WO2003105241A1 - 化合物薄膜太陽電池の製造方法 - Google Patents

化合物薄膜太陽電池の製造方法 Download PDF

Info

Publication number
WO2003105241A1
WO2003105241A1 PCT/JP2003/005681 JP0305681W WO03105241A1 WO 2003105241 A1 WO2003105241 A1 WO 2003105241A1 JP 0305681 W JP0305681 W JP 0305681W WO 03105241 A1 WO03105241 A1 WO 03105241A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
type
film solar
solar cell
compound
Prior art date
Application number
PCT/JP2003/005681
Other languages
English (en)
French (fr)
Inventor
塩崎 諭
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to AU2003234778A priority Critical patent/AU2003234778A1/en
Publication of WO2003105241A1 publication Critical patent/WO2003105241A1/ja
Priority to US11/005,622 priority patent/US7141449B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a compound thin film solar cell in which an n- type buffer layer for heterojunction is provided on a second absorption layer made of a P-type compound semiconductor formed on a back electrode.
  • Fig. 1 shows the basic structure of a thin film solar cell using a general compound semiconductor. This is because a Mo electrode 2, which is a back electrode (plus electrode), is formed on an SLG (soda lime glass) substrate 1, and a p-type light collecting layer 5 is formed on the Mo electrode 2.
  • a transparent electrode (minus electrode) 7 is formed on the absorption layer 5 through an n-type buzzer layer 6 for heterojunction.
  • the light-absorbing layer 5 in thin-film solar cells using compound semiconductors is currently based on Cu, (I n, G a), and Se as a high energy conversion efficiency exceeding 18%.
  • ⁇ [— CI CIGS thin film made of Group 2 Cu (I n + Ga) Se 2 is used.
  • a CdS film which is a ⁇ — ⁇ group compound semiconductor
  • CBD Chemical Bath Deposition
  • An optimum heterojunction with the absorption layer can be obtained (see US Pat. No. 4,611,091).
  • a Zn S film is formed by the CBD method (Japanese Patent Laid-Open No. 2005-230866). (See ⁇ 8-3 3 0 6 1 4).
  • the present invention relates to a method for manufacturing a compound thin film solar cell in which a type II buffer layer for heterojunction is provided on a light absorption layer made of a P-type compound semiconductor formed on a back electrode, and CBD
  • a type II buffer layer for heterojunction is provided on a light absorption layer made of a P-type compound semiconductor formed on a back electrode, and CBD
  • an S compound powder containing a type II dopant element is deposited on the light absorption layer.
  • a buffer layer is formed by applying a solution obtained by dissolving an S compound containing an n-type dopant element in a solvent onto the 3 3 ⁇ 4 absorption layer and melting by heating.
  • FIG. 1 is a front sectional view showing a basic structure of a thin film solar cell using a general compound semiconductor.
  • Fig. 2 is a country showing the manufacturing process up to the formation of the back electrode and light collection layer on the SLG substrate.
  • the third country shows the manufacturing process until the buffer layer and the transparent electrode are formed on the light absorption layer.
  • FIG. 4 is a diagram showing a manufacturing process until a diffusion control layer, a back electrode, an alkali layer, and a laminated precursor are formed on an SLG substrate.
  • FIG. 5 is a diagram showing a manufacturing process until formation of a preabsorption layer, a vacuum layer, and a transparent electrode on a SLG substrate via a diffusion control layer.
  • FIG. 6 is a diagram showing a manufacturing process until a puffer layer is formed on the light absorption layer according to the present invention.
  • FIG. 1 Figure 2 and Figure 3 show the manufacturing process for compound thin film solar cells.
  • the back surface battery is placed on the SLG (soda lime glass) substrate 1.
  • a Mo electrode 2 as an electrode is formed by sputtering.
  • the first sparging process using the In simple substance target T 1 was first performed.
  • a Cu_Ga alloy layer 31 was deposited on the second sputter process S PT-2 using a Cu—Ga alloy target T2 to form an In layer 32 and a Cu layer.
  • a laminated precursor 3 composed of one Ga alloy layer 3 1 is formed.
  • the laminated precursor 3 is thermally treated in a Se atmosphere, whereby the light absorption layer 5 made of a CIGS thin film is produced.
  • the I 11 layer 32 3 ⁇ 4 is provided on the M 0 electrode 2, and the Cu—Ga alloy layer 31 is provided thereon to form the laminated precursor 3. Alloying due to solid dispersion of elements at the interface can be suppressed. Then, when the laminated precursor 3 is thermally treated in a Se atmosphere to be selenized, the In component can be sufficiently dispersed on the Mo electrode 2 side, and the diffusion rate is reduced.
  • the high quality P-type semiconductor Cu Uniform crystal prevents the formation of a poorly crystalline CuGa-Se layer by preferential praying at the interface with the electrode 2 I n + Ga) Light collection layer 5 of CIGS with Se 2 can be produced.
  • the heterogeneous layer (Cu—Ga—Se layer) that has poor crystallinity, is structurally brittle and has conductivity is not deposited on the interface with the Mo electrode 2. It is possible to obtain a light-absorbing layer with high quality that has high adhesion to the Mo electrode 2 and is structurally strong, and that does not deteriorate battery characteristics due to leakage between cells.
  • an n-type buffer layer 6 is formed in order to form an eight terror junction with the P-type light absorbing layer 5.
  • a transparent electrode 7 made of ZnO: A i, I ⁇ ⁇ , etc. is formed on the bubble layer 6 by sputtering.
  • Figures 4 and 5 show other suitable manufacturing processes for compound thin film solar cells.
  • the Na 2 S is formed on the Mo electrode 2 so that the Na component diffuses into the light absorption layer 5 to improve the efficiency of the prior electroconversion during the heat treatment for selenization of the multilayer precursor 3.
  • An Al force layer 8 is provided.
  • the Al force layer 8 is formed by depositing the Mo electrode 2 in an aqueous solution in which, for example, Na 2 S ⁇ 9 H 20 (sodium sulfide nonahydrate) is dissolved in pure water at a weight concentration of 0.1 to 5%. Soak After drying by spin dry, in the atmosphere to adjust the residual moisture in the film. Bake with C for 60 minutes;
  • the diffusion control layer 9 is formed by the CVD method or the sputter method.
  • the present invention is a compound thin film solar cell having such a configuration, and particularly when forming the buffer layer 6, as shown in FIG. 6, the S containing the n-type dopant element Zn (or C d)
  • the compound powder 10 is deposited on the light-absorbing layer 5 and is heated and melted to form the buffer layer 6.
  • S compound containing the n-type dopant element Z II & examples include, for example, zinc di-II-butyl dithiocarbamate [(C 4 I-) 2 C S2) 2.Z n, zinc jetty dithiocarbamate C 2 H5) 2 NC S2] 2 Z II or zinc dimethyldithiocarbamate [(C H3) 2 NC S2] 2 Z n is used.
  • the heating process involves selenization by heat-treating the laminated precursor 3 when forming the light absorption layer 5 in a Se atmosphere ffl atmosphere above the melting point of the S compound containing the type II dopant element Z ⁇ Heating temperature when it falls (5 0 0. C) ⁇ Heat at the temperature in the lower range ffl for 30 to 30 minutes.
  • the S compound powder 10 containing the type II dopant element Zn instead of depositing the S compound powder 10 containing the type II dopant element Zn on the light-absorbing layer 5, use a solution of the S compound containing the type II dopant element Zn in the solvent. It may be coated on the absorbent layer 5 and heated and melted to form the bajipua layer 6 c
  • the solution is directly poured on the surface of the light absorbing layer 5 with a spoon or the like.
  • dip, spraying, spin coating, screen printing, etc. are widely applied.
  • an organic solvent such as toluene, aceton or ethanol is used.
  • the solvent evaporates upon heating.
  • the thickness of the buffer layer 6 to be formed is determined by the mass of the S compound powder 10 containing the n-type dopant element Z n deposited on the light absorption layer 5 or by the n-type dopant element dissolved in the solvent. It is adjusted by the concentration of S compound containing Z XI and the method of application. Also, the amount of diffusion of the Zn component to the light collection layer 5 is controlled by the heating temperature and the heating time.
  • surface treatment is performed by etching using hydrochloric acid or the like in order to remove excess deposits on the surface of the Vapepua layer 6 according to the soot.
  • a single substance made of an S compound containing the n-type dopant element Zn (or C d) is provided on the surface of the light acquisition layer 5 without using any CBD method, Since the layer of Z II S (or C d S) is formed by heating and melting, it is possible to form a pure paddy layer 6 having a high purity without being mixed with impurities. . Siss: Therefore, it becomes possible to obtain a stable high-quality Pn junction having good bonding properties to the light absorption layer 5. In addition, it is possible to eliminate the barrier between the transparent electrode 7 and to prevent performance degradation due to recombination.
  • a method for manufacturing a compound thin-film solar cell in which an n-type buzzer layer is formed on a light-absorbing layer made of a P-type compound semiconductor formed on a back electrode, for a head joint And depositing an S compound powder containing an n-type dopant in the light-absorbing layer or a solution in which an S compound containing a type II dopant element is dissolved in a solvent on the light-absorbing layer.
  • a buffer layer can be formed to easily obtain a high-quality Pn bond with a stable and excellent bondability for the light-absorbing layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

裏面電極上に形成されたP型化合物半導体からなる光吸収層の上にヘテロ接合のためのn型のバッファ層を設けてなる化合物薄膜太陽電池の製造方法にあって、n型ドーパン卜元素を含むS化合物の粉体を光吸収層上に撒積して、またはn型ドーパン元素を含むS化合物を溶媒に溶解させた溶液を光吸収層上に塗って、それを加熱溶融することによってバッファ層を形成することにより、p型化合物半導体からなる光吸収層の上に、接合性の良い特性の安定したヘテロ接合のためのn型のバッファ層を設けるようにする。

Description

明 細 書 化合物薄膜太陽電池の製造方法
技術分野
本発明は、 裏面電極上に形威された P型化合物半導体からなる ¾吸収層の上に ヘテロ接合のための n型のバッファ層を設けてなる化合物薄膜太陽電池の製造方 法に閟する。 第 1図は、 一般的な化合物半導体による薄膜太陽電池の基本構造を示している。 それは、 S L G (ソーダライムガラス) 基板 1上に裏面電極 (プラス電極) とな る M o電極 2が成膜され、 その M o電極 2上に p型の光啜収層 5が成膜され、 そ の ¾吸収層 5上に-ヘテロ接合のための n型のバジファ層 6を介して透明電極 (マ ィナス電極) 7が成膜されている。
その化合 半導体による薄膜太陽電池における光吸収層 5としては、 現在 1 8 %を超す高いエネルギー変換効率が得られるものとして、 C u, ( I n , G a ) , S eをベースとした I — Π [— Ί 2族系の C u ( I n + G a ) S e 2による C I G S薄膜が用いられている。
従来、 この種の化合物薄膜太陽電池におけるバジファ層として、 C B D (ケミ カルバスデポジション) 法によって、 溶液から化学的に Π—\Ί族化合物半導体で ある C d S膜を成長させることにより、 C I S光吸収層と最適なヘテロ接合を得 ることができるようにしている (米国特許第 4 6 1 1 0 9 1号明細書参照) 。 また、 従采、 有害物質である C dを含まない髙ぃ変換効率のへテロ結合を得る ことができるバッファ層として、 C B D法によって Z n S膜を形成させるように したものがある (特開苹 8— 3 3 0 6 1 4号公報参照) 。
このような従来の化合物薄膜太陽電池の製造方法では、 C B D法によってバジ プア層を成膜させるに際して、 溶液に光吸収層を浸すと光啜収層八の Z nまたは C d成分の拡散と Z n Sまたは C d Sの成膜とが同時に進行するので、 光啜収層 の結晶性やその表面状態によつて特性のバラツキを生じやすいものになってしま うという間題がある。 また、 C B D法によるのでは、 形成されるパジプア層に不純德が混入して品質 が低下してしまうという間題がある
そして、 C B D法によるのでは、 溶液槽の内部や基材を搬送するキャリアにも Z n Sが付着して無駄に消費されてしまうとともに、 多量の廃液が生じてしまう いう問題がある。
発明の開示
本発明は、 裏面電極上に形成された P型化合物半導体からなる光吸収層の上に ヘテロ接合のための II型のバッファ層を設けてなる化合物薄膜太陽電池の製造方 法にあって、 C B D法によることなく、 接合性の良い特性の安定した高品質な P n接合を容易に得ることができるようにするべく、 II型ドーパント元素を含む S 化合物の粉体を光吸収層上に撒積して、 または n型ドーパント元素を含む S化合 物を溶媒に溶解させた溶液を 3¾吸収層上に塗って、 加熱溶融することによってパ クファ層を形成するようにしている。
図面 簡単な説明
第 1図は、 一般的な化合物半導体による薄膜太陽電池の基本的な構造を示す正 断面図である。
第 2図は、 S L G基板上に裏面電極および光痰収層を形成するまでの製造過程 のー钶を示す國である。
第 3國は、 光吸収層上にバッファ層および透明電極を形成するまでの製造過程 を示す図である。
第 4図は, S L G基板上に掂散制御層、 裏面電極、 アルカリ層およぴ積層プリ カーサを形成するまでの製造過程を示す図である。
第 5図は、 S L G基板上に拔散制御層を介して先吸収層、 バジプア層および透 明電極を形成するまでの製造過程を示す図である。
第 6図は、 本発明によって光吸収層上にパッファ層を形成するまでの製造過程 を示す図である。
発明を実施するための最良の形態
第 2國およぴ第 3図は、 化合物薄膜太陽電池の製造過程を示している。
まず、 第 2図に示すように、 S L G (ソーダライムガラス) 基板 1上に裏面電
1 - 極としての M o電極 2をスパッタリングにより成膜する。 次いで、 その o電極 2上に C I GS薄膜による光暧收層 5を作製するに際して、 先に I n単体ターゲ ジト T 1を用いた第 1のスパジ 'タエ程 S PT— 1によって I n層 32を成膜した うえで、 その上に、 Cu—G aの合金ターゲット T2を用いた第 2のスパジタエ 程 S PT— 2によって Cu_G a合金層 3 1を成膜して、 I n層 32および Cu 一 G a合金層 3 1からなる積層プリカーサ 3を形成する。 そして、 熱処理工程 H EATにおいて、 その積層プリカーサ 3を S e雰囲気中で熱½理することにより、 C I G S薄膜による光吸收層 5を作製する。
' このように、 M 0電極 2上に I 11層 32 ¾設けたうえで、 その上に Cu— G a 合金層 31を設けて積層プリカーサ 3を形成するようにしているので、 Mo電極 2との界面における元素の固層 散による合金化を抑制することができる。 そし て その積層プリカーサ 3を S e雰囲気中で熱½理してセレ'ン化する際に、 M o 電極 2側に I n成分を充分に拔散させることができるとともに、 拔散速度の遲ぃ G aが o電極 2との界面に偏祈して結晶性の悪い C u-G a -S e層が形成さ れることがないようにして、 均一な結晶による高品質な P型半導体の Cu (I n + G a) S e 2による C I G Sの光歧収層 5を作製することができる。
したがって、 Mo電極 2との界面に、 結晶性が悪くて構造的に脆く、 かつ導電 性を有する異層 (C u— G a— S e層) が傭析するようなことがなくなリ、 Mo 電極 2との密着性が高くて構造的に強固な、 しかもセル間でリークをきたして電 池特性が劣化することのない品貧の良い光吸収層を得ることができるようになる。 次に 第 3図に示すように、 P型の光唆収層 5との八テロ接合をとるために n 型のバッファ層 6を形成する。 そして、 そのバジプア層 6上に ZnO: A i , I Τ Οなどからなる透明電極 7をスパジタリングによリ成膜する。
第 4画および第 5図は、 化合物薄膜太陽電池の他の製造適:程を示している。 この場合には、 積層プリカーサ 3のセレン化の熱処理時に、 N a成分が光吸収 層 5に拡散して先電変換効率を向上させることができるように、 M o電極 2上に N a 2 Sからなるアル力リ層 8を設けるようにしている。
そのアル力リ層 8は、 例えば N a 2 S · 9 H 20 (硫化ナトリウム 9水和物) を重量濃度 0. 1〜 5 %で純水に溶かした水溶液に M o電極 2の成膜基板を浸し て、 スピンドライ乾燥させたのち、 膜中残留水分の調整のために、 大気中 1 5 0 。Cで 6 0分間のベーク; ½理を行うことによって形成する。
そして、 S L G基板 1と M o電極 2との間に、 S L G基板 1に含まれる N a成 分が光暧収層 5に拡散するのを制御する S i O 2 , A i 2 0 3などからなる拡散 制御層 9を C V D法またはスパジタ法によって形成するようにしている。
本発明は、 このような構成による化合敉薄膜太陽電池にあって、 特にバッファ 層 6を形成するに際して、 第 6図に示すように、 n型ドーパント元素 Z n (また は C d ) を含む S化-合物の粉体 1 0を光吸収層 5上に撒積して、 それを加熱溶融 することによつてパヅファ層 6を形成するようにしている。
n型ドーパント元素 Z II &含む S化合物としては、 例えば、 ジ一 II—プチルジ チォカルバミン酸亜鉛 〔 (C4I- )2 C S2) 2 . Z n , ジェチルジチォカルバミ ン酸亜鉛 〔 (C2 H5)2 N C S2〕2 Z IIまたはジメチルジチォカルバミン酸亜鉛 〔 (C H3)2 N C S2〕2 Z nが用いられる。
加熱' 理としては、 使招する II型ドーパント元素 Z ηを含む S化合物の融点以 上で、 光吸収層 5を形成する際の積層プリカーサ 3を S e雰 ffl気中で熱処理して セレン化するときの加熱温度 (倒えば 5 0 0。C) ^下の範 ffl内の温度で、 3 0〜 3 0 0分間加熱する。
II型ド一パント元秦 Z nを含む S化合物の粉体 1 0を光唆収層 5上に撒積する 代わリに、 II型ドーパント元素 Z nを含む S化合物を溶媒に溶かした液を光吸収 層 5上に塗つて、 それを加熱溶融することによってバジプア層 6を形成するよう にしてもよい c
II型ドーパント元素 Z nを含む S化合物の溶液を塗る方法としては、 さじ等で 光唆収層 5の表面に直接?容液をたらすようにする。 その他、 ディップ、 噴霧、 ス ピンコート、 スクリーン印刷などが広く適用される。
溶媒としては、 トルエン、 ァセトンまたはエタノール等の有機溶媒が用いられ る。 その溶媒は、 加熱することによって蒸発する。
形成されるバッファ層 6の膜厚は、 光吸収層 5上に撒積する n型ドーパント元 素 Z nを含む S化合鈎の粉体 1 0の質量によって、 または溶媒に溶かす n型ド一 バント元素 Z XIを含む S化合物の濃度および塗布の方法などによつて調整される。 また、 光暧収層 5へ © Z n成分の拡散量は、 加熱温度および加熱時間によって 制御される。
具体的には、 ジ一 n—ブチルジチォカルバミン酸亜鉛をァセトンまたはエタノ ールに溶かした 0 . 4〜 0 . 5 g / c cの溶液を塗布しおものを、 2 5 CTCで 3 時間加熱することによって品質の良いバジプア層 6が得られた。
加熱処理終了後に、 、婆に応じて、 バジプア層 6の表面の余分な付着物を除去 するべく、 塩酸などを用いたエッチングによる表面 理を行う。
このように、 本発明によれば、 何ら C B D法によることなく、 n型ドーパント 元素 Z n (または C d ) を含む S化合物による単一の物質を光敷収層 5の表面に 設けて、 それを加熱溶融することによって Z II S (または C d S ) の層を形成す るようにしているので、 不純物が混入することなく、 純度の髙ぃパジファ層 6を 形成することができるようになる。 しす:がって、 光吸牧層 5に対して接合性の良 い特性の安定した髙品質な P n接合を得ることができるようになる。 そして、 透 明電極 7との間の障壁をなくして、 再結合による性能劣化を防止することができ るよ ·¾になる。
産業上の利用可能性
本 II明によれば、 裏面電極上に形成された P型化合物半導体からなる光吸収層 の上にへテ口接合のための n型のバジファ層を設けてなる化合物薄膜太陽電池の 製造方法にあって、 n型ドーパン卜元素を含む S化合物の粉体を光暧収層上に撒 積して、 または II型ドーパント元素を含む S化合物を溶媒に溶解させた溶液を光 ¾収層上に塗つて、 それを加熱镕融することによってバッファ層を形成するよう にすることにより、 光痰収層に对して接合性の良 特性の安定した高品質な P n 接合を容易に得ることができるとともに、 透明電極との間の障壁をなくして再結 合による性能劣、化を防止することができるようになる。

Claims

請 求 の 範 囲 裏面電極上に形成された P型化合物半導体からなる光歿収層の上にへテ口接 合のための n型のバ'ジファ層を設けてなる化合物薄膜太陽電池の製造方法であ つて、 II型ドーパント元素を含む S化合犓の粉体を光吸収層上に撒積して、 加 熱溶融することによってバジプア層を形成したことを特徴とする化合物薄膜太 陽電池の製造方法。
裏面電極上に形成された p型化合物半導体からなる光暧収層の上にへテ口接 合のための n型のバジファ層を設けてなる化合物薄膜太陽電池の製造方法であ つて、 n型ドーパント元素を含む S化合物を溶媒に溶解させた溶液を光吸収層 上に塗って、 加熱溶融することによってバッファ層を形威したことを特徴とす る化合物薄膜太陽電泡の製造方法。
n型ドーパント元素を含む S化合物が、 ジ— n—ブチルジチォ力ルバミン酸 亜鉛、 ジェチルジチォ力ルバミン黢亜鉛またはジメチルジチォカルバミン酸亜 鉛であることを特徵とする請求項 1または請求項 2の記載による化合物薄膜太 陽電池の製造方法。
瑢媒がトルエン、 アセトンまたはエタノール'等の有機溶媒であることを特徽 とする請求項 2の記載による化合物薄膜太陽電泡の製造方法。
加熱溶融後に、 エツチングによる表面処理を行うようにしたことを特徽とす る請求項 1または請求頊 2の記載による化合物薄膜太陽電池の製造方法。
PCT/JP2003/005681 2002-06-07 2003-05-07 化合物薄膜太陽電池の製造方法 WO2003105241A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003234778A AU2003234778A1 (en) 2002-06-07 2003-05-07 Method for manufacturing compound thin-film solar cell
US11/005,622 US7141449B2 (en) 2002-06-07 2004-12-03 Method of fabricating a compound semiconductor thin-layer solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-203316 2002-06-07
JP2002203316A JP4012957B2 (ja) 2002-06-07 2002-06-07 化合物薄膜太陽電池の製造方法

Publications (1)

Publication Number Publication Date
WO2003105241A1 true WO2003105241A1 (ja) 2003-12-18

Family

ID=29728519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005681 WO2003105241A1 (ja) 2002-06-07 2003-05-07 化合物薄膜太陽電池の製造方法

Country Status (4)

Country Link
US (1) US7141449B2 (ja)
JP (1) JP4012957B2 (ja)
AU (1) AU2003234778A1 (ja)
WO (1) WO2003105241A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100466125C (zh) * 2005-04-18 2009-03-04 中国科学院长春应用化学研究所 含有有机异质结的电接触材料及其器件
US8217498B2 (en) * 2007-10-18 2012-07-10 Corning Incorporated Gallium nitride semiconductor device on SOI and process for making same
DE102008039337A1 (de) * 2008-03-20 2009-09-24 Siemens Aktiengesellschaft Vorrichtung zum Besprühen, Verfahren dazu sowie organisches elektronisches Bauelement
KR101035389B1 (ko) * 2008-03-31 2011-05-20 영남대학교 산학협력단 벌크 이종접합형 태양전지 및 그 제조방법
JP5006245B2 (ja) * 2008-04-15 2012-08-22 本田技研工業株式会社 カルコパイライト型薄膜太陽電池の製造方法およびその装置
US8110738B2 (en) 2009-02-20 2012-02-07 Miasole Protective layer for large-scale production of thin-film solar cells
US8115095B2 (en) * 2009-02-20 2012-02-14 Miasole Protective layer for large-scale production of thin-film solar cells
US7897020B2 (en) * 2009-04-13 2011-03-01 Miasole Method for alkali doping of thin film photovoltaic materials
US8134069B2 (en) * 2009-04-13 2012-03-13 Miasole Method and apparatus for controllable sodium delivery for thin film photovoltaic materials
US7785921B1 (en) * 2009-04-13 2010-08-31 Miasole Barrier for doped molybdenum targets
TW201042065A (en) * 2009-05-22 2010-12-01 Ind Tech Res Inst Methods for fabricating copper indium gallium diselenide (CIGS) compound thin films
US9284639B2 (en) * 2009-07-30 2016-03-15 Apollo Precision Kunming Yuanhong Limited Method for alkali doping of thin film photovoltaic materials
KR101072089B1 (ko) * 2009-09-30 2011-10-10 엘지이노텍 주식회사 태양전지 및 이의 제조방법
US8709335B1 (en) 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by cold spraying
US8709548B1 (en) 2009-10-20 2014-04-29 Hanergy Holding Group Ltd. Method of making a CIG target by spray forming
JP2011091229A (ja) * 2009-10-23 2011-05-06 Kyocera Corp 光電変換体の製造方法および光電変換装置の製造方法
US20110162696A1 (en) * 2010-01-05 2011-07-07 Miasole Photovoltaic materials with controllable zinc and sodium content and method of making thereof
TWI422045B (zh) * 2010-07-08 2014-01-01 Gcsol Tech Co Ltd Cigs太陽能電池製程之設備及方法
JP5418463B2 (ja) * 2010-10-14 2014-02-19 住友金属鉱山株式会社 Cu−Ga合金スパッタリングターゲットの製造方法
US7935558B1 (en) 2010-10-19 2011-05-03 Miasole Sodium salt containing CIG targets, methods of making and methods of use thereof
US9169548B1 (en) 2010-10-19 2015-10-27 Apollo Precision Fujian Limited Photovoltaic cell with copper poor CIGS absorber layer and method of making thereof
US8048707B1 (en) 2010-10-19 2011-11-01 Miasole Sulfur salt containing CIG targets, methods of making and methods of use thereof
JP2012109558A (ja) * 2010-10-29 2012-06-07 Kyocera Corp 光電変換素子および光電変換装置ならびに光電変換素子の製造方法
US10043921B1 (en) 2011-12-21 2018-08-07 Beijing Apollo Ding Rong Solar Technology Co., Ltd. Photovoltaic cell with high efficiency cigs absorber layer with low minority carrier lifetime and method of making thereof
US9130113B2 (en) 2012-12-14 2015-09-08 Tsmc Solar Ltd. Method and apparatus for resistivity and transmittance optimization in TCO solar cell films
US9105799B2 (en) * 2013-06-10 2015-08-11 Tsmc Solar Ltd. Apparatus and method for producing solar cells using light treatment
TWI502762B (zh) * 2014-12-22 2015-10-01 Ind Tech Res Inst 化合物太陽能電池與硫化物單晶奈米粒子薄膜的製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218473A (ja) * 1992-02-03 1993-08-27 Matsushita Electric Ind Co Ltd CdS/CdTe系太陽電池用CdS膜の製造方法
JPH08330614A (ja) * 1995-05-29 1996-12-13 Showa Shell Sekiyu Kk 薄膜太陽電池および該薄膜太陽電池の製造方法
JPH09162429A (ja) * 1995-12-08 1997-06-20 Japan Energy Corp 光電変換素子の製造方法
JPH1187747A (ja) * 1997-09-05 1999-03-30 Matsushita Denchi Kogyo Kk 化合物半導体膜の製造方法および太陽電池
JPH11121778A (ja) * 1997-10-09 1999-04-30 Matsushita Battery Industrial Co Ltd 化合物半導体膜の製造方法および太陽電池
JP2001148489A (ja) * 1999-09-07 2001-05-29 Shinko Electric Ind Co Ltd 化合物半導体太陽電池の製造方法
JP2002124688A (ja) * 2000-10-18 2002-04-26 Matsushita Electric Ind Co Ltd 太陽電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4343881A (en) * 1981-07-06 1982-08-10 Savin Corporation Multilayer photoconductive assembly with intermediate heterojunction
US4611091A (en) * 1984-12-06 1986-09-09 Atlantic Richfield Company CuInSe2 thin film solar cell with thin CdS and transparent window layer
AU2003275239A1 (en) * 2002-09-30 2004-04-23 Miasole Manufacturing apparatus and method for large-scale production of thin-film solar cells

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05218473A (ja) * 1992-02-03 1993-08-27 Matsushita Electric Ind Co Ltd CdS/CdTe系太陽電池用CdS膜の製造方法
JPH08330614A (ja) * 1995-05-29 1996-12-13 Showa Shell Sekiyu Kk 薄膜太陽電池および該薄膜太陽電池の製造方法
JPH09162429A (ja) * 1995-12-08 1997-06-20 Japan Energy Corp 光電変換素子の製造方法
JPH1187747A (ja) * 1997-09-05 1999-03-30 Matsushita Denchi Kogyo Kk 化合物半導体膜の製造方法および太陽電池
JPH11121778A (ja) * 1997-10-09 1999-04-30 Matsushita Battery Industrial Co Ltd 化合物半導体膜の製造方法および太陽電池
JP2001148489A (ja) * 1999-09-07 2001-05-29 Shinko Electric Ind Co Ltd 化合物半導体太陽電池の製造方法
JP2002124688A (ja) * 2000-10-18 2002-04-26 Matsushita Electric Ind Co Ltd 太陽電池

Also Published As

Publication number Publication date
AU2003234778A1 (en) 2003-12-22
US7141449B2 (en) 2006-11-28
JP4012957B2 (ja) 2007-11-28
US20050161076A1 (en) 2005-07-28
JP2004015041A (ja) 2004-01-15

Similar Documents

Publication Publication Date Title
WO2003105241A1 (ja) 化合物薄膜太陽電池の製造方法
CN100463230C (zh) 黄铜矿型薄膜太阳能电池的制造方法
Andrade-Arvizu et al. SnS-based thin film solar cells: perspectives over the last 25 years
US6534704B2 (en) Solar cell
US6537845B1 (en) Chemical surface deposition of ultra-thin semiconductors
JP4055053B2 (ja) 化合物薄膜太陽電池およびその製造方法
JP4098330B2 (ja) 太陽電池とその製造方法
JP2009530812A (ja) 薄膜太陽電池製造用の前駆体膜及び化合物膜の調製技術及びこれに対応する装置
WO2003069684A1 (fr) Procédé de formation de couche absorbant la lumière
JP4110515B2 (ja) 薄膜太陽電池およびその製造方法
JP4264801B2 (ja) 化合物薄膜太陽電池の製造方法
JP2006210424A (ja) カルコパイライト型薄膜太陽電池の製造方法
JP4320529B2 (ja) 化合物薄膜太陽電池およびその製造方法
JP4549570B2 (ja) ヘテロ接合薄膜太陽電池の製造方法
CN103296130A (zh) 一种柔性不锈钢衬底上CIGS吸收层的Na掺杂方法
JP4055064B2 (ja) 薄膜太陽電池の製造方法
KR101542342B1 (ko) Czts계 태양전지의 박막 제조방법 및 이로부터 제조된 태양전지
JP2004047917A (ja) 薄膜太陽電池およびその製造方法
CN105449103B (zh) 一种薄膜晶硅钙钛矿异质结太阳电池及其制备方法
JP2003258278A (ja) 光電変換装置及びその製造方法
JP2000332273A (ja) 太陽電池およびその製造方法
JPH05315633A (ja) CuInSe2 系薄膜太陽電池およびその製法
TW201427054A (zh) 光電變換元件及其製造方法、光電變換元件的緩衝層的製造方法與太陽電池
JP2003258282A (ja) 光吸収層の作製方法
CN109841697B (zh) 一种基于CuO/Se复合材料薄膜的太阳能电池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase