域7の表面に脱β層9が形成され易い。角落としには、交差稜線部を凸曲面形状や平面形状に形成することが含まれ得る。
 得られた成形体に脱バインダ処理を施した後に焼成し、超硬合金1を得てもよい。焼成は、真空、アルゴン雰囲気および窒素雰囲気などの非酸化性雰囲気中で行ってもよい。焼成温度は、1450~1600℃であってもよい。焼成時間は、0.5~3時間であってもよい。このような焼成温度および焼成時間で焼成する場合には、超硬合金1の表面に脱β層9が形成され易い。
 得られた超硬合金1にホーニング処理を施し、すくい面3と逃げ面5との交差領域7を形成してもよい。そして、aとbとの関係がb<aを満たすように交差領域7に対して研磨を施し、脱β層9の厚みを調整してもよい。研磨は、例えば、ブラシ加工、ブラスト加工およびバレル加工などで行ってもよい。
 なお、上記の製造方法は、超硬合金1を製造する方法の一例である。したがって、超硬合金1が、上記の製造方法によって作製されたものに限定されないことはいうまでもない。
 <被覆工具>
 次に、本開示の限定されない一面の被覆工具101について、上記の超硬合金1を有する場合を例に挙げて、図3および図4を用いて説明する。
 被覆工具101は、図3および図4に示す限定されない一例のように、超硬合金1と、超硬合金1の表面に位置する被覆層103とを有してもよい。被覆工具101は、基体として超硬合金1を有してもよい。被覆工具101が超硬合金1を有する場合には、超硬合金1の耐欠損性が高いことから、断続性能などの切削性能が向上し易い。そのため、被覆工具101の耐久性が高い。
 被覆層103は、超硬合金1の表面の全体に位置してもよく、また、一部のみに位置してもよい。すなわち、被覆層103は、超硬合金1の表面の少なくとも一部に位置してもよい。
 被覆層103は、化学蒸着(Chemical Vapor Deposition:CVD)法で成膜されてもよい。言い換えれば、被覆層103は、CVD膜であってもよい。なお、被覆層103は、物理蒸着(Physical Vapor Deposition:PVD)法で成膜されたPVD膜であってもよい。
 被覆層103は、単層の構成であってもよく、また、複数の層が積層された構成であってもよい。被覆層103の組成としては、例えば、TiCN(炭窒化チタン)、Al23(アルミナ)およびTiN(窒化チタン)などが挙げられ得る。
 被覆層103は、図3に示す限定されない一例のように、超硬合金1の方から、順にTiCN層105とAl23層107とを有してもよい。TiCN層105は、超硬合金1に接してもよい。Al23層107は、TiCN層105に接してもよい。
 被覆層103は、図4に示す限定されない一例のように、超硬合金1の方から、順にTiN層109とTiCN層105とAl23層107とを有してもよい。TiN層109は、超硬合金1に接してもよい。TiCN層105は、TiN層109に接してもよい。Al23層107は、TiCN層105に接してもよい。
 被覆層103は、特定の厚みに限定されない。例えば、TiCN層105の厚みは、1.0~15μm程度に設定されてもよい。Al23層107の厚みは、1~15μm程度に設定されてもよい。TiN層109の厚みは、0.1~5μm程度に設定されてもよい。被覆層103の厚みの測定は、電子顕微鏡を用いた断面観察で行ってもよい。また、被覆層103の厚みは、平均値であってもよい。例えば、各層の任意の位置において10μm以上の幅にわたって1μm間隔で10箇所以上の測定点において厚みを測定し、その平均値を算出してもよい。
 被覆工具101は、貫通孔111を有してもよい。なお、説明の便宜上、図1に貫通孔111を示す。貫通孔111は、被覆工具101をホルダに保持する際に、固定ネジまたはクランプ部材などを取り付けるために用いることが可能である。貫通孔111は、上面(すくい面3)から上面の反対側に位置する下面にかけて形成されてもよく、また、これらの面において開口してもよい。なお、貫通孔111は、側面(逃げ面5)における互いに対向する領域に開口する構成であっても何ら問題ない。
 <被覆工具の製造方法>
 次に、本開示の限定されない一面の被覆工具の製造方法について、被覆工具101を製造する場合を例に挙げて説明する。
 超硬合金1の表面にCVD法によって被覆層103を成膜し、被覆工具101を得てもよい。
 TiCN層105は、次のように成膜してもよい。まず、反応ガス組成として、四塩化チタン(TiCl4)ガスを0.1~10体積%、窒素(N2)ガスを10~60体積%、メタン(CH4)ガスを0.1~15体積%、残りが水素(H2)ガスからなる混合ガスを調整してもよい。そして、この混合ガスをチャンバ内に導入し、温度を800~1100℃、圧力を5~30kPaに設定し、TiCN層105を成膜してもよい。
 Al23層107は、次のように成膜してもよい。まず、反応ガス組成として、三塩化アルミニウム(AlCl3)ガスを0.5~5体積%、塩化水素(HCl)ガスを0.5~3.5体積%、二酸化炭素(CO2)ガスを0.5~5体積%、硫化水素(H2S)ガスを0.5体積%以下、残りが水素(H2)ガスからなる混合ガスを調整してもよい。そして、この混合ガスをチャンバ内に導入し、温度を930~1010℃、圧力を5~10kPaに設定し、Al23層107を成膜してもよい。
 TiN層109は、次のように成膜してもよい。まず、反応ガス組成として、四塩化チタン(TiCl4)ガスを0.1~10体積%、窒素(N2)ガスを10~60体積%、残りが水素(H2)ガスからなる混合ガスを調整してもよい。そして、この混合ガスをチャンバ内に導入し、温度を800~1010℃、圧力を10~85kPaに設定し、TiN層109を成膜してもよい。
 なお、上記の製造方法は、被覆工具101を製造する方法の一例である。したがって、被覆工具101が、上記の製造方法によって作製されたものに限定されないことはいうまでもない。
 <切削工具>
 次に、本開示の限定されない一面の切削工具201について、上記の被覆工具101を備える場合を例に挙げて、図5を用いて説明する。
 切削工具201は、図5に示す限定されない一例のように、第1端203aから第2端203bに向かって延び、第1端203aの側にポケット205を有するホルダ203と、ポケット205に位置する被覆工具101と、を備えてもよい。切削工具201が被覆工具101を備える場合には、被覆工具101の耐久性が高いことから、切削工具201の耐摩耗性が高く、安定した切削が可能となる。
 ポケット205は、被覆工具101が装着される部分であってもよい。ポケット205は、ホルダ203の外周面および第1端203aの側の端面において開口してもよい。
 被覆工具101は、交差領域7がホルダ203から外方に突出するようにポケット205に装着されてもよい。また、被覆工具101は、固定ネジ207によって、ポケット205に装着されてもよい。すなわち、被覆工具101の貫通孔111に固定ネジ207を挿入し、この固定ネジ207の先端をポケット205に形成されたネジ孔に挿入してネジ部同士を螺合させることによって、被覆工具101がポケット205に装着されてもよい。このとき、被覆工具101の下面がポケット205に直接に接してもよく、また、被覆工具101とポケット205との間にシートが挟まれてもよい。
 ホルダ203の材質としては、例えば、鋼および鋳鉄などが挙げられ得る。ホルダ203の材質が鋼の場合には、ホルダ203の靱性が高い。
 図5に示す一例においては、いわゆる旋削加工に用いられる切削工具201を例示している。旋削加工としては、例えば、内径加工、外径加工および溝入れ加工などが挙げられ得る。なお、切削工具201の用途は、旋削加工に限定されない。例えば、切削工具201を転削加工に用いても何ら問題ない。
 以下、実施例を挙げて本開示を詳細に説明するが、本開示は以下の実施例に限定されない。
 [試料No.1~6]
 <超硬合金の作製>
 まず、平均粒径9μmのWC粉末、平均粒径1.5μmのCo粉末および平均粒径1.5μmのTiC粉末を原料粉末として準備した。原料粉末の平均粒径は、マイクロトラック法で測定された値である。
 次に、Co粉末を7質量%、TiC粉末を2質量%および残部がWC粉末の割合で混合して、すくい面および逃げ面を有するように切削工具形状(CNMG120408)にプレス成形し、成形体を得た。このとき、試料No.1~5については、金型プレスによってすくい面と逃げ面との交差稜線部が凸曲面形状に角落としされた形状に成形した。
 得られた成形体に脱バインダ処理を施した後、1500℃の温度で1時間保持して焼成し、超硬合金を得た。そして、得られた超硬合金にホーニング処理を施し、すくい面と逃げ面との交差領域を形成した。
 得られた超硬合金の組成をEDSで測定した。具体的には、SEMに付属するEDSを用いた断面観察であって、倍率を5000~20000倍、5箇所測定の平均値という条件で測定した。
 EDSの測定の結果、得られた超硬合金はいずれも、主成分としてWとCとを含有する硬質相と、主成分としてWとCとTiとを含有する固溶体相と、主成分として鉄族金属(Co)を含有する結合相とを有していた。また、試料No.1~5の超硬合金は、WCおよび鉄族金属(Co)のみからなる脱β層を交差領域の表面の全体に有していた。
 試料No.1~5については、aおよびbが表1に示す値となるように交差領域に対して研磨(ブラシまたはブラスト加工)を施した。表1の「交差領域における脱β層の平均厚み」の欄に示すaおよびbの値は、上記で例示した方法にしたがって測定された値である。
 <評価>
 得られた超硬合金について、切削評価を行った。具体的には、超硬合金(基体)の方から順に、厚み1μmのTiN層、厚み10μmのTiCN層、厚み6μmのAl23層をCVD法でそれぞれ成膜して被覆工具にした後、下記の条件で切削評価を行った。なお、各層の厚みは、平均値である。
 加工形態:旋削
 切削速度:150m/min
 送り  :0.4mm/rev
 切込み :0.5mm
 被削材 :SCM440 φ200丸棒
 加工状態:WET
 評価結果を表1に示す。なお、表1の評価結果における「刃先の欠損までの衝撃回数」とは、切削加工を行った際に、刃先が欠損するまでの衝撃回数を表したものであり、断続性能評価とも呼ばれ得る。
Figure JPOXMLDOC01-appb-T000001
 試料No.1~4は、試料No.5~6と比較して、明らかに安定性が向上した。特に、試料No.6は、交差領域の表面に脱β層を有しておらず、衝撃回数が最も少なく、刃先の耐摩耗性が低く、切削工具として安定した切削が困難であった。
  1・・・超硬合金
  3・・・すくい面
  5・・・逃げ面
  7・・・交差領域
  9・・・脱β層
101・・・被覆工具
103・・・被覆層
105・・・TiCN層
107・・・Al23
109・・・TiN層
111・・・貫通孔
201・・・切削工具
203・・・ホルダ
203a・・第1端
203b・・第2端
205・・・ポケット
207・・・固定ネジ

Claims (11)

  1.  WとCとを含有する硬質相と、
     WとCとTiとを含有する固溶体相と、
     鉄族金属を含有する結合相とを有する超硬合金であって、
     該超硬合金におけるすくい面と逃げ面との交差領域の表面に、WCおよび鉄族金属のみからなる脱β層を有し、
     前記交差領域における前記すくい面の前記脱β層の平均厚みをa、
     前記交差領域における前記逃げ面の前記脱β層の平均厚みをbとし、
     前記aと前記bとの関係が、b<aを満たす、超硬合金。
  2.  前記aと前記bとの関係が、1<a/b≦2.5を満たす、請求項1に記載の超硬合金。
  3.  前記交差領域における前記脱β層の平均厚みは、前記すくい面の側から前記逃げ面の側に向かうにしたがって単調減少している、請求項1に記載の超硬合金。
  4.  前記交差領域は、前記すくい面の側の端部及び前記逃げ面の側の端部の間に位置して、前記脱β層の平均厚みがcである領域を有し、
     前記cが、前記a及び前記bよりも小さい、請求項1に記載の超硬合金。
  5.  前記脱β層の平均厚みがcである領域は、前記交差領域における曲率半径の最も小さいところに位置する、請求項4に記載の超硬合金。
  6.  前記脱β層の平均厚みがcである領域は、前記すくい面の側よりも前記逃げ面の側に位置する、請求項4に記載の超硬合金。
  7.  前記すくい面から平面視した場合における前記交差領域の幅が、前記逃げ面から平面視した場合における前記交差領域の幅よりも大きい、請求項1に記載の超硬合金。
  8.  請求項1~7のいずれか1つに記載の超硬合金と、
     前記超硬合金の表面に位置する被覆層とを有する、被覆工具。
  9.  前記被覆層は、前記超硬合金の方から、順にTiCN層とAl23層とを有する、請求項8に記載の被覆工具。
  10.  前記被覆層は、前記超硬合金の方から、順にTiN層とTiCN層とAl23層とを有する、請求項8に記載の被覆工具。
  11.  第1端から第2端に向かって延び、前記第1端側にポケットを有するホルダと、
     前記ポケットに位置する、請求項8~10のいずれか1つに記載の被覆工具と、を備えた切削工具。
PCT/JP2023/007459 2022-03-28 2023-03-01 超硬合金およびこれを用いた被覆工具、切削工具 WO2023189127A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-051034 2022-03-28
JP2022051034 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189127A1 true WO2023189127A1 (ja) 2023-10-05

Family

ID=88201096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007459 WO2023189127A1 (ja) 2022-03-28 2023-03-01 超硬合金およびこれを用いた被覆工具、切削工具

Country Status (1)

Country Link
WO (1) WO2023189127A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673560A (ja) * 1992-04-17 1994-03-15 Sumitomo Electric Ind Ltd 被覆超硬合金部材およびその製造方法
JP2003071613A (ja) * 2001-08-31 2003-03-12 Sumitomo Electric Ind Ltd 切削工具
JP2003145312A (ja) * 2001-11-13 2003-05-20 Sumitomo Electric Ind Ltd 被覆超硬合金工具
JP2011251368A (ja) * 2010-06-02 2011-12-15 Mitsubishi Materials Corp 表面被覆超硬合金製切削工具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673560A (ja) * 1992-04-17 1994-03-15 Sumitomo Electric Ind Ltd 被覆超硬合金部材およびその製造方法
JP2003071613A (ja) * 2001-08-31 2003-03-12 Sumitomo Electric Ind Ltd 切削工具
JP2003145312A (ja) * 2001-11-13 2003-05-20 Sumitomo Electric Ind Ltd 被覆超硬合金工具
JP2011251368A (ja) * 2010-06-02 2011-12-15 Mitsubishi Materials Corp 表面被覆超硬合金製切削工具

Similar Documents

Publication Publication Date Title
US8137795B2 (en) Indexable insert
WO2017146200A1 (ja) 被覆工具
KR20130004231A (ko) 절삭 공구
WO2019146785A1 (ja) 被覆工具およびそれを備えた切削工具
US10744568B2 (en) Coated tool
JP7105299B2 (ja) 被覆工具及びこれを備えた切削工具
CN110799293B (zh) 涂层刀具、切削刀具和切削加工物的制造方法
JP7261806B2 (ja) 被覆工具及び切削工具
WO2017057456A1 (ja) 被覆工具
WO2023189127A1 (ja) 超硬合金およびこれを用いた被覆工具、切削工具
JP7142098B2 (ja) 被覆工具及び切削工具
WO2020050263A1 (ja) 被覆工具及び切削工具
WO2019181793A1 (ja) インサート及びこれを備えた切削工具
JP7431946B2 (ja) 被覆工具
WO2024018889A1 (ja) 被覆工具および切削工具
JP7092867B2 (ja) 工具及びこれを備えた切削工具
JP7431945B2 (ja) 被覆工具
WO2023228688A1 (ja) 被覆工具および切削工具
CN110769957B (zh) 涂层刀具、切削刀具和切削加工物的制造方法
WO2022085429A1 (ja) 被覆工具及びこれを備えた切削工具
JP7057420B2 (ja) インサート及びこれを備えた切削工具
JP7092866B2 (ja) インサート及びこれを備えた切削工具
WO2022085450A1 (ja) 被覆工具及びこれを備えた切削工具
JP7457336B2 (ja) 被覆工具
JP7057418B2 (ja) インサート及びこれを備えた切削工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779157

Country of ref document: EP

Kind code of ref document: A1